Prepared for

Virginia Department of Environmental Quality

Document type

**Preliminary Site Characterization Report** 

Date

March 2022

# PRELIMINARY SITE CHARACTERIZATION REPORT FORMER POTOMAC RIVER GENERATING STATION



# PRELIMINARY SITE CHARACTERIZATION REPORT FORMER POTOMAC RIVER GENERATING STATION

Project name HRP\_PRGS Preliminary SCR

Recipient Virginia Department of Environmental Quality

Document type

Version **001** 

Date March 23, 2022

Approved by Sarah Stoneking, PG

Description Preliminary Site Characterization Report for Former PRGS

Ramboll 4245 N. Fairfax Drive Suite 700 Arlington, VA 22203

USA .

T +1 703 516 2300 F +1 703 516 2345 https://ramboll.com

# **CONTENTS**

| 1.  | INTRODUCTION                                                       | 2  |
|-----|--------------------------------------------------------------------|----|
| 2.  | SITE BACKGROUND                                                    | 3  |
| 2.1 | Site Location and Use                                              | 3  |
| 2.2 | Surrounding Area Use                                               | 3  |
| 2.3 | Site and Surrounding Area History                                  | 3  |
| 2.4 | Regional Geology                                                   | 4  |
| 2.5 | Site-Specific Geology and Hydrogeology                             | 4  |
| 2.6 | Prior Remedial Actions and Regulatory Status                       | 5  |
| 2.7 | Identified Concerns                                                | 5  |
| 3.  | SITE INVESTIGATION METHODOLOGY                                     | 7  |
| 3.1 | Soil Boring Installation                                           | 8  |
| 3.2 | Monitoring Well Installation and Development                       | 9  |
| 3.3 | Groundwater Gauging and Sampling                                   | 9  |
| 3.4 | Equipment Decontamination & Investigation-Derived Waste Management | 10 |
| 3.5 | Slug Testing                                                       | 11 |
| 3.6 | Site Survey                                                        | 11 |
| 3.7 | Quality Assurance / Quality Control                                | 11 |
| 4.  | RAMBOLL SITE INVESTIGATION RESULTS                                 | 12 |
| 4.1 | Field Observations                                                 | 12 |
| 4.2 | Soil Results                                                       | 12 |
| 4.3 | Groundwater Results                                                | 14 |
| 4.4 | Slug Testing Results                                               | 16 |
| 4.5 | QA/QC                                                              | 16 |
| 5.  | PRELIMINARY CONCEPTUAL SITE MODEL                                  | 19 |
| 5.1 | Preliminary Nature and Extent of Contamination                     | 19 |
| 5.2 | Limited Exposure Assessment                                        | 21 |
| 6.  | FUTURE ACTIONS                                                     | 22 |
| 7   | DEEEDENCES                                                         | 23 |

Contents Ramboll

# **TABLES**

| Table 4-1:  | Summary of Well Construction and Gauging Information                               |
|-------------|------------------------------------------------------------------------------------|
| Γable 4-2A: | Soil Analytical Results – Detected Inorganic Compounds                             |
| Гable 4-2В: | Soil Analytical Results – Detected Total Petroleum Hydrocarbons                    |
| Гable 4-2С: | Soil Analytical Results - Detected Semi-Volatile Organic Compounds                 |
| Γable 4-2D: | Soil Analytical Results - Detected Volatile Organic Compounds                      |
| Γable 4-2E: | Soil Analytical Results – Polychlorinated Biphenyls                                |
| Гable 4-3А: | Groundwater Analytical Results – Detected Inorganic Compounds                      |
| Гable 4-3В: | Groundwater Analytical Results – Detected Total Petroleum Hydrocarbons and Glycols |
| Γable 4-3C: | Groundwater Analytical Results – Detected Semi-Volatile Organic Compounds          |
| Γable 4-3D: | Groundwater Analytical Results - Detected Volatile Organic Compounds               |
| Гable 4-3Е: | Groundwater Analytical Results – Polychlorinated Biphenyls                         |

# **FIGURES**

| Figure 1-1:  | Site Location                                                     |
|--------------|-------------------------------------------------------------------|
| Figure 2-1:  | Site Layout                                                       |
| Figure 3-1:  | Site Utilities                                                    |
| Figure 3-2:  | Sample Locations                                                  |
| Figure 4-1A: | Potentiometric Surface Map for Shallow Groundwater (October 2021) |
| Figure 4-1B: | Potentiometric Surface Map for Deep Groundwater (October 2021)    |
| Figure 4-2:  | Soil Exceedances (Non-Residential Criteria) (October 2021)        |
| Figure 4-3:  | Groundwater Exceedances (Non-Residential Criteria) (October 2021) |

# **APPENDICES**

| Appendix A: | Ramboll Site Characterization Work Plan                            |
|-------------|--------------------------------------------------------------------|
| Appendix B: | Hydraulic Conductivity Test Results                                |
| Appendix C: | Ramboll Soil Boring Logs and Monitoring Well Construction Diagrams |
| Appendix D: | Laboratory Analytical Results                                      |

# 1. INTRODUCTION

On behalf of HRP Potomac, LLC (HRP), Ramboll US Consulting, Inc. (Ramboll) has prepared this preliminary Site Characterization Report (SCR) for the former Potomac River Generating Station (PRGS) located at 1400 North Royal Street in Alexandria, Virginia (the "Site") (**Figure 1-1**).

The objective of the preliminary site characterization activities was to evaluate the nature and extent of releases resulting from historical site activities and to collect the information necessary to inform corrective action decisions and complete a preliminary evaluation of human health risk. Certain areas of the site are not accessible due to the current condition of the Main Building and Laboratory and thus, investigation in those areas of the site will be performed as appropriate concurrent with, or subsequent to demolition of the structures. This preliminary SCR has been prepared in general accordance with Virginia Administrative Code 9VAC20-160-70. Section 2 of this report provides an overview of the site background and Section 3 of this report provides an overview of the site investigation methods employed during the preliminary site characterization investigation. Preliminary site characterization results are presented in Section 4, the preliminary conceptual site model (CSM) is presented in Section 5, and a summary of anticipated future actions is included in Section 6.

# 2. SITE BACKGROUND

#### 2.1 Site Location and Use

The Site consists of 18.8 acres of land located at 1400 North Royal Street in Alexandria, Virginia at the intersection of Bashford Lane and North Royal Street.

HRP plans to redevelop the property as mixed-use development, which may include both commercial and residential uses. The former PRGS is no longer operating and will be deconstructed in coordination with redevelopment of the site. Current site use is limited to routine property maintenance and assessment activities in preparation for deconstruction and redevelopment. In addition, the Potomac Electric Power Company (Pepco) maintains a subsurface utility corridor along the western portion of the site.

#### 2.2 Surrounding Area Use

The site is located in a mixed residential and commercial land use area. The Site is bounded to the south by an inactive railroad spur followed by residential and commercial development, to the west by a Pepco switchyard and parking lot followed by East Abingdon Drive and the George Washington Memorial Parkway, to the north by Slaters Lane and a condominium building, and to the east by the National Park Service (NPS) Mount Vernon Trail followed by the Potomac River.

## 2.3 Site and Surrounding Area History

The Site was developed as a power-generating facility in the 1940s. Prior to the generation station, the Site was mostly vacant but was occupied circa the 1920s to 1940s at the northern end by the Potomac River Clay Work and at the southern end by American Chlorophyll Company and Green Colors Manufacturing. From the 1940s to 2000, the generating station was operated by various entities as a coal-fired power plant. The Site ceased operations in October 2012. HRP acquired the PRGS Site in the fall of 2020 and plans to redevelop the property for mixed-used development.

The site is currently improved with a multi-story main power plant building constructed with a basement (Main Plant Building); a covered utility corridor (historically referred to as the "Precipitator Area"); and five coal-fired steam boilers and turbine generators (Units 1 to 5). Supporting features include air emissions equipment, a former (unlined) coal and ash storage area, a clay-lined sediment basin, a rail yard, water treatment facilities, one bottom ash and two fly ash silos, administration offices, an analytical laboratory, and storage facilities and ancillary buildings, which include maintenance areas.

#### 2.4 Regional Geology

The site is located within the Atlantic Coastal Plain Physiographic Province, which is characterized by sequences of marine and terrestrial sedimentary deposits which thin to the east. According to local geologic mapping, the Site is underlain by the Old Town Quaternary terrace and floodplain (lowland) deposits of the Potomac River (Fleming 2015a). The terrace deposits beneath Old Town Alexandria approach a thickness of 85 to 125 feet (ft). The terrace deposits are described as a broadly fining upward sequence that is gravelly at its base and grades up through sand to finer-grained material at higher elevations. Regionally, above an elevation of about 30 to 35 ft above mean sea level (amsl), the terrace is composed primarily of silt and clay, and, below those elevations, the soils have been described as muddy sand. Below the Old Town Alexandria area is the Arell Clay, which is a regional, possibly discontinuous, lacustrine clay (Fleming 2015a, 2015b). Based on the 7.5-minute USGS topographic map, the nearest surface water body is the Potomac River. The elevation of the Potomac River is tidally influenced at the Site's location. Tidal fluctuation records collected by the National Oceanic and Atmospheric Administration (NOAA) for the Potomac River in the area of the site indicate typical tidal fluctuations in the range of -2.30 to 3.24 feet amsl for Alexandria, Virginia over the past 5 years.

#### 2.5 Site-Specific Geology and Hydrogeology

The elevation of the Site ranges from approximately 12 to 33 ft amsl and slopes downhill to the east toward the Potomac River. The Site is underlain by terrace and floodplain deposits of the Potomac River, which are characterized primarily by sand and clay at elevations above 30 to 35 ft amsl and sandy soils beneath this elevation. In the area of the former underground storage tanks (USTs) (described in Section 2.6 below), the upper 20 feet of soil has been documented as fill material consisting of clayey soils with varying amounts of gravel and brick and concrete fragments (GES and Geosyntec 2014). The fill is underlain by native soils comprised of gravel, sandy clay to clayey sand, and sand. A fine-grained layer of lean clay measuring 2 to 6 feet thick is continuous beneath the release area except within the area of the screen and pump house, at a depth approximately 25 feet below ground surface (ft bgs) or 7 ft amsl; the shallow water table has been documented in the area east of the main plant building at a depth several feet above the lean clay layer, occurring in sand, silty sand, and mixed sand and gravel zones (GES and Geosyntec 2014).

Two hydrostratigraphic zones have previously been documented beneath portions of the Site. The shallow groundwater zone described above appears to be a perched groundwater zone and is not subject to tidal influence; insufficient water for sampling was identified within the shallow zone in some areas of the site. A deeper unconfined to partially confined groundwater zone, located beneath the lean clay layer, is tidally influenced proximal to the River. Preferential flow pathways have been documented in some areas of the Site in close proximity to subsurface structures or utilities and larger structures act as hydraulic barriers in some portions of the Site.

Based on fourth quarter 2021 (Q4 2021) gauging data from the sitewide monitoring well network, the documented depth to water ranges from approximately 3.70 to 25.63 ft bgs in the perched (i.e., shallow) zone and from approximately 4.78 to 26.26 ft bgs in the deep zone. Groundwater in both the shallow and deep zones generally flows eastward toward the Potomac River. As the perched water flows east toward the Potomac River, the clay layer that forms the aquitard becomes thinner and eventually pinches out altogether. As a result, the perched groundwater migrates downward and drains into the deeper regional aquifer prior to discharging to the Potomac River. This also appears to occur in the former UST area, where the clay layer has been penetrated and replaced with more

permeable fill. Additionally, groundwater mounding and redirection occurs in the vicinity of the screen and pump house and the sheet pile wall.

#### 2.6 Prior Remedial Actions and Regulatory Status

The facility historically used No. 2 fuel oil to preheat its generating unit boilers with coal as its primary fuel to generate electricity. The No. 2 fuel oil was stored in two adjoining 25,000-gallon USTs centrally located within the power plant complex. As part of the October 2012 shutdown, the facility assessed these two USTs before their closure in-place. A release of petroleum hydrocarbons was identified during a Site characterization program triggered by the UST closure, and the Virginia Department of Environmental Quality (VDEQ) opened pollution complaint (PC) # 2013-3154. To address the presence of petroleum hydrocarbons in soil and groundwater near the USTs, GenOn conducted investigations and remediation, in coordination with the VDEQ, the NPS, and the District of Columbia Department of Energy and Environment (DC DOEE). At least 56 wells (26 shallow and 30 deep) have been installed in the area of the petroleum release. A corrective action plan (CAP) was approved by VDEQ in March 2015 and subsequently implemented at the site. Corrective action activities included the following:

- Implementation of total phase extraction (TPE) to remove light non-aqueous phase liquid (LNAPL) in the shallow groundwater zone and from overlying soils in and near the smear zone.
- Installation and operation of a pump and treat (P&T) system to remove LNAPL and remediate the dissolved phase plume in deep groundwater in the area of the source zone.
- Installation and operation of a biosparging system to address the dissolved phase plume downgradient of the source area.
- Sealing of six seeps observed at the bulkhead.

On September 29, 2019, the VDEQ approved the discontinuation of active remediation, and the Site transitioned to post-remediation monitoring. A CAP Addendum was approved by VDEQ in September 2021 which limited ongoing post-remediation monitoring to a network of 30 wells and reduced the quarterly sampling to semi-annual sampling. The most recent groundwater monitoring event was completed in the fourth quarter of 2021 and the results were documented in the Corrective Action Monitoring Report submitted to VDEQ on February 3, 2022. The results from recent groundwater monitoring events indicate that, although the concentrations of constituents of concern (COCs) exceed the remediation goals and DC DOEE Standards identified in the September 2021 VDEQ CAP Addendum in some individual wells located in close proximity to the former USTs, the groundwater conditions are stable, and the concentrations of COCs in groundwater at the point of discharge to the Potomac River are less than the remediation goals and the DC DOEE Surface Water Quality Standards.

## 2.7 Identified Concerns

The following known and potential areas of interest (AOI) have been identified at the Site (see **Figure 2-1**):

AOI-1 - Known Petroleum Release (PC #2013-3154) and Petroleum Storage Areas. Prior investigations identified an area of known petroleum impacts associated with two (closed in place) 25,000-gallon fuel oil USTs located beneath the Open Bay Area in the east-central portion of the property. As described above, this release is being addressed under the Storage Tank Program; therefore, no additional sampling to evaluate impacts associated with this release was conducted as part of the site characterization activities. The site also operated a number of additional (smaller) petroleum tanks including a 3,500-gallon diesel UST; a 2,000-gallon kerosene UST; a

- 4,000-gallon kerosene UST; three 275-gallon lube oil ASTs, and a 4,000-gallon diesel fuel AST. These former USTs were closed in accordance with VDEQ requirements. Releases associated with certain of these tanks were identified and investigated under the direction of VDEQ and received "no further action" determinations.
- AOI-2 Chemical Storage Areas. Chemical and hazardous substance storage areas include a
  former Chemical Storage Area; former resource conservation and recovery act (RCRA) Storage
  Area; former Drum Storage Area; Chlorine Storage Building, Chlorine House, a neutralization tank,
  an Alum House, a 10,000-gallon aluminum sulfate AST, a former 3,500-gallon antifreeze AST; a
  former hydrazine AST and two former 330-gallon ammonia ASTs.
- AOI-3a Power Plant and Laboratory Buildings. The Power Plant building is equipped with
  floor drains and sumps. Visual evidence of spills from petroleum ASTs and possibly other types of
  chemicals was observed by others in 2020. At present, the Power Plant Building is unsafe for
  entry; as such, preliminary evaluation of potential impacts from these areas of the site included
  the collection and laboratory analysis of groundwater samples from several existing wells located
  downgradient of the Power Plant and Laboratory Buildings. Potential impacts associated with the
  Power Plant Building and Laboratory Building will be investigated further at a later date concurrent
  with, or subsequent to, building demolition.
- AOI-3b Drain Lines and Outfalls. Numerous subsurface conveyances external to the Power Plant Building are present at the site. Ten outfalls discharging to the Potomac River were previously identified at the Site; the integrity of many of the subsurface conveyances is not known. Outfalls 003, 004, 009 and 010 have been plugged. The location of Outfall 002 is not presently known and the status of Outfalls 001, 005, 007, and 008 are not known. Limited investigation of some of the drain lines and associated Outfalls was completed in the fall of 2021, but access to these lines is currently limited due to safety concerns with the aging Power Plant Building. As such, additional investigation of these structures will be proposed, as appropriate, following or concurrent with demolition of the Power Plant Building.
- AOI-4 Former Coal and Ash Handling and Storage Areas. Former coal and ash handling
  areas include the former unlined coal storage yard, the breaker house, the (clay-lined)
  sedimentation pond, the secondary ash pond, the rejects pile, and fly ash and bottom ash storage
  silos.
- AOI-5 Former Transformer Areas. Former transformer areas include the
  generator/transformer areas north of the Power Plant Building, a former transformer area located
  between the switch yard and the Power Plant Building, which includes an oil reclaiming pit
  designated as Oil Reclaiming Pit #1, a sump pit located south of the transformer area, and a
  separate transformer located adjacent to the bulldozer shed.
- AOI-6 Rail Yard. A rail yard has been present at the southwestern edge of the Site since the late 1800s. Ancillary structures serving the rail yard include the former coal car dumper and a warming shed which is serviced by a former UST.

# 3. SITE INVESTIGATION METHODOLOGY

Ramboll conducted preliminary site investigation activities to evaluate potential impacts relating to historical site activities. Prior to the start of field investigation activities, Ramboll prepared a site-specific Health and Safety Plan (HASP); the HASP was updated as needed to incorporate new information pertinent to the activities described herein. Ramboll requested a public subsurface utility markout from the Virginia One Call system, reviewed available drawings depicting subsurface utility lines, and conducted a site walk to review subsurface utility locations. Ramboll additionally retained the services of a private subsurface utility locator to check for subsurface utilities or obstructions in the vicinity of planned sample locations and also performed outreach to Pepco to obtain additional information relating to electrical lines associated with the adjacent substation. In conjunction with subsurface utility clearance activities, Ramboll retained a vacuum excavation contractor to confirm clearance by air knifing soils to 5 ft bgs for select locations proximal to known or suspect subsurface utilities.

Investigation activities are described below and were conducted in accordance with the approved Site Characterization Work Plan dated September 20, 2021 (see **Appendix A**) with the following modifications of note:

- The approved work scope included the installation of 4 shallow soil borings (SB-217 to SB-220) in the area of the transformers with the collection of one surface soil sample and one subsurface soil sample at each location for analysis of polychlorinated biphenyls (PCBs). Coring of concrete in the transformer bay alley revealed a previously unknown 16-foot-deep subsurface utility vault beneath the former transformer area (verified at two locations on either end of the alley); the utility vault or Power Plant basement appears to extend beneath the entire alley. As such, surface and shallow soil samples in the former transformer area were not collected. Additional evaluation for the potential presence of PCBs via the collection and analysis of surface wipe samples and/or soil samples will be collected concurrent with or following demolition.
- Due to the aforementioned utility vault and additional observed utilities during subsurface clearance activities, SB-204 was shifted approximately 90 feet southwest of the proposed location to avoid subsurface utility conflicts; the boring was relocated to the closest accessible location for which utility clearance could be achieved.
- Following discussions with Pepco to better understand subsurface utilities in the western portion of the site, it was revealed that multiple 24-inch diameter subsurface 230 kilovolt (kV) and 69 kV electrical transmission lines encased in oil run through utility easements on the western and southern portions of the site, proximal to proposed sample locations in the rail yard (SB/MW-223, SB/MW-224, SB-225, SB-226, SB-227, SB-228) and SB-210 (see Figure 3-1). Due to the presence of these subsurface electrical lines, surface soil samples were collected with a hand spade at SB-210, SB-224, SB-225, SB-226, and SB-227, but deeper soil samples could not be collected. As the area surrounding proposed sample SB-223 is surfaced in concrete, no surface soil sample was collected from this location. Proposed monitoring wells MW-223 and MW-224 were not installed due to these utility conflicts. However, Ramboll converted SB-214, located downgradient of proposed MW-223 and MW-224 into a monitoring well and collected groundwater at that location.
- SB-203 was advanced approximately 60 feet southwest from the proposed location due to drill rig accessibility limitations posed by steep topography. Additionally, as the revised SB-203 location is

proximal to pre-existing monitoring well MW-102, the proposed monitoring well MW-203 was not installed and groundwater was collected from existing monitoring well MW-102.

Field investigation methods are described below.

# 3.1 Soil Boring Installation

Ramboll collected surface and subsurface soil samples at the site for laboratory analysis to evaluate surface and subsurface conditions. Soil boring locations are presented on Figure 3-2. Ramboll advanced 22 soil borings using a combination of direct push and rotary auger drilling methods and borings were advanced to the first encountered of 1) the water table; 2) refusal; or 3) a depth of 35 ft bgs. At each boring location, continuous soil cores were collected and screened in two-foot intervals for the presence of volatile organic vapors using a photoionization detector (PID), observed for visual or olfactory indication of impact, and described in general accordance with the Unified Soil Classification System (USCS). Soil samples were collected at each boring location as described in Table 1 of the approved Site Characterization Work Plan (see Appendix A), with the exception of the modifications described above, resulting in the collection of up to one surface soil sample and up to two subsurface soil samples from each boring. Where field indications of impact were observed, one soil sample was collected from the interval exhibiting the greatest indication of impact and a second soil sample was collected from a deeper apparent clean soil interval or from the soil interval just above the water table. In the absence of apparent impacts, soil samples were collected from pre-determined depth intervals based on the likely depth of potential historical releases (i.e., closer to the surface for features of concern such as drum storage areas or at depth for evaluation of potential releases from underground storage tanks, sumps, etc.).

For the purposes of preliminary site investigation, analytes of potential concern for site soils included the following parameters, based on the potential area of concern being evaluated:

- Volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) method 8260.<sup>1</sup>,
- Semi-volatile organic compounds (SVOCs) by USEPA method 8270
- Polychlorinated biphenyls (PCBs) by USEPA method 8082
- pH
- Target analyte list metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, sodium, thallium, vanadium, and zinc, by USEPA method 6010 or 6020 /7470 for mercury)
- Cyanide by SM4500
- Total petroleum hydrocarbons diesel-range organics (TPH-DRO), gasoline range organics (GRO), and – oil range organics (ORO) by USEPA method 8015C.

\_

<sup>&</sup>lt;sup>1</sup> Soil samples were collected for analysis of VOCs and/or TPH-GRO only if field screening indicated potential impact; samples were collected using TerraCores® in general accordance with USEPA method 5035.

Soil samples were collected into laboratory provided containers, labeled, and packaged on ice. Samples were shipped under chain-of-custody procedures to a qualified (i.e., Virginia Environmental Laboratory Accreditation Program [VELAP] certified) analytical laboratory for analysis.

Following collection of soil samples, select borings were converted into permanent groundwater monitoring wells; borings that were not converted into monitoring wells were abandoned by filling the borehole with drill cuttings and patching the surface with appropriate material to match the surrounding area..<sup>2</sup>

#### 3.2 Monitoring Well Installation and Development

Select soil borings (see Table 1 of the approved Site Characterization Work Plan, included as **Appendix A**) with the exception of the modifications described above were converted into 2-inch diameter monitoring wells to support the collection and analysis of groundwater samples and documentation of groundwater flow direction. Monitoring well locations are presented on **Figure 3-2**.

To install monitoring wells, soil borings were over-drilled using 4.25-inch diameter hollow stem augers to a depth 5 to 10 feet below the water table. Insufficient water column was identified for sample collection within the perched groundwater zone at most locations, thus monitoring wells were installed in the deeper groundwater zone. Monitoring wells were constructed using 10 to 15 feet of 0.010-inch factory-slotted schedule 40 polyvinyl chloride (PVC) screen set at the base of the borehole with sufficient PVC riser to reach the surface. The annulus of the borehole was filled with #2 Morrie-type clean silica sand as the augers were removed, to a depth at least 2 feet above the top of the screen. A 2-foot layer of hydrated bentonite chips was placed above the sand and the remaining annulus was filled with a 2-percent bentonite/Portland cement grout mixture. Each monitoring well was completed with a traffic-rated, flush-mount manhole cover with a bolting lid set into a 2-foot by 2-foot concrete well pad. An expandable locking plug was placed at the top each well.

At least 24 hours after groundwater monitoring well installation, each well was developed by surging and purging to reduce turbidity below 50 nephelometric turbidity units (NTU) and to establish connection between the well and the surrounding formation in accordance with USEPA guidance.

#### 3.3 Groundwater Gauging and Sampling

Prior to and following sample collection, Ramboll used an electronic oil-water interface probe to gauge the depth to water (and depth to free product, if present) below top of casing in each monitoring well to the nearest 0.01 foot. Well gauging was performed on October 25, 2021; no measurable free product was encountered.

Following well installation and development, a groundwater sample was collected from each newly installed groundwater monitoring well and from four existing monitoring wells (MW-30S; MW-72S; MW-100S; MW-102) using low-flow sampling techniques. Water quality parameters, including pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature, specific conductance and turbidity were monitored while purging at flow rates less than 500 milliliters per minute (mL/min) from the approximate mid-point of the screened interval in each well. Concurrent with low-flow

Soil cuttings that exhibited indications of free product or other significant impact were containerized for appropriate off-site disposal following characterization. In these cases, boreholes were backfilled with a sodium bentonite slurry.

purging, the water level in the well was monitored. Stabilization over three consecutive 5-minute readings of the following parameters was utilized to determine groundwater stability for sampling.<sup>3</sup>:

pH ±0.1 unit
 Specific Conductance ±3%
 Temperature ±3%

DO ±0.3 milligrams per liter (mg/L) or ±10%

Turbidity <10 Nephelometric Turbidity Units (NTUs) or ±10%</li>

ORP ±10 millivolts

Water Level Drawdown
 <0.3 foot from static or ±10% after flow adjustments</li>

Groundwater samples were analyzed for some or all of the following parameters as outlined in Table 1 of the approved Site Characterization Work Plan (see **Appendix A**):

- VOCs by USEPA method 8260
- SVOCs by USEPA method 8270
- PCBs by USEPA method 8082
- Sulfate by SM 4500
- Ammonia (as N) by SM 4500
- Total and dissolved TAL metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, sodium, thallium, vanadium, and zinc, by USEPA method 6010 or 6020 / 7470 for mercury) plus hardness
- Glycols by USEPA 8015M
- Hydrazines by USEPA 3815 or another approved method
- TPH-GRO, -DRO and -ORO by USEPA method 8015C.

Samples were collected into laboratory-provided containers, labeled, packaged on ice, and shipped under chain-of-custody procedures to a qualified analytical laboratory for analysis.

# 3.4 Equipment Decontamination & Investigation-Derived Waste Management

Re-useable sampling and/or monitoring equipment was decontaminated with a non-phosphate detergent wash, followed by a double distilled water rinse. Soil cuttings generated during the installation of soil borings were returned to the borehole following sample collection if the boring was not identified for conversion into a permanent monitoring well and if evidence of free product or other significant impact was not observed. Soil cuttings generated during the installation of soil borings exhibiting evidence of significant impact (SB-216) or during the installation of monitoring wells were

\_

<sup>&</sup>lt;sup>3</sup> MW-206 and MW-207 were sampled without complete stabilization of turbidity based on the length of time spent purging groundwater at each location and diminished return with additional purging. Due to a faulty turbidity meter, turbidity readings could not be recorded during sampling of MW-221; the final turbidity reading at this location was 15.01 NTU, which was measured once a replacement meter arrived.

containerized in US Department of Transportation (DOT) certified 55-gallon drums. Well development and purge water was returned to the ground surface in accordance with Petroleum Storage Tank Program Technical Guidance. Spent personal protective equipment (PPE), acetate liners and other trash was also containerized in 55-gallon drums. Drums were labeled, sealed, and staged on-site for future off-site disposal following waste characterization.

#### 3.5 Slug Testing

Hydraulic conductivity tests were performed at three locations (MW-202, MW-206, and MW-209) on October 21, 2021 to assist in evaluating aquifer hydraulic conductivity. Physical slugs were used to perform rising head and falling head slug tests at each of the three wells. Groundwater levels were measured and recorded by deployed pressure transducers. Well construction information and test details are presented in Table 1 of **Appendix B**. Test response data (elapsed time and corresponding changes in water levels) were plotted as normalized displacement to evaluate similarity among repeat test data within each well. Plots of normalized head (h/ho) are presented in **Appendix B**. The first set (Falling Head 1, Rising Head 1) of tests at MW-209 was discarded due to incomplete recovery. A single test was selected for analysis at each well based on the quality of the test data.

# 3.6 Site Survey

The locations of monitoring wells were surveyed on November 2, 2021 by Precision Measurements, Inc. of Chantilly, Virginia; location data were also collected for surface soil samples and soil borings by Ramboll personnel using a high-accuracy (up to +/- 1 centimeter) global navigation satellite system (GNSS) receiver. Northings, eastings, and elevations (both ground surface and top of casing) were provided in the Virginia State Plane North Zone, referencing the North American Datum of 1983 (NAD 83; horizontal) and the National Geodetic Vertical Datum (NAVD 88; vertical) in U.S. Survey Feet. Horizontal coordinates were accurate +/- 0.1 foot.

## 3.7 Quality Assurance / Quality Control

To assist in documenting project quality assurance/quality control (QA/QC), Ramboll collected and/or submitted to the laboratory for analysis, a combination of trip blanks, field duplicates, and equipment rinse blanks as described below.

- At least one field duplicate per 20 samples was collected during the sampling event, resulting in a total of five field duplicate samples.
- At least one (1) equipment rinse blank was collected per 20 samples and for each substantially
  different type of sampling equipment used (e.g., hand spade, oil water interface probe,
  bladder pump, etc.) during the sampling event, resulting in a total of eight (8) equipment
  blanks. Laboratory-provided deionized water was collected into laboratory provided containers
  by pouring the water over the sampling tools.

One (1) laboratory-sealed trip blank was included in each sample shipment containing TPH or VOC samples, resulting in a total of 11 trip blanks.

# 4. RAMBOLL SITE INVESTIGATION RESULTS

Ramboll conducted preliminary subsurface investigation activities at the site in October 2021 to evaluate potential impacts to soil and groundwater. These preliminary investigation activities were conducted in general accordance with Virginia Administrative Code 9VAC20-160-70.

# 4.1 Field Observations

Site soils were observed to consist primarily of interbedded silty to clayey sands and lean to fat clays, with some portions of the site exhibiting minor gravel lenses. Interbedded clays were observed to act as minor aquitards, resulting in perched water lenses above the primary water table at most locations. Ramboll soil boring and well construction logs are included as **Appendix C** to this report. Elevated organic vapor readings were recorded at one location, SB-221, at a depth of 19 to 20 ft bgs, with a reading of 396.5 parts per million by volume (ppmv). Elevated organic vapor readings were not observed in site soils at remaining sample locations, however slight to moderate chemical-like odors were observed at numerous locations and depth intervals across the site.

Groundwater elevation data collected on October 25, 2021 are summarized in **Table 4-1**. Shallow groundwater elevations were recorded in the range of 5.04 to 10.25 ft amsl and deep groundwater elevations were recorded in the range of 1.49 to 10.12 ft amsl. Measurable free product was not encountered during well gauging. Elevated headspace organic vapor readings were observed at MW-202, MW-214, and MW-221 with readings of 53.2 ppmv, 44.6 ppmv, and 5.0 ppmv, respectively. Based on groundwater data collected to date, groundwater generally flows east toward the Potomac River (see **Figures 4-1A** and **4-1B**.4).

## 4.2 Soil Results

A total of 49 soil samples and four duplicates from 22 locations were analyzed for the presence of some or all of the following as outlined in Table 1 of the approved Site Characterization Work Plan (see **Appendix A**): VOCs, SVOCs, PCBs, TAL Metals, cyanide, TPH-DRO, TPH-GRO, and TPH-ORO. Analytical results for detected constituents in soil are summarized in **Tables 4-2A-D**; complete analytical results are included as **Appendix D** to this report.

Twenty-two (22) inorganic compounds, twenty-five (25) SVOCs, eighteen (18) VOCs, TPH-GRO, TPH-DRO, and TPH-ORO were detected in site soils. PCBs were not detected in site soil. For the purposes of preliminary data evaluation, Ramboll compared the concentrations of detected constituents to the VDEQ Tier II Residential and Tier III Industrial Soil Screening Levels (SSLs), as well as to the action level for TPH established under the Petroleum Storage Tank Program. VDEQ Tier II Residential and Tier III Industrial SSLs have not been established for TPH. The VDEQ Petroleum Storage Tank Program action level is used to evaluate when further evaluation is warranted. Tabular data summaries include comparison of collected data to screening levels established for residential site use, protection of construction workers, and commercial/industrial site use. The discussion below focuses primarily on observed exceedances of criteria established for protection of construction workers and commercial/industrial site use. Ramboll anticipates that further data evaluation with respect to residential use (as well as construction worker protection) will be completed following finalization of redevelopment plans. Observed exceedances of these criteria are discussed below.

.

<sup>&</sup>lt;sup>4</sup> Ramboll notes that groundwater level data were collected from two distinct, concurrent sampling programs in October 2021. Data from both programs have been included in site potentiometric surface maps.

#### Inorganic Compounds

- Three (3) metals (iron, manganese, and thallium) were detected in soil at concentrations exceeding both residential and industrial SSLs and an additional five (5) metals (aluminum, arsenic, cobalt, copper, and vanadium) were detected at concentrations exceeding residential SSLs but below industrial SSLs. Exceedances of non-residential criteria for soil are depicted on **Figure 4.2**.
  - Iron was detected at a maximum concentration of 330,000 mg/kg in surface soil collected from SB-227, located along the rail alignment compared to the industrial SSL of 82,000 mg/kg and the residential SSL of 706 mg/kg; no other locations had industrial SSL exceedances for iron.
  - Manganese was detected at a maximum concentration of 2,700 mg/kg in surface soil at SB-227 compared to the industrial SSL of 2,600 mg/kg and the residential SSL of 56 mg/kg; no other locations had industrial SSL exceedances for manganese.
  - o Thallium was detected at a maximum concentration of 1.6 mg/kg at SB-202 at a depth of 25-30 ft bgs compared to the industrial SSL of 1.2 mg/kg and the residential SSL of 0.078 mg/kg; thallium was also detected in excess of the industrial SSL at SB-201 (0-1 ft bgs, 10-12 ft bgs, 24-26 ft bgs), SB-202 (0-1 ft bgs), and SB-226 (0-1 ft bgs).

#### **TPH**

- TPH-DRO, TPH-GRO, and/or TPH-ORO either individually, or collectively, were detected in excess of the VDEQ action level of 100 mg/kg TPH in soil at the following locations within the rail alignment in the southwestern portion of the site, the sediment basin in the southeastern portion of the site, and near the ash silos in the central portion of the site:
  - o In the area of the ash silos, total TPH (combined TPH-GRO, DRO and ORO) was measured at concentrations of 166.5 mg/kg at SB-215 (0-2 ft bgs) and at 152.52 mg/kg at SB-216 (1-3 ft bgs) as compared to the action level of 100 mg/kg. Total TPH was not detected at concentrations exceeding the action level in deeper soil samples collected at depths of 5 to 7 ft bgs and in the zone immediately above the water table at SB-215. Deeper soil samples were not collected at SB-216 for TPH analysis as the apparent water table began at 2.4 ft bgs and soils were saturated to depths of 15 ft bgs, at which point the boring was terminated.
  - o In the sediment basin, total TPH (combined TPH-GRO, DRO, and ORO) was measured at a concentration of 120.2 mg/kg in surface soil (0-1 ft bgs) at SB-207 as compared to the action level of 100 mg/kg. Total TPH was not detected at concentrations exceeding the action level in deeper soils collected at depths of 6 to 8 ft bgs and in the zone immediately above the water table (16 to 18 ft bgs) at SB-207.
  - Within the rail alignment, total TPH was measured at concentrations exceeding the action level of 100 mg/kg at SB-224 (1,631 mg/kg), SB-225 (1,197 mg/kg), and SB-227 (180.6 mg/kg); deeper soil samples were not collected at these locations due to the presence of high voltage subsurface electrical lines.

#### **SVOCs**

• No SVOCs were detected in soil at concentrations exceeding both residential and industrial SSLs; five (5) SVOCs (1-methylnaphthalene, 2-methylnaphthalene, benzo(a)pyrene, dibenzofuran, and naphthalene) were detected at concentrations exceeding residential SSLs but below industrial

SSLs. Exceedances of residential criteria will be further evaluated in conjunction with future redevelopment plans.

#### **VOCs**

No VOCs were detected in soil at concentrations exceeding both residential and industrial SSLs; five (5) VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, naphthalene, and orthoxylene) were detected at concentrations exceeding residential SSLs but below industrial SSLs in surface soil collected at SB-224 and/or SB-225, both located within the rail alignment. Exceedances of residential criteria will be further evaluated in conjunction with future redevelopment plans.

#### **PCBs**

PCBs were not detected in soil above laboratory reporting limits.

#### 4.3 Groundwater Results

A total of 13 groundwater samples and one duplicate from 13 locations were analyzed for the presence of some or all of the following as outlined in Table 1 of the approved Site Characterization Work Plan (see **Appendix A**): VOCs, SVOCs, PCBs, Sulfate, Ammonia (as N), total and dissolved TAL Metals, glycols, hydrazine (e.g., diamine), TPH-DRO, TPH-GRO, and TPH-ORO. Analytical results for detected constituents in groundwater are summarized in **Table 4-3A-D**; complete analytical results are included as **Appendix D** to this report.

Twenty-seven (27) inorganic compounds, two (2) SVOCs, seven (7) VOCs, TPH-GRO and TPH-DRO were detected in site groundwater. PCBs and glycols were not detected. Tabular data summaries include a comparison of measured concentrations of detected constituents to VDEQ Tier II Residential Groundwater Screening Levels (GSLs), Tier III Residential Vapor Intrusion GSLs, Tier III Industrial Vapor Intrusion GSLs, Tier III Construction Direct Contact ( $\leq$  15 ft) GSLs, and Tier III Construction Indirect Contact (> 15 ft) GSLs. TPH results were compared to the action level established under the Petroleum Storage Tank Program because GSLs have not been established for total TPH. The VDEQ Petroleum Storage Tank Program action level is used to evaluate when further evaluation is warranted.

The discussion below focuses on a comparison of data to screening levels established to be protective of commercial/industrial workers and/or construction workers (e.g., the Tier III Industrial Vapor Intrusion GSLs, Tier III Construction Direct Contact ( $\leq 15$  ft) GSLs, and Tier III Construction Indirect Contact (> 15 ft) GSLs), organized by constituent category (see **Figure 4-3**). Ramboll anticipates that further data evaluation with respect to residential use (as well as construction worker protection) will be completed following finalization of redevelopment plans.

#### Inorganic Compounds

- Three (3) inorganic compounds (manganese, mercury, and hydrazine) were detected in groundwater at concentrations exceeding both Tier II Residential GSLs and Tier III Construction Direct Contact (≤ 15 ft) GSLs and an additional six (6) inorganic compounds (aluminum, cadmium, cobalt, iron, nickel, and vanadium) were detected at concentrations exceeding residential GSLs but below industrial GSLs.
  - Manganese was detected at a maximum concentration of 26,000 μg/L (in both the total and dissolved phase) at MW-214 compared to the Tier III Construction Direct Contact (≤ 15 ft)

GSL of 1,442  $\mu$ g/L and the Tier II Residential GSL of 43  $\mu$ g/L; total and dissolved phase manganese were also detected in excess of the Tier III Construction Direct Contact ( $\leq$  15 ft) GSL at MW-100S, MW-102, MW-202, MW-206, MW-207, MW-208, MW-209, MW-30S, and MW-72S. These locations, for which manganese was identified at concentrations exceeding screening levels, are generally located within the former coal storage area and downgradient of the Main Building.

- Total mercury was detected at a maximum concentration of 0.33  $\mu$ g/L at MW-214, located in the former coal storage area, compared to the Tier III Construction Direct Contact ( $\leq$  15 ft) GSL of 0.09  $\mu$ g/L and the Tier II Residential Vapor Intrusion GSL of 0.09  $\mu$ g/L; mercury was detected in groundwater at low concentrations, below both residential and non-residential screening levels, at MW-206 (located downgradient from MW-214) and MW-72S (located within the LUST area immediately downgradient of the power plant building), but was not detected in groundwater at other locations. As such, the presence of mercury in groundwater appears to be localized.
- O Hydrazine was detected at a maximum concentration of 2 μg/L at MW-102 (located downgradient of the former chlorine house, chlorine storage building, and accelerator building) compared to the Tier III Construction Direct Contact (≤ 15 ft) GSL of 1.21 μg/L and the Tier II Residential GSL of 0.006 μg/L; hydrazine was not detected at other locations (MW-201, MW-202, MW-205); however, testing for this compound was not performed at additional monitoring wells in close proximity to MW-102.
- o The presence of metals such as aluminum, cadmium, cobalt, iron, nickel and vanadium at similar concentrations in both the total and dissolved phases is accompanied by negative oxidation-reduction potential (ORP) readings at MW-202, MW-206, MW-207, MW-209, MW-30S and MW-72, thus indicating reducing conditions. Although reducing conditions were identified at these wells, no clear relationship between ORP and concentration was observed. Nevertheless, the similarity in concentrations of total and dissolved phase metals at most well locations indicates that most metals in groundwater are in solution and thus, may be mobile.

#### Total Petroleum Hydrocarbons

• Total TPH was detected in groundwater at a concentration of 6,070 µg/L at MW-72S, which is located within the area of the known petroleum release associated with the former heating oil USTS. TPH was not detected in groundwater at concentrations exceeding the action level of 1,000 µg/L at other locations samples as part of this assessment. Low concentrations of TPH-ORO were identified in groundwater collected from MW-206, MW-207, MW-209 and MW-214, all of which are located in former coal or ash handling areas in the southern portion of the site.

#### **SVOCs**

SVOCs were not detected in site groundwater in excess of residential or industrial GSLs.

#### **VOCs**

VOCs were not detected in site groundwater in excess of residential or industrial GSLs.

#### **PCBs**

• PCBs were not detected in groundwater above laboratory reporting limits.

#### **Glycols**

Glycols were not detected in groundwater above laboratory reporting limits.

# 4.4 Slug Testing Results

Hydraulic conductivity tests were performed on three wells screened within the deeper zone (MW-202, MW-206 and MW-209 on October 21, 2021; results of the hydraulic conductivity testing are included as **Appendix B** to this report. Time-displacement data were analyzed using AQTESOLV® (Duffield, 2007) to obtain near-well hydraulic conductivity estimates. Appropriate and applicable analytical solutions available in AQTESOLV were selected following the guidelines presented in The Design, Performance, and Analysis of Slug Tests (Butler, 1998). Table 1 in **Appendix B** presents slug test details and hydraulic conductivity estimates for each well. AQTESOLV solution plots are provided in **Appendix B**. The three wells tested were screened across the water table, and test data consistent with filter pack drainage (double-straight-line effect) were observed. Rising head test data were used for analysis due to noisiness associated with physical slugs for falling-head tests. The Bouwer-Rice (1976) solution with the Butler 6.11b (Butler, 1998) effective casing correction was used to estimate hydraulic conductivity.

Review of lithologic information indicates that estimated hydraulic conductivities are consistent with the observed soil type present across the screened interval at each well. Boring logs for MW-202, MW-206, and MW-209 indicate that these wells are screened within interbedded clayey sands and clays, interbedded gravels and clays, and well-graded sand with gravel, respectively. The estimated hydraulic conductivities for these wells are 0.63 feet per day (ft/d), 15.5 ft/d, and 14 ft/d, respectively.

# 4.5 QA/QC

To ensure the collection of high quality, reliable data, Ramboll and the subcontracted analytical laboratory employed standardized quality assurance procedures and controls. Standard procedures included the calibration of field equipment, collection and analysis of duplicate samples, employment of standard QA/QC procedures by the analytical laboratory, and appropriate field sampling and equipment decontamination procedures.

- Electronic field equipment was calibrated each day prior to use. The PID was calibrated using fresh
  air and isobutylene gas (100 ppm) at the start of each field day as well as any time that field
  readings may have been questionable. The water quality meter and turbidity meter were
  calibrated against standard solutions provided by the equipment provider at the start of each
  sampling day.
- Re-useable sampling and/or monitoring equipment was decontaminated using appropriate procedures including a non-phosphate detergent wash, followed by a double distilled water rinse.
- Samples were collected using standard field collection methods developed to ensure the collection of representative data.

To evaluate and document the adequacy of QA/QC measures, Ramboll collected a total of eight (8) equipment blanks (EBs) to evaluate the adequacy of the field equipment decontamination procedures. Five (5) equipment blanks (EB-01, EB-02, EB-03, EB-04, EB-07) were collected from soil sampling equipment EB-05 and EB-06 were collected during well development activities; and EB-08) was collected from groundwater sampling equipment. Results indicate that various metals and TPH-DRO were detected in one or more EBs. Data associated with these field blanks was subjected to further review. Based on this review, the measured concentrations of constituents in the blank samples were at least 10 times less than the reported concentrations in associated samples and were below the

potentially applicable screening levels. Therefore, the data quality are sufficient for the intended purpose.

- To assist in evaluating the reproducibility of data, blind duplicate samples were collected for each
  media at a minimum rate of one duplicate per 20 samples and were submitted to the laboratory
  for analysis. A total of four soil and one groundwater duplicate samples were collected during the
  supplemental investigation. A review of results for samples and their duplicates indicated
  acceptable reproducibility.
- Trip blanks were prepared by the laboratory and included with sample shipments to check for cross-contamination during normal handling of the sample collection containers. A total of 11 trip blanks were submitted to the laboratory for analysis. No analytes were detected in the trip blanks thus confirming the absence of cross-contamination of the samples during handling of containers or sample shipment.
- The analytical laboratory evaluated the results of routine laboratory QA/QC samples including
  matrix spike (MS) samples, matrix spike duplicate (MSD) samples, and laboratory control samples
  (LCSs). Results for the laboratory QA/QC samples are generally within acceptable ranges with the
  following notes.
  - A review of laboratory QA/QC data indicate that measurements of select VOCs and SVOCs in some soil samples may be biased low. Based on sitewide results for VOCs and SVOCs in soil, the data are sufficient to evaluate presence or absence of impact by these constituents.
  - Nickel was detected in a laboratory blank associated with certain of the groundwater samples; these samples have been flagged with a "B." Results for these samples would be biased high, thus the data are considered to be of sufficient quality for the intended purpose.
- Laboratory analytical reporting limits were at or below the VDEQ screening levels with a few exceptions:
  - Cobalt- The analytical reporting limit for cobalt in soil exceeded the residential screening level, but is below typical background concentrations of cobalt in soil. Cobalt was detected in every soil sample at a concentration exceeding the residential screening level and measured concentrations may be representative of background.
  - Thallium The analytical reporting limit for thallium exceeds both the residential and nonresidential screening levels. The analytical laboratory noted that the reporting limit provided was the lowest achievable reporting limit for thallium.
  - Dibenzofuran The analytical reporting limit for dibenzofuran exceeds the residential screening level for soil. The analytical laboratory noted that the reporting limit provided was the lowest achievable reporting limit for dibenzofuran.
  - Naphthalene the analytical reporting limit exceeds the residential screening level for naphthalene in soil. The analytical laboratory noted that the reporting limit provided was the lowest achievable reporting limit for naphthalene; matrix interference resulted in an elevated reporting limit for some samples.

Mercury – the analytical reporting limit for mercury in groundwater slightly exceeds the Tier II
residential screening level for vapor intrusion. The analytical laboratory reported that the
reporting limit provided was the lowest achievable reporting limit for mercury.

Based on the above, the quality of the data is sufficient for its intended use.

# 5. PRELIMINARY CONCEPTUAL SITE MODEL

A preliminary conceptual site model (CSM) was developed to provide a simplified and concise summary of currently understood contaminant sources and distribution; potential exposure pathways and potential current and future human/ecological receptors will be evaluated subsequent to future site redevelopment activities.

# 5.1 Preliminary Nature and Extent of Contamination

The extent of potential impacts by chemicals of concern (COCs) at the site has not been fully delineated; Ramboll anticipates further evaluation will be conducted in conjunction future site redevelopment activities. As described above, exceedances of potentially applicable VDEQ screening levels were identified in site soil and groundwater for the following compounds, which will be retained as constituents of concern for further evaluation.

#### 5.1.1 Soil

The following soil impacts were identified.5:

- Rail Alignment. Exceedances of the VDEQ action level for TPH in soil were noted in surface soil samples collected within or adjacent the rail alignment at SB-224, SB-225 and SB-227. Iron and manganese exceedances of the industrial SSLs are limited to soil collected from SB-227, which is in the southern portion of the rail alignment between the former coal car dumper, kerosene USTs, and the former warming shed and an elevated concentration of thallium was detected in surface soil collected from SB-226, located within the rail alignment. The depth of impact within the rail alignment is not known; the presence of high voltage subsurface electrical lines in this area of the site precluded the collection of deeper soil samples.
- **Former Ash Silos.** TPH was detected in surface soil at SB-215 and SB-216 in the area of the former ash silos. Analysis of deeper soil samples at SB-215 did not identify TPH at levels of concern suggesting that impacts do not extend greater than 5 ft bgs in this area of the site.
- **Sediment Basin.** TPH was detected in surface soil at SB-207 in the sediment basin. Analysis of deeper soil samples at SB-207 did not identify TPH at levels of concern suggesting that impacts do not extend greater than 6 ft bgs in this area of the site.
- Former Chemical Storage Area and RCRA Waste Storage Area. Thallium was detected in soil at concentrations slightly exceeding the non-residential screening levels at SB-201 and SB-202 in the northeastern corner of the property near the former chemical storage and RCRA waste storage areas. The lowest achievable reporting limit for thallium was used during analysis but in most cases was still above the non-residential screening level. Due to elevated analytical reporting limits for thallium in soil, it is unclear whether thallium may be present in soil at concentrations exceeding the screening levels in other areas of the site. However, the absence of thallium (total or dissolved phase) in groundwater at concentrations of concern further indicates that the presence of elevated thallium in site soil appears to the be limited in extent.

In addition to the exceedances of generic non-residential screening levels identified above, numerous constituents were detected in soil at concentrations exceeding generic residential screening levels at

<sup>&</sup>lt;sup>5</sup> Ramboll notes that, in addition to the impacts described below, impacts to soil by petroleum compounds have been identified in the area of the former heating oil tanks; these petroleum impacts are being addressed under the Virginia Petroleum Storage Tank Program and thus, are not described in detail herein.

one or more locations including various metals (aluminum, arsenic, cobalt, copper, iron, manganese, thallium, and vanadium), several SVOCs (naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, benzo(a)pyrene, and dibenzofuran), and several VOCs (1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; benzene, naphthalene.<sup>6</sup>, and ortho-xylene). Further evaluation of these exceedances will be conducted in the future and may include comparison to regional or site-specific background concentrations for naturally occurring constituents and/or human health risk evaluations.

Cyanide was not detected in site soil and will not be retained as a potential constituent of concern. PCBs were not detected in soil. However, because sampling has not yet been performed in certain areas of the site most likely to be affected by PCBs, PCBs are retained as a constituent of potential concern in site soil.

#### 5.1.2 Groundwater

The following groundwater impacts were identified.

TPH was detected in groundwater at MW-72S, which is located downgradient to two former No. 2 fuel oil USTs; this region of the site is being addressed under the Petroleum Storage Tank Program and is subject to ongoing monitoring in compliance with VDEQ PC # 2013-3154, as described in Section 2.6 above.

Hydrazine exceeds the industrial GSL at one location, MW-102, in the east-central portion of the site near former chemical storage areas; notably, hydrazine was not detected in the vicinity of the former hydrazine AST.

Manganese exceedances are noted at all but three groundwater monitoring wells; locations with exceedances are distributed across the eastern portion of the site throughout the former coal and ash storage areas and downgradient of the Main Building.

Mercury was detected in groundwater at MW-214, located within the former coal storage area, at a concentration exceeding the construction worker direct contact level. Mercury was detected at downgradient locations MW-206 and MW-72S at an estimated concentration below each of the non-residential screening levels.

In addition to the groundwater impacts noted above, a number of additional metals were measured in both total and dissolved phase groundwater samples collected from one or more locations, at concentrations exceeding screening levels developed to be protective of residential sites. These metals, which include aluminum, arsenic, cadmium, cobalt, iron, lead, and nickel may be mobile; as such, further evaluation of groundwater-surface water interactions may be necessary. Aside from the contaminants present in groundwater at concentrations exceeding the non-residential screening levels, no other constituents were detected in site groundwater at concentrations exceeding the residential use criteria.<sup>7</sup>.

\_

<sup>&</sup>lt;sup>6</sup> Naphthalene is included in the standard analytical list for both VOCs and SVOCs.

<sup>&</sup>lt;sup>7</sup> Ramboll notes that several VOCs associated with petroleum compounds are present in groundwater within the petroleum release area that is being addressed under the Petroleum Storage Tank Program.

Ramboll notes that while PCBs were not detected in site groundwater, potential source areas for PCBs were not fully accessible during preliminary site investigation activities; as such, PCBs will continue to be evaluated in potential source areas as redevelopment activities occur.

# **5.2** Limited Exposure Assessment

The site is currently unoccupied; is fully fenced and secured; groundwater at and in the vicinity of the site is not utilized as a source of drinking water; and, any workers performing duties on site are conducting work under an appropriate safety program. Based on the results of this investigation and on the results of routine groundwater monitoring performed in conjunction with the known petroleum release, site conditions do not currently pose an unacceptable risk to human health or the environment. Further assessment will be required to complete the site characterization and to further evaluate potential future exposures (i.e., during and following redevelopment). Additional assessment activities may include the collection of additional data, evaluation of background concentrations of naturally occurring constituents, and/or human health risk assessment.

# 6. FUTURE ACTIONS

- To date, soil sampling has been conducted near former chemical storage areas; former coal and ash storage areas; the rail yard; and the central portion of the site. Additional soil investigation in the vicinity of the main power plant and laboratory building and transformer/electrical areas will be conducted following or concurrent with building demolition.
- Additional sampling may be performed to refine areas of identified impact and to support human health risk assessment and/or decision-making during redevelopment.
- Further evaluation of groundwater to surface water migration may be necessary for dissolved phase metals.
- Based on the future development plans, once finalized, additional desktop data evaluation such as risk assessment and/or evaluation of background may be performed.

# 7. REFERENCES

- Butler, J.J., Jr., 1998. The Design, Performance, and Analysis of Slug Tests, Lewis Publishers, Boca Raton, 252p.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Duffield, G. 2007. AQTESOLV® Professional Version 4.5. Hydrosolve, Inc.
- Fleming, A. 2015a. Geologic Map of the City Of Alexandria, Virginia And Vicinity Showing Surficial Geology, Landforms, And Major Areas Of Artificially Modified Land. Available at: https://www.alexandriava.gov/uploadedFiles/recreation/parks/plate\_5\_Surficial\_Geology.pdf.
- Fleming, A. 2015b. Geologic Cross Section, Old Town. Geologic Atlas of the City of Alexandria, Virginia and Vicinity Plate 2A. Available at: https://www.alexandriava.gov/uploadedFiles/recreation/parks/plate\_2A\_Old%20Town.pdf.
- Geosyntec Consultants, Inc. (Geosyntec). 2021. Groundwater Monitoring Status Report First Quarter 2021, HRP Potomac, LLC, Alexandria, Virginia. May 18.
- Groundwater & Environmental Services, Inc. (GES). 2020. Third Quarter 2020 CAP Implementation Monitoring Report, Potomac River Generating Station, 1400 North Royal Street, Alexandria VA, LLC, Alexandria, VA. October 26.
- GES and Geosyntec. 2014. Corrective Action Plan Part II, Potomac River Generating Station, 1400 N. Royal Street, Alexandria, VA. December.
- Ramboll US Consulting, Inc. (Ramboll). 2021. Corrective Action Plan Addendum, Potomac River Generating Station. September 20.

# **TABLES**

**TABLE 4-1: Summary of Well Construction and Gauging Information Former Potomac River Generating Station** 1400 N. Royal Street, Alexandria, Virginia

| Well ID    | Top of Casing Elevation (ft amsl) | Well Diameter (in) | Screen Length<br>(ft) | Screened Interval (ft amsl) | Measured Depth to Bottom<br>(ft btoc) | Measured Depth to<br>Water (ft btoc) | Groundwater Elevation (ft amsl) | Headspace Organic Vapor<br>Reading (ppmv) |
|------------|-----------------------------------|--------------------|-----------------------|-----------------------------|---------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|
| Shallow We | ells                              |                    |                       |                             |                                       |                                      |                                 |                                           |
| MW-01S     | 31.04                             | 4                  | 10                    | 4.04 - 14.04                | 26.59                                 | 22.14                                | 8.90                            | 0.9                                       |
| MW-100S    | 31.03                             | 4                  | 10                    | 6.03 - 16.03                | 24.13                                 | 20.79                                | 10.24                           | 1.1                                       |
| MW-107     | 15.74                             | 2                  | 8                     | 4.74 - 12.74                | 11.01                                 | 9.70                                 | 6.04                            | 0.3                                       |
| MW-123S    | 31.22                             | 4                  | 10                    | 6.22 - 16.22                | 24.91                                 | 21.49                                | 9.73                            | 0.6                                       |
| MW-25S     | 31.22                             | 4                  | 10                    | 5.22 - 15.22                | 25.49                                 | 21.46                                | 9.76                            | 0.9                                       |
| MW-30S     | 30.67                             | 4                  | 10                    | 4.67 - 14.67                | 26.87                                 | 25.63                                | 5.04                            | 0.1                                       |
| MW-51S     | 31.00                             | 4                  | 10                    | 5.00 - 15.00                | 25.30                                 | 20.99                                | 10.01                           | 0.4                                       |
| MW-72S     | 30.63                             | 4                  | 10                    | 5.63 - 15.63                | 23.86                                 | 21.13                                | 9.50                            | 0.5                                       |
| RW-05S     | 31.98                             | 4                  | 10                    | 5.98 - 15.98                | 26.10                                 | 21.75                                | 10.23                           | 0.9                                       |
| RW-116S    | 31.61                             | 4                  | 10                    | 5.61 - 15.61                | 25.85                                 | 21.82                                | 9.79                            | 0.4                                       |
| RW-117S    | 32.31                             | 4                  | 10                    | 7.31 - 17.31                | 24.18                                 | 22.06                                | 10.25                           | 0.3                                       |
| RW-118S    | 30.81                             | 4                  | 10                    | 5.81 - 15.81                | 24.15                                 | 20.71                                | 10.10                           | 0.4                                       |
| RW-28S     | 31.55                             | 4                  | 10                    | 4.55 - 14.55                | 26.45                                 | 24.24                                | 7.31                            | 0.5                                       |
| TW-14      | 11.61                             | 1                  | 5                     | 5.61 - 10.61                | 6.18                                  | 3.70                                 | 7.91                            |                                           |
| Deep Wells |                                   |                    |                       |                             |                                       |                                      |                                 |                                           |
| MW-05      | 32.20                             | 4                  | 10                    | -2.8 - 7.2                  | 31.12                                 | 22.08                                | 10.12                           | 1.7                                       |
| MW-100     | 30.78                             | 2                  | 10                    | -7.22 - 2.78                | 36.18                                 | 25.67                                | 5.11                            | 0.2                                       |
| MW-102     | 29.72                             | 2                  | 15                    | -7.28 - 7.72                | 36.50                                 | 23.75                                | 5.97                            | 0.0                                       |
| MW-104     | 12.00                             | 2                  | 10                    | 0.00 - 10.00                | 11.92                                 | 4.78                                 | 7.22                            | 1.2                                       |
| MW-106     | 11.12                             | 2                  | 7                     | 1.12 - 8.12                 | 8.85                                  | 6.74                                 | 4.38                            | 0.4                                       |
| MW-122     | 31.64                             | 4                  | 10                    | -3.36 - 6.64                | 34.72                                 | 25.90                                | 5.74                            | 14.1                                      |
| MW-14      | 31.22                             | 4                  | 10                    | -7.78 - 2.22                | 36.41                                 | 25.98                                | 5.24                            | 0.6                                       |
| MW-25      | 32.75                             | 4                  | 10                    | -2.25 - 7.75                | 34.82                                 | 25.56                                | 7.19                            | 5.4                                       |
| MW-27      | 31.44                             | 4                  | 10                    | -3.56 - 6.44                | 33.81                                 | 26.26                                | 5.18                            | 0.6                                       |
| MW-31      | 31.23                             | 4                  | 10                    | -4.77 - 5.23                | 33.46                                 | 25.79                                | 5.44                            | 0.9                                       |
| MW-33      | 30.88                             | 4                  | 10                    | -4.12 - 5.88                | 34.34                                 | 25.56                                | 5.32                            | 0.3                                       |
| MW-51      | 31.62                             | 4                  | 10                    | -5.38 - 4.62                | 35.92                                 | 26.05                                | 5.57                            | 1.2                                       |
| MW-201     | 29.53                             | 2                  | 15                    | -5.47 - 9.53                | 34.80                                 | 21.70                                | 7.83                            | 1.3                                       |
| MW-202     | 29.94                             | 2                  | 15                    | -5.06 - 9.94                | 35.30                                 | 24.80                                | 5.14                            | 53.2                                      |
| MW-205     | 29.81                             | 2                  | 15                    | -0.19 - 14.81               | 30.15                                 | 20.95                                | 8.86                            | 2.2                                       |
| MW-206     | 23.97                             | 2                  | 15                    | -6.03 - 8.97                | 30.18                                 | 17.42                                | 6.55                            | 1.5                                       |
| MW-207     | 20.78                             | 2                  | 15                    | -4.23 - 10.78               | 24.90                                 | 12.94                                | 7.84                            | 0.2                                       |
| MW-208     | 24.57                             | 2                  | 15                    | -5.43 - 9.57                | 29.90                                 | 16.65                                | 7.92                            | 1.5                                       |
| MW-209     | 23.14                             | 2                  | 15                    | -1.86 - 13.14               | 25.05                                 | 19.89                                | 3.25                            | 1.1                                       |
| MW-214     | 23.65                             | 2                  | 15                    | -1.35 - 13.65               | 25.05                                 | 14.73                                | 8.92                            | 44.6                                      |
| MW-221     | 30.97                             | 2                  | 10                    | 0.97 - 10.97                | 30.20                                 | 21.51                                | 9.46                            | 5.0                                       |
| TW-02      | 16.11                             | 1                  | 10                    | -7.89 - 2.11                | 21.45                                 | 14.62                                | 1.49                            | 0.3                                       |
| TW-03      | 10.40                             | 1                  | 10                    | -4.60 - 5.40                | 13.70                                 | 7.75                                 | 2.65                            | 0.3                                       |
| TW-04      | 9.49                              | 1                  | 10                    | -5.51 - 4.49                | 14.85                                 | 5.44                                 | 4.05                            | 0.4                                       |
| TW-05      | 9.64                              | 1                  | 10                    | -0.36 - 9.64                | 13.47                                 | 5.63                                 | 4.01                            | 0.5                                       |
| TW-06      | 9.99                              | 1                  | 10                    | -5.01 - 4.99                | 12.75                                 | 6.02                                 | 3.97                            | 0.9                                       |
| TW-07      | 9.88                              | 1                  | 10                    | -5.12 - 4.88                | 13.74                                 | 6.58                                 | 3.30                            | 0.3                                       |

## Notes:

--: not recorded.

amsl: above mean sea level. btoc: below top of casing.

ft: feet. in: inches.

ppmv: parts per million by volume.

Elevations are referenced in the North American Vertical Datum of 1988 (NAVD88).

Headspace organic vapor readings were measured with a 10.6 electron volt (eV) photoionization detector (PID).

Water levels were measured using an electronic oil/water interface probe on October 25, 2021. No measureable free product was encountered.

¹Depth to water measurements were collected from wells installed and sampled as part of the preliminary site characterization as well as from monitoring wells installed to evaluate the petroleum release that is separately being evaluated under the Virginia Petroleum Storage Tank Program.

|                         |                        |              | Location           | SB-201      | SB-201      | SB-201      | SB-201      | SB-202      | SB-202      | SB-203      | SB-203      | SB-204      | SB-204      | SB-204      |
|-------------------------|------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                         |                        | Sample I     | Depth (ft bgs)     | 0 - 1       | 0 - 1       | 10 - 12     | 24 - 26     | 0 - 1       | 25 - 30     | 0 - 1       | 11 - 13     | 0.8 - 1.8   | 6 - 8       | 13 - 15     |
|                         |                        |              | <b>Sample Date</b> | 05 Oct 2021 | 08 Oct 2021 | 08 Oct 2021 | 08 Oct 2021 | 07 Oct 2021 | 07 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 |
|                         |                        |              | Sample Type        | N           | FD          | N           | N           | N           | N           | N           | N           | N           | N           | N           |
| Constituent             | <b>Background Mean</b> | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |             |             |             |
| Inorganics              |                        |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| Aluminum                | 57,000                 | 7,700        | 110,000            | 7,700       | 8,300       | 7,600       | 9,600       |             | 12,000      | 5,100       | 13,000      | 6,700       | 11,000      | 10,000      |
| Antimony                | 1                      | 3.1          |                    | < 2 U       | < 1.9 U     | < 1.9 U     | < 1.9 U     | < 2.2 U     | < 2.1 U     | < 1.9 U     |             | < 1.8 U     | < 1.9 U     | < 1.9 U     |
| Arsenic                 | 5.1                    | 3.5          |                    | 25          | 7.4         | 9.7         | 2.7 J       | 8.1         | 6.3         | 15          | 6.5         | 3.7         | < 3.8 U     | 2.9 J       |
| Barium                  | 436                    | 1,500        | 22000              | 42          | 91          | 58          | 72          | 73          | 59          | 62          | 66          | 34          | 37          | 61          |
| Beryllium               | 0.56                   | 16           |                    | 0.35        | 0.88        | 0.56        | 0.8         | 0.34        | 0.61        | 0.58        | 0.87        | 0.53        | 0.37        | 0.89        |
| Cadmium                 | 0.31                   | 7.1          |                    | 0.6         | < 0.38 U    | 0.24 J      | < 0.38 U    | < 0.44 U    | 0.34 J      | 0.52        | < 0.39 U    | < 0.36 U    | < 0.38 U    | < 0.37 U    |
| Calcium                 | 6,300                  | NE           | NE                 | 1,300       | 1,800       | 2,000       | 1,200       | 280         | 1,000       | 4,600       | 630         | 2,200       | 2,100       | 380         |
| Chromium (total)        | 54                     | 3,600,000    | NE                 | 19          | 19          | 21          | 13          | 16          | 18          | 23          | 19          | 18          | 20          | 15          |
| Cobalt                  | 9.4                    | 0.54         | 35                 | 5.1         | 9.5         | 8.3         | 14          | 4.5         | 8.5         | 5.3         | 7.6         | 11          | 4.7         | 9.2         |
| Copper                  | 33                     | 310          | 4,700              | 16          | 15          | 15          | 14          | 24          | 14          | 51          | 18          | 13          | 12          | 17          |
| Cyanide (total)         | NA                     | 2.3          |                    | NS          | NS          |             | NS          | NS          | NS          | NS          |             | NS          | NS          | NS          |
| Iron                    | 25,000                 | 706          |                    | 25,000      | 31,000      | 23,000      | 24,000      | 30,000      | 30,000      | 13,000      | 64,000      | 23,000      | 17,000      | 26,000      |
| Lead                    | 35                     | 400          | 800                | 14          | 19          | 11          | 8.3         | 18          | 15          | 16          | 13          | 11          | 9.3         | 13          |
| Magnesium               | 4,600                  | NE           |                    | 700         | 2,200       | 1,300       | 1,700       | 1,000       | 1,400       | 2,200       |             | 900         | 1,200       | 1,500       |
| Manganese               | 283                    | 56           |                    | 54          | 210         | 260         | 130         | 98          | 120         | 100         | 140         | 640         | 61          | 86          |
| Mercury                 | 0.108                  | 1.1          |                    | 0.05        | 0.029 J     | 0.022 J     | 0.018 J     | < 0.038 U   | 0.031 J     | 0.049       | < 0.031 U   |             | 0.017 J     | < 0.029 U   |
| Nickel                  | 16                     | 50.9         |                    | 7.9         | 16          | 13          | 15          | 9.2         | 12          | 25          |             | 9.8         | 11          | 16          |
| Potassium               | 12,000                 | NE           |                    | 710         | 1,100       | 800         | 860         |             | 920         | 550         |             | 840 J       | 1,000 J     | 920 J       |
| Sodium                  | 7,800                  | NE           | NE                 | < 200 U     | < 190 U     | < 190 U     | < 190 U     | < 220 U     | < 210 U     | 140 J       | 100 J       | 100 J       | 140 J       | < 190 U     |
| Thallium                | 0.07                   | 0.078        |                    | 1.3 J       | 1.4 J       | 1.4 J       | 1.3 J       | 1.3 J       | 1.6 J       | < 1.9 U     | < 2 U       | < 1.8 U     | < 1.9 U     | < 1.9 U     |
| Vanadium                | 77                     | 39           | 580                | 30          | 30          | 22          | 25          | 26          | 28          | 19          | 30          | 29          | 36          | 28          |
| Zinc                    | 233                    | 746          | 35,000             | 22          | 53          | 69          | 44          | 32          | 55          | 120         | 49          | 27          | 29          | 46          |
| <b>Physical Charact</b> | eristics               |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| pН                      | NA                     | NE           | NE                 | NS          |

#### Notes

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NA: not available. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Background mean concentrations of metals in soil are based on data presented for Virginia or the eastern coterminous United States in Dragun, J. and Chekiri, K, Elements in North American Soils, Second Ed. (2004).

Samples were analyzed for the presence of target analyte list (TAL) metals by United States Environmental Protection Agency (USEPA) method 6010 or 7420 (for mercury); seelct samples were additionally analyzed for pH and/or the presence of cyanide by SM4500.

|                         |                        |              | Location           | SB-205      | SB-205      | SB-205      | SB-206      | SB-206      | SB-206      | SB-207      | SB-207      | SB-207      | SB-207      | SB-208      |
|-------------------------|------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                         |                        | Sample I     | Depth (ft bgs)     | 0 - 1       | 13 - 15     | 13 - 15     | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 1       | 6 - 8       | 6 - 8       | 16 - 18     | 0 - 1       |
|                         |                        |              | <b>Sample Date</b> | 11 Oct 2021 | 11 Oct 2021 | 11 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 14 Oct 2021 |
|                         |                        |              | Sample Type        | N           | N           | FD          | N           | N           | N           | N           | N           | FD          | N           | N           |
| Constituent             | <b>Background Mean</b> | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |             |             |             |
| Inorganics              |                        |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| Aluminum                | 57,000                 | 7,700        | 110,000            | 9,400       | 6,900       | 6,300       | 8,500       | 9,400       | 7,600       | 11,000      | 9,800       | 7,300       | 4,400       | 11,000      |
| Antimony                | 1                      | 3.1          |                    | < 1.9 U     | < 1.8 U     | < 1.8 U     | < 1.9 U     | < 1.9 U     | < 2.1 U     | < 2 U       |             | < 1.9 U     | < 1.7 U     | < 2.1 U     |
| Arsenic                 | 5.1                    | 3.5          |                    | 7.6         | 3.1 J       | 3.8         | 5.6         | 5.2         | 6.3         |             |             | 7.3         | 3.5         | 4.2         |
| Barium                  | 436                    | 1,500        |                    | 58          | 44          | 39          | 64          | 74          | 46          | 79          | 59          | 52          | 36          | 53          |
| Beryllium               | 0.56                   | 16           |                    | 0.56        | 0.52        | 0.5         | 0.78        | 0.72        | 0.76        | 0.85        |             |             | 0.48        | 0.77        |
| Cadmium                 | 0.31                   | 7.1          |                    | < 0.39 U    | < 0.36 U    | < 0.37 U    | < 0.38 U    | < 0.39 U    | < 0.42 U    | < 0.4 U     |             | 0.34 J      | < 0.34 U    | < 0.42 U    |
| Calcium                 | 6,300                  | NE           |                    | 470         | 650         | 640         | 630         | 820         | 640         | 1,800       | 250         | 190         | 290         | 800         |
| Chromium (total)        | 54                     | 3,600,000    | NE                 | 15          | 21          | 10          | 19          | 14          | 18          | 19          | 14          | 12          | 16          | 17          |
| Cobalt                  | 9.4                    | 0.54         |                    | 5.2         | 6           | 4.8         | 13          | 14          | 7.5         | 14          | 25          | 13          | 7.3         | 15          |
| Copper                  | 33                     | 310          | 4,700              | 19          | 8.9         | 8.2         | 20          | 16          | 12          | 20          | 18          | 14          | 10          | 14          |
| Cyanide (total)         | NA                     | 2.3          |                    | 1.4         | < 0.54 U    | 0.41 J      | < 0.55 U    | < 0.57 U    | < 0.66 U    | < 0.6 U     |             | 2.2         | < 0.5 U     | < 0.48 U    |
| Iron                    | 25,000                 | 706          |                    | 23,000      | 14,000      | 14,000      | 21,000      | 18,000      | 20,000      | 21,000      | 18,000      | 20,000      | 18,000      | 35,000      |
| Lead                    | 35                     | 400          | 800                | 11          | 6.3         | 5.7         | 16          | 20          | 12          | 23          | 13          | 6.8         | 4.5         | 12          |
| Magnesium               | 4,600                  | NE           |                    | 950         | 950         | 900         | 1,000       |             | 930         | 1,700       | 1,400       | 1,000       | 940         | 1,100       |
| Manganese               | 283                    | 56           |                    | 82          | 68          | 62          | 180         | 120         | 120         | 370         | 84          | 110         | 67          | 140         |
| Mercury                 | 0.108                  | 1.1          | 4.6                | 0.073       | < 0.028 U   | < 0.029 U   | 0.041       | 0.049       |             | 0.053       | 0.019 J     | < 0.035 U   | < 0.03 U    | 0.034       |
| Nickel                  | 16                     | 50.9         | 2,200              | 12          | 12          | 9.3         | 15          | 15          | 12          | 16          | 18          | 20          | 12          | 16          |
| Potassium               | 12,000                 | NE           |                    | 670         | 550         | 510         | 720         | 800         | 650         | 940         |             | 560         | 350         | 800         |
| Sodium                  | 7,800                  | NE           | NE                 | < 190 U     | < 180 U     | < 180 U     | 280         | 720         | 670         | 410         | 2,700       | 1,600       | 950         | < 210 U     |
| Thallium                | 0.07                   | 0.078        | 1.2                | < 1.9 U     | < 1.8 U     | < 1.8 U     | < 1.9 U     | < 1.9 U     | < 2.1 U     | < 2 U       | < 1.9 U     | < 1.9 U     | < 1.7 U     | < 2.1 U     |
| Vanadium                | 77                     | 39           | 580                | 25          | 18          | 17          | 25          | 24          | 23          | 30          | 36          | 29          | 24          | 32          |
| Zinc                    | 233                    | 746          | 35,000             | 33          | 27          | 25          | 50          | 44          | 35          | 54          | 41          | 53          | 22          | 50          |
| <b>Physical Charact</b> | eristics               |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| рH                      | NA                     | NE           | NE                 | 4.1         | 7.1         | 7.5         | 5.9         | 6.1         | 7.2         | 5.6         | 9.7         | 9.6         | 9.4         | 8.7         |

#### Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NA: not available. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Background mean concentrations of metals in soil are based on data presented for Virginia or the eastern coterminous United States in Dragun, J. and Chekiri, K, Elements in North American Soils, Second Ed. (2004).

Samples were analyzed for the presence of target analyte list (TAL) metals by United States Environmental Protection Agency (USEPA) method 6010 or 7420 (for mercury); seelct samples were additionally analyzed for pH and/or the presence of cyanide by SM4500.

|                         |                        |              | Location           | SB-208      | SB-208      | SB-209      | SB-209      | SB-209      | SB-210      | SB-211      | SB-211      | SB-211      | SB-212      | SB-212      |
|-------------------------|------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                         |                        | Sample I     | Depth (ft bgs)     | 5 - 7       | 18 - 20     | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 1       | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 2       | 0 - 2       |
|                         |                        |              | <b>Sample Date</b> | 14 Oct 2021 | 14 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 28 Oct 2021 | 15 Oct 2021 |
|                         |                        |              | Sample Type        | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           | FD          |
| Constituent             | <b>Background Mean</b> | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |             |             |             |
| Inorganics              |                        |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| Aluminum                | 57,000                 | 7,700        |                    | 10,000      | 4,500       | 13,000      | 13,000      | 8,900       | 13,000      | 7,700       | 8,600       | 3,900       | 9,500       | 8,300       |
| Antimony                | 1                      | 3.1          |                    | < 2.1 U     | < 2 U       | < 1.9 U     | < 2 U       | < 1.9 U     | < 1.9 U     | < 1.8 U     | < 1.9 U     | < 1.7 U     | 1.5         | 1.5         |
| Arsenic                 | 5.1                    | 3.5          |                    | 5.8         | 4.5         | 4.1         | 4.5         | 6.3         | 3 J         | 6.5         |             | 5.6         |             | 5.5         |
| Barium                  | 436                    | 1,500        |                    | 38          | 32          | 75          | 46          | 30          | 78          | 64          | 68          | 24          |             | 86          |
| Beryllium               | 0.56                   | 16           |                    | 0.62        | 0.58        | 0.81        | 0.66        | 0.68        | 0.88        | 0.67        | 0.75        | 0.53        | 0.77        | 0.81        |
| Cadmium                 | 0.31                   | 7.1          | 98                 | < 0.42 U    | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.38 U    | < 0.39 U    | < 0.36 U    | < 0.38 U    | < 0.35 U    | 0.32        | 0.39        |
| Calcium                 | 6,300                  | NE           |                    | 450         | 270         | 1,200       | 950         | 500         | 1,700       | 640         | 1,700       | 390         | 3,200       | 3,400       |
| Chromium (total)        | 54                     | 3,600,000    | NE                 | 17          | 15          | 23          | 17          | 19          | 26          | 14          | 15          | 12          | 17          | 14          |
| Cobalt                  | 9.4                    | 0.54         |                    | 6.4         | 9.5         | 15          | 5.5         | 5.5         | 13          | 11          |             | 7.7         | 11          | 13          |
| Copper                  | 33                     | 310          | 4,700              | 15          | 12          | 18          | 16          | 14          | 25          | 15          | 23          | 8.3         | 17          | 18          |
| Cyanide (total)         | NA                     | 2.3          |                    | < 0.47 U    | < 0.48 U    | < 0.56 U    | 1.4         | < 0.53 U    | < 0.58 U    | < 0.46 U    | < 0.42 U    | < 0.53 U    | < 0.47 U    | < 0.49 U    |
| Iron                    | 25,000                 | 706          |                    | 33,000      | 26,000      | 38,000      | 32,000      | 28,000      | 28,000      | 25,000      | 32,000      | 29,000      | 23,000      | 24,000      |
| Lead                    | 35                     | 400          | 800                | 11          | 5.5         | 19          | 11          | 9.3         | 16          | 18          | 22          | 5.1         | 11          | 14          |
| Magnesium               | 4,600                  | NE           | NE                 | 1,000       | 880         | 2,700       | 1,500       | 890         | 2,900       | 910         | 1,000       | 690         | 1,300       | 1,100       |
| Manganese               | 283                    | 56           |                    | 100         | 110         | 600         | 53          | 67          | 630         | 210         | 190         | 140         | 200         | 170         |
| Mercury                 | 0.108                  | 1.1          | 4.6                | < 0.034 U   | < 0.032 U   | 0.04        | 0.079       | < 0.03 U    | 0.015 J     | 0.043       | 0.048       | 0.014       | 0.037       | 0.041       |
| Nickel                  | 16                     | 50.9         | 2,200              | 12          | 12          | 13          | 16          | 11          | 11          | 12          | 17          | 11          | 12          | 13          |
| Potassium               | 12,000                 | NE           |                    | 750         | 370         | 910         | 1,000       | 670         | 1,400 J     | 660         | 750         | 410         | 780         | 790         |
| Sodium                  | 7,800                  | NE           | NE                 | < 210 U     | 78          | 110         | 870         | 990         | 2,500       | < 180 U     |             | 880         | 100         | 120         |
| Thallium                | 0.07                   | 0.078        | 1.2                | < 2.1 U     | < 2 U       | < 1.9 U     | < 2 U       | < 1.9 U     | < 1.9 U     | < 1.8 U     | < 1.9 U     | < 1.7 U     | < 1.8 U     | < 1.9 U     |
| Vanadium                | 77                     | 39           | 580                | 26          | 28          | 40          | 31          | 24          | 54          | 24          | 27          | 17          | 27          | 24          |
| Zinc                    | 233                    | 746          | 35,000             | 33          | 24          | 51          | 41          | 35          | 37          | 37          | 59          | 21          | 33          | 40          |
| <b>Physical Charact</b> | eristics               |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| pH                      | NA                     | NE           | NE                 | 5.5         | 5.5         | 8.5         | 8.6         | 8.8         | 8.9         | 4.7         | 5           | 9           | 4.9         | 6.3         |

#### Notes

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NA: not available. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Background mean concentrations of metals in soil are based on data presented for Virginia or the eastern coterminous United States in Dragun, J. and Chekiri, K, Elements in North American Soils, Second Ed. (2004).

Samples were analyzed for the presence of target analyte list (TAL) metals by United States Environmental Protection Agency (USEPA) method 6010 or 7420 (for mercury); seelct samples were additionally analyzed for pH and/or the presence of cyanide by SM4500.

|                         |                        |              | Location           | SB-212      | SB-212      | SB-213      | SB-213      | SB-213      | SB-214      | SB-214      | SB-214      | SB-215      | SB-215      | SB-215      |
|-------------------------|------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                         |                        | Sample I     | Depth (ft bgs)     | 5 - 7       | 15 - 17     | 0 - 1       | 5 - 7       | 16 - 18     | 0 - 2       | 5 - 7       | 14 - 16     | 0 - 2       | 5 - 7       | 16 - 18     |
|                         |                        |              | <b>Sample Date</b> | 15 Oct 2021 | 14 Oct 2021 | 14 Oct 2021 | 14 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 |
|                         |                        |              | Sample Type        | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           |
| Constituent             | <b>Background Mean</b> | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |             |             |             |
| Inorganics              |                        |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| Aluminum                | 57,000                 | 7,700        | 110,000            | 14,000      | 3,300       | 11,000      | 13,000      | 2,600       | 8,300       |             | 2,200       | 13,000      | 12,000      | 9,600       |
| Antimony                | 1                      | 3.1          |                    | 1.7         | < 1.8 U     | 1.4         | 1.5         | 1.2         | < 1.9 U     |             |             | < 1.7 U     | < 1.9 U     | < 1.9 U     |
| Arsenic                 | 5.1                    | 3.5          |                    | 9.5         | 3.6         | 5.8         | 4.2         | 6           | 6           | ~           | 2.4         | 3.7         | 2.6 J       | 4.4         |
| Barium                  | 436                    | 1,500        | 22000              | 42          | 28          | 40          | 89          | 18          | 130         | 43          | 11          | 29          | 58          | 67          |
| Beryllium               | 0.56                   | 16           |                    | 0.94        | 0.47        | 0.6         | 0.99        | 0.27        | 0.65        | 0.6         | 0.14        | 0.34        | 0.96        | 0.71        |
| Cadmium                 | 0.31                   | 7.1          |                    | 0.4         | < 0.35 U    | 0.28        | 0.31        | 0.28        | 0.31        | < 0.4 U     | < 0.34 U    | < 0.35 U    | < 0.38 U    | < 0.38 U    |
| Calcium                 | 6,300                  | NE           |                    | 440         | 160         | 620         | 200         | 140         | 2,700       | 530         |             | 12,000      | 300         | 210         |
| Chromium (total)        | 54                     | 3,600,000    | NE                 | 20          | 31          | 17          | 18          | 7.4         | 16          |             |             | 8.4         | 15          | 18          |
| Cobalt                  | 9.4                    | 0.54         |                    | 7.3         | 5.5         | 7.5         | 9.8         | 4.9         | 9.6         | 6.2         | 2.9         | 20          | 11          | 7           |
| Copper                  | 33                     | 310          | 4,700              | 23          | 7.8         | 14          | 24          | 6.9         | 40          | 15          | 2.9         | 120         | 20          | 16          |
| Cyanide (total)         | NA                     | 2.3          |                    | < 0.57 U    | < 0.47 U    | < 0.54 U    | < 0.44 U    | < 0.41 U    | < 0.54 U    | < 0.6 U     | < 0.48 U    | < 0.53 U    | < 0.57 U    | < 0.58 U    |
| Iron                    | 25,000                 | 706          |                    | 36,000      | 13,000      | 22,000      | 28,000      | 20,000      | 25,000      | 26,000      | 12,000      | 36,000      | 19,000      | 26,000      |
| Lead                    | 35                     | 400          | 800                | 11          | 7.5         | 9.5         | 12          | 1.7         | 180         | 12          | 1.9         | 25          | 11          | 11          |
| Magnesium               | 4,600                  | NE           | NE                 | 1,200       | 470         | 1,500       | 2,100       | 560         | 1,000       | 940         | 180         | 10,000      | 1,000       | 1,200       |
| Manganese               | 283                    | 56           |                    | 98          | 65          | 89          | 81          | 76          | 400         | 170         |             | 270         | 190         | 77          |
| Mercury                 | 0.108                  | 1.1          | 4.6                | 0.047       | 0.018       | 0.027       | < 0.031 U   | < 0.027 U   |             | 0.06        | < 0.03 U    | 0.016 J     | < 0.032 U   | < 0.031 U   |
| Nickel                  | 16                     | 50.9         | 2,200              | 12          | 7.9         | 10          | 14          | 6.4         | 9.2         |             | 3.2         | 22          | 14          | 15          |
| Potassium               | 12,000                 | NE           |                    | 890         | 290         | 770         | 780         | 340         | 1,000       |             |             | 540         | 880 J       | 710         |
| Sodium                  | 7,800                  | NE           | NE                 | < 200 U     | < 180 U     | < 190 U     | 110         | < 170 U     | 92          | < 200 U     | < 170 U     | 2,000       | 580         | < 190 U     |
| Thallium                | 0.07                   | 0.078        | 1.2                | < 2 U       | < 1.8 U     | < 1.9 U     | < 1.9 U     | < 1.7 U     | < 1.9 U     | < 2 U       | < 1.7 U     | < 1.7 U     | < 1.9 U     | < 1.9 U     |
| Vanadium                | 77                     | 39           |                    | 36          | 20          | 31          | 29          | 8.7         | 25          |             |             | 89          | 40          | 27          |
| Zinc                    | 233                    | 746          | 35,000             | 53          | 15          | 35          | 41          | 15          | 150         | 36          | 7.7         | 62          | 39          | 40          |
| <b>Physical Charact</b> | eristics               |              |                    |             |             |             |             |             |             |             |             |             |             |             |
| pН                      | NA                     | NE           | NE                 | 5           | 9.4         | 5.6         | 4.4         | 5.8         | 5.8         | 6.1         | 5           | 9.9         | 4.3         | 4.6         |

#### Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NA: not available. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Background mean concentrations of metals in soil are based on data presented for Virginia or the eastern coterminous United States in Dragun, J. and Chekiri, K, Elements in North American Soils, Second Ed. (2004).

Samples were analyzed for the presence of target analyte list (TAL) metals by United States Environmental Protection Agency (USEPA) method 6010 or 7420 (for mercury); seelct samples were additionally analyzed for pH and/or the presence of cyanide by SM4500.

|                          |                        |              | Location           | SB-216      | SB-224      | SB-225      | SB-226      | SB-227      |
|--------------------------|------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|
|                          |                        | Sample I     | Depth (ft bgs)     | 1 - 3       | 0 - 1       | 0 - 1       | 0 - 1       | 0 - 1       |
|                          |                        |              |                    | 18 Oct 2021 | 21 Oct 2021 | 21 Oct 2021 | 05 Oct 2021 | 21 Oct 2021 |
|                          |                        |              | <b>Sample Type</b> | N           | N           | N           | N           | N           |
| Constituent              | <b>Background Mean</b> | Tier II Res. | Tier III Ind.      |             |             |             |             |             |
| Inorganics               |                        |              |                    |             |             |             |             |             |
| Aluminum                 | 57,000                 | 7,700        | 110,000            | 6,100       | 1,200       | 2,300       | 11,000      | 3,400       |
| Antimony                 | 1                      | 3.1          | 47                 | < 1.9 U     | < 1.8 U     | < 2.5 U     | < 2 U       | < 1.9 U     |
| Arsenic                  | 5.1                    | 3.5          | 30                 | 7.7         | 9.9         | 6.5         | 4.5         | 25          |
| Barium                   | 436                    | 1,500        | 22000              | 64          | 81          | 100         | 56          | 140         |
| Beryllium                | 0.56                   | 16           | 230                | 0.31        | 1.5         | 2           | 0.53        | 0.86        |
| Cadmium                  | 0.31                   | 7.1          | 98                 | < 0.39 U    | 0.21 J      | < 0.5 U     | < 0.4 U     | < 0.37 U    |
| Calcium                  | 6,300                  | NE           | NE                 | 5,400       | 810         | 980         | 700         | 2,100       |
| Chromium (total)         | 54                     | 3,600,000    | NE                 | 15          | 14          | 27          | 15          | 1,400       |
| Cobalt                   | 9.4                    | 0.54         | 35                 | 4.2         | 5.9         | 8.6         | 6.5         | 18          |
| Copper                   | 33                     | 310          | 4,700              | 29          | 27          | 39          | 11          | 1,000       |
| Cyanide (total)          | NA                     | 2.3          | 15                 | 0.66        | < 0.52 U    | < 0.65 U    | < 0.6 U     | < 0.38 U    |
| Iron                     | 25,000                 | 706          | 82,000             | 25,000      | 11,000      | 11,000      | 22,000      | 330,000     |
| Lead                     | 35                     | 400          | 800                | 7.2         | 28          | 12          | 12          | 13          |
| Magnesium                | 4,600                  | NE           | NE                 | 3,000       | 280         | 530         | 1,300       | 1,700       |
| Manganese                | 283                    | 56           | 2600               | 61          | 76          | 99          | 96          | 2,700       |
| Mercury                  | 0.108                  | 1.1          | 4.6                | 0.011 J     | 0.023 J     | 0.027 J     | 0.012 J     | 0.019 J     |
| Nickel                   | 16                     | 50.9         | 2,200              | 9.2         | 13          | 22          | 9.2         | 730         |
| Potassium                | 12,000                 | NE           | NE                 | 770         | 240         | 310         | 670         | 290         |
| Sodium                   | 7,800                  | NE           | NE                 | < 190 U     | 80 J        | 110 J       | < 200 U     | 400         |
| Thallium                 | 0.07                   | 0.078        | 1.2                | < 1.9 U     | < 1.8 U     | < 2.5 U     | 1.4 J       | < 1.9 U     |
| Vanadium                 | 77                     | 39           | 580                | 30          | 15          | 25          | 28          | 110         |
| Zinc                     | 233                    | 746          | 35,000             | 25          | 54          | 48          | 30          | 67          |
| <b>Physical Characte</b> | eristics               |              |                    |             |             |             |             |             |
| pН                       | NA                     | NE           | NE                 | 6.5         | 5.9         | 6           | 5.4         | 7.4         |

#### Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NA: not available. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Background mean concentrations of metals in soil are based on data presented for Virginia or the eastern coterminous United States in Dragun, J. and Chekiri, K, Elements in North American Soils, Second Ed. (2004).

Samples were analyzed for the presence of target analyte list (TAL) metals by United States Environmental Protection Agency (USEPA) method 6010 or 7420 (for mercury); seelct samples were additionally analyzed for pH and/or the presence of cyanide by SM4500.

# TABLE 4-2B: Soil Analytical Results - Detected Total Petroleum Hydrocarbons Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                         | Location              | SB-205      | SB-205      | SB-205      | SB-206      | SB-206      | SB-207      | SB-207      | SB-207      | SB-207      | SB-214      | SB-214      |
|-----------------------------------------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                         | Sample Depth (ft bgs) | 0 - 1       | 13 - 15     | 13 - 15     | 5 - 7       | 15 - 17     | 0 - 1       | 6 - 8       | 6 - 8       | 16 - 18     | 0 - 2       | 5 - 7       |
|                                         | Sample Date           | 11 Oct 2021 | 11 Oct 2021 | 11 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 14 Oct 2021 | 14 Oct 2021 |
|                                         | Sample Type           | N           | N           | FD          | N           | N           | N           | N           | FD          | N           | N           | N           |
| Constituent                             | VDEQ Action Level     |             |             |             |             |             |             |             |             |             |             |             |
| <b>Total Petroleum Hydrocarbons (TF</b> | PH)                   |             |             |             |             |             |             |             |             |             |             |             |
| Diesel Range Organics (DRO)             |                       | 6.2 J       | < 9.1 U     | < 9.3 U     | 27          | 39          | 64          | < 9.6 U     | < 10 U      | < 9.1 U     | 41          | < 4.8 U     |
| Gasoline Range Organics (GRO)           | 100A                  | < 3 U       | < 3 U       | < 3.4 U     | < 1.1 U     | < 3.5 U     | < 2.8 U     | < 2.7 U     | < 3.1 U     | < 2.8 U     | < 1.2 U     | < 1.3 U     |
| Oil Range Organics (ORO)                | 100 <sup>A</sup>      | 1.72 J,B    | 0.452 J,B   | < 4.66 U    | 6.11        | 2.08 J      | 56.2        | 1.14 J      | 1.64 J      | < 4.36 U    | < 4.49 U    | < 4.68 U    |
| Total TPH                               |                       | 7.92        | 0.452       | U           | 33.11       | 41.08       | 120.2       | 1.14        | 1.64        | U           | 41          | U           |

## Notes:

B: constituent was detected in the associated laboratory method blank.

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

All values are listed in milligrams per kilogram (mg/kg).

AVirginia Department of Environmental Quality (VDEQ) Tier II Residential and Tier III Industrial Soil Screening Levels (SSLs) have not been established for total TPH. The VDEQ Petroleum Storage Tank Program utilizes 100 mg/kg as an action level for total TPH to determine when further evaluation is warranted.

**Boldface**, <u>underline</u>, and gray shading indicates the detection exceeds the VDEQ action level for TPH.

Samples were analyzed for the presence of total petroleum hydrocarbons – diesel-range organics (TPH-DRO), – gasoline range organics (GRO), and – oil range organics (ORO) by by United States Environmental Protection Agency (USEPA) method 8015C and 8015M.

# TABLE 4-2B: Soil Analytical Results - Detected Total Petroleum Hydrocarbons Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                         | Location              | SB-214      | SB-215       | SB-215      | SB-215      | SB-216        | SB-224       | SB-225      | SB-227       |
|-----------------------------------------|-----------------------|-------------|--------------|-------------|-------------|---------------|--------------|-------------|--------------|
|                                         | Sample Depth (ft bgs) | 14 - 16     | 0 - 2        | 5 - 7       | 16 - 18     | 1 - 3         | 0 - 1        | 0 - 1       | 0 - 1        |
|                                         | Sample Date           | 14 Oct 2021 | 18 Oct 2021  | 18 Oct 2021 | 18 Oct 2021 | 18 Oct 2021   | 21 Oct 2021  | 21 Oct 2021 | 21 Oct 2021  |
|                                         | Sample Type           | N           | N            | N           | N           | N             | N            | N           | N            |
| Constituent                             | VDEQ Action Level     |             |              |             |             |               |              |             |              |
| <b>Total Petroleum Hydrocarbons (TF</b> | PH)                   |             |              |             |             |               |              |             |              |
| Diesel Range Organics (DRO)             |                       | < 4 U       | 98           | 5.2 J       | 7 J         | 100           | 1,200        | 1,000       | 150          |
| Gasoline Range Organics (GRO)           | 1.00A                 | < 0.73 U    | < 2.2 U      | < 2.8 U     | < 2.6 U     | 47            | <u>320</u>   | 92          | 8.9          |
| Oil Range Organics (ORO)                | 100 <sup>A</sup>      | < 4.82 U    | 68.5         | 0.679 J,B   | 3.36 J,B    | 5.51          | 111          | 105         | 21.7         |
| Total TPH                               |                       | U           | <u>166.5</u> | 5.879       | 10.36       | <u>152.51</u> | <u>1,631</u> | 1,197       | <u>180.6</u> |

## Notes:

B: constituent was detected in the associated laboratory method blank.

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

All values are listed in milligrams per kilogram (mg/kg).

AVirginia Department of Environmental Quality (VDEQ) Tier II Residential and Tier III Industrial Soil Screening Levels (SSLs) have not been established for total TPH. The VDEQ Petroleum Storage Tank Program utilizes 100 mg/kg as an action level for total TPH to determine when further evaluation is warranted.

**Boldface**, <u>underline</u>, and gray shading indicates the detection exceeds the VDEQ action level for TPH.

Samples were analyzed for the presence of total petroleum hydrocarbons – diesel-range organics (TPH-DRO), – gasoline range organics (GRO), and – oil range organics (ORO) by by United States Environmental Protection Agency (USEPA) method 8015C and 8015M.

|                                         |              | Location       | SB-201      | SB-201      | SB-201      | SB-201      | SB-202      | SB-202      | SB-203      | SB-203      | SB-204      | SB-204      | SB-204      |
|-----------------------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                         | Sample       | Depth (ft bgs) | 0 - 1       | 0 - 1       | 10 - 12     | 24 - 26     | 0 - 1       | 25 - 30     | 0 - 1       | 11 - 13     | 0.8 - 1.8   | 6 - 8       | 13 - 15     |
|                                         | •            | Sample Date    | 05 Oct 2021 | 08 Oct 2021 | 08 Oct 2021 | 08 Oct 2021 | 07 Oct 2021 | 07 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 |
|                                         |              | Sample Type    | N           | FD          | N           | N           | N           | N           | N           | N           | N           | N           | N           |
| Constituent 1                           | Tier II Res. | Tier III Ind.  |             |             |             |             |             |             |             |             |             |             |             |
| Semi-Volatile Organic Compounds (SVOCs) |              |                |             |             |             |             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene                     | 1.157        | 730            | 0.072 J     | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | 0.068 J     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| 2,4-Dimethylphenol                      | 0.8522       | 1,600          | < 0.43 U    | < 0.4 U     | < 0.39 U    | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
| 2-Methylnaphthalene (                   | 0.3714       | 300            | 0.12 J      | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | 0.098 J     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| 2-Methylphenol                          | 1.512        | 4,100          | < 0.43 U    | < 0.4 U     | < 0.39 U    | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
|                                         | NE           | NE             | < 0.43 U    | < 0.4 U     | 0.1 J       | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
|                                         | 10.87        | 4,500          | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Acenaphthylene 2                        | 26.131       | 2,300          | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Acetophenone 1                          | 1.154        | 12,000         | < 0.43 U    | < 0.4 U     | < 0.39 U    | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
| Anthracene 1                            | 118.513      | 23,000         | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Benzo(a)anthracene                      | 2.124        | 210            | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Benzo(a)pyrene                          | 1.1          | 21             | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Benzo(B)naoranenene                     | 11           | 210            | 0.069 J     | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 26.131       | 2,300          | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 110          | 2,100          | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 30.18        | 330,000        | < 1.3 U     | < 1.2 U     | < 1.1 U     | < 1.2 U     | < 1.4 U     | < 1.2 U     | < 1.2 U     | < 1.2 U     | < 1.1 U     | < 1.2 U     | < 1.2 U     |
| bis(2-Ethylhexyl)phthalate 2            | 28.728       | 1,600          | < 0.43 U    | < 0.4 U     | < 0.39 U    | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
|                                         | NE           | NE             | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 1100         | 21,000         | 0.063 J     | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| (//                                     | 1.1          | 21             | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 0.2927       | 120            | < 0.43 U    | < 0.4 U     | < 0.39 U    | < 0.4 U     | < 0.46 U    | < 0.42 U    | < 0.4 U     | < 0.4 U     | < 0.37 U    | < 0.4 U     | < 0.4 U     |
|                                         | 177.76       |                | 0.072 J     | < 0.2 U     | 0.093 J     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Fluorene 1                              | 10.742       | 3,000          | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| indeno(1/2/3 cd/pyrene                  | 11           | 210            | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 0.04013      | 59             | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.2 U     | < 0.23 U    | < 0.21 U    | 0.076 J     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
|                                         | 26.131       |                | 0.077 J     | < 0.2 U     | 0.062 J     | < 0.2 U     | < 0.23 U    | < 0.21 U    | 0.094 J     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |
| Pyrene 2                                | 26.131       | 2,300          | 0.079 J     | < 0.2 U     | 0.098 J     | < 0.2 U     | < 0.23 U    | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

Samples were analyzed for the presence of SVOCs by United States Environmental Protection Agency (USEPA) method 8270. Only detected constituents are summarized herein.

# TABLE 4-2C: Soil Analytical Results - Detected Semi-Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                        |              | Location           | SB-205      | SB-205      | SB-205      | SB-206      | SB-206      | SB-206      | SB-207      | SB-207      | SB-207      | SB-207      | SB-208      |
|----------------------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                        | Sample       | Depth (ft bgs)     | 0 - 1       | 13 - 15     | 13 - 15     | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 1       | 6 - 8       | 6 - 8       | 16 - 18     | 0 - 1       |
|                                        |              | <b>Sample Date</b> | 11 Oct 2021 | 11 Oct 2021 | 11 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 14 Oct 2021 |
|                                        |              | Sample Type        | N           | N           | FD          | N           | N           | N           | N           | N           | FD          | N           | N           |
| Constituent                            | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |             |             |             |
| <b>Semi-Volatile Organic Compounds</b> | s (SVOCs)    |                    |             |             |             |             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene                    | 1.157        | 730                | < 0.2 U     | < 0.19 U    | < 0.19 U    | 0.1 J       | < 0.2 U     | < 0.22 U    | 0.08 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| 2,4-Dimethylphenol                     | 0.8522       | 1,600              | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| 2-Methylnaphthalene                    | 0.3714       | 300                | < 0.2 U     | < 0.19 U    | < 0.19 U    | 0.17 J      | < 0.2 U     | 0.071 J     | 0.13 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| 2-Methylphenol                         | 1.512        | 4,100              | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| 3&4-Methylphenol                       | NE           | NE                 | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| Acenaphthene                           | 10.87        | 4,500              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Acenaphthylene                         | 26.131       | 2,300              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Acetophenone                           | 1.154        | 12,000             | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| Anthracene                             | 118.513      | 23,000             | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzo(a)anthracene                     | 2.124        | 210                | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.11 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzo(a)pyrene                         | 1.1          | 21                 | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.083 J     | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzo(b)fluoranthene                   | 11           | 210                | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.11 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzo(g,h,i)perylene                   | 26.131       | 2,300              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzo(k)fluoranthene                   | 110          | 2,100              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Benzoic Acid                           | 30.18        | 330,000            | < 1.2 U     | < 1.1 U     | < 1.1 U     | < 1.1 U     | < 1.2 U     | < 1.3 U     | < 1.2 U     | < 1.1 U     | < 1.2 U     | < 1.1 U     | < 1.3 U     |
| bis(2-Ethylhexyl)phthalate             | 28.728       | 1,600              | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| Carbazole                              | NE           | NE                 | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Chrysene                               | 1100         | 21,000             | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.12 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Dibenz(a,h)anthracene                  | 1.1          | 21                 | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Dibenzofuran                           | 0.2927       | 120                | < 0.41 U    | < 0.37 U    | < 0.38 U    | < 0.38 U    | < 0.4 U     | < 0.44 U    | < 0.42 U    | < 0.38 U    | < 0.41 U    | < 0.36 U    | < 0.44 U    |
| Fluoranthene                           | 177.76       | 3,000              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.22        | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Fluorene                               | 10.742       | 3,000              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Indeno(1,2,3-cd)pyrene                 | 11           | 210                | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | < 0.21 U    | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Naphthalene                            | 0.04013      | 59                 | < 0.2 U     | < 0.19 U    | < 0.19 U    | 0.11 J      | < 0.2 U     | < 0.22 U    | 0.077 J     | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Phenanthrene                           | 26.131       | 2,300              | < 0.2 U     | < 0.19 U    | < 0.19 U    | 0.088 J     | < 0.2 U     | < 0.22 U    | 0.25        | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |
| Pyrene                                 | 26.131       | 2,300              | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.19 U    | < 0.2 U     | < 0.22 U    | 0.19 J      | < 0.19 U    | < 0.21 U    | < 0.18 U    | < 0.22 U    |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

# **TABLE 4-2C: Soil Analytical Results - Detected Semi-Volatile Organic Compounds Former Potomac River Generating Station** 1400 N. Royal Street, Alexandria, Virginia

|                                        |              | Location       | SB-208      | SB-208      | SB-209      | SB-209      | SB-209      | SB-210      | SB-211      | SB-211      | SB-211      | SB-212      | SB-212      |
|----------------------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                        | Sample       | Depth (ft bgs) | 5 - 7       | 18 - 20     | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 1       | 0 - 1       | 5 - 7       | 15 - 17     | 0 - 2       | 0 - 2       |
|                                        |              | Sample Date    | 14 Oct 2021 | 14 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 28 Oct 2021 | 15 Oct 2021 |
|                                        |              | Sample Type    | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           | FD          |
| Constituent                            | Tier II Res. | Tier III Ind.  |             |             |             |             |             |             |             |             |             |             |             |
| <b>Semi-Volatile Organic Compounds</b> | (SVOCs)      |                |             |             |             |             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene                    | 1.157        | 730            | < 0.22 U    | < 0.21 U    | 0.11 J      | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.3         | 0.11 J      | 0.12 J      | < 0.19 U    | 0.056 J     |
| 2,4-Dimethylphenol                     | 0.8522       | 1,600          | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| 2-Methylnaphthalene                    | 0.3714       | 300            | < 0.22 U    | < 0.21 U    | 0.16 J      | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.5         | 0.2         | 0.2         | < 0.19 U    | 0.084 J     |
| 2-Methylphenol                         | 1.512        | 4,100          | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| 3&4-Methylphenol                       | NE           | NE             | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| Acenaphthene                           | 10.87        | 4,500          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Acenaphthylene                         | 26.131       | 2,300          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Acetophenone                           | 1.154        | 12,000         | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| Anthracene                             | 118.513      | 23,000         | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzo(a)anthracene                     | 2.124        | 210            | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.07 J      | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzo(a)pyrene                         | 1.1          | 21             | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.065 J     | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzo(b)fluoranthene                   | 11           | 210            | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.091 J     | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzo(g,h,i)perylene                   | 26.131       | 2,300          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzo(k)fluoranthene                   | 110          | 2,100          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Benzoic Acid                           | 30.18        | 330,000        | < 1.3 U     | < 1.2 U     | < 1.1 U     | < 1.2 U     | < 1.1 U     | < 1.1 U     | < 1.1 U     |
| bis(2-Ethylhexyl)phthalate             | 28.728       | 1,600          | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | < 0.38 U    | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| Carbazole                              | NE           | NE             | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
|                                        | 1100         | 21,000         | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.1 J       | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Dibenz(a,h)anthracene                  | 1.1          | 21             | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Dibenzofuran                           | 0.2927       | 120            | < 0.44 U    | < 0.42 U    | < 0.4 U     | < 0.41 U    | < 0.4 U     | < 0.4 U     | 0.1 J       | < 0.4 U     | < 0.37 U    | < 0.38 U    | < 0.39 U    |
| Fluoranthene                           | 177.76       | 3,000          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.16 J      | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Fluorene                               | 10.742       | 3,000          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Indeno(1,2,3-cd)pyrene                 | 11           | 210            | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | < 0.19 U    | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |
| Naphthalene                            | 0.04013      | 59             | < 0.22 U    | < 0.21 U    | 0.094 J     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.29        | 0.13 J      | 0.13 J      | < 0.19 U    | 0.056 J     |
| Phenanthrene                           | 26.131       | 2,300          | < 0.22 U    | < 0.21 U    | 0.1 J       | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.31        | 0.077 J     | 0.074 J     | < 0.19 U    | 0.071 J     |
| Pyrene                                 | 26.131       | 2,300          | < 0.22 U    | < 0.21 U    | < 0.2 U     | < 0.21 U    | < 0.2 U     | < 0.2 U     | 0.16 J      | < 0.2 U     | < 0.19 U    | < 0.19 U    | < 0.2 U     |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

# TABLE 4-2C: Soil Analytical Results - Detected Semi-Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                        |              | Location       | SB-212      | SB-212      | SB-213      | SB-213      | SB-213      | SB-214      | SB-214      | SB-214      | SB-215      | SB-215      | SB-215      |
|----------------------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                        | Sample       | Depth (ft bgs) | 5 - 7       | 15 - 17     | 0 - 1       | 5 - 7       | 16 - 18     | 0 - 2       | 5 - 7       | 14 - 16     | 0 - 2       | 5 - 7       | 16 - 18     |
|                                        |              | Sample Date    | 15 Oct 2021 | 14 Oct 2021 | 14 Oct 2021 | 14 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 |
|                                        |              | Sample Type    | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           | N           |
| Constituent                            | Tier II Res. | Tier III Ind.  |             |             |             |             |             |             |             |             |             |             |             |
| <b>Semi-Volatile Organic Compounds</b> | (SVOCs)      |                |             |             |             |             |             |             |             |             |             |             |             |
| 1-Methylnaphthalene                    | 1.157        | 730            | < 0.2 U     | < 0.18 U    | 0.083 J     | < 0.2 U     | < 0.18 U    | 0.058 J     | < 0.21 U    | < 0.18 U    | 0.23        | < 0.19 U    | < 0.19 U    |
| 2,4-Dimethylphenol                     | 0.8522       | 1,600          | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | < 0.39 U    | < 0.43 U    | < 0.35 U    | < 0.36 U    | < 0.39 U    | < 0.39 U    |
| 2-Methylnaphthalene                    | 0.3714       | 300            | < 0.2 U     | < 0.18 U    | 0.13 J      | < 0.2 U     | < 0.18 U    | 0.1 J       | < 0.21 U    | < 0.18 U    | 0.28        | < 0.19 U    | < 0.19 U    |
| 2-Methylphenol                         | 1.512        | 4,100          | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | < 0.39 U    | < 0.43 U    | < 0.35 U    | < 0.36 U    | < 0.39 U    | < 0.39 U    |
| 3&4-Methylphenol                       | NE           | NE             | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | < 0.39 U    | < 0.43 U    | < 0.35 U    | < 0.36 U    | < 0.39 U    | < 0.39 U    |
|                                        | 10.87        | 4,500          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.065 J     | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Acenaphthylene                         | 26.131       | 2,300          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.067 J     | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Acetophenone                           | 1.154        | 12,000         | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | < 0.39 U    | < 0.43 U    | < 0.35 U    | < 0.36 U    | < 0.39 U    | < 0.39 U    |
| Anthracene                             | 118.513      | 23,000         | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.37        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Benzo(a)anthracene                     | 2.124        | 210            | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 1.8         | < 0.21 U    | < 0.18 U    | 0.078 J     | < 0.19 U    | < 0.19 U    |
| Benzo(a)pyrene                         | 1.1          | 21             | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 1.5         | < 0.21 U    | < 0.18 U    | 0.065 J     | < 0.19 U    | < 0.19 U    |
| Benzo(b)fluoranthene                   | 11           | 210            | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 1.9         | < 0.21 U    | < 0.18 U    | 0.11 J      | < 0.19 U    | < 0.19 U    |
| Benzo(g,h,i)perylene                   | 26.131       | 2,300          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.64        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
|                                        | 110          | 2,100          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.84        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Benzoic Acid                           | 30.18        | 330,000        | < 1.2 U     | < 1.1 U     | < 1.2 U     | < 1.2 U     | < 1.1 U     | < 1.1 U     | < 1.3 U     | < 1 U       | < 1.1 U     | < 1.1 U     | < 1.1 U     |
| bis(2-Ethylhexyl)phthalate             | 28.728       | 1,600          | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | < 0.39 U    | < 0.43 U    | < 0.35 U    | < 0.36 U    | < 0.39 U    | < 0.39 U    |
|                                        | NE           | NE             | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.23        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
|                                        | 1100         | 21,000         | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 1.6         | < 0.21 U    | < 0.18 U    | 0.12 J      | < 0.19 U    | < 0.19 U    |
| ( / /                                  | 1.1          | 21             | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.21        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
|                                        | 0.2927       | 120            | < 0.4 U     | < 0.36 U    | < 0.4 U     | < 0.41 U    | < 0.37 U    | 0.099 J     | < 0.43 U    | < 0.35 U    | 0.077 J     | < 0.39 U    | < 0.39 U    |
| Fluoranthene                           | 177.76       | 3,000          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 3           | < 0.21 U    | < 0.18 U    | 0.1 J       | < 0.19 U    | < 0.19 U    |
| Fluorene                               | 10.742       | 3,000          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.11 J      | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Indeno(1,2,3-cd)pyrene                 | 11           | 210            | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 0.73        | < 0.21 U    | < 0.18 U    | < 0.18 U    | < 0.19 U    | < 0.19 U    |
| Naphthalene                            | 0.04013      | 59             | < 0.2 U     | < 0.18 U    | 0.076 J     | < 0.2 U     | < 0.18 U    | 0.15 J      | < 0.21 U    | < 0.18 U    | 0.098 J     | < 0.19 U    | < 0.19 U    |
| Phenanthrene                           | 26.131       | 2,300          | < 0.2 U     | < 0.18 U    | 0.067 J     | < 0.2 U     | < 0.18 U    | 1.6         | < 0.21 U    | < 0.18 U    | 0.3         | < 0.19 U    | < 0.19 U    |
| Pyrene                                 | 26.131       | 2,300          | < 0.2 U     | < 0.18 U    | < 0.2 U     | < 0.2 U     | < 0.18 U    | 2.9         | < 0.21 U    | < 0.18 U    | 0.11 J      | < 0.19 U    | < 0.19 U    |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

TABLE 4-2C: Soil Analytical Results - Detected Semi-Volatile Organic Compounds
Former Potomac River Generating Station
1400 N. Royal Street, Alexandria, Virginia

|                               |              | Location       | SB-216  | SB-224      | SB-225      | SB-226      | SB-227      |
|-------------------------------|--------------|----------------|---------|-------------|-------------|-------------|-------------|
|                               | Sample       | Depth (ft bgs) |         | 0 - 1       | 0 - 1       | 0 - 1       | 0 - 1       |
|                               | Sample       | Sample Date    |         | 21 Oct 2021 | 21 Oct 2021 | 05 Oct 2021 | 21 Oct 2021 |
|                               |              | Sample Type    |         | N           | N           | N           | N           |
| Constituent                   | Tier II Res. | Tier III Ind.  |         |             |             |             |             |
| Semi-Volatile Organic Compour |              |                |         |             |             |             |             |
| 1-Methylnaphthalene           | 1.157        | 730            | 0.59    | 9.8         | 8.8         | < 0.21 U    | 0.74        |
| 2,4-Dimethylphenol            | 0.8522       | 1,600          | < 0.4 U | 0.14 J      | 0.2 J       | < 0.41 U    | < 0.39 U    |
| 2-Methylnaphthalene           | 0.3714       | 300            | 1.1     | 16          | 14          | < 0.21 U    | 1.2         |
| 2-Methylphenol                | 1.512        | 4,100          | < 0.4 U | 0.085 J     | 0.13 J      | < 0.41 U    | < 0.39 U    |
| 3&4-Methylphenol              | NE           | NE             | < 0.4 U | 0.088 J     | 0.12 J      | < 0.41 U    | < 0.39 U    |
| Acenaphthene                  | 10.87        | 4,500          | 0.55    | 0.17 J      | 0.13 J      | < 0.21 U    | < 0.19 U    |
| Acenaphthylene                | 26.131       | 2,300          | 0.12 J  | 0.29        | 0.11 J      | < 0.21 U    | < 0.19 U    |
| Acetophenone                  | 1.154        | 12,000         | 0.068 J | 0.56        | < 0.51 U    | < 0.41 U    | < 0.39 U    |
| Anthracene                    | 118.513      | 23,000         | 0.69    | 0.41        | 0.14 J      | < 0.21 U    | < 0.19 U    |
| Benzo(a)anthracene            | 2.124        | 210            | 0.49    | 1.5         | 0.58        | < 0.21 U    | 0.074 J     |
| Benzo(a)pyrene                | 1.1          | 21             | 0.33    | 0.71        | 0.25 J      | < 0.21 U    | < 0.19 U    |
| Benzo(b)fluoranthene          | 11           | 210            | 0.49    | 2.8         | 0.79        | < 0.21 U    | 0.13 J      |
| Benzo(g,h,i)perylene          | 26.131       | 2,300          | 0.14 J  | 0.5         | 0.25 J      | < 0.21 U    | < 0.19 U    |
| Benzo(k)fluoranthene          | 110          | 2,100          | 0.2 J   | 1           | 0.2 J       | < 0.21 U    | < 0.19 U    |
| Benzoic Acid                  | 30.18        | 330,000        | < 1.2 U | 1.2         | < 1.5 U     | < 1.2 U     | < 1.1 U     |
| bis(2-Ethylhexyl)phthalate    | 28.728       | 1,600          | < 0.4 U | 0.12 J      | 0.39 J      | < 0.41 U    | < 0.39 U    |
| Carbazole                     | NE           | NE             | 0.25    | 0.46        | 0.33        | < 0.21 U    | < 0.19 U    |
| Chrysene                      | 1100         | 21,000         | 0.45    | 2.9         | 1.3         | < 0.21 U    | 0.16 J      |
| Dibenz(a,h)anthracene         | 1.1          | 21             | < 0.2 U | 0.24        | < 0.26 U    | < 0.21 U    | < 0.19 U    |
| Dibenzofuran                  | 0.2927       | 120            | 0.69    | 3.6         | 2.7         | < 0.41 U    | 0.27 J      |
| Fluoranthene                  | 177.76       | 3,000          | 2       | 2.6         | 1.1         | < 0.21 U    | 0.12 J      |
| Fluorene                      | 10.742       | 3,000          | 0.8     | 0.22        | 0.32        | < 0.21 U    | < 0.19 U    |
| Indeno(1,2,3-cd)pyrene        | 11           | 210            | 0.17 J  | 0.62        | 0.15 J      | < 0.21 U    | < 0.19 U    |
| Naphthalene                   | 0.04013      | 59             | 1       | 11          | 8.2         | < 0.21 U    | 0.68        |
| Phenanthrene                  | 26.131       | 2,300          | 3       | 7           | 5.1         | < 0.21 U    | 0.57        |
| Pyrene                        | 26.131       | 2,300          | 1.4     | 2.9         | 1.1         | < 0.21 U    | 0.14 J      |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

# TABLE 4-2D: Soil Analytical Results - Detected Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                        |              | Location       | SB-201      | SB-201      | SB-202      | SB-204      | SB-204      | SB-206      | SB-206      | SB-207      | SB-207      | SB-207      | SB-207      |
|----------------------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                        | Sample       | Depth (ft bgs) | 10 - 12     | 24 - 26     | 25 - 30     | 6 - 8       | 13 - 15     | 5 - 7       | 15 - 17     | 0 - 1       | 6 - 8       | 6 - 8       | 16 - 18     |
|                                        |              | Sample Date    | 08 Oct 2021 | 08 Oct 2021 | 07 Oct 2021 | 18 Oct 2021 | 18 Oct 2021 | 12 Oct 2021 | 12 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 | 13 Oct 2021 |
|                                        |              | Sample Type    | N           | N           | N           | N           | N           | N           | N           | N           | N           | FD          | N           |
| Constituent                            | Tier II Res. | Tier III Ind.  |             |             |             |             |             |             |             |             |             |             |             |
| <b>Volatile Organic Compounds (VOC</b> | Cs)          |                |             |             |             |             |             |             |             |             |             |             |             |
| 1,2,4-Trimethylbenzene                 | 0.1624       | 180            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| 1,3,5-Trimethylbenzene                 | 0.1722       | 150            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| 2-Butanone                             | 2.343        | 19,000         | < 0.032 U   | < 0.044 U   | < 0.035 U   | < 0.033 U   | < 0.034 U   | 0.013 J     | 0.044       | < 0.039 U   | < 0.035 U   | < 0.042 U   | < 0.031 U   |
| Acetone                                | 5.736        | 67,000         | < 0.081 U   | < 0.11 U    | < 0.086 U   | < 0.084 U   | < 0.085 U   | < 0.083 U   | < 0.099 U   | < 0.098 U   | < 0.087 U   | < 0.11 U    | < 0.078 U   |
| Benzene                                | 0.05113      | 42             | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| Cumene                                 | 1.473        | 990            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| Ethyl Benzene                          | 15.682       | 250            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| m,p-xylene                             | NE           | NE             | < 0.0032 U  | < 0.0044 U  | < 0.0035 U  | < 0.0033 U  | < 0.0034 U  | < 0.0033 U  | < 0.0039 U  | < 0.0039 U  | < 0.0035 U  | < 0.0042 U  | < 0.0031 U  |
| Methyl Acetate                         | 8.261        | 120,000        | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | 0.0041      | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| Methylcyclohexane                      | NE           | NE             | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| Methylene Chloride                     | 0.0255       | 320            | < 0.016 U   | 0.00068 J   | 0.00062 J   | < 0.017 U   | < 0.017 U   | 0.00069 J   | < 0.02 U    | < 0.02 U    | < 0.017 U   | < 0.021 U   | < 0.016 U   |
| Naphthalene                            | 0.04013      | 59             | < 0.0032 U  | < 0.0044 U  | < 0.0035 U  | < 0.0033 U  | < 0.0034 U  | < 0.0033 U  | < 0.0039 U  | < 0.0039 U  | < 0.0035 U  | < 0.0042 U  | < 0.0031 U  |
| n-Butylbenzene                         | 6.441        | 5,800          | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| n-Propylbenzene                        | 2.46         | 2,400          | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| ortho-xylene                           | 0.374        | 280            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| p-Cymene                               | 1.473        | 990            | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| sec-Butylbenzene                       | 11.697       | 12,000         | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |
| Toluene                                | 13.827       | 4,700          | < 0.0016 U  | < 0.0022 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.0017 U  | < 0.002 U   | < 0.002 U   | < 0.0017 U  | < 0.0021 U  | < 0.0016 U  |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

# TABLE 4-2D: Soil Analytical Results - Detected Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                      |               | Location       | SB-214                     | SB-214             | SB-214      | SB-215      | SB-215                   | SB-215                   | SB-216                   | SB-224      | SB-225           | SB-227                   |
|--------------------------------------|---------------|----------------|----------------------------|--------------------|-------------|-------------|--------------------------|--------------------------|--------------------------|-------------|------------------|--------------------------|
|                                      | Sample        | Depth (ft bgs) | 0 - 2                      | 56-21 <del>4</del> | 14 - 16     | 0 - 2       | 5B-215<br>E - 7          | 16 - 18                  | 1 - 2                    | 0 - 1       | 0 - 1            | 0 - 1                    |
|                                      | Sample        | Sample Date    | 14 Oct 2021                | 14 Oct 2021        | 14 Oct 2021 | 19 Oct 2021 | 19 Oct 2021              | 19 Oct 2021              | 19 Oct 2021              | 21 Oct 2021 | 21 Oct 2021      | 21 Oct 2021              |
|                                      |               | Sample Type    |                            | 14 OCT 2021        | 14 OCT 2021 | 16 OCT 2021 | 16 OCT 2021              | 16 OCT 2021              | N N                      | 21 OCT 2021 | 21 OCT 2021      | 21 OCt 2021              |
| Constituent                          | Tier II Res.  | Tier III Ind.  | IN.                        | N                  | IN          | N           | IN                       | IN.                      | N.                       | N           | N                | N                        |
| Volatile Organic Compounds (         |               | Hei III Illu.  |                            |                    |             |             |                          |                          |                          |             |                  |                          |
| 1,2,4-Trimethylbenzene               | 0.1624        | 180            | < 0.00073 U                | < 0.00064 U        | < 0.00055 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 4.4         | 0.96             | < 0.0017 U               |
|                                      | 0.1024        | 150            |                            | < 0.0004 U         | < 0.00033 U | < 0.0022 U  | < 0.0018 U               |                          | < 0.0016 U               | 1.3         | 0.31             |                          |
| 1,3,5-Trimethylbenzene 2-Butanone    | 2.343         | 19,000         | < 0.0005 U<br>< 0.014 U    | < 0.00043 U        | < 0.00037 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U<br>< 0.03 U   | < 0.0010 U               | 1.8 J       | 0.51 J           | < 0.0017 U<br>< 0.034 U  |
| Acetone                              | 5.736         | 67,000         | < 0.014 U                  | < 0.012 U          | < 0.01 U    | < 0.044 U   | < 0.036 U                | < 0.03 U                 |                          | 4.9 J       | 1.6 J            | < 0.034 U                |
|                                      | 0.05113       | 42             | < 0.037 U                  | < 0.032 U          | < 0.027 U   | < 0.11 U    | < 0.091 U                | < 0.073 U                | < 0.078 U                | 1.5         | 0.38             | < 0.086 U                |
| Benzene<br>Cumene                    | 1.473         | 990            | < 0.00033 U                | < 0.00047 U        | < 0.0004 U  | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 0.49        | 0.14             | < 0.0017 U               |
| Ethyl Benzene                        | 15.682        | 250            | < 0.00081 U                | < 0.00071 U        | < 0.00081 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 1.4         | 0.47             | < 0.0017 U               |
| -                                    | NE            | NE             | < 0.00031 U                | < 0.00044 U        | < 0.00038 U | < 0.0022 U  | < 0.0018 U               | < 0.0013 U               | < 0.0010 U               | 12          | 2.4              | < 0.0017 U               |
| m,p-xylene                           | 8.261         | 120,000        | < 0.00086 U                | < 0.00073 U        | < 0.00003 U | < 0.0044 U  | < 0.0038 U               | < 0.003 U                | < 0.0031 U               | 0.95 J      | 0.65 J           |                          |
| Methyl Acetate                       | NE            | NE             | < 0.0013 U                 | < 0.0013 U         | < 0.0012 U  | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 22          | 5.3              | < 0.0017 U<br>< 0.0017 U |
| Methylcyclohexane Methylene Chloride | 0.0255        | 320            | < 0.00063 U                | < 0.00072 U        | < 0.00062 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | < 1.6 U     | < 0.54 U         | < 0.0017 U               |
| Naphthalene                          | 0.04013       | 59             | < 0.00059 U                | < 0.00050 U        | < 0.00048 U | < 0.022 U   | < 0.018 U                | < 0.013 U                | 0.0018 J                 | <b>7.6</b>  | 1.1              | < 0.017 U                |
|                                      | 6.441         | 5,800          | < 0.00059 U                | < 0.00051 U        | < 0.00044 U | < 0.0044 U  | < 0.0038 U               | < 0.003 U                | < 0.0016 U               | 0.43        | 0.056 J          | < 0.0034 U               |
| n-Butylbenzene                       |               |                |                            | < 0.00031 U        | < 0.00044 U | < 0.0022 U  |                          |                          |                          | 0.43        | 0.13             |                          |
| n-Propylbenzene                      | 2.46<br>0.374 | 2,400<br>280   | < 0.00044 U<br>< 0.00047 U | < 0.00038 U        | < 0.00033 U | < 0.0022 U  | < 0.0018 U<br>< 0.0018 U | < 0.0015 U<br>< 0.0015 U | < 0.0016 U<br>< 0.0016 U | <b>7.5</b>  | 0.13<br><b>2</b> | < 0.0017 U               |
| ortho-xylene                         |               | 990            |                            |                    |             |             |                          |                          |                          |             | 0.057 J          | < 0.0017 U               |
| p-Cymene                             | 1.473         |                | < 0.00052 U                | < 0.00046 U        | < 0.00039 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 0.3 J       |                  | < 0.0017 U               |
| sec-Butylbenzene                     | 11.697        | 12,000         | < 0.0011 U                 | < 0.00096 U        | < 0.00083 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 0.19 J      | 0.041 J          | < 0.0017 U               |
| Toluene                              | 13.827        | 4,700          | < 0.00064 U                | < 0.00055 U        | < 0.00048 U | < 0.0022 U  | < 0.0018 U               | < 0.0015 U               | < 0.0016 U               | 13          | 3.2              | 0.00048 J                |

# Notes:

ft bgs: feet below ground surface.

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

**Boldface** indicates the detection exceeds established Tier II Residential SSLs.

<u>Underline</u> and gray shading indicates the detection exceeds established Tier III Industrial SSLs.

# **TABLE 4-2E: Soil Analytical Results - Polychlorinated Biphenyls Former Potomac River Generating Station** 1400 N. Royal Street, Alexandria, Virginia

|                                         |              | Location           | SB-221      | SB-221      | SB-222      | SB-222      | SB-224      | SB-225      | SB-226      | SB-227      |
|-----------------------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                         | Sample I     | Depth (ft bgs)     | 0 - 1       | 4 - 5       | 0 - 1       | 2 - 5       | 0 - 1       | 0 - 1       | 0 - 1       | 0 - 1       |
|                                         |              | <b>Sample Date</b> | 05 Oct 2021 | 05 Oct 2021 | 19 Oct 2021 | 19 Oct 2021 | 21 Oct 2021 | 21 Oct 2021 | 05 Oct 2021 | 21 Oct 2021 |
|                                         |              | <b>Sample Type</b> |             | N           | N           | N           | N           | N           | N           | N           |
| Constituent                             | Tier II Res. | Tier III Ind.      |             |             |             |             |             |             |             |             |
| <b>Polychlorinated Biphenyls (PCBs)</b> |              |                    |             |             |             |             |             |             |             |             |
| Aroclor-1016                            | 0.2677       | 5.1                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1221                            | 0.01598      |                    | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1232                            | 0.01598      | 7.2                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1242                            | 0.244        | 9.5                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1248                            | 0.2391       | 9.4                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1254                            | 0.12         |                    | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1260                            | 1.091        | 9.9                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1262                            | 1.564        | 9.4                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |
| Aroclor-1268                            | 1.564        | 9.4                | < 0.09 U    | < 0.094 U   | < 0.09 U    | < 0.091 U   | < 0.09 U    | < 0.12 U    | < 0.097 U   | < 0.091 U   |

# Notes:

ft bgs: feet below ground surface

FD: field duplicate sample.

N: normal parent sample. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Residential Soil Screening Level (SSL).

Tier III Ind.: VDEQ Tier III Industrial SSL.

All values are listed in milligrams per kilogram (mg/kg).

Samples were analyzed for the presence of PCBs by United States Environmental Protection Agency (USEPA) method 8082; no exceedances of established SSLs for PCBs were reported.

|                                  |             |           |           |                | Location     | MW-100S     | MW-102      | MW-201 <sup>A</sup>  | MW-202  | MW-202  | MW-205      | MW-206      | MW-207       | MW-208      | MW-209      | MW-214         | MW-30S      | MW-72S      |
|----------------------------------|-------------|-----------|-----------|----------------|--------------|-------------|-------------|----------------------|---------|---------|-------------|-------------|--------------|-------------|-------------|----------------|-------------|-------------|
|                                  |             |           |           |                |              | 28 Oct 2021 |             | 25 Oct / 02 Nov 2021 |         |         | 26 Oct 2021 |             |              | 26 Oct 2021 |             | MW-214         | 27 Oct 2021 | 27 Oct 2021 |
|                                  |             |           |           |                |              | 28 OCT 2021 | 2/ Oct 2021 | 25 Oct / U2 Nov 2021 |         |         | 26 OCT 2021 | 26 OCT 2021 | 26 Oct 2021  | 26 Oct 2021 | 28 OCT 2021 | 26 Oct 2021    |             | 27 Oct 2021 |
|                                  |             |           |           | -              | Sample Type  | N           | N           | N                    | N       | FD      | N           | N           | N            | N           | N           | N              | N           | N           |
| Constituent                      | Tier II     |           |           | I Tier III CDC | Tier III CIC |             |             |                      |         |         |             |             |              |             |             |                |             |             |
| Matala                           | Res.        | Res. VI   | Ina. v.   | (≤ 15 ft)      | (> 15 ft)    |             |             |                      |         |         |             |             |              |             |             |                |             |             |
| Metals                           |             |           |           |                |              |             |             |                      |         |         |             |             |              |             |             |                |             |             |
| Dissolved Aluminum               | 2.000       | INF       | INE       | 656,737        | INE          | < 50 U      | < 50 U      | 110                  | 280     | 270     | < 50 U      | 67          | < 50 U       | < 50 U      | < 50 U      | 12.000         | < 50 U      | Ico         |
|                                  | 2,000       | NE<br>NE  | NE        | 78.56          | NE<br>NE     |             | 0.49 J      |                      | < 1 U   | < 1 U   | < 1 U       | < 1 U       |              | < 1 U       | < 1 U       | 2,000<br>< 1 U | < 1 U       | < 1 U       |
| Antimony                         | 10          | NE        | NE        | 197.02         | NE           | 0.91        | 2.5         | 0.77 ]               | 4.1     | 4       | < 0.8 U     | < 1 0       | < 1 U<br>5.2 | 3.6         | 7.1         | 5.4            | 0.71 J      | 1.4         |
| Arsenic<br>Barium                | 2.000       | NE        | NE        | 20,222         | NE           | 50          | 56          |                      | 22      | 22      | 63          | 28          | 23           | 23          | 18          | 40             | 41          | 1.4         |
| Beryllium                        | 2,000       | NE        | NE        | 55.03          | NE           | 0.94        | < 0.4 U     | 0.11 J               | 1.3     | 1.2     | < 0.4 U     | < 0.4 U     | < 0.4 U      | 0.067 J     | < 0.4 U     | 1.7            | < 0.4 U     | 0.083 J     |
| Cadmium                          | 5           | NE        | NE        | 37.07          | NE           |             | 0.12 J      |                      | 0.29    | 0.25    | 0.042 J     | < 0.4 U     | 0.56         | 1.6         | 0.52        | 7.7            | 0.07 J      | 0.063 J     |
| Calcium                          | NE          | NE        | NE        | NE             | NE           | 60,000      | 17,000      | 41,000               | 150,000 | 150,000 | 30,000      | 200,000     | 120,000      | 97,000      | 73,000      | 52,000         | 130,000     | 180,000     |
| Cobalt                           | 0.6         | NE        | NE        | 2,621          | NE           | 410         | <b>6.6</b>  |                      | 37      | 37      | 2.2         | <b>72</b>   | 23           | 200         | 97          | 830            | 16          | 94          |
| Copper                           | 1,300       | NE        | NE        | 6,567          | NE           |             | 2.2         |                      | 1.5     | 1.3     | 0.9 J       | 25          | 39           | 0           | 3.6         | 16             | 2.1         | 3.3         |
| Iron                             | 1,400       | NE        | NE        | 459,716        | NE           |             | 3,100       | < 50 U               | 63,000  | 63,000  | < 50 U      | 100,000     | 1,100        | 49,000      | 55,000      | 310            | 1,600       | 190,000     |
| Lead                             | 15          | NE        | NE        | NE             | NE           | 0.17 J      | < 0.5 U     | < 0.5 U              | 0.16 J  | 0.15 J  | < 0.5 U     | < 0.5 U     | < 0.5 U      | < 0.5 U     | < 0.5 U     | 1.5            | 0.52        | 0.4 J       |
| Magnesium                        | NE          | NE        | NE        | NE             | NE           | 46,000      | 7,900       | 13,000               | 28,000  | 28,000  | 5,400       | 130,000     | 85,000       | 69,000      | 37,000      | 32,000         | 24,000      | 58,000      |
|                                  | 43          | NE        | NE        | 1.442          | NE           | 13,000      | 1,800       | 340                  | 5,700   | 5,800   | 31          | 14,000      | 16,000       | 16,000      | 9,200       | 26,000         | 1,800       | 4.800       |
| Manganese<br>Mercury             | 13          | 0.09      | 0.37      | 0.09           | 7.2          | < 0.1 U     | < 0.1 U     | < 0.1 U              | < 0.1 U | < 0.1 U | < 0.1 U     | < 0.1 U     | < 0.1 U      | < 0.1 U     | < 0.1 U     | 0.11 J         | < 0.1 U     | < 0.1 U     |
| Nickel                           | 39          | NF        | NE        | 4.948          | NE           | 210         | 12 B        | 5.5 B                | 25 B    | 24 B    | 1.6 B J     | 41 B        | 54 B         | 100 B       | 35          | 190 B          | 42          | 17          |
| Potassium                        | NE          | NE        | NE        | NE             | NE           | 4,300       | 6,200       | 4,900                | 3,300   | 3,300   | 3,200       |             | 10,000       | 4.400       | 8,500       | 10,000         | 4,400       | 8,000       |
| Selenium                         | 50          | NF        | NE        | 3,284          | NE           | 1.2 J       | 1.9 ]       | 6.1                  | 2.2 J   | 2.1 J   | 1.6 J       | 15          | 9.7          | 6           | < 5 U       | 18             | < 5 U       | < 5 U       |
| Sodium                           | NE          | NE        | NE        | NE             | NE           | 67,000      | 29,000      |                      | 47,000  | 46,000  | 4,000       | 1,100,000   | 1,600,000    | 320,000     | 470,000     | 27,000         | 23,000      | 58,000      |
| Thallium                         | INE         | NE        | NE        | 26.27          | NE           | < 0.2 U     | < 0.2 U     | < 0.2 U              | < 0.2 U | < 0.2 U | < 0.2 U     | < 0.2 U     | < 0.2 U      | < 0.2 U     | < 0.2 U     | 0.088 J        | < 0.2 U     | < 0.2 U     |
| Zinc                             | 600         | NE        | NE        | 236,081        | NE           |             | 17          |                      | 23      | 22      | < 10 U      | 16          | 11           | 37          | 30          | 350            | 13          | 27          |
| Total                            | 1000        | IIVL      | INL       | 230,001        | INL          | 1400        | 1/          | [7.93                | 23      | 122     | \ 10 U      | 110         | 111          | 37          | 130         | 1330           | 113         | 127         |
| Aluminum                         | 2,000       | NE        | NE        | 656,737        | NE           | < 50 U      | 130         | 245                  | 460     | 300     | 100         | 19,000      | 480          | 85          | 250         | 2,200          | < 50 U      | 86          |
| Antimony                         | 6           | NE        | NE        | 78.56          | NE           |             | 0.61 J      |                      | < 1 U   | < 1 U   | < 1 U       |             | < 1 U        | < 1 U       | < 1 U       | < 1 U          | < 1 U       | < 1 U       |
| Arsenic                          | 10          | NE        | NE        | 197.02         | NE           | < 0.8 U     | 3.1         | < 10 U               | 4.5     | 4.7     | < 0.8 U     | 18          | 8            | 4.9         | 6.9         | 5.1            | 1.2         | 1.7         |
| Barium                           | 2,000       | NE        | NE        | 20,222         | NE           | 49          | 68          |                      | 22      | 24      | 68          | 220         | 28           | 27          | 19          | 42             | 38          | 13          |
| Beryllium                        | 2,000       | NE        | NE        | 55.03          | NE           | 0.71        | < 0.4 U     | < 1 U                | 1.3     | 1.1     | < 0.4 U     | 1.4         | < 0.4 U      | < 0.4 U     | < 0.4 U     | 1.6            | < 0.4 U     | 0.099 J     |
| Cadmium                          | 5           | NE        | NE        | 37.07          | NE           |             | 0.2         | < 1 U                | 0.11 J  | 0.097 J | 0.043 J     | 0.053 J     | 0.44         | 1.6         | 0.78        | 7.2            | 0.082 J     | 0.079 1     |
| Calcium                          | NE          | NE        | NE        | NE             | NE           | 61,000      | 16,000      | 46,900               | 160,000 | 150,000 | 31,000      | 200,000     | 120,000      | 100,000     | 71,000      | 52,000         | 120,000     | 180,000     |
| Chromium (total)                 | 100         | NE        | NE        | NE             | NE           | < 1 U       | 1.1         | < 5 U                | 0.99 1  | < 1 U   | < 1 U       | 36          | 2.1          | 0.96 J      | < 1 U       | 1.4            | < 1 U       | < 1 U       |
| Cobalt                           | 0.6         | NE        | NE        | 2,621          | NE           | 360         | 6.9         |                      | 40      | 40      | 2.6         |             | 25           | 210         | 110         | 780            | 17          | 95          |
| Copper                           | 1,300       | NE        | NE        | 6,567          | NE           | 2           | 3.1         | < 5 U                | 1.3     | 1.2     | 0.43 J      | 52          | 31           | 6.7         | 6           | 12             | 2           | 13          |
| Iron                             | 1,400       | NE        | NE        | 459,716        | NE           | 15,000      | 2,100       | 221                  | 60,000  | 64,000  | 160         |             | 1,700        | 51,000      | 55,000      | 730            | 1,500       | 180,000     |
| Lead                             | 15          | NE        | NE        | NE             | NE           | 0.16 J      | 0.43 J      | < 5 U                | 0.46 J  | 0.27 J  | < 0.5 U     | 25          | 0.35 J       | < 0.5 U     | 0.2 J       | 1.7            | 0.48 J      | 1.2         |
| Magnesium                        | NE          | NE        | NE        | NE             | NE           | 43,000      | 8,000       | 12,800               | 26,000  | 28,000  | 5,600       | 130,000     | 84,000       | 69,000      | 35,000      | 31,000         | 23,000      | 53,000      |
| Manganese                        | 43          | NE        | NE        | 1,442          | NE           | 9,900       | 1,500       | 334                  | 5,500   | 5,700   | 33          | 15,000      | 16,000       | 16,000      | 9,500       | 26,000         | 1,700       | 4,700       |
| Mercury                          | 2           | 0.09      | 0.37      | 0.1            | 7.2          | < 0.1 U     | < 0.1 U     | < 0.2 U              | < 0.1 U | < 0.1 U | < 0.1 U     | 0.053 J     | < 0.1 U      | < 0.1 U     | < 0.1 U     | 0.33           | < 0.1 U     | 0.06 J      |
| Nickel                           | 39          | NE        | NE        | 4,948          | NE           | · · · · ·   | 14          |                      | 35      | 32      | 3.2 1       | 89          | 62           | 110         | 37          | 190            | 43          | 17          |
| Potassium                        | NE          | NE        | NE        | NE             | NE           | 4,400       | 5,800       | NS                   | 3,300   | 3,300   | 3,300       | 26,000      | 10,000       | 4,400       | 8,300       | 9,900          | 4,300       | 7,600       |
| Selenium                         | 50          | NE        | NE        | 3,284          | NE           |             | 1.6 J       |                      | 1.7 J   | 1.6 J   | 1.5 J       | 14          | 10           | 5           | 0.94 J      | 18             | < 5 U       | < 5 U       |
| Silver                           | 9           | NF        | NE        | 484            | NE           | < 0.2 U     | < 0.2 U     | < 5 U                | 0.03 J  | 0.03 J  | < 0.2 U     | 0.37        | 0.033 J      | 0.027 J     | < 0.2 U     | 0.043 J        | < 0.2 U     | < 0.2 U     |
| Sodium                           | NE          | NF        | NE        | NE             | NE           | 66,000      | 33,000      | 15,400               | 45,000  | 47,000  | 4,100       | 1,100,000   | 1,600,000    | 320,000     | 450,000     | 27,000         | 22,000      | 54,000      |
| Thallium                         | 2           | NE        | NE        | 26.3           | NE           | < 0.2 U     | < 0.2 U     | < 10 U               | < 0.2 U | < 0.2 U | < 0.2 U     | 0.27        | < 0.2 U      | < 0.2 U     | < 0.2 U     | 0.097 J        | < 0.2 U     | < 0.2 U     |
| Vanadium                         | 8.6         | NE        | NE        | 398            | NE           | < 5 U       | < 5 U       | < 5 U                | < 5 U   | < 5 U   | < 5 U       | 64          | < 5 U        | < 5 U       | < 5 U       | < 5 U          | < 5 U       | < 5 U       |
| Zinc                             | 600         | NE        | NE        | 236,081        | NE           |             | 18          |                      | 28      | 24      | < 10 U      |             |              | 41          | 29          | 380            | 9.8 J       | 26          |
| Miscellaneous                    | 1000        | J. V.L.   | 1.45      | 1230,001       | 1115         | 1110        | 1-0         | 1 2 2 0              | 120     | 14.     | 1 10 0      | 1110        | 1-0          | 1.4         | 1           | 1500           | 15.0 5      | 1-0         |
| Ammonia (as N)                   | INE         | NE        | NE        | NE             | NE           | < 100 U     | 120         | NS                   | 1,000   | 780     | < 100 U     | INS         | NS           | NS          | NS          | NS             | 150         | 860         |
| Hardness (as CaCO <sub>3</sub> ) | NE          | NE        | NE        | NE             | NE           | NS          | NS          | 170,000              | NS      | NS      | NS          | NS          | NS           | NS          | NS          | NS             | NS          | NS          |
| ` 3/                             |             | 125       |           |                | 5,434        | NS          | 2           | < 2 U                | < 2 U   | _       |             | NS          | NS           | NS          | NS          | NS NS          | NS          | NS          |
| Hydrazine [Diamine]              | 0.006<br>NF | 125<br>NF | 524<br>NE | 1.21<br>NE     | 5,434<br>NF  |             | 110.000     |                      | 590,000 | < 2 U   | < 2 U       |             |              |             |             |                |             |             |
| Sulfate                          | INE         | INC       | INC       | INC            | INC          | 200,000     | 110,000     | 150,000              | 000,000 | 580,000 | 66,000      | 2,600,000   | 2,500,000    | 1,200,000   | 1,200,000   | 320,000        | 190,000     | 1,000,000   |

B: constituent was detected in the associated laboratory method blank.

FD: field duplicate sample. N: normal parent sample.
NS: not sampled.

NE: screening level not established. U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

^Total metals were erroneously not collected on October 25, 2021; MW-201 was resampled for total metals only on November 2, 2021. **Boldface** indicates the detection exceeds established Tier II Res. GSLs.

Italics indicates the detection exceeds established Tier III Res. VI GSLs.

Underline and gray shading indicates the detection exceeds established Tier III CDC (≤ 15 ft) GSLs.

Samples were analyzed for the presence of select total and dissolved metals by United States Environmental Protection Agency (USEPA) method 6010 or 7470 (for mercury), ammonia (as Nitrogen [N]) by SM4500, hydrazines by USEPA 3815, and sulfate by SM4500. Only detected constituents are summarized herein.

# TABLE 4-3B: Groundwater Analytical Results - Detected Total Petroleum Hydrocarbons and Glycols Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                     | Location           | MW-100S     | MW-102      | MW-201      | MW-202      | MW-202      | MW-205      | MW-206      | MW-207      | MW-208      | MW-209      | MW-214      | MW-221      | MW-30S      | MW-72S      |
|-------------------------------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                     | Sample Date        | 28 Oct 2021 | 27 Oct 2021 | 25 Oct 2021 | 26 Oct 2021 | 28 Oct 2021 | 26 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 |
|                                     | Sample Type        | N           | N           | N           | N           | FD          | N           | N           | N           | N           | N           | N           | N           | N           | N           |
| Constituent                         | VDEQ Action Level  |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| <b>Total Petroleum Hydrocarbons</b> | (TPH)              |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Diesel Range Organics (DRO)         |                    | 130 J       | NS          | NS          | NS          | NS          | 210         | 560         | 110 J       | 170 J       | 210         | 370         | NS          | 440         | 4,900       |
| Oil Range Organics (ORO)            | 1,000 <sup>A</sup> | < 100 U     | NS          | NS          | NS          | NS          | < 100 U     | 147         | < 100 U     | < 100 U     | < 100 U     | < 100 U     | NS          | < 100 U     | 1,170       |
| Total TPH                           |                    | 130         | NS          | NS          | NS          | NS          | 210         | 707         | 110         | 170         | 210         | 370         | NS          | 440         | 6,070       |

Notes:
FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

All values are listed in micrograms per liter (ug/L).

AVirginia Department of Environmental Quality (VDEQ) has not established Groundwater Screening Levels (GSLs) for TPH. The VDEQ Petroleum Storage Tank Program utilizes 1,000 ug/L as an action level for total TPH to determine when further evaluation is warranted.

**Boldface**, <u>underline</u>, and gray shading indicates the detection exceeds the VDEQ action level for TPH; no exceedances of established GSLs for glycols were reported.

Select samples (per the approved Work Plan) were analyzed for the presence of total petroleum hydrocarbons – diesel-range organics (TPH-DRO), – gasoline range organics (GRO), and – oil range organics (ORO) by by United States Environmental Protection Agency (USEPA) method 8015C and for glycols by USEPA method 8015M. Only detected constituents are summarized herein.

# TABLE 4-3C: Groundwater Analytical Results - Detected Semi-Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                            |            |          |          |              | Location     | MW-100S     | MW-102      | MW-201      | MW-202      | MW-202      | MW-205      | MW-206      | MW-207      | MW-208      | MW-209      |
|----------------------------|------------|----------|----------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                            |            |          |          |              | Sample Date  | 28 Oct 2021 | 27 Oct 2021 | 25 Oct 2021 | 26 Oct 2021 | 28 Oct 2021 |
|                            |            |          |          |              | Sample Type  | N           | N           | N           | N           | FD          | N           | N           | N           | N           | N           |
| Constituent                | Tier II    | Tier III | Tier III | Tier III CDC | Tier III CIC |             |             |             |             |             |             |             |             |             |             |
|                            | Res.       |          | Ind. VI  | (≤ 15 ft)    | (> 15 ft)    |             |             |             |             |             |             |             |             |             |             |
| Semi-Volatile Organic Comp | ounds (SVO | Cs)      |          |              |              |             |             |             |             |             |             |             |             |             |             |
| 3&4-Methylphenol           | NE         | NE       | NE       | NE           | NE           | < 10 U      | < 11 U      | < 10 U      | 0.8 J       | 0.49 J      | < 10 U      | < 11 U      | < 9.6 U     | < 9.7 U     | < 9.5 U     |
| Acenaphthene               | 53         | NE       | NE       | 2,945.1      | NE           | < 5.1 U     | < 5.4 U     | < 5.1 U     | < 5.3 U     | < 4.8 U     | < 5.2 U     | < 5.6 U     | < 4.8 U     | < 4.8 U     | < 4.8 U     |

# Notes:

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

# TABLE 4-3C: Groundwater Analytical Results - Detected Semi-Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                          |               |         |            |              | Location     | MW-214      | MW-221      | MW-30S      | MW-72S      |
|--------------------------|---------------|---------|------------|--------------|--------------|-------------|-------------|-------------|-------------|
|                          |               |         |            |              | Sample Date  | 26 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 |
|                          |               |         |            |              | Sample Type  | N           | N           | N           | N           |
| Constituent              | Tier II       | Tier II | I Tier III | Tier III CDC | Tier III CIC |             |             |             |             |
|                          | Res.          |         | I Ind. VI  | (≤ 15 ft)    | (> 15 ft)    |             |             |             |             |
| Semi-Volatile Organic Co | ompounds (SVC | Cs)     |            |              |              |             |             |             |             |
| 3&4-Methylphenol         | NE            | NE      | NE         | NE           | NE           | < 9.6 U     | < 11 U      | < 10 U      | < 10 U      |
| Acenaphthene             | 53            | NE      | NE         | 2,945.1      | NE           | < 4.8 U     | 0.78 J      | < 5.2 U     | < 5.2 U     |

### Notes:

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

# TABLE 4-3D: Groundwater Analytical Results - Detected Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                    |         |               |               |              | Location           | MW-100S     | MW-102      | MW-201      | MW-202      | MW-202      | MW-205      | MW-206      | MW-207      | MW-208      |
|--------------------|---------|---------------|---------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |               |               |              | <b>Sample Date</b> | 28 Oct 2021 | 27 Oct 2021 | 25 Oct 2021 | 26 Oct 2021 |
|                    |         |               |               |              | <b>Sample Type</b> | N           | N           | N           | N           | FD          | N           | N           | N           | N           |
| Constituent        | Tier II | Tier III Res. | Tier III Ind. | Tier III CDC | Tier III CIC       |             |             |             |             |             |             |             |             |             |
| Constituent        | Res.    | VI            | VI            | (≤ 15 ft)    | (> 15 ft)          |             |             |             |             |             |             |             |             |             |
| 1,1-Dichloroethene | 7       | 20            | 82            | 15           | 224                | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       |
| Acetone            | 1,400   | 2,236,343     | 9,784,000     | 13,352       | 52,936,557         | < 50 U      | 2.8 J       | < 50 U      | < 50 U      |
| Chlorobenzene      | 100     | 41            | 173           | 105          | 14,165             | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       |
| Diisopropyl ether  | 150     | 697           | 2,962         | 146          | 26,561             | < 0.5 U     | 0.46 J      |
| p-Cymene           | 45      | 89            | 383           | 20           | 825                | < 1 U       | < 1 U       | < 1 U       | 5.1         | 5.4         | < 1 U       | < 1 U       | < 1 U       | < 1 U       |
| Tetrachloroethene  | 5       | 6             | 25            | 10           | 289                | < 1 U       | < 1 U       | 0.88 J      | < 1 U       | < 1 U       | 0.68 J      | < 1 U       | 0.25 J      | < 1 U       |
| Toluene            | 1,000   | 1,916         | 8,104         | 949          | 61,506             | < 1 U       | < 1 U       | 0.85 J      | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 1 U       |

### Notes:

FD: field duplicate sample.

N: normal parent sample. NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

# TABLE 4-3D: Groundwater Analytical Results - Detected Volatile Organic Compounds Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                    |         |               |                            |           | Location           | MW-209      | MW-214      | MW-221      | MW-30S      | MW-72S      |
|--------------------|---------|---------------|----------------------------|-----------|--------------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |               |                            |           | <b>Sample Date</b> | 28 Oct 2021 | 26 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 | 27 Oct 2021 |
|                    |         |               |                            |           | <b>Sample Type</b> | N           | N           | N           | N           | N           |
| Constituent        | Tier II | Tier III Res. | Tier III Ind. Tier III CDC |           | Tier III CIC       |             |             |             |             |             |
| Constituent        | Res.    | VI            | VI                         | (≤ 15 ft) | (> 15 ft)          |             |             |             |             |             |
| 1,1-Dichloroethene | 7       | 20            | 82                         | 15        | 224                | < 1 U       | < 1 U       | 0.37 J      | < 1 U       | < 2 U       |
| Acetone            | 1,400   | 2,236,343     | 9,784,000                  | 13,352    | 52,936,557         | < 50 U      | 3.4 J       | < 50 U      | < 50 U      | < 100 U     |
| Chlorobenzene      | 100     | 41            | 173                        | 105       | 14,165             | 1           | < 1 U       | < 1 U       | < 1 U       | < 2 U       |
| Diisopropyl ether  | 150     | 697           | 2,962                      | 146       | 26,561             | 2.8         | < 0.5 U     | < 0.5 U     | < 0.5 U     | < 1 U       |
| p-Cymene           | 45      | 89            | 383                        | 20        | 825                | < 1 U       | < 1 U       | 2.2         | < 1 U       | < 2 U       |
| Tetrachloroethene  | 5       | 6             | 25                         | 10        | 289                | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 2 U       |
| Toluene            | 1,000   | 1,916         | 8,104                      | 949       | 61,506             | < 1 U       | < 1 U       | < 1 U       | < 1 U       | < 2 U       |

### Notes:

FD: field duplicate sample.

N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

# TABLE 4-3E: Groundwater Analytical Results - Polychlorinated Biphenyls Former Potomac River Generating Station 1400 N. Royal Street, Alexandria, Virginia

|                                |           |          |          |              | Location           | MW-221      |
|--------------------------------|-----------|----------|----------|--------------|--------------------|-------------|
|                                |           |          |          |              | <b>Sample Date</b> | 27 Oct 2021 |
|                                |           |          |          |              | Sample Type        | N           |
|                                | Tier II   | Tier III | Tier III | Tier III CDC | Tier III CIC       |             |
| Constituent                    | Res.      | Res. VI  | Ind. VI  | (≤ 15 ft)    | (> 15 ft)          |             |
| <b>Polychlorinated Bipheny</b> | ls (PCBs) |          |          |              |                    |             |
| Aroclor-1016                   | 0.14      | 171.22   | 746.03   | 0.1713       | 457118.607         | < 0.23 U    |
| Aroclor-1221                   | 0.047     | 5.257    | 22.529   | 3.661        | 10997.894          | < 0.23 U    |
| Aroclor-1232                   | 0.047     | 1.628    | 6.979    | 3.252        | 3306.227           | < 0.23 U    |
| Aroclor-1242                   | 0.078     | 3.494    | 14.976   | 2.548        | 9946.38            | < 0.23 U    |
| Aroclor-1248                   | 0.078     | 2.724    | 11.674   | 2.679        | 7688.264           | < 0.23 U    |
| Aroclor-1254                   | 0.04      | 4.235    | 18.151   | 0.03447      | 12124.248          | < 0.23 U    |
| Aroclor-1260                   | 0.078     | 3.567    | 15.287   | 5.834        | 10998.426          | < 0.23 U    |
| Aroclor-1262                   | 0.5       | 2.888    | 12.377   | 2.519        | 8057.536           | < 0.23 U    |
| Aroclor-1268                   | 0.5       | 2.888    | 12.377   | 2.519        | 8057.536           | < 0.23 U    |

# Notes:

FD: field duplicate sample. N: normal parent sample.

NS: not sampled.

NE: screening level not established.

U: not detected above the analytical reporting limit shown.

J: Estimated concentration above the method detection limit, but below the reporting limit.

Tier II Res.: Virginia Department of Environmental Quality (VDEQ) Tier II Groundwater Screening Level (GSL).

Tier III Res. VI: VDEQ Tier III Residential Vapor Intrusion GSL.

Tier III Ind. VI: VDEQ Industrial Vapor Intrusion GSL.

Tier III CDC (≤ 15 ft): VDEQ Tier III Construction Direct Contact (≤ 15 ft) GSL.

Tier III CIC (> 15 ft): VDEQ Tier III Construction Indirect Contact (> 15 ft) GSL.

All values are listed in micrograms per liter (ug/L).

Samples were analyzed for the presence of PCBs by United States Environmental Protection Agency (USEPA) method

8082; no exceedances of established GSLs for PCBs were reported.

# **FIGURES**



# SITE LOCATION MAP

# FIGURE 1-1



500 1,000 Feet Former Potomac River Generating Station 1400 North Royal Street Alexandria, Virginia 22314



Outfall Locations
 Site Boundary
 AOI 1: Known Releases from 25,000-gal USTs

AOI 1: Known Releases from 25,000-gal OSTS

AOI 2: Potential Historical Releases from Chemical Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas

AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

200 400 Feet

# SITE LAYOUT MAP

Former Potomac River Generating Station

1400 North Royal Street Alexandria, VA 22314

# FIGURE 2-1





PINK - Temporary Survey Markings RED - Electric Power Lines, Cables, Conduit, and Lighting Cables ORANGE - Communication, Alarm or Signal Lines, Cables or Conduit

GREEN - Sewer and Drain Lines

Feet

125

Notes

Utilities are plotted based on undated Alta/ASCM Land Title Survey CAD files prepared by Dewberry and provided by Client, a site reconnaissance, and a private subsurface geophysical clearance. All locations are approximate.

SITE UTILITIES

FIGURE 3-1





AOI 1: Known Releases from 25,000-gal USTs

AOI 1: Known Releases from 25,000-gal OS is

AOI 2: Potential Historical Releases from Chemical Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas

AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

♣ Property Boundary

Former UST

Soil Boring

Existing Monitoring Well

Newly Installed Soil Boring/Monitoring Well

SAMPLE LOCATIONS

FIGURE 3-2





Shallow Zone Monitoring Well

2 1 foot Groundwater Contour

- Sheet Pile Wall

■ Property Boundary

# GROUNDWATER POTENTIOMETRIC SURFACE - SHALLOW ZONE OCTOBER 25, 2021

# Notes

Groundwater elevations are shown in feet above mean sea level (amsl). Blue arrows indicate groundwater flow direction.

Former Potomac River Generating Station 1400 North Royal Street Alexandria, VA 22314 FIGURE 4-1A





Deep Zone Monitoring Well

2 1 foot Groundwater Contour

2 Inferred

Sheet Pile Wall

Property Boundary

# **GROUNDWATER POTENTIOMETRIC SURFACE - DEEP ZONE** OCTOBER 25, 2021

# Notes

Groundwater elevations are shown in feet above mean sea level (amsl). Blue arrows indicate groundwater flow direction.

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY



FIGURE 4-1B

GRO: gasoline range organics.

ORO: oil range organics.

Tier III Ind.: Virginia Department of Environmental Quality (VDEQ) Tier III Industrial Soil Screening Level (SSL). VDEQ Action Level: VDEQ action level for TPH. VDEQ has not established SSLs for TPH.

Boldface, underline, and gray shading indicates the detection exceeds established Tier III Industrial SSLs or the VDEQ

Action Level for TPH. Only constituents exceeding the industrial SSL or the VDEQ action level for TPH are summarized herein.

All values are listed in milligrams per kilogram (mg/kg).

AOI 1: Known Releases from 25,000-gal USTs

AOI 2: Potential Historical Releases from Chemical Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

Property Boundary

Former UST Soil Boring

SOIL EXCEEDANCES NON-RESIDENTIAL CRITERIA OCTOBER 2021 FIGURE 4-2

RAMBOLL US CONSULTING, INC.





AOI 1: Known Releases from 25,000-gal USTs

AOI 2: Potential Historical Releases from Chemical Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas

AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

Property Boundary

Former UST

Existing Monitoring Well

Newly Installed Soil Boring/Monitoring Well

**GROUNDWATER EXCEEDANCES** NON-RESIDENTIAL CRITERIA

OCTOBER 2021

FIGURE 4-3

RAMBOLL US CONSULTING, INC.



# **APPENDICES**

APPENDIX A
RAMBOLL SITE CHARACTERIZATION WORK PLAN

Prepared for

**HRP Potomac, LLC** 

For Submittal to:

**Virginia Department of Environmental Quality** 

Document type

**Site Characterization Work Plan** 

Date

September 2021

# SITE CHARACTERIZATION WORK PLAN POTOMAC RIVER POWER GENERATING STATION



# SITE CHARACTERIZATION WORK PLAN POTOMAC RIVER POWER GENERATING STATION

Project name HRP\_Potomac River Generating Station

Project no. **1690022371-001**Recipient **Meade Anderson** 

Document type Site Characterization Work Plan

Version **001** 

Date September 20, 2021

Approved by Sarah Stoneking, PG

Ramboll

4350 North Fairfax Drive

Suite 300

Arlington, VA 22203

USA

T +1 703 516 2300 F +1 703 516 2345 https://ramboll.com

This copyrighted material represents the proprietary work product of Ramboll. This material was prepared for the specific purpose of securing a contract with the above client. No other use, reproduction, or distribution of this material or of the approaches it contains, is authorized without the prior express written consent of Ramboll. However, the recipient may make as many copies of this document as deemed necessary for the sole purpose of evaluating this document for final selection and award.

© 2021

All Rights Reserved

# **CONTENTS**

| 1.  | INTRODUCTION                                                           | 1  |
|-----|------------------------------------------------------------------------|----|
| 1.1 | Objective                                                              | 1  |
| 1.2 | Organization                                                           | 1  |
| 2.  | SITE SETTING AND BACKGROUND                                            | 2  |
| 2.1 | Site Setting and Layout                                                | 2  |
| 2.2 | Regional Geology                                                       | 2  |
| 2.3 | Site-Specific Geology and Hydrogeology                                 | 2  |
| 2.4 | Site Background                                                        | 3  |
| 2.5 | Prior Remedial Actions and Regulatory Status                           | 3  |
| 3.  | IDENTIFIED CONCERNS                                                    | 5  |
| 4.  | SAMPLING AND ANALYSIS PLAN                                             | 7  |
| 4.1 | Field Preparation Activities                                           | 7  |
| 4.2 | Pre-Investigation Site Reconnaissance and Subsurface Utility Clearance | 7  |
| 4.3 | Soil Sampling and Analysis Procedures                                  | 7  |
| 4.4 | Well Installation                                                      | 8  |
| 4.5 | Well Development                                                       | 9  |
| 4.6 | Groundwater Sampling and Analysis Procedures                           | 9  |
| 4.7 | Well Gauging and Slug Testing                                          | 10 |
| 4.8 | Site Survey                                                            | 10 |
| 4.9 | Investigation-Derived Waste (IDW) Management                           | 10 |
| 5.  | QUALITY ASSURANCE PROJECT PLAN                                         | 12 |
| 6.  | REPORTING AND COMMUNICATIONS                                           | 13 |
| 7.  | PROPOSED SCHEDULE                                                      | 14 |
| 8.  | REFERENCES                                                             | 15 |

# **TABLES**

Table 1: Proposed Sample Analysis Summary

# **FIGURES**

Figure 1: Site Location Map
Figure 2: Site Layout Map

Figure 3: Existing Monitoring Well Locations
Figure 4: Proposed Sample Location Map

# 1. INTRODUCTION

On behalf of HRP Potomac, LLC (HRP Potomac), Ramboll US Consulting, Inc. (Ramboll) has prepared this Site Characterization Work Plan (Work Plan) for the former Potomac River Generating Station (PRGS) located at 1400 N. Royal Street, Alexandria, Virginia (the "Site"; Figure 1). This Work Plan has been prepared for submittal to the Virginia Department of Environmental Quality (VDEQ) Voluntary Remediation Program (VRP) in accordance with the Site's entrance into the VDEQ VRP (site ID 00783).

# 1.1 Objective

The objective of the proposed site characterization activities is to evaluate the nature and extent of releases resulting from historical site activities and to collect the information necessary to inform corrective action decisions and complete a preliminary evaluation of human health risk. Certain areas of the site are not accessible due to the current condition of the Main Building and Laboratory and thus, investigation in those areas of the site will be performed as appropriate concurrent with, or subsequent to demolition of the structures.

### 1.2 Organization

This work plan includes a brief overview of the site setting and background (Section 2); a summary of identified concerns based on prior investigations (Section 3); a proposed sampling and analysis plan (Section 4); and a quality assurance project plan (QAPP) (Section 5). Reporting and communications are discussed in Section 6 and a schedule for the proposed work is presented in Section 7. References are included as Section 8.

# 2. SITE SETTING AND BACKGROUND

### 2.1 Site Setting and Layout

The Site consists of 18.8 acres located at 1400 North Royal Street in Alexandria, Virginia at the intersection of Bashford Lane and North Royal Street. The Site is bounded to the south by an inactive railroad spur followed by residential and commercial development, to the west by a Potomac Electric Power Company (Pepco) switchyard and parking lot followed by East Abingdon Drive and the George Washington Memorial Parkway, to the north by Slaters Lane and a condominium building, and to the east by the National Park Service's Mount Vernon Trail followed by the Potomac River.

The site is currently developed with structures associated with the former Potomac River Power Generating Station which include a Main Power Plant Building, Administration/Laboratory Building, Accelerator Building, Chlorine Storage Building, Open Bay Area, Fly Ash Silos, Clarifier/Clarifier Building, Breaker House, Gate House, Coal Car Dumper, Bulldozer Shed, and multiple ASTs; the Main Power Plant and Administration/Laboratory Buildings are currently unsafe for entry (Figure 2).

# 2.2 Regional Geology

The site is located within the Atlantic Coastal Plain Physiographic Province, which is characterized by sequences of marine and terrestrial sedimentary deposits which thin to the east. According to local geologic mapping, the Site is underlain by Quaternary terrace (Old Town terrace) and floodplain (lowland) deposits of the Potomac River (Fleming 2015a). The terrace deposits beneath Old Town Alexandria and the Del Ray area approach a thickness of 85 to 125 feet (ft). The terrace deposits are described as a broadly fining upward sequence that is gravelly at its base and grades up through sand to finer-grained material at higher elevations. Regionally, above an elevation of about 30 to 35 ft above mean sea level (amsl), the terrace is composed primarily of silt and clay, and, below those elevations, the soils have been described as muddy sand. Below the Del Ray area is the Arell Clay, which is a regional, possibly discontinuous, lacustrine clay (Fleming 2015a, 2015b). Based on the 7.5-minute USGS topographic map, the nearest surface water body is the Potomac River. The elevation of the Potomac River is tidally influenced at the Subject Property's location. Tidal predictions by the National Oceanic and Atmospheric Administration for the Potomac River show a tidal fluctuation of approximately 3.44 feet for Alexandria, Virginia in June 2019.

# 2.3 Site-Specific Geology and Hydrogeology

The elevation of the Site ranges from approximately 12 to 33 feet above mean sea level (ft amsl) and slopes downhill to the east. Site-specific subsurface data is limited to the investigation area associated with VDEQ Petroleum Program Pollution Complaint (PC) #2013-3154. This PC# is related to a historical release from underground storage tanks (USTs) at the Property. Previous Site investigations in the vicinity of the USTs indicate that the upper 20 ft of soil is a clayey soil matrix containing rubble, including broken brick, river gravel, and concrete fragments. Below this 20-ft depth, there is a transition to native fluvial soil intervals (Groundwater & Environmental Services, Inc. [GES] and Geosyntec 2014a, 2014b). The native soils are comprised of gravel, sandy clays to clayey sands, and sand zones and are consistent with Old Town Terrace deposit mapped for the Site. Historical boring logs indicate the presence of a fine-grained lithologic feature beginning at approximately 25 ft below ground surface (bgs) (or 7 ft amsl) with a thickness ranging from 2 to 6 ft (GES and Geosyntec 2014a). This feature, typically described as lean clay, separates the perched shallow groundwater at the Site from the deeper regional aquifer. The clay layer appears to be continuous across the investigation area associated with PC#2013-3154, except in areas to the north of the screen/pump

house. A saturated zone of sand, silty sand, and sand and gravel zones has been encountered beneath the clay layer (GES and Geosyntec 2014a).

Site-specific hydrogeologic data is limited to the investigation area associated with PC#2013- 3154. As described above, a clay layer is present in the vicinity of the USTs. This clay layer acts as an aquitard dividing the groundwater into two zones: the perched water zone and the deeper regional aquifer. The groundwater elevations in the perched aquifer in the vicinity of the USTs are higher than the groundwater elevations in the deeper regional aquifer indicating a downward vertical gradient. Groundwater flow in the perched aquifer is generally to the east. As the perched water flows east toward the Potomac River, the clay layer that forms the aquitard becomes thinner and eventually pinches out altogether. As a result, the perched groundwater migrates downward and drains into the deeper regional aquifer prior to discharging to the Potomac River. The groundwater elevations in the deeper regional aquifer in the vicinity of the USTs indicate that flow in this area is controlled by the sheet pile wall along the Potomac River. The sheet pile wall acts as a barrier to flow, and groundwater flows either north or south around the wall to discharge to the river. Groundwater appears to mound behind the northern section of the wall, which might lead to stagnation points in the flow in this area.

## 2.4 Site Background

The Site was developed as a power-generating facility in the 1940s. Prior to the generation station, the Site was mostly vacant but was occupied circa the 1920s to 1940s at the northern end by the Potomac River Clay Work and at the southern end by American Chlorophyll Company and Green Colors Manufacturing. From the 1940s to 2000, the generating station was operated by the Potomac Electric Power Company (Pepco).¹ In 2000, the generating station was acquired (with ground lease) by an entity, which through mergers and other transactions, became GenOn Holdings, LLC (GenOn), while Pepco maintained ownership of the land. The Site ceased operations in October 2012. HRP acquired the PRGS Site and its generating facilities from Pepco and GenOn in the fall of 2020 and plans to redevelop the property as mixed-used development.

The site is currently improved with a multi-story industrial power plant building constructed with a basement (Main Plant Building); a covered utility corridor historically referred to as the "Precipitator Area"); and five coal-fired steam boilers and turbine generators (Units 1 to 5). Supporting features include the air emissions equipment, former (unlined) coal pile area, a clay-lined sediment basin, rail yard, water treatment facilities, one bottom ash and two fly ash silos, administration offices and analytical laboratory, and storage facilities and ancillary buildings, which include maintenance areas.

### 2.5 Prior Remedial Actions and Regulatory Status

The facility historically used No. 2 fuel oil to preheat its generating unit boilers with coal as its primary fuel to generate electricity. The No. 2 fuel oil was stored in two adjoining 25,000-gallon underground storage tanks (USTs) centrally located within the power plant complex. As part of the October 2012 shutdown, the facility assessed these two USTs before their closure in-place. A release of petroleum hydrocarbons was identified during a Site characterization program triggered by the UST closure, and VDEQ opened PC # 2013-3154. To address the detection of petroleum products in soil and groundwater near the USTs, GenOn conducted investigations and remediation, in coordination with the VDEQ, the National Park Service, and the DC DOEE. At least 56 wells (26 shallow and 30 deep) have been installed in the area of the petroleum release (Figure 3). A corrective action plan (CAP) was

<sup>&</sup>lt;sup>1</sup> Initially under an entity called Braddock Light and Power Company, Inc., which was merged into Pepco.

approved by VDEQ in March 2015 and subsequently implemented at the site. Corrective action activities included the following:

- Implementation of total phase extraction (TPE) to remove LNAPL in the shallow groundwater zone and from overlying soils in and near the smear zone.
- Installation and operation of a pump and treat (P&T) system to remove LNAPL and remediate the dissolved phase plume in deep groundwater in the area of the source zone.
- Installation and operation of a biosparging system to address the dissolved phase plume downgradient of the source area.
- Sealing of holes at six seeps observed at the bulkhead.

On September 29, 2019, the VDEQ approved the discontinuation of active remediation, and the Site transitioned to post-remediation monitoring. The most recent groundwater monitoring event was completed in the first quarter of 2021. The results from recent groundwater monitoring events indicate that groundwater conditions are stable and that the concentrations of constituents of concern (COCs) in groundwater at the point of discharge to the Potomac River are less than the remediation goals identified in the March 2015 VDEQ CAP approval and the DOEE Surface Water Quality Standards. However, the concentrations of COCs exceed the remediation goals and DOEE Standards in some individual wells. Based on discussions between HRP and the VDEQ Petroleum Program on May 5, 2021, HRP plans to submit a CAP addendum during the late 3rd quarter of 2021. The CAP addendum will clarify the remediation end point(s) for this release in light of planned future site redevelopment.

# 3. IDENTIFIED CONCERNS

The following known and potential areas of interest (AOI) have been identified at the Site:

AOI-1 - Known Petroleum Release (PC #2013-3154) and Petroleum Storage Areas. Prior investigations identified an area of known petroleum impacts associated with two (closed in place) 25,000-gallon fuel oil USTs located beneath the Open Bay Area in the east-central portion of the property. As described above, this release is being addressed under the Storage Tank Program; therefore, no additional sampling to evaluate impacts associated with this release is proposed as part of the site characterization activities. HRP will provide copies of future Petroleum Program submittals to the VDEQ VRP.

The site also operated a number of additional (smaller) petroleum tanks including a 3,500-gallon diesel UST; a 2,000-gallon kerosene UST; a 4,000-gallon kerosene UST; three 275-gallon lube oil ASTs, and a 4,000-gallon diesel fuel AST. These former USTs were closed in accordance with VDEQ requirements. Releases associated with certain of these tanks were identified and investigated under the direction of VDEQ and received "no further action" determinations. Based on available information, residually impacted soils may be present near these former USTs, but site development plans are likely to include excavation and off-site disposal of significant volumes of soil from the site and as such, detailed characterization of residual petroleum impacts associated with these tanks is beyond the level of detail needed for the planned site characterization. Sampling of shallow soils in the vicinity of former petroleum ASTs is proposed if visual inspection indicates potential impact.

- AOI-2 Chemical Storage Areas. Chemical and hazardous substance storage areas include a
  former Chemical Storage Area; former RCRA Storage Area; former Drum Storage Area; Chlorine
  Storage Building, Chlorine House, a neutralization tank, an Alum House, a 10,000-gallon
  aluminum sulfate AST, a former 3,500-gallon antifreeze AST; a former hydrazine AST and two
  former 330-gallon ammonia ASTs.
- AOI-3 Power Plant and Laboratory Buildings. The Power Plant building is equipped with floor drains and sumps. Visual evidence of spills from petroleum ASTs and possibly other types of chemicals was observed by others in 2020. At present, the Power Plant Building is unsafe for entry; as such, potential impacts associated with the Power Plant Building and Laboratory Building will be investigated at a later date concurrent with, or subsequent to, building demolition. As such, Ramboll anticipates submission of a Work Plan Addendum for sampling beneath the Power Plant and Laboratory Buildings. However, groundwater sampling downgradient of the Power Plant and Laboratory Buildings will provide some indication of potential impacts resulting from historical operations in these buildings.
- AOI-3b Drain Lines and Outfalls. Numerous subsurface conveyances external to the Power Plant Building are present at the site. Ten outfalls discharging to the Potomac River were previously identified at the Site; the integrity of many of the subsurface conveyances is not known. Outfalls 003, 004, 009 and 010 have been plugged. The location of Outfall 002 is not presently known and the status of Outfalls 001, 005, 007, and 008 are not known. The planned investigation will include limited investigation for some of the drain lines and associated Outfalls, but access to these lines is currently limited due to safety concerns with the aging Power Plant Building. As such, additional investigation of these structures will be proposed, as appropriate, following or concurrent with, demolition of the Power Plant Building.

- AOI-4 Former Coal and Ash Handling and Storage Areas. Former coal and ash handling
  areas include the former unlined coal storage yard, the breaker house, the (clay-lined)
  sedimentation pond, the secondary ash pond, the rejects pile, and fly ash and bottom ash storage
  silos.
- AOI-5 Former Transformer Areas. Former transformer areas include the
  generator/transformer areas north of the Power Plant Building, a former transformer area located
  between the switch yard and the Power Plant Building, which includes an oil reclaiming pit
  designated as Oil Reclaiming Pit #1, a sump pit located south of the transformer area, and a
  separate transformer located adjacent to the bulldozer shed.
- AOI-6 Rail Yard. A rail yard has been present at the southwestern edge of the Site since the late 1800s. Ancillary structures serving the rail yard include the former coal car dumper and a warming shed which is serviced by a former UST.

# 4. SAMPLING AND ANALYSIS PLAN

### 4.1 Field Preparation Activities

Ramboll will conduct a site reconnaissance visit with the Client prior to the commencement of field investigation activities. A visual inspection of the physical condition of the site will be performed to document indications of subsurface utilities and to evaluate access or other logistical constraints. Ramboll will also subcontract with vendors to provide subsurface utility locating or other geophysical services, a driller, and analytical laboratory. Ramboll will also prepare a site-specific health and safety plan (HASP) for use by Ramboll personnel during the execution of field activities at the site. The HASP will be developed to be protective of Ramboll workers as well as the surrounding community and will be updated as the project progresses.

## 4.2 Pre-Investigation Site Reconnaissance and Subsurface Utility Clearance

Prior to conducting invasive work, Ramboll will review available utility drawings and request a subsurface public utility mark-out from the Virginia 811 Call-Before-You-Dig service. Ramboll will also retain the services of a private subsurface utility locator to check individual boring locations for potential subsurface conflicts, confirm subsurface utility locations, and verify the locations of USTs. Proposed sample locations will be adjusted to avoid marked utilities or other obstructions. At a minimum, the private subsurface locator will be equipped with a magnetometer and ground-penetrating radar (GPR). Ramboll will also be prepared with a low-impact air knife and vacuum excavator to expose suspect pipes where proximal soil borings may be placed. As necessary, Ramboll may also utilize a remote downhole camera to assist with tracing subsurface piping.

### 4.3 Soil Sampling and Analysis Procedures

Ramboll proposes to collect surface and subsurface soil samples at the site for laboratory analysis to evaluate surface and subsurface conditions. A summary of proposed soil sampling activities is provided in Table 1 and proposed (approximate) soil boring locations are presented on Figure 4. More specifically, the proposed scope of work includes:

- Installation of 28 soil borings to allow for collection and laboratory analysis of 28 surface soil samples (0 to 1 foot below ground surface [ft bgs]) and up to 56 subsurface soil samples.
- Collection and analysis of up to five additional surface soil samples from AOI-1; these samples will be collected only if field screening indicates potential impact.

Soil borings will be advanced using a combination of direct push and rotary auger drilling and will be advanced to the first encountered of 1) the water table; 2) refusal; or 3) a depth of 35 ft bgs. At each boring location, continuous soil cores will be collected and screened in two-foot intervals for the presence of volatile organic vapors using a photoionization detector (PID), observed for visual or olfactory indication of impact, and described in general accordance with the Unified Soil Classification System (USCS). Soil samples will be collected at each boring location as described in Table 1, resulting in the collection of one surface soil sample and up to two subsurface soil samples from each boring. Where field indications of impact are observed, one soil sample will be collected from the interval exhibiting the greatest indication of impact and a second soil sample will be collected from a deeper apparent clean soil interval or from the soil interval just above the water table. In the absence of apparent impacts, soil samples will be collected from pre-determined depth intervals based on the likely depth of potential historical releases (i.e., closer to the surface for features of concern such as

drum storage areas or at depth for evaluation of potential releases from underground storage tanks, sumps, etc.).

For the purposes of preliminary site investigation, analytes of potential concern for site soils will include some or all of the following parameters, based on the potential concern being evaluated:

- Volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) method 8260<sup>2</sup>,
- Semi-volatile organic compounds (SVOCs) by USEPA method 8270
- Polychlorinated biphenyls (PCBs) by USEPA method 8082
- pH
- Target analyte list metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, sodium, thallium, vanadium, and zinc, by USEPA method 6010 or 6020 /7470 for mercury)
- Cyanide by SM4500
- Total petroleum hydrocarbons diesel-range organics (TPH-DRO), gasoline range organics (GRO), and – oil range organics (ORO) by USEPA method 8015C.

Soil samples will be collected into laboratory provided containers, labeled, and packaged on ice. Samples will be shipped under chain-of-custody procedures to a qualified (i.e., Virginia Environmental Laboratory Accreditation Program [VELAP] certified) analytical laboratory for analysis.

Following collection of soil samples, select borings will be converted into permanent groundwater monitoring wells; borings that are not converted into monitoring wells will be abandoned by filling the borehole with drill cuttings and patching the surface with appropriate material to match the surrounding area.<sup>3</sup>

# 4.4 Well Installation

In addition to soil sample collection, Ramboll proposes to collect groundwater samples at the site for laboratory analysis to further evaluate subsurface conditions. Select soil borings (see Table 1) will be converted into 2-inch diameter monitoring wells to support the collection and analysis of groundwater samples and documentation of groundwater flow direction. Proposed (approximate) well locations are depicted on Figure 4. Each monitoring well will generally be constructed using one of the following methods:

# • Direct Push Pre-Packed Wells

Wells may be installed as direct push 2-inch diameter wells in locations inaccessible to larger drilling equipment. Direct push wells will be installed using 10 to 15 feet of pre-packed 2-inch

Soil samples will be collected for analysis of VOCs and/or TPH-GRO only if field screening indicates potential impact; if samples are collected, they will be collected using TerraCores® in general accordance with USEPA method 5035.

<sup>&</sup>lt;sup>3</sup> Soil cuttings that exhibit indications of free product or other significant impact will be containerized for appropriate off-site disposal following characterization. In such case, boreholes will be backfilled with a sodium bentonite slurry.

diameter well screen, a two-foot section of bentonite-wrapped riser, and sufficient unwrapped riser to reach the ground surface.

#### Traditional Wells

Soil borings will be over-drilled using 5.25-inch diameter hollow stem augers to a depth 5 to 10 feet below the water table. Monitoring wells will be constructed using 10 to 15 feet of 0.010-inch factory-slotted schedule 40 polyvinyl chloride (PVC) screen set at the base of the borehole with sufficient PVC riser to reach the surface. The annulus of the borehole will be filled with #2 Morrie-type clean silica sand as the augers are removed, to a depth at least 2 feet above the top of the screen. A 2-foot layer of hydrated bentonite chips will be placed above the sand and the remaining annulus will be filled with a 2-percent bentonite/Portland cement grout mixture.

Each monitoring well will be completed with a traffic-rated, flush-mount manhole cover with a bolting lid set into a 2-foot by 2-foot concrete well pad or a stickup well cover set into a 2-foot by 2-foot concrete well pad. An expandable locking plug will be placed at the top each well.

#### 4.5 Well Development

At least 24 hours after groundwater monitoring well installation, each well will be developed by surging and purging to reduce turbidity below 50 nephelometric turbidity units (NTU) and establish connection between the well and the surrounding formation in accordance with USEPA guidance.

#### 4.6 Groundwater Sampling and Analysis Procedures

Following well installation and development, a groundwater sample will be collected from each newly installed groundwater monitoring well and from three existing monitoring wells (MW-30S; MW-72S; MW-100S) using low-flow sampling techniques.<sup>4</sup> Water quality parameters, including pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature, specific conductance and turbidity will be monitored while purging at flow rates less than 500 milliliters per minute (mL/min) from the approximate mid-point of the screened interval in each well. Concurrent with low-flow purging, the water level in the well will be monitored. Stabilization over three consecutive 5-minute readings of the following parameters will be utilized to determine groundwater stability for sampling:

| • | pH                   | ±0.1 unit                                              |
|---|----------------------|--------------------------------------------------------|
| • | Specific Conductance | ±3%                                                    |
| • | Temperature          | ±3%                                                    |
| • | DO                   | $\pm 0.3$ milligrams per liter (mg/L) or $\pm 10\%$    |
| • | Turbidity            | <10 Nephelometric Turbidity Units (NTUs) or $\pm 10\%$ |
| • | ORP                  | ±10 millivolts                                         |
| • | Water Level Drawdown | <0.3 foot from static or ±10% after flow adjustments   |

<sup>&</sup>lt;sup>4</sup> If any of the existing monitoring wells proposed for sampling is dry or bears insufficient water for sampling, Ramboll may substitute another nearby monitoring well.

Groundwater samples will be analyzed for some or all of the following parameters as outlined in Table 1:

- VOCs by USEPA method 8260
- SVOCs by USEPA method 8270
- PCBs by USEPA method 8082
- Sulfate by SM 4500
- Ammonia (as N) by SM 4500
- Total and dissolved TAL metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, sodium, thallium, vanadium, and zinc, by USEPA method 6010 or 6020 / 7470 for mercury) plus hardness
- Glycols by USEPA 8015M
- Hydrazines by USEPA 3815 or another approved method
- TPH-GRO, -DRO and -ORO by USEPA method 8015C.

Samples will be collected into laboratory-provided containers, labeled, packaged on ice, and shipped under chain-of-custody procedures to a qualified analytical laboratory for analysis.

#### 4.7 Well Gauging and Slug Testing

Prior to and following sample collection, Ramboll will use an electronic oil-water interface probe to gauge the depth to water (and depth to free product, if present) below top of casing in each monitoring well to the nearest 0.01 foot. Well gauging will be performed approximately 48 hours after installation and development are complete, and again following sample completion at all wells.

Ramboll will also conduct two to three rising head and falling-head slug tests on selected monitoring wells to calculate hydraulic conductivity for use, along with gradient and soil properties, to estimate hydraulic conductivity within the saturated zone at the site.

#### 4.8 Site Survey

Following well installation, Ramboll plans to retain the services of a surveying contractor to establish the elevations of the top of the PVC well casing and ground surface at each newly installed groundwater monitoring well to the nearest 0.01 foot, referencing the North American Vertical Datum 1988 (NAVD88). The survey and gauging data will be used to confirm the local shallow groundwater flow direction and approximate gradient. Soil boring and monitoring well locations as well as the location of marked subsurface utilities will be established to the nearest 1.5 foot using a mobile global positioning system (GPS) unit.

#### 4.9 Investigation-Derived Waste (IDW) Management

Soil cuttings generated during the installation of soil borings will be returned to the borehole following sample collection if the boring is not identified for conversion into a temporary groundwater point and evidence of free product is not observed. Soil cuttings generated during the installation of monitoring wells or other soil cuttings exhibiting evidence of free product or other significant contamination will be containerized in US Department of Transportation (DOT) certified 55-gallon drums. Well

development and purge water will be returned to the ground surface in accordance with Petroleum Storage Tank Program Technical Guidance or, if the fluids do not meet the requirements for returning to the ground surface, the fluids will be containerized in USDOT-approved 55-gallon drums for appropriate future off-site disposal. Spent personal protective equipment (PPE), acetate liners and other trash will be containerized in 55-gallon drums and staged on-site for future appropriate off-site disposal.

Drums will be labeled, sealed and staged on-site for future off-site disposal following waste characterization.

# 5. QUALITY ASSURANCE PROJECT PLAN

Chain-of-custody documents and field logbooks or electronic data logs will be maintained for all samples. Sample locations will be recorded using a combination of GPS and traditional survey methods.

Samples will be collected using standardized field operating procedures. Samples will be collected into laboratory-provided containers, labeled, and shipped or delivered under chain-of-custody procedures to an appropriately qualified laboratory. To evaluate the repeatability of the sampling procedures, at least one duplicate sample per 20 samples will be collected during the sampling event.

Re-useable sampling and/or monitoring equipment will be decontaminated using appropriate procedures including a non-phosphate detergent wash, followed by a double de-ionized water rinse. One equipment rinse blank will be collected for each substantially different type of sampling equipment used (e.g., hand auger, trowel, etc.) per day to document the effectiveness of equipment decontamination methods. Laboratory-provided deionized water will be collected into laboratory provided containers by pouring the water over the sampling tools. The samples will be submitted to the laboratory using the same procedures as described in Section 4. Additionally, electronic monitoring equipment will be calibrated in accordance with manufacturer recommendations and standard field operating procedures.

The analytical laboratory will employ standard QA/QC practices including the analysis of internal laboratory duplicates, reagent blanks, method blanks, matrix spikes and matrix spike duplicates, surrogate spikes, laboratory control samples, and continuing calibrations. Laboratory analytical methods will follow USEPA-approved protocols and quality control criteria.

#### Field Data Reduction

Field data reduction procedures will be minimal in scope compared to those implemented in the laboratory setting. Only direct read instrumentation will be employed in the field. Readings collected in the field will be generated from direct read instruments following calibration per manufacturer's recommendations as outlined in the SOPs. Such data will be recorded into field logs immediately after measurements are taken. If errors are made, results will be legibly crossed out, initialed and dated by the field member, and corrected in a space adjacent to the original (erroneous) entry. Electronic field data collection forms will be utilized for the collection of field data to the extent possible to reduce the potential for transcription errors. Electronic field data forms will be uploaded to a secure file server on a daily basis to avoid data loss. Where data transcription is necessary, the Project Manager will proof the forms to determine whether any transcription errors have been made by the field crew.

#### Data Usability Review

Following laboratory verification of the data, Ramboll will review analytical data reports for overall completeness and evaluate the usability of the data relative to the investigation objectives. The usability review will include a review of technical holding times and spot checks on instrument performance check sample results, initial and continuing calibration results, blanks, surrogate spikes, matrix spikes/matrix spike duplicates and laboratory control sample results, internal standards, target compound identification and quantitation and system performance checks.

Data not meeting the acceptable QA/QC limits will be flagged for further consideration.

#### 6. REPORTING AND COMMUNICATIONS

Project stakeholders (i.e., VDEQ VRP program, City of Alexandria, and National Park Service) will be notified at least five days prior to commencing field work. The VDEQ VRP will also be notified when major project milestones are completed or if unexpected conditions requiring deviations from this Work Plan are encountered.

Notifications to the VDEQ VRP will be made via telephone and/or email.

Following the receipt of analytical results, Ramboll will tabulate and review analytical results and will discuss with HRP whether supplemental sampling is needed to complete the site characterization in accordance with VDEQ requirements. If supplemental sampling is required, a Work Plan addendum for supplemental sampling will be prepared for review by HRP and subsequent submittal to VDEQ. If the data generated during the implementation of this work plan are sufficient for completion of the site characterization, Ramboll will instead prepare a draft Site Characterization Report in accordance with VDEQ requirements. The draft report will be finalized and submitted to VDEQ following approval by HRP. As appropriate, Ramboll will also participate in a meeting with VDEQ to discuss the findings of the site characterization.

#### 7. PROPOSED SCHEDULE

Ramboll anticipates that field activities will be initiated in early October. Ramboll anticipates that the field activities described herein will require approximately 6 to 7 weeks for completion absent unexpected delays resulting from weather, subcontractor availability or other causes outside of Ramboll's control. Accordingly, if VDEQ or the City of Alexandria have comments on or requested additions to the proposed sampling, there will be time to adjust the sampling activities during the sampling period.

Samples will be analyzed on a 10-business day analytical turn-around time. Following the receipt of initial sample results, Ramboll will quickly tabulate and review analytical data to determine whether samples placed on hold should be released for subsequent analysis. A draft Site Characterization Report will be prepared within approximately 3 to 4 months following receipt of all analytical results. As discussed in the scope of work section above, certain areas of the site are currently inaccessible and as such, further investigation of inaccessible areas will be conducted during a subsequent mobilization; the results of this investigation will be used to inform sampling of remaining areas of the site.

#### 8. REFERENCES

- ASTM. 2009. ASTM Method D 2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). ASTM International.
- Fleming, A. 2015a. Geologic Map of the City Of Alexandria, Virginia And Vicinity Showing Surficial Geology, Landforms, And Major Areas Of Artificially Modified Land. Available at: https://www.alexandriava.gov/uploadedFiles/recreation/parks/plate\_5\_Surficial\_Geology.pdf.
- Fleming, A. 2015b. Geologic Cross Section, Old Town. Geologic Atlas of the City of Alexandria, Virginia and Vicinity Plate 2A. Available at: https://www.alexandriava.gov/uploadedFiles/recreation/parks/plate\_2A\_Old%20Town.pdf.
- GES and Geosyntec. 2014a. Corrective Action Plan (CAP), Potomac River Generating Station, 1400 N. Royal Street, Alexandria, Virginia. Groundwater & Environmental Services, Inc. and Geosyntec Consultants, Inc. September.
- GES and Geosyntec. 2014b. CAP Part II, Potomac River Generating Station, 1400 N. Royal Street, Alexandria, Virginia. Groundwater & Environmental Services, Inc. and Geosyntec Consultants, Inc. September.
- GES and Geosyntec. 2021a. Groundwater Monitoring Status Report First Quarter 2021, HRP Potomac, LLC, Alexandria, Virginia. May 18,
- USEPA. 2017. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Quality Assurance Unit, USEPA, Region 1. EQASOP-GW4. United States Environmental Protection Agency. Revised. September.
- Weaver Consultants Group. 2020a. Phase I Environmental Site Assessment. HRP Potomac, LLC. 1400 North Royal Street, Alexandria, Virginia. August 3.

## **TABLES**

| TABLE 1: SUMMARY C                                                                      | OF PROPOSED SAMPLING AND ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |      |            |     |    |          |       |      |            |      |                |         |             |        |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|------------|-----|----|----------|-------|------|------------|------|----------------|---------|-------------|--------|
| FORMER POTOMAC RI                                                                       | VER GENERATING STATION, ALEXANDRIA, VIRGINIA                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |       |      |            |     |    |          |       |      |            |      |                |         |             |        |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       | S    | Soil       | _   | _  | <u> </u> |       |      | Gro        | undw | ater           |         | <del></del> |        |
| Area of Interest and<br>Rational                                                        | Proposed Investigation Activities                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOCs | SVOCs | PCBs | TAL Metals | ТРН | Hď | VOCs     | SVOCs | PCBs | TAL Metals | ТРН  | Ammonia<br>(N) | Sulfate | Hydrazine   | Glycol |
| AOI-1: Known and<br>Potential Petroleum<br>Releases                                     | Collect up to 5 surface soil samples in the vicinity of the former lube oil ASTs; the former antifreeze AST or other ASTs that were situated on unpaved surfaces. Samples will be collected only if field screening indicates potential impact. Proposed (provisional) surface soil sample locations are not shown on the proposed sample location map.                                                                                                           | А    |       |      |            |     |    |          |       |      | С          |      |                |         |             |        |
| AOI-2: Potential Historical<br>Releases from Chemical<br>Storage and Handling<br>Areas. | Install 3 monitoring wells (SB201/MW201 to SB203/MW203) and 1 soil boring (SB-204) within or adjacent to former chemical storage areas. Collect soil samples from 0-1 ft bgs, interval exhibiting greatest impact plus a deeper apparent clean interval or an interval immediately above the water table. If no indication of impact, collect soil samples at 0 to 1 ft bgs plus 13 to 15 feet bgs.                                                               | А    |       |      |            |     |    |          |       |      | С          |      |                |         | D           |        |
| AOI-3a: Power Plant and<br>Laboratory Buildings.                                        | Collect groundwater samples from existing wells MW-30S, MW-72S and MW-100S. Install one new soil boring/monitoring well on north side of Main Power Plant Building (SB205/MW205). Collect soil samples at 0-1 ft bgs; apparent most impacted interval and immediately above water table. If no indication of impact; collect soil samples at 0-1 ft bgs and 13 to 15 ft bgs.                                                                                      | Α    |       |      |            |     |    |          |       |      | С          |      |                |         |             |        |
| AOI-3b: Drain Lines and<br>Outfalls.                                                    | Specific borings are not proposed to evaluate possible releases from drain lines or outfalls. However, piping integrity inspections may be considered, if feasible. To the extent possible, Ramboll will also collect organic vapor readings at accessible pipe inlets and will make visual observations, to the extent possible, of outfalls to look for evidence of releases.                                                                                   |      |       |      |            |     |    |          |       |      |            |      |                |         |             |        |
| AOI-4: Former Coal and Ash<br>Storage and Management<br>Areas.                          | Install 11 soil borings (SB206 to SB216) and convert 4 of the borings into monitoring wells (MW206 to MW209). Collect soil samples at 0 to 12 inches bgs (surface soil); 5 to 7 feet bgs; and immediately above water table. Collect groundwater from each of the monitoring well locations.                                                                                                                                                                      | Α    |       |      |            | В   |    |          |       |      | С          |      |                |         |             |        |
| AOI-5: Transformers.                                                                    | Install 6 shallow soil borings (SB217 to SB222). Collect surface soil sample plus one subsurface soil sample (4 to 5 ft bgs) at each location. Place deeper soil sample on HOLD for potential analysis if field screening does not identify obvious impact at the deeper interval. Convert 1 boring into a monitoring well (if accessible to a drilling rig). Install one (additional)monitoring well adjacent the sump pit associated with the transformer area. |      |       |      |            |     |    |          |       |      |            |      |                |         |             |        |
| AOI-6: Rail Yard.                                                                       | Install 6 shallow soil borings (SB223 to SB228) and convert 2 of the borings into monitoring wells (MW223/MW224). Collect surface soil sample plus one subsurface soil sample (4 to 5 feet bgs) for laboratory analysis. Deeper soil sample to be placed on HOLD for potential analysis if field screening does not identify obvious impact at the deeper interval. At well locations, collect an additional soil sample at 13 to 15 ft bgs.                      | А    |       |      |            | В   |    |          |       |      | С          |      |                |         |             |        |

#### Notes

- A Sample to be collected only if field screening indicates potential impact by volatile constituents or petroleum constituents. Samples will be collected using Terracores® in conjunction with USEPA method 5035.
- B Sample to be collected only if field screening indicates potential impact by petroleum constituents. GRO will be collected using Terracores® in conjunction with USEPA method 5035.
- C Groundwater samples for metals analysis will be collected as both dissolved (field filtered) and total metals.
- D Only samples from MW201, MW-202 and MW205 will be analyzed for hydrazines (USEPA method 3815 or similar).

TAL Metals - Target analyte list metals by USEPA method 6010 or 6020 and 7470 for mercury. Groundwater samples will be collected as both dissolved and total metals and will be additionally analyzed for hardness. PCBs - polychlorinated biphenyls (USEPA method 8081/8082).

SVOCs - semi-volatile organic compounds (USEPA method 8270).

TPH - total petroleum hydrocarbons - gasoline range organics (GRO), diesel range organics (DRO) and oil range organics (ORO) (USEPA method 8015C).

VOCs - volatile organic compounds (USEPA method 8260).

Ammonia and sulfate to be analyzed by SM 4500.

## **FIGURES**



#### SITE LOCATION MAP

## FIGURE 01



500 1,000

Former Potomac River Generating Station 1400 North Royal Street Alexandria, Virginia 22314 RAMBOLL US CONSULTING, INC. A RAMBOLL COMPANY



Outfall Locations

Site Boundary

AOI 1: Known Releases from 25,000-gal USTs

AOI 2: Potential Historical Releases from Chemical Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas

AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

200 400 \_\_\_\_\_\_ Feet

# SITE LAYOUT MAP

Former Potomac River Generating Station 1400 North Royal Street Alexandria, VA 22314

# FIGURE 02

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY





Sheet Pile Wall and Screen House Walls (Serve as a barrier to groundwater flow)

# EXISTING MONITORING WELL LOCATIONS

FIGURE 03

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY

**Former Potomac River Generating Station** 

1400 North Royal Street Alexandria, VA 22314 RAMBOLL



Proposed Soil Boring

Proposed Soil Boring/Monitoring Well

Existing Monitoring Well

Outfall Locations

AOI 1: Known Releases from 25,000-gal USTs

AOI 2: Potential Historical Releases from Chemical

Storage Areas and Use

AOI 3a: Power Plant and Laboratory Building (currently inaccessible)

AOI 3b: Drain Lines and Outfalls

AOI 4: Former Coal and Ash Storage Areas

AOI 5: Transformers/Electrical Equipment

AOI 6: Rail Yard

200 400

# PROPOSED SAMPLE LOCATION MAP

Former Potomac River Generating Station 1400 North Royal Street Alexandria, VA 22314

## FIGURE 04

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY



APPENDIX B
HYDRAULIC CONDUCTIVITY TEST RESULTS

Table 1. Well Information and Slug Test Results

| Well ID | Screened interval (ft bgs) | Test Date  | Well<br>Radius<br>(Rw, ft) | Casing<br>Radius<br>(Rc, ft) | Static<br>Water<br>Level<br>(ft bTOC) | Water<br>Column in<br>well (ft) | Test<br>Analyzed | Initial<br>Displacement<br>(Ho, ft) | Estimated Hydraulic Conductivity (K, ft/d) | Analysis Method / Notes                                                    |
|---------|----------------------------|------------|----------------------------|------------------------------|---------------------------------------|---------------------------------|------------------|-------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|
| MW-202  | 20-35                      | 10/21/2021 | 0.35                       | 0.08                         | 24.83                                 | 9.7                             | RH2              | 1.53                                | 0.63                                       | Bouwer-Rice with 6.11b effective casing correction for filterpack drainage |
| MW-206  | 15-30                      | 10/21/2021 | 0.35                       | 0.08                         | 17.40                                 | 12.3                            | RH2              | 1.5                                 | 15.5                                       | Bouwer-Rice with 6.11b effective casing correction for filterpack drainage |
| MW-209  | 10-25                      | 10/21/2021 | 0.35                       | 0.08                         | 19.82                                 | 4.7                             | RH2              | 1.46                                | 14                                         | Bouwer-Rice with 6.11b effective casing correction for filterpack drainage |

## **Notes and Abbreviations**

FH: Falling head test (slug in)
RH: Rising head test (slug out)
ft bTOC: feet below top-of-casing

## **Analytical Solutions**

BR: Bouwer-Rice solution with the Butler 6.11b correction for filterpack drainage in wells screened across the water table









## WELL TEST ANALYSIS

## PROJECT INFORMATION

Company: Ramboll Client: HRP PRGS

## WELL DATA (MW-202)

Initial Displacement: 1.53 ft

Total Well Penetration Depth: 9.7 ft

Casing Radius: 0.083 ft

Static Water Column Height: 9.7 ft

Screen Length: 9.7 ft Well Radius: 0.35 ft Gravel Pack Porosity: 0.

## **SOLUTION**

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.63 ft/day

y0 = 0.4 ft



## WELL TEST ANALYSIS

# PROJECT INFORMATION

Company: Ramboll Client: HRP PRGS

## WELL DATA (MW-206)

Initial Displacement: 1.5 ft

Total Well Penetration Depth: 12.3 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.3 ft

Screen Length: 12.3 ft
Well Radius: 0.35 ft
Gravel Pack Porosity: 0.

## **SOLUTION**

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 15.5 ft/day y0 = 0.26 ft



## WELL TEST ANALYSIS

## PROJECT INFORMATION

Company: Ramboll Client: HRP PRGS

## WELL DATA (MW-209)

Initial Displacement: 1.46 ft

Total Well Penetration Depth: 4.7 ft

Casing Radius: 0.083 ft

Static Water Column Height: 4.7 ft

Screen Length: 4.7 ft Well Radius: 0.35 ft

Gravel Pack Porosity: 0.

## **SOLUTION**

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 14. ft/day y0 = 0.21 ft APPENDIX C
RAMBOLL SOIL BORING LOGS AND MONITORING WELL
CONSTRUCTION DIAGRAMS



#### **SB201**

Start Date: 10/08/2021 End Date: 10/08/2021 Inspector: Sarah Ostertag Project Manager: Greg Grose Surface Elevation (ft asml): 29.82 Drilling Contractor: Eichelbergers Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A Hammer Drop: Total Borehole Depth (ft 35.1 Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 22.6 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 20             | RISER        | 2" PVC SCH 40        |         |
|                | 3                   | 15             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 15                  | 18             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 18                  | 35             | FILTER PACK  | No. 2 SAND           |         |
|                | 20                  | 35             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

| SB201             |                    | -                      |              |                                                                                                                                                                               |              |
|-------------------|--------------------|------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                          | USCS<br>Code |
| 0                 | 3.7, 73%           |                        |              | (0 - 0.5 ft) Asphalt                                                                                                                                                          |              |
| 1                 |                    | HRP-SB201-0-1-211008   | 0.0          | (0.5 - 3 ft) Blackish brown CLAYEY SAND WITH GRAVEL;<br>little medium gravel, some medium sand, little silt, some<br>clay (medium dense, dry).                                | SC           |
| 3                 |                    |                        | 0.0          | (3 - 3.67 ft) Grayish brown LEAN CLAY; trace fine gravel, some fine sand, some silt, some clay (soft, dry, low to medium plasticity, low toughness). No recovery 3.67 - 5 ft. | CL           |
| 4                 |                    |                        |              |                                                                                                                                                                               |              |
| 5                 | 3.5, 69%           |                        |              | (5 - 12.67 ft) Orangish brown to gray to brown CLAYEY SAND<br>WITH GRAVEL; few medium to coarse gravel, mostly fine                                                           | SC           |
| 6                 |                    |                        |              | sand, few silt, some clay (loose, moist) (slight chemical-like odor beginning at 8'). Rock fragments with blue-green                                                          | SC           |
| 7                 |                    |                        | 0.0          | staining at $\sim$ 12 ft; possible slag fragments.                                                                                                                            |              |
| 8                 |                    |                        |              |                                                                                                                                                                               |              |
| 9                 |                    |                        | 0.0          |                                                                                                                                                                               |              |
| 10                | 2.7, 53%           |                        |              |                                                                                                                                                                               |              |
| 11                |                    | HRP-SB201-10-12-211008 | 0.0          |                                                                                                                                                                               |              |
| 12                |                    |                        |              |                                                                                                                                                                               |              |
| 13                |                    |                        | 0.0          | No recovery 12.67 to 15 ft.                                                                                                                                                   |              |
| 14                |                    |                        |              |                                                                                                                                                                               |              |
| 15                | 3.2, 63%           |                        |              | (15 - 22.50 ft) Orangish brown FAT CLAY; trace medium                                                                                                                         | СН           |
| 16                |                    |                        |              | gravel, some fine sand, little silt, mostly clay (moist, medium to high plasticity, low toughness) (slight chemical-like odor).                                               |              |
|                   |                    |                        | 0.0          |                                                                                                                                                                               |              |



| SB201             |                    |                        |              |                                                                                                                                                 |              |
|-------------------|--------------------|------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                            | USCS<br>Code |
| 17                | (1660, 70)         |                        | (ррііі)      |                                                                                                                                                 | Oode         |
| 10                |                    |                        |              |                                                                                                                                                 |              |
| 18                |                    |                        | 0.0          |                                                                                                                                                 |              |
| 19                |                    |                        |              |                                                                                                                                                 |              |
| 20                | 4.0, 80%           |                        |              |                                                                                                                                                 |              |
| 21                |                    |                        |              |                                                                                                                                                 |              |
| 22                |                    |                        | 0.0          |                                                                                                                                                 |              |
| 22                |                    |                        |              | (22.50 - 23.42 ft) Brown LEAN CLAY; no gravel, little fine sand, some silt, mostly clay (firm, moist, low to medium plasticity, low toughness). | CL           |
| 23                |                    |                        | 0.0          | (23.42 - 24.0 ft) Grayish brown CLAYEY SAND; no gravel, mostly fine sand, little silt, some clay (medium dense, moist).                         | SC           |
| 24                |                    | HRP-SB201-24-26-211008 |              | No recovery 24 to 25 ft.                                                                                                                        |              |
| 25                | 5.0,<br>100%       |                        |              | (25.0 - 27.0 ft) Grayish brown FAT CLAY; trace fine gravel, some fine sand, little silt, mostly clay (soft, moist, medium to                    | CH           |
| 26                |                    |                        | 0.0          | high plasticity, low toughness) (slight chemical-like odor).                                                                                    |              |
| 27                |                    |                        | 0.0          | (27.0 - 34.75 ft) Orangish brown CLAYEY SAND; trace to no                                                                                       | SC           |
| 28                |                    |                        | 0.0          | fine gravel, mostly fine sand, little to few silt, some to few clay (loose to very loose, moist to wet).                                        |              |
| 29                |                    |                        | 0.0          |                                                                                                                                                 |              |
| 30                | 5.0,<br>100%       |                        |              |                                                                                                                                                 |              |
| 31                | 100 /0             |                        |              |                                                                                                                                                 |              |
| 32                |                    |                        |              |                                                                                                                                                 |              |
| 33                |                    |                        | 0.0          |                                                                                                                                                 |              |
| 34                |                    |                        |              |                                                                                                                                                 |              |
|                   |                    |                        | 0.0          | (34.75 - 35.0 ft) Orangish brown WELL-GRADED SAND WITH GRAVEL; some coarse gravel, mostly fine sand, trace silt, few                            | SW           |
| 35                |                    |                        | 0.0          | clay (very loose, wet).                                                                                                                         |              |
| 36                |                    |                        |              |                                                                                                                                                 |              |
| 37                |                    |                        |              |                                                                                                                                                 |              |
|                   |                    |                        |              |                                                                                                                                                 |              |
|                   |                    |                        | 1            |                                                                                                                                                 |              |



#### **SB202**

Start Date: 10/07/2021 End Date: 10/07/2021 Inspector: Anne Kelly Project Manager: Greg Grose Surface Elevation (ft asml): 30.41 Drilling Contractor: Eichelbergers Master Driller: Drilling License Number: V00442 Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A Hammer Drop: Total Borehole Depth (ft 35.3 Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 24.45 Auger Refusal Depth (ft bgs): N/A

**Well Completion** 

Remarks:

Soils with significant moisture were encountered around 25 feet, however truly saturated

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 20             | RISER        | 2" PVC SCH 40        |         |
|                | 3                   | 15             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 15                  | 18             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 18                  | 35             | FILTER PACK  | No. 2 SAND           |         |
|                | 20                  | 35             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

| SB202             |                    |                      | •            |                                                                                                                                                                                                         |              |
|-------------------|--------------------|----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample    | PID<br>(ppm) | Material Description                                                                                                                                                                                    | USCS<br>Code |
| 0<br>1<br>2       | 2.6, 52%           | HRP-SB202-0-1-211007 | 1.4          | (0 - 2.58 ft) LEAN CLAY; trace fine gravel, some medium sand, trace silt, some clay (soft, dry, non-plastic to low plasticity, medium toughness).                                                       | CL           |
| 3                 |                    |                      |              | No recovery 2.58 to 5 ft.                                                                                                                                                                               |              |
| 4<br>5<br>6<br>7  | 1.3, 26%           |                      | 0.0          | (5 - 6.33 ft) Dark reddish brown CLAYEY SAND; trace medium gravel, some medium sand, trace silt, some clay (dense, moist).  No recovery 6.33 to 10 ft.                                                  | SC           |
| 8<br>9<br>10      | 1.3, 26%           |                      | 0.0          | (10 - 21.16 ft) Dark reddish brown FAT CLAY; trace fine gravel, few to little medium sand, trace silt, mostly clay (soft to firm , moist, medium plasticity, low to medium toughness) (black staining). | СН           |
| 12                |                    |                      | 0.0          |                                                                                                                                                                                                         |              |
| 14<br>15<br>16    | 2.4, 48%           |                      | 0.0          |                                                                                                                                                                                                         |              |
| 17<br>18          |                    |                      | 0.0          |                                                                                                                                                                                                         |              |
| 19                |                    |                      |              |                                                                                                                                                                                                         |              |



| AYEY SAND; trace fine<br>, trace silt, some clay<br>and black inorganic<br>25 - 26.42 ft. | USCS<br>Code                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , trace silt, some clay and black inorganic                                               | SC                                                                                                                                                                                                                                      |
| , trace silt, some clay and black inorganic                                               | SC                                                                                                                                                                                                                                      |
| , trace silt, some clay and black inorganic                                               | SC                                                                                                                                                                                                                                      |
| 23 - 20.42 10.                                                                            |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
| (hard, wet, medium odor). At 28' there is a ars to be wood) with a                        | СН                                                                                                                                                                                                                                      |
| : 0001.                                                                                   |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
| ery loose, wet) (slight                                                                   | SC                                                                                                                                                                                                                                      |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
| sand, trace silt, mostly medium toughness)                                                | СН                                                                                                                                                                                                                                      |
|                                                                                           | 0.11                                                                                                                                                                                                                                    |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                         |
| ret                                                                                       | AY; trace fine gravel, (hard, wet, medium odor). At 28' there is a ars to be wood) with a e odor.  race fine gravel, mostly ery loose, wet) (slight r).  to grayish brown FAT sand, trace silt, mostly medium toughness) ack staining). |



#### **SB203**

Start Date: 10/12/2021 End Date: 10/12/2021 Inspector: Sarah Ostertag Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT with Direct Push with HSA Overdrill Rig Type: Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 35 Hammer Drop: Total Borehole Depth (ft Depth to Water (ft bgs): Sampler Refusal Depth (ft bgs): N/A 23.45 Auger Refusal Depth (ft bgs): N/A Remarks:

**Well Completion** 

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 38             | Drill Cuttings |         |

| Abandon           | iment              | 0  38                  |              | Drill Cuttings                                                                                                                                                                                              |              |
|-------------------|--------------------|------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB203             |                    |                        |              |                                                                                                                                                                                                             |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                        | USCS<br>Code |
| 0                 | 1.3, 25%           | HRP-SB203-0-1-211012   |              | (0 - 7.17 ft) Brown CLAYEY SAND WITH GRAVEL; little to some medium to coarse gravel, mostly fine sand, little to few silt, some clay (loose, dry to moist). Organic and top cover gravel mixed in first 6". | SC           |
| 2                 |                    |                        | 0.1          |                                                                                                                                                                                                             |              |
| 3<br>4<br>5       | 2.2, 43%           |                        |              |                                                                                                                                                                                                             |              |
| 6                 | 2.2, 43%           |                        | 0.0          |                                                                                                                                                                                                             |              |
| 7                 |                    |                        | 0.0          | No recovery 7.17 ft to 10 ft.                                                                                                                                                                               |              |
| 9<br>10<br>11     | 2.8, 57%           | HRP-SB203-11-13-211012 | 0.1          | (10 - 12.83 ft) Brown FAT CLAY; little medium gravel, some fine sand, little silt, mostly clay (soft, moist, medium to high plasticity, low toughness). Apparent rock encountered last 2".                  | СН           |
| 12<br>13<br>14    |                    | ПКР-5Б203-11-13-211012 | 0.1          | No recovery 12.83 to 15 ft.                                                                                                                                                                                 |              |
| 15                | 1.8, 37%           |                        |              | (15 - 16.83 ft) Grayish white POORLY-GRADED GRAVEL; mostly coarse gravel, few fine sand, trace silt, trace clay (very loose, dry). Apparent rock, possibly quartz gravel backfill.                          | GP           |
| 16<br>17          |                    |                        | 0.0          | No recovery 16.83 to 20 ft.                                                                                                                                                                                 | GP.          |
| 18<br>19          |                    |                        |              |                                                                                                                                                                                                             |              |



| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                                                                                                                                                                             | USCS<br>Code |
|-------------------|--------------------|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 20                | 4.6, 92%           |                   |              | (20 - 21 ft) Brown FAT CLAY; trace fine gravel, some fine sand, some silt, mostly clay (very soft, dry, medium to high plasticity, low toughness).                                                                                                                               | СН           |
| 21                |                    |                   | 0.0          | (21 to 23.25 ft) Brown SILTY SAND WITH GRAVEL; little coarse gravel, mostly medium sand, few silt, trace clay (very loose, dry).                                                                                                                                                 | SM           |
| 22                |                    |                   |              |                                                                                                                                                                                                                                                                                  |              |
| 23                |                    |                   | 0.0          |                                                                                                                                                                                                                                                                                  |              |
| 24                |                    |                   |              | (23.25 to 24.58 ft) Brown FAT CLAY; no gravel, no sand, some silt, mostly clay (firm, moist, high plasticity, medium toughness).                                                                                                                                                 | СН           |
| 25                | 5.0,<br>100%       |                   |              | (25 to 27.17 ft) Brown LEAN CLAY; no gravel, little fine sand, some silt, mostly clay (hard, dry, non-plastic to low plasticity, high toughness).                                                                                                                                | CL           |
| 26                |                    |                   |              |                                                                                                                                                                                                                                                                                  |              |
| 27                |                    |                   | 0.0          | (27.17 to 30 ft) Brown FAT CLAY; no gravel, no sand, some silt, mostly clay (soft, moist, high plasticity, low toughness). Extremely high plasticity clay. Possible water table where gets more moist at ~28', but not saturated.                                                | CH           |
| 28                |                    |                   | 0.0          | gets more moist at ~20 , but not saturated.                                                                                                                                                                                                                                      | OH           |
| 29                |                    |                   | 0.0          |                                                                                                                                                                                                                                                                                  |              |
| 30                | 3.3, 67%           |                   | 0.0          | (30 to 33.33 ft) Dark grayish brown FAT CLAY; trace fine gravel, trace fine sand, some silt, mostly clay (firm, moist, high plasticity, medium toughness). Possible within water table but not saturated, just very moist. Augers coming up wet. Extremely high plasticity clay. | СН           |
| 31                |                    |                   | 0.0          | men Exaction, ingli placticity day.                                                                                                                                                                                                                                              | 0            |
| 32                |                    |                   | 0.0          |                                                                                                                                                                                                                                                                                  |              |
| 33                |                    |                   | 0.0          | No. 10001/07/12 22 22 5- 25 5-                                                                                                                                                                                                                                                   |              |
| 34                |                    |                   | 0.0          | No recovery 33.33 to 35 ft.                                                                                                                                                                                                                                                      |              |
| 35                |                    |                   |              |                                                                                                                                                                                                                                                                                  |              |
| 36                |                    |                   |              |                                                                                                                                                                                                                                                                                  |              |
| 37                |                    |                   |              |                                                                                                                                                                                                                                                                                  |              |



#### **SB204**

Start Date: 10/18/2021 End Date: 10/18/2021 Sarah Ostertag Inspector: Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT Rig Type: Drilling Method: Direct Push Auger Diameter (inches): 4.25 Drilling Fluid: None Hammer Weight: Borehole Diameter (inches): 8 N/A N/A 20 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 18.5 Auger Refusal Depth (ft bgs): N/A Remarks:

Well Completion

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 20             | Drill Cuttings |         |

| Abandor           | ıment              | 0 20                     |              | Drill Cuttings                                                                                                                                                                                                          |              |
|-------------------|--------------------|--------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB204             |                    |                          |              |                                                                                                                                                                                                                         |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample        | PID<br>(ppm) | Material Description                                                                                                                                                                                                    | USCS<br>Code |
| 0                 | 2.4, 48%           |                          |              | (0 - 0.8 ft) Concrete surface cover.                                                                                                                                                                                    |              |
| 1                 |                    | HRP-SB204-0.8-1.8-211005 | 0.1          | (0.8 to 2.4 ft) Dark brown to orange brown SILTY SAND WITH GRAVEL; few to no fine gravel, mostly fine to medium sand, some silt, some to little clay (medium dense to loose, dry to moist) (slight chemical-like odor). | SM           |
| 2                 |                    |                          |              | No recovery 2.4 to 5 ft.                                                                                                                                                                                                |              |
| 3                 |                    |                          |              |                                                                                                                                                                                                                         |              |
| 4                 |                    |                          |              |                                                                                                                                                                                                                         |              |
| 5                 | 5.0,<br>100%       |                          |              | (5 - 10 ft) Orangish brown with some gray LEAN CLAY; trace fine gravel, some fine sand, some silt, mostly clay (firm, slightly moist, low plasticity, medium toughness) (moderate chemical-like odor).                  | CL           |
| 6                 |                    | UDD CD204 C 0 211010     | 0.0          | chemical-like odor).                                                                                                                                                                                                    | CL           |
| 7                 |                    | HRP-SB204-6-8-211018     | 0.0          |                                                                                                                                                                                                                         |              |
| 8                 |                    |                          | 0.0          |                                                                                                                                                                                                                         |              |
| 9                 |                    |                          | 0.0          |                                                                                                                                                                                                                         |              |
| 10                | 5.0,<br>100%       |                          |              | (10 - 20 ft) Orangish brown to light gray CLAYEY SAND; trace fine gravel, some to mostly fine sand, some silt, some clay (medium dense to loose, slightly moist to wet). Presumed water table 18.5'.                    | SC           |
| 11                |                    |                          | 0.0          |                                                                                                                                                                                                                         |              |
| 12                |                    |                          |              |                                                                                                                                                                                                                         |              |
| 13                |                    | HRP-SB204-13-15-211018   | 0.0          |                                                                                                                                                                                                                         |              |
| 14                |                    |                          |              |                                                                                                                                                                                                                         |              |
| 15                | 5.0,<br>100%       |                          |              |                                                                                                                                                                                                                         |              |
| 16                | 10070              |                          |              |                                                                                                                                                                                                                         |              |
| 17                |                    |                          |              |                                                                                                                                                                                                                         |              |
| 18                |                    |                          |              |                                                                                                                                                                                                                         |              |
|                   |                    |                          |              |                                                                                                                                                                                                                         |              |



| SB204             |                    |                   |              |                      |              |
|-------------------|--------------------|-------------------|--------------|----------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description | USCS<br>Code |
| 19                |                    |                   |              |                      |              |
| 20                |                    |                   |              |                      |              |
| 21                |                    |                   |              |                      |              |
| 22                |                    |                   |              |                      |              |
|                   |                    |                   |              |                      |              |



#### **SB205**

Start Date: 10/11/2021 End Date: 10/11/2021 Inspector: Sarah Ostertag Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): 30.24 Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 30.23 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 21.32 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 15             | RISER        | 2" PVC SCH 40        |         |
|                | 3                   | 10             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 10                  | 13             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 13                  | 30             | FILTER PACK  | No. 2 SAND           |         |
|                | 15                  | 30             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                 | USCS<br>Code |
|-------------------|--------------------|------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0                 | 3.3, 67%           | HRP-SB205-0-1-211011   |              | (0 - 1 ft) Black Asphalt and organic cover.                                                                                                          |              |
| 1                 |                    |                        | 0.0          | (1 - 11.5 ft) Light brown CLAYEY SAND; trace to few fine to coarse gravel, mostly fine sand, little silt, some clay (loose to medium dense, moist).  | SC           |
| 2                 |                    |                        |              |                                                                                                                                                      |              |
| 3                 |                    |                        | 0.0          |                                                                                                                                                      |              |
| 4                 |                    |                        | 0.0          |                                                                                                                                                      |              |
| 5                 | 4.0, 80%           |                        |              |                                                                                                                                                      |              |
| 6                 |                    |                        | 0.0          |                                                                                                                                                      |              |
| 7                 |                    |                        | 0.0          |                                                                                                                                                      |              |
| 8                 |                    |                        | 1.4          |                                                                                                                                                      |              |
| 9                 |                    |                        | 1.1          |                                                                                                                                                      |              |
| 10                | 3.7, 73%           |                        |              |                                                                                                                                                      |              |
| 11                |                    |                        | 0.0          |                                                                                                                                                      |              |
| 12                |                    |                        | 0.0          | (11.5 - 13.67 ft) Light brown SILTY SAND WITH GRAVEL;<br>little coarse gravel, mostly medium sand, little silt, little clay<br>(very loose, moist).  | SM           |
| 13                |                    | HRP-SB205-13-15-211011 | 0.5          | No recovery 13.67 to 15 ft.                                                                                                                          |              |
| 14                |                    |                        |              |                                                                                                                                                      |              |
| 15                | 3.8, 75%           |                        |              | (15 - 17 ft) Light brown POORLY-GRADED SAND WITH GRAVEL; some coarse gravel, mostly medium sand, little silt, few clay (loose, moist).               | SP           |
| 16                |                    |                        | 0.1          |                                                                                                                                                      |              |
| 17                |                    |                        |              | (17 - 18 ft) Grayish brown WELL-GRADED GRAVEL; mostly coarse gravel, little fine sand, trace silt, trace clay (very loose, dry). Presumed rock lens. | GW           |



| SB205             |                    |                   |              |                                                                                                                                                                                         |              |
|-------------------|--------------------|-------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                                                                                    | USCS<br>Code |
| 18                |                    |                   | 0.1          | (18 - 24 ft) Light brown POORLY-GRADED SAND; no to little gravel, mostly medium to coarse sand, trace to few silt, trace to few clay (very loose, wet). Presumed water table at 18.67'. | SP           |
| 19                |                    |                   |              |                                                                                                                                                                                         |              |
| 20                | 5.0,<br>100%       |                   |              |                                                                                                                                                                                         |              |
| 21                |                    |                   | 0.2          |                                                                                                                                                                                         |              |
| 22                |                    |                   | 0.2          |                                                                                                                                                                                         |              |
| 23                |                    |                   | 0.1          |                                                                                                                                                                                         |              |
| 24                |                    |                   | 0.1          | (24 - 25 ft) Brown LEAN CLAY; no gravel, trace fine sand, little silt, mostly clay (firm, moist, low to medium plasticity, medium toughness).                                           | CL           |
| 25                |                    |                   |              |                                                                                                                                                                                         |              |
| 26                |                    |                   |              |                                                                                                                                                                                         |              |
| 27                |                    |                   |              |                                                                                                                                                                                         |              |



#### **SB206**

Start Date: 10/12/2021 End Date: 10/12/2021 Inspector: Sarah Ostertag Project Manager: Greg Grose Surface Elevation (ft asml): 24.23 Drilling Contractor: Eichelbergers Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 30.39 Hammer Drop: Total Borehole Depth (ft Depth to Water (ft bgs): Sampler Refusal Depth (ft bgs): N/A 17.31 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose          | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|------------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well   | 0                   | 15             | RISER        | 2" PVC SCH 40        |         |
| Territariene wen | 3                   | 10             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                  | 10                  | 13             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                  | 13                  | 30             | FILTER PACK  | No. 2 SAND           |         |
|                  | 15                  | 30             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

|                   | 15                 | 30                     | SCREEN       | 0.010 SLOTTED 2" PVC                                                                                                                                                                                                                                   |              |
|-------------------|--------------------|------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB206             |                    |                        |              |                                                                                                                                                                                                                                                        |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                                                                   | USCS<br>Code |
| 0                 | 2.3, 45%           | HRP-SB206-0-1-211012   | 0.1          | (0 - 11.17 ft) Brown to grayish brown FAT CLAY; few medium gravel, some fine sand, little to some silt, mostly clay (soft, moist to wet, low to medium plasticity, low toughness) (slight chemical-like odor, minor black staining beginning at 5 ft). | СН           |
| 2<br>3<br>4       |                    |                        |              |                                                                                                                                                                                                                                                        |              |
| 5<br>6<br>7       | 1.8, 37%           | HRP-SB206-5-7-211012   | 0.2          |                                                                                                                                                                                                                                                        |              |
| 9                 | 3.3, 65%           |                        |              |                                                                                                                                                                                                                                                        |              |
| 11                |                    |                        | 0.4          | (11.17 - 13.25 ft) Brown SILTY SAND WITH GRAVEL; little coarse gravel, mostly coarse sand, little silt, little clay (loose, moist) (slight chemical-like odor). Apparent rock 12.5' to 12.83'.                                                         | SM           |
| 13<br>14          |                    |                        | 0.2          | No recovery 13.25 to 15 ft.                                                                                                                                                                                                                            |              |
| 15                | 1.4, 28%           | HRP-SB206-15-17-211012 |              | (15 - 15.5 ft) Tan to brown WELL-GRADED GRAVEL; mostly coarse gravel, some coarse sand, trace silt, trace clay (loose, moist) (slight chemical-like odor, slight purple green staining near bottom).                                                   | GW           |
|                   |                    |                        |              | (15.5 - 16.42 ft) Brown CLAYEY SAND; no gravel, mostly fine sand, some silt, mostly clay (loose, wet).                                                                                                                                                 | SC           |



| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                  | USCS<br>Code |
|-------------------|--------------------|-------------------|--------------|-----------------------------------------------------------------------------------------------------------------------|--------------|
| 16                | (1000, 70)         |                   | (ррііі)      |                                                                                                                       | Oodo         |
| 17                |                    |                   |              | No recovery 16.42 to 20 ft.                                                                                           |              |
| 18                |                    |                   | 0.3          |                                                                                                                       |              |
|                   |                    |                   |              |                                                                                                                       |              |
| 19                |                    |                   |              |                                                                                                                       |              |
|                   |                    |                   |              |                                                                                                                       |              |
| 20                | 1.0, 20%           |                   |              | (20 24 6) B FAT CLAV. 6                                                                                               |              |
|                   |                    |                   |              | (20 - 21 ft) Brown FAT CLAY; few medium gravel, some fine sand, little silt, mostly clay (wet, medium plasticity, low |              |
| 21                |                    |                   | 0.3          | toughness).                                                                                                           | СН           |
|                   |                    |                   |              | No recovery 21 to 25 ft.                                                                                              |              |
| 22                |                    |                   |              |                                                                                                                       |              |
| 23                |                    |                   |              |                                                                                                                       |              |
| 24                |                    |                   |              |                                                                                                                       |              |
| 25                | 0.5, 10%           |                   |              | (25 - 25.5 ft) Brown LEAN CLAY; no gravel, some fine sand,                                                            |              |
|                   |                    |                   |              | little silt, mostly clay (very soft, wet, low to medium                                                               |              |
| 26                |                    |                   | 0.3          | plasticity, low toughness) (slight chemical-like odor).                                                               | CL           |
| 27                |                    |                   |              | No recovery 25.5 to 30 ft.                                                                                            |              |
|                   |                    |                   |              |                                                                                                                       |              |
| 28                |                    |                   |              |                                                                                                                       |              |
| 29                |                    |                   |              |                                                                                                                       |              |
| 30                |                    |                   |              |                                                                                                                       |              |
| 31                |                    |                   |              |                                                                                                                       |              |
| 32                |                    |                   |              |                                                                                                                       |              |
| 32                |                    |                   |              |                                                                                                                       |              |



#### **SB207**

Start Date: 10/13/2021 End Date: 10/13/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): 21.08 Drilling Contractor: Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 25.24 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 13.03 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose          | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|------------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well   | 0                   | 10             | RISER        | 2" PVC SCH 40        |         |
| Territariene Wen | 2                   | 5              | ANNULAR      | BENT-CEMENT GROUT    |         |
|                  | 5                   | 8              | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                  | 8                   | 25             | FILTER PACK  | No. 2 SAND           |         |
|                  | 10                  | 25             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

| SB207                | -                     |                        |              |                                                                                                                                                                                                                            |              |
|----------------------|-----------------------|------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs)    | Recovery<br>(feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                                       | USCS<br>Code |
| 1 2                  | 4.3, 85%              | HRP-SB207-0-1-211013   | 0.2          | (0 - 4.25 ft) Brown to reddish brown LEAN CLAY; trace fine gravel, some fine sand, trace silt, mostly clay (firm, dry, low to medium plasticity, medium toughness) (slight chemical-like odor, black staining throughout). | CL           |
| 3                    |                       |                        | 0.2          | No recovery 4.25 to 5 ft.                                                                                                                                                                                                  |              |
| 5<br>6               | 3.4, 68%              |                        | 0.2          | (5 - 6.75 ft) FAT CLAY; trace fine gravel, few fine sand, trace silt, mostly clay (very soft, wet, medium plasticity, low                                                                                                  | СН           |
| 7<br>8<br>9          |                       | HRP-SB207-6-8-211013   | 0.3          | (6.75 - 12.75 ft) Brown CLAYEY SAND WITH GRAVEL; little medium gravel, mostly medium sand, trace silt, few to little clay (medium dense, dry to moist) (slight chemical-like odor, greenish to black staining).            | SC           |
| 10<br>11<br>12<br>13 | 2.8, 55%              |                        | 0.4          | No recovery 12.75 to 15 ft.                                                                                                                                                                                                |              |
| 14<br>15             | 2.3, 47%              |                        | 0.5          | (15 - 17.33 ft) Brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, some medium sand, trace silt, few clay (medium dense, wet) (black staining).                                                                       | SW           |
| 16<br>17<br>18       |                       | HRP-SB207-16-18-211013 | 0.5          | No recovery 17.33 to 20 ft.                                                                                                                                                                                                |              |
| 19                   |                       | _                      |              |                                                                                                                                                                                                                            |              |



| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                                                         | USCS<br>Code |
|-------------------|--------------------|-------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 20                | 4.3, 85%           |                   | 0.4          | (20 - 21 ft) Brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, few clay (loose, wet).                                  | SW           |
| 21                |                    |                   |              | (21 - 24.25 ft) Brown to light brown FAT CLAY; trace fine gravel, trace fine sand, trace silt, mostly clay (firm, moist, high plasticity, medium toughness). | CH           |
| 22                |                    |                   |              | nigh plasticity, medium toughness).                                                                                                                          | СП           |
| 23                |                    |                   | 0.2          |                                                                                                                                                              |              |
| 24                |                    |                   | 0.2          |                                                                                                                                                              |              |
| 25                |                    |                   |              |                                                                                                                                                              |              |
| 26                |                    |                   |              |                                                                                                                                                              |              |
| 27                |                    |                   |              |                                                                                                                                                              |              |
|                   |                    |                   |              |                                                                                                                                                              |              |



#### **SB208**

Start Date: 10/14/2021 End Date: 10/14/2021 Inspector: Anne Kelly Project Manager: Greg Grose Surface Elevation (ft asml): 24.78 Drilling Contractor: Eichelbergers Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 30.3 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 16.45 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 15             | RISER        | 2" PVC SCH 40        |         |
|                | 3                   | 10             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 10                  | 13             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 13                  | 30             | FILTER PACK  | No. 2 SAND           |         |
|                | 15                  | 30             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

| SB208               |                       |                      | •            |                                                                                                                                                                                                              |              |
|---------------------|-----------------------|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs)   | Recovery<br>(feet, %) | Analytical Sample    | PID<br>(ppm) | Material Description                                                                                                                                                                                         | USCS<br>Code |
| 0<br>1<br>2         | 1.0, 20%              | HRP-SB208-0-1-211014 | 0.0          | (0 - 1 ft) Brown CLAYEY SAND; trace fine gravel, mostly fine sand, trace silt, some clay (dense, dry) (black streaking). Organics present (roots) throughout top 0.5'.  No recovery 1 to 5 ft.               | SC           |
| 3<br>4<br>5         | 2.2, 44%              |                      |              | (5 - 5.67 ft) Brown LEAN CLAY; trace fine gravel, few fine sand, trace silt, mostly clay (soft, slightly moist, medium plasticity).                                                                          | CL           |
| 6<br>7<br>8         |                       | HRP-SB208-5-7-211014 | 0.1          | (5.67 - 7.21 ft) Brown to light brown CLAYEY SAND WITH GRAVEL; few medium gravel, mostly medium sand, trace silt, little clay (loose). Smaller layers (~3") of clays interbedded  No recovery 7.21 to 10 ft. | SC           |
| 9<br>10<br>11<br>12 | 4.0, 79%              |                      | 0.3          | (10 - 11.25 ft) Brown LEAN CLAY; trace fine gravel, little fine sand, trace silt, mostly clay (soft, slightly moist, medium  (11.25 - 19.33 ft) Light to grayish brown WELL-GRADED                           | CL           |
| 13<br>14            |                       |                      | 0.2          | SAND WITH CLAY AND GRAVEL; little to some medium gravel, mostly medium sand, trace silt, few to little clay (loose, slightly moist). Smaller (~3") layers of interbedded                                     | SW-SC        |
| 15<br>16<br>17      | 4.3, 87%              |                      | 0.2          |                                                                                                                                                                                                              |              |
| 1/                  |                       |                      | 0.2          |                                                                                                                                                                                                              |              |



| SB208             |                    |                        |              |                                                                                                                                                                                                                     |              |
|-------------------|--------------------|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                                | USCS<br>Code |
| 18                |                    | HRP-SB208-18-20-211014 |              |                                                                                                                                                                                                                     |              |
| 19                |                    |                        |              |                                                                                                                                                                                                                     |              |
| 20                | 5.0,<br>100%       |                        |              | (20 - 21 ft) Brown to grayish brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly coarse sand,                                                                                                           | 0144         |
| 21                |                    |                        |              | trace silt, trace clay (medium dense, wet).  (21 - 25 ft) Gray to grayish brown FAT CLAY; trace fine gravel, trace fine sand, trace silt, mostly clay (very hard to soft, moist to wet, medium to high plasticity). | SW           |
| 22                |                    |                        | 0.2          |                                                                                                                                                                                                                     | СП           |
| 23                |                    |                        | 0.2          |                                                                                                                                                                                                                     |              |
| 24                |                    |                        | 0.2          |                                                                                                                                                                                                                     |              |
| 25                |                    |                        |              |                                                                                                                                                                                                                     |              |
| 26                |                    |                        |              |                                                                                                                                                                                                                     |              |
| 27                |                    |                        |              |                                                                                                                                                                                                                     |              |
|                   |                    |                        |              |                                                                                                                                                                                                                     |              |



#### **SB209**

Start Date: 10/13/2021 End Date: 10/13/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): 23.59 Drilling Contractor: Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 25.02 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 19.54 Auger Refusal Depth (ft bgs): N/A

### **Well Completion**

Remarks:

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 10             | RISER        | 2" PVC SCH 40        |         |
|                | 2                   | 5              | ANNULAR      |                      |         |
|                | 5                   | 8              | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 8                   | 25             | FILTER PACK  | No. 2 SAND           |         |
|                | 10                  | 25             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

|                   | 10                 | 25                     | SCREEN       | 0.010 SLOTTED 2" PVC                                                                                                                                                                                                          |              |
|-------------------|--------------------|------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB209             |                    |                        |              |                                                                                                                                                                                                                               |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                                          | USCS<br>Code |
| 1 2 3             | 2.2, 44%           | HRP-SB209-0-1-211013   | 0.2          | (0 - 2.2 ft) Brown to dark brown LEAN CLAY; trace medium gravel, little fine sand, trace silt, mostly clay (firm, dry, non-plastic to low plasticity, medium toughness) (black staining/streaking).  No recovery 2.2 to 5 ft. | CL           |
| 4<br>5<br>6       | 3.8, 77%           | HRP-SB209-5-7-211013   | 0.2          | (5 - 7 ft) Brown to grayish brown FAT CLAY; trace fine gravel,<br>little fine sand, trace silt, mostly clay (soft, moist, medium                                                                                              | СН           |
| 7<br>8<br>9       |                    |                        | 0.2          | (7 - 8.83 ft) Dark brown CLAYEY SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, few clay (medium dense, wet).  No recovery 8.83 to 10 ft.                                                               | SC           |
| 10                | 2.8, 57%           |                        | 0.1          | (10 - 16.21 ft) Dark brown WELL-GRADED SAND WITH GRAVEL; some medium to few fine gravel, mostly medium sand, trace silt, trace to few clay (medium dense to dense, moist) (greenish-black staining).                          | SW           |
| 11<br>12<br>13    |                    |                        | 0.1          |                                                                                                                                                                                                                               |              |
| 14<br>15<br>16    | 2.9, 58%           | HRP-SB209-15-17-211013 | 0.3          |                                                                                                                                                                                                                               |              |
| 17                |                    |                        | 0.2          | (16.21 - 23.1 ft) Brown to reddish brown WELL-GRADED GRAVEL WITH SAND; mostly to some medium gravel, some medium sand, trace silt, trace clay (loose to medium dense, dry to moist).                                          | GW           |



| SB209             |                    |                   |              |                            |              |
|-------------------|--------------------|-------------------|--------------|----------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description       | USCS<br>Code |
| 18                |                    |                   |              |                            |              |
| 19                |                    |                   |              |                            |              |
| 20                | 3.1, 62%           |                   | 0.0          |                            |              |
| 21                |                    |                   | 0.0          |                            |              |
| 22                |                    |                   |              |                            |              |
|                   |                    |                   | 0.1          |                            |              |
| 23                |                    |                   | 0.1          | No recovery 23.1 to 25 ft. |              |
| 24                |                    |                   |              | No recovery 23.1 to 23 ft. |              |
| 25                |                    |                   |              |                            |              |
| 26                |                    |                   |              |                            |              |
| 27                |                    |                   |              |                            |              |
|                   |                    |                   |              |                            |              |



#### **SB211**

Start Date: 10/15/2021 End Date: 10/15/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Rig Type: Geoprobe 7822DT Direct Push Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 20 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 17 Auger Refusal Depth (ft bgs): N/A

Remarks: Well Completion

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 20             | Drill Cuttings |         |

| Depth    | Recovery  | Analytical Sample      | PID   | Material Description                                                                                                                                                                                           | USCS |
|----------|-----------|------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (ft bgs) | (feet, %) | , mary dear Sample     | (ppm) |                                                                                                                                                                                                                | Code |
| 0        | 2.8, 57%  | HRP-SB211-0-1-211015   | 0.3   | (0 - 7.2 ft) Brown to grayish black LEAN CLAY; trace fine gravel, little to some fine sand, trace silt, mostly clay (firm to soft, slightly moist to moist, low to medium plasticity).                         | CL   |
| 1        |           |                        |       |                                                                                                                                                                                                                |      |
| 3        |           |                        | 0.5   |                                                                                                                                                                                                                |      |
| 4        |           |                        |       |                                                                                                                                                                                                                |      |
| 5        | 3.6, 72%  | HRP-SB211-5-7-211015   |       |                                                                                                                                                                                                                |      |
| 6        |           |                        | 0.8   |                                                                                                                                                                                                                |      |
| 7<br>8   |           |                        | 1.0   | (7.2 - 8.58 ft) Dark brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, little clay (medium dense, moist).  No recovery 8.58 to 10 ft.                                    | SW   |
| 9        |           |                        |       | No recovery 6.38 to 10 ft.                                                                                                                                                                                     |      |
| 10       | 3.4, 68%  |                        | 0.8   | (10 - 11.5 ft) Dark brown to dark gray FAT CLAY; few fine gravel, little fine sand, trace silt, mostly clay (soft, very moist, low to medium plasticity). Possible perched water                               | СН   |
| 11<br>12 |           |                        | 0.9   | (11.5 - 13.42 ft) White to dark brown to light brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, few clay (medium dense, slightly moist).                                | SW   |
| 13       |           |                        |       | No recovery 13.42 to 15 ft.                                                                                                                                                                                    |      |
| 14       |           |                        |       |                                                                                                                                                                                                                |      |
| 15       | 3.0, 60%  | HRP-SB211-15-17-211015 | 1.0   | (15 - 18 ft) Dark brown to dark gray to brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, few clay (medium dense, very moist).  Presumed water table encountered at 17'. | SW   |
| 16       |           |                        | 1.0   | riesumed water table encountered at 17.                                                                                                                                                                        | 300  |
| 17       |           |                        |       | No recovery 18 to 20 ft.                                                                                                                                                                                       |      |
| 18       |           |                        |       |                                                                                                                                                                                                                |      |
| 19       |           |                        |       |                                                                                                                                                                                                                |      |



| SB211             |                    |                   |              |                      |              |
|-------------------|--------------------|-------------------|--------------|----------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description | USCS<br>Code |
| 20                |                    |                   |              |                      |              |
| 21                |                    |                   |              |                      |              |
| 22                |                    |                   |              |                      |              |
|                   |                    |                   |              |                      |              |



#### **SB212**

Start Date: 10/15/2021 End Date: 10/15/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT Rig Type: Direct Push Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 25 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 16.8 Auger Refusal Depth (ft bgs): N/A Remarks:

Well Completion

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 25             | Drill Cuttings |         |

| Abandor           | ıment              | 0   25                 |              | Drill Cuttings                                                                                                                                                                                                                           |              |
|-------------------|--------------------|------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB212             |                    |                        |              |                                                                                                                                                                                                                                          |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                                                                     | USCS<br>Code |
| 0 1 2             | 4.3, 85%           | HRP-SB212-0-2-211015   | 0.1          | (0 - 5 ft) Brown LEAN CLAY; trace coarse gravel, some fine sand, trace silt, mostly clay (hard, dry, non-plastic to low                                                                                                                  | CL           |
| 3                 |                    |                        | 0.4          |                                                                                                                                                                                                                                          |              |
| 5<br>6            | 4.5, 90%           | HRP-SB212-5-7-211015   | 0.5          | (5 - 10 ft) Brown CLAYEY SAND; trace fine gravel, some medium sand, trace silt, mostly clay (dense, dry).                                                                                                                                | SC           |
| 7<br>8<br>9       |                    |                        | 0.5          |                                                                                                                                                                                                                                          |              |
| 10                | 3.6, 72%           |                        |              | (10 - 10.9 ft) Brown LEAN CLAY; trace fine gravel, little fine sand, trace silt, mostly clay (firm, slightly moist, low plasticity).                                                                                                     | CL           |
| 11                |                    |                        | 0.7          | (10.9 - 13.58 ft) Light brown to brown to greenish gray WELL-GRADED SAND WITH GRAVEL; little medium gravel, mostly medium sand, trace silt, few clay (loose, dry).                                                                       | SW           |
| 13<br>14          |                    |                        | 0.7          | No recovery 13.58 to 15 ft.                                                                                                                                                                                                              |              |
| 15                | 2.1, 42%           | HRP-SB212-15-17-211015 | 0.8          | (15 - 15.58 ft) Brown LEAN CLAY; trace fine gravel, some fine sand, trace silt, mostly clay (soft, dry, low plasticity).                                                                                                                 | CL           |
| 16                |                    | 35212 15 17 211015     | 0.7          | (15.58 - 17.1 ft) Brown to light brown to white to grayish brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly medium sand, trace silt, trace clay (loose, slightly moist to wet). Presumed water table encountered at 16.8'. | SW           |
| 17<br>18<br>19    |                    |                        |              | No recovery 17.1 to 20 ft.                                                                                                                                                                                                               |              |



| SB212             |                    |                   |              |                      |              |
|-------------------|--------------------|-------------------|--------------|----------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description | USCS<br>Code |
| 20                |                    |                   |              |                      |              |
| 21                |                    |                   |              |                      |              |
| 22                |                    |                   |              |                      |              |
|                   |                    |                   |              |                      |              |



#### **SB213**

Start Date: 10/15/2021 End Date: 10/15/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT Rig Type: Drilling Method: Direct Push Auger Diameter (inches): 4.25 Drilling Fluid: None Hammer Weight: Borehole Diameter (inches): 8 N/A N/A 20 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 18.6 Auger Refusal Depth (ft bgs): N/A Remarks:

Well Completion

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 20             | Drill Cuttings |         |

| Abandor  | ıment        | 0 20                   |       | Drill Cuttings                                                                                                                                                                                                                                              |      |
|----------|--------------|------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| SB213    |              |                        |       |                                                                                                                                                                                                                                                             |      |
| Depth    | Recovery     | Analytical Sample      | PID   | Material Description                                                                                                                                                                                                                                        | USCS |
| (ft bgs) | (feet, %)    |                        | (ppm) |                                                                                                                                                                                                                                                             | Code |
| 0        | 5.0,         |                        |       |                                                                                                                                                                                                                                                             |      |
| U        | 100%         |                        |       | (0 - 11.58 ft) Brown LEAN CLAY; trace fine gravel, some to little fine sand, trace silt, mostly clay (firm, dry to slightly moist, non-plastic to medium plasticity). Rock inclusion at                                                                     |      |
| 1        |              | HRP-SB213-0-1-211015   | 0.1   | 11.5'.                                                                                                                                                                                                                                                      | CL   |
| 2        |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 3        |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 4        |              |                        | 0.2   |                                                                                                                                                                                                                                                             |      |
| 5        | 5.0,<br>100% | HRP-SB213-5-7-211015   |       |                                                                                                                                                                                                                                                             |      |
| 6        |              |                        | 0.2   |                                                                                                                                                                                                                                                             |      |
| 7        |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 8        |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 9        |              |                        | 0.1   |                                                                                                                                                                                                                                                             |      |
| 10       | 3.3, 67%     |                        | 0.2   |                                                                                                                                                                                                                                                             |      |
| 11       |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 12       |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 13       |              |                        | 0.4   | (11.58 - 13.33 ft) Brown to light brown to light brownish gray WELL-GRADED SAND WITH GRAVEL; little medium gravel, mostly medium sand, trace silt, trace clay (loose, dry).                                                                                 | SW   |
| 14       |              |                        |       | No recovery 13.33 to 15 ft.                                                                                                                                                                                                                                 |      |
| 15       | 4.2, 83%     |                        |       | (15 - 16.1 ft) Brown LEAN CLAY; trace fine gravel, little fine                                                                                                                                                                                              |      |
| 16       | 1.2, 03 70   |                        | 0.5   | sand, trace silt, mostly clay (firm, slightly moist, low                                                                                                                                                                                                    | CL   |
|          |              | HRP-SB213-16-18-211015 |       | (16.1 - 19.17 ft) Reddish brown to brown to light brown WELL-GRADED SAND WITH GRAVEL; little medium gravel, mostly medium sand, trace silt, trace clay (loose, very moist to wet). Presumed water table encountered at 18.6', soil is wet after that point. | SW   |
| 17<br>18 |              |                        | 0.4   |                                                                                                                                                                                                                                                             |      |
| 19       |              |                        |       |                                                                                                                                                                                                                                                             |      |
| 19       |              |                        |       |                                                                                                                                                                                                                                                             |      |



| SB213             | SB213              |                   |              |                      |              |  |  |  |
|-------------------|--------------------|-------------------|--------------|----------------------|--------------|--|--|--|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description | USCS<br>Code |  |  |  |
| 20                |                    |                   |              |                      |              |  |  |  |
| 21                |                    |                   |              |                      |              |  |  |  |
| 22                |                    |                   |              |                      |              |  |  |  |
|                   |                    |                   |              |                      |              |  |  |  |



#### **SB214**

Start Date: 10/14/2021 End Date: 10/14/2021 Inspector: Anne Kelly Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): 24.07 Drilling Contractor: Drilling License Number: V00442 Master Driller: Paul Wirrick Geoprobe 7822DT with Rig Type: Direct Push with HSA Overdrill Drilling Method: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A 25.0 Hammer Drop: Total Borehole Depth (ft Depth to Water (ft bgs): Sampler Refusal Depth (ft bgs): N/A 13.75 Auger Refusal Depth (ft bgs): N/A

**Well Completion** 

Remarks:

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 10             | RISER        | 2" PVC SCH 40        |         |
|                | 2                   | 5              | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 5                   | 8              | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 8                   | 25             | FILTER PACK  | No. 2 SAND           |         |
|                | 10                  | 25             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

|                   | 10                 | 25                      | SCREEN       | 0.010 SLOTTED 2" PVC                                                                                                                                                                                             |              |
|-------------------|--------------------|-------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB214             |                    |                         |              |                                                                                                                                                                                                                  |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample       | PID<br>(ppm) | Material Description                                                                                                                                                                                             | USCS<br>Code |
| 0<br>1<br>2       | 3.4, 68%           | HRP-SB214-0-2-211014    | 0.1          | (0 - 3.38 ft) Brown CLAYEY SAND; trace fine gravel, mostly fine sand, trace silt, some clay (dense) (slight chemical-like odor, black staining/streaking).  No recovery 3.38 to 5 ft.                            | SC           |
| 3                 |                    |                         | 0.3          |                                                                                                                                                                                                                  |              |
| 5<br>6<br>7       | 4.7, 93%           | HRP-SB214-5-7-211014    | 0.6          | (5 - 7.83 ft) Brown to dark gray LEAN CLAY; trace fine gravel, some fine sand, trace silt, mostly clay (hard, dry, low plasticity) (slight chemical-like odor, black staining through some layers).              | CL           |
| 8                 |                    |                         | 0.2          | (7.83 - 9.67 ft) Light brown to pinkish white to white WELL-GRADED SAND WITH GRAVEL; some medium gravel, some medium sand, trace silt, trace clay (loose, dry).  No recovery 9.67 to 10 ft.                      | SW           |
| 10                | 4.1, 82%           |                         |              | (10 - 10.67 ft) Brown LEAN CLAY; trace fine gravel, some fine sand, trace silt, mostly clay (firm, slightly moist, low plasticity).                                                                              | CL           |
| 11                |                    |                         | 0.3          | (10.67 - 14.1 ft) Light brown to white to light greenish gray to brown WELL-GRADED SAND WITH GRAVEL; some medium gravel, mostly coarse sand, trace silt, few clay (loose, very moist) (light greenish staining). | SW           |
| 12                |                    |                         |              | No recovery 14.1 to 15 ft.                                                                                                                                                                                       |              |
| 13                |                    |                         | 0.5          | NO ICCOVERY 14.1 to 15 ft.                                                                                                                                                                                       |              |
| 14                |                    | LIDD CD244 14 15 2112 1 | 0.5          |                                                                                                                                                                                                                  |              |
| 15                | 5.0,<br>100%       | HRP-SB214-14-16-211014  | 0.4          | (15 - 19.33 ft) Brown CLAYEY SAND; trace fine gravel, mostly medium sand, trace silt, little clay (dense, wet). Presumed water table at 16'.                                                                     | SC           |



| SB214             |                    |                   |              |                                                                                                                                                            |              |
|-------------------|--------------------|-------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                                                       | USCS<br>Code |
| 16                |                    |                   |              |                                                                                                                                                            |              |
| 17                |                    |                   |              |                                                                                                                                                            |              |
| 18                |                    |                   | 0.4          |                                                                                                                                                            |              |
| 19                |                    |                   | 0.4          |                                                                                                                                                            |              |
|                   |                    |                   |              | (19.33 - 20 ft) Brown LEAN CLAY; trace fine gravel, trace fine sand, trace silt, mostly clay (very hard, moist, low plasticity).                           | CL           |
| 20                | 5.0,<br>100%       |                   |              | (20 - 25 ft) Light brown to grayish purple FAT CLAY; trace fine gravel, trace fine sand, trace silt, mostly clay (firm, moist, medium to high plasticity). | СН           |
| 21                |                    |                   | 0.7          | moist, medium to high plasticity).                                                                                                                         | OH           |
| 22                |                    |                   | 0.7          |                                                                                                                                                            |              |
| 23                |                    |                   |              |                                                                                                                                                            |              |
| 24                |                    |                   | 0.5          |                                                                                                                                                            |              |
| 25                |                    |                   |              |                                                                                                                                                            |              |
| 26                |                    |                   |              |                                                                                                                                                            |              |
| 27                |                    |                   |              |                                                                                                                                                            |              |
|                   |                    |                   |              |                                                                                                                                                            |              |



#### **SB215**

Start Date: 10/18/2021 End Date: 10/18/2021 Inspector: Sarah Ostertag Project Manager: Greg Grose Eichelbergers Surface Elevation (ft asml): Drilling Contractor: V00442 Drilling License Number: Master Driller: Paul Wirrick Geoprobe 7822DT Rig Type: Drilling Method: Direct Push Auger Diameter (inches): 4.25 Drilling Fluid: None Hammer Weight: Borehole Diameter (inches): 8 N/A N/A 20 Hammer Drop: Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 19.1 Auger Refusal Depth (ft bgs): N/A Remarks:

**Well Completion** 

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 20             | Drill Cuttings |         |

| Abandon           | iment              | 0  20                  |              | Drill Cuttings                                                                                                                                                                        |              |
|-------------------|--------------------|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB215             |                    |                        |              |                                                                                                                                                                                       |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample      | PID<br>(ppm) | Material Description                                                                                                                                                                  | USCS<br>Code |
| 0                 | 2.3, 46%           |                        |              | (0 - 0.7 ft) Gray WELL-GRADED GRAVEL; mostly medium                                                                                                                                   |              |
|                   |                    | HRP-SB215-0-2-211018   |              | gravel Presumed gravel surface cover.                                                                                                                                                 | GW           |
|                   |                    |                        |              | (0.7 - 0.9 ft) Brown CLAYEY SAND; no gravel, no fine sand, some silt, some clay (loose, very moist).                                                                                  | SC           |
| 1                 |                    |                        | 0.0          | (0.9 - 8.3 ft) Black to tan to orangish brown SILTY SAND; no to trace fine gravel, mostly medium sand, little silt, few clay                                                          | SM           |
| 2                 |                    |                        | 0.0          | (loose to medium dense, dry).                                                                                                                                                         | SIVI         |
| 3                 |                    |                        |              |                                                                                                                                                                                       |              |
| 4                 |                    |                        |              |                                                                                                                                                                                       |              |
| 5                 | 3.3, 66%           | HRP-SB215-5-7-211018   |              |                                                                                                                                                                                       |              |
| 6                 |                    | 1111 00213 3 7 211010  | 0.0          |                                                                                                                                                                                       |              |
| 7                 |                    |                        |              | No recovery 8.3 to 10 ft.                                                                                                                                                             |              |
| 8                 |                    |                        | 0.0          |                                                                                                                                                                                       |              |
| 9                 |                    |                        |              |                                                                                                                                                                                       |              |
| 10                | 5.0,<br>100%       |                        |              | (10 - 16.8 ft) Orangish brown FAT CLAY; trace medium gravel, some fine sand, some silt, mostly clay (soft, moist, medium plasticity, low toughness).                                  | СН           |
| 11                |                    |                        | 0.0          | mediam plasticity, low toughness).                                                                                                                                                    | OH           |
| 12                |                    |                        | 0.0          |                                                                                                                                                                                       |              |
| 13                |                    |                        | 0.0          |                                                                                                                                                                                       |              |
| 14                |                    |                        |              |                                                                                                                                                                                       |              |
| 15                | 5.0,<br>100%       |                        |              |                                                                                                                                                                                       |              |
| 16                | 10070              | HRP-SB215-16-18-211018 | 0.0          |                                                                                                                                                                                       |              |
| 17                |                    |                        |              | (16.8 - 20 ft) Orange brown to greenish gray SILTY SAND WITH GRAVEL; little medium gravel, mostly medium sand, little silt, trace clay (loose, moist). Presumed water table at 19.1'. | SM           |
| 18                |                    |                        | 0.0          | 19.1.                                                                                                                                                                                 | SIVI         |
| 19                |                    |                        | 0.0          |                                                                                                                                                                                       |              |



| SB215             |                    |                   |              |                      |              |
|-------------------|--------------------|-------------------|--------------|----------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample | PID<br>(ppm) | Material Description | USCS<br>Code |
| 20                |                    |                   |              |                      |              |
| 21                |                    |                   |              |                      |              |
| 22                |                    |                   |              |                      |              |
|                   |                    |                   |              |                      |              |



# SB216

| Start Date:                     | 10/18/2021      | End Date:                | 10/18/2021    |
|---------------------------------|-----------------|--------------------------|---------------|
| Inspector:                      | Sarah Ostertag  | Project Manager:         | Greg Grose    |
| Surface Elevation (ft asml):    |                 | Drilling Contractor:     | Eichelbergers |
| Drilling License Number:        | V00442          | Master Driller:          | Paul Wirrick  |
| Rig Type:                       | Geoprobe 7822DT | Drilling Method:         | Direct Push   |
| Auger Diameter (inches):        | 4.25            | Drilling Fluid:          | None          |
| Borehole Diameter (inches):     | 8               | Hammer Weight:           | N/A           |
| Hammer Drop:                    | N/A             | Total Borehole Depth (ft | 15            |
| Sampler Refusal Depth (ft bgs): | N/A             | Depth to Water (ft bgs): | 2.4           |
| Auger Refusal Depth (ft bgs):   | N/A             |                          |               |
| Remarks:                        |                 |                          |               |

**Well Completion** 

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 15             | Drill Cuttings |         |
|             |                     |                |                |         |

| Depth    | Recovery  | Analytical Sample    | PID   | Material Description                                                                                                                                                                                            | USCS |
|----------|-----------|----------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|          | (feet, %) | Analytical Sample    | (ppm) |                                                                                                                                                                                                                 | Code |
| 0        | 3.3, 66%  |                      |       | (0 - 1.2 ft) Concrete and wood, appears punched through old rail line beam.                                                                                                                                     |      |
|          |           | HRP-SB216-1-3-211018 |       | (1.2 - 12.9 ft) Orange brown SILTY SAND; trace medium gravel, mostly fine to medium sand, some silt, little clay (loose, very moist to wet) (strong chemical-like odor).  Presumed perched water table at 2.4'. | SM   |
| 2        |           |                      | 0.6   |                                                                                                                                                                                                                 |      |
| 4<br>5   | 3.0, 59%  |                      |       |                                                                                                                                                                                                                 |      |
| 6<br>7   |           |                      | 0.1   |                                                                                                                                                                                                                 |      |
| 9        |           |                      |       |                                                                                                                                                                                                                 |      |
| 10       | 2.9, 58%  |                      |       |                                                                                                                                                                                                                 |      |
| 11<br>12 |           |                      | 0.1   |                                                                                                                                                                                                                 |      |
| 13       |           |                      |       | No recovery 12.9 to 15 ft.                                                                                                                                                                                      |      |
| 14       |           |                      |       | ·                                                                                                                                                                                                               |      |
| 15<br>16 |           |                      |       |                                                                                                                                                                                                                 |      |
| 17       |           |                      |       |                                                                                                                                                                                                                 |      |



#### **SB221**

Start Date: 10/05/2021 End Date: 10/07/2021 Project Manager: Inspector: Sarah Ostertag Greg Grose Surface Elevation (ft asml): 31.34 Drilling Contractor: Eichelbergers Drilling License Number: V00442 Paul Wirrick Master Driller: Vacuum Excavation; Direct Push VacMaster 4000; Geoprobe Drilling Method: Rig Type: Auger Diameter (inches): 4.25 Drilling Fluid: None Borehole Diameter (inches): 8 Hammer Weight: N/A N/A Hammer Drop: 30.45 Total Borehole Depth (ft Sampler Refusal Depth (ft bgs): N/A Depth to Water (ft bgs): 21.49 Auger Refusal Depth (ft bgs): N/A

**Well Completion** 

Remarks:

| Purpose        | Starting Depth (ft) | End Depth (ft) | Segment      | Material             | Remarks |
|----------------|---------------------|----------------|--------------|----------------------|---------|
| Permanent Well | 0                   | 20             | RISER        | 2" PVC SCH 40        |         |
|                | 3                   | 15             | ANNULAR      | BENT-CEMENT GROUT    |         |
|                | 15                  | 18             | ANNULAR SEAL | 2% BENTONITE-CHIPS   |         |
|                | 18                  | 30             | FILTER PACK  | No. 2 SAND           |         |
|                | 20                  | 30             | SCREEN       | 0.010 SLOTTED 2" PVC |         |

VacMaster 4000 used to air knife upper 5' of boring; samples collected from air knife

|                   | 20                 | 30                   | SCREEN       | 0.010 SLOTTED 2" PVC                                                                                                                                                                                                                                                                                                                                                   |              |
|-------------------|--------------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SB221             |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample    | PID<br>(ppm) | Material Description                                                                                                                                                                                                                                                                                                                                                   | USCS<br>Code |
| 0                 | 3.4, 68%           | HRP-SB221-0-1-211005 | 0.0          | (0 - 1 ft) Black LEAN CLAY; trace fine gravel, little fine sand, some silt, mostly clay (firm, dry, low to medium plasticity, medium toughness). Black asphalt cover.  (1 - 3.375 ft) Brown LEAN CLAY; trace fine gravel, little fine                                                                                                                                  |              |
| 2                 |                    |                      |              | sand, some silt, mostly clay (firm, dry, non-plastic to low plasticity, high toughness) (slight chemical-like odor, minor dark staining).                                                                                                                                                                                                                              | CL           |
| 3                 |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 4                 |                    | HRP-SB221-4-5-211005 | 0.0          |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 5                 | 2.8, 56%           | nrr-3b221-4-3-211003 |              | (5 - 18 ft) Light to dark grayish brown FAT CLAY; trace to little fine gravel, few to some fine sand, some to little silt, mostly clay (soft to very soft, moist to wet, medium to high plasticity, low to medium toughness) (slight chemical-like odor). Presumed perched water table 10.5'. Dark black to bluish green staining, wood chips, and moderate odor noted |              |
| 6                 |                    |                      | 0.0          | 16'9" to 17'.                                                                                                                                                                                                                                                                                                                                                          | CH           |
| 7                 |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 8                 |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 9                 |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 10                | 2.8, 55%           |                      | 0.0          |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 11                |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 12                |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 13                |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 14                |                    |                      |              |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 15                | 3.6, 72%           |                      | 0.0          |                                                                                                                                                                                                                                                                                                                                                                        |              |
| 16                |                    | _                    |              |                                                                                                                                                                                                                                                                                                                                                                        |              |



| SB221             |                       |                   |              |                                                                                                                                                                                                                            |              |
|-------------------|-----------------------|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery<br>(feet, %) | Analytical Sample | PID<br>(ppm) | Material Description                                                                                                                                                                                                       | USCS<br>Code |
| 17                |                       |                   |              |                                                                                                                                                                                                                            |              |
| 18                |                       |                   |              | (18 - 18.58 ft) Bluish green to brown PEAT; Wood fragments.<br>No recovery 18.58 to 20 ft.                                                                                                                                 | PT           |
| 19                |                       |                   | 396.5        |                                                                                                                                                                                                                            |              |
| 20                | 4.0, 79%              |                   |              | (20 - 20.83 ft) Brown to gray FAT CLAY; no gravel, some fine sand, little silt, some clay (very soft, moist, low toughness) (moderate chemical-like odor).                                                                 | СН           |
| 21                |                       |                   | 2.6          | (20.83 - 22.75 ft) Grayish brown LEAN CLAY; no gravel, some fine sand, little silt, some clay (very hard, moist, non-plastic plasticity, high toughness) (slight chemical-like odor).                                      | CL           |
| 22                |                       |                   |              | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                    |              |
|                   |                       |                   |              | (22.75 - 27 ft) Grayish brown CLAYEY SAND; trace fine gravel, mostly fine to medium sand, few silt, some clay (very loose, wet to moist) (moderate chemical-like odor).  Presumed perched water table at 21.5' and 26.58'. | SC           |
| 23                |                       |                   |              |                                                                                                                                                                                                                            |              |
| 24                |                       |                   |              |                                                                                                                                                                                                                            |              |
| 25                | 5.0,<br>100%          |                   | 0.0          |                                                                                                                                                                                                                            |              |
| 26                | 20070                 |                   |              |                                                                                                                                                                                                                            |              |
| 27                |                       |                   |              | (27 - 28 ft) Brown FAT CLAY; trace fine gravel, some medium sand, few silt, some clay (soft, moist, non-plastic to low plasticity, low toughness) (slight chemical-like odor).                                             | СН           |
| 28                |                       |                   | 0.0          | (28 - 30 ft) Brownish orange LEAN CLAY; no gravel, little medium sand, little silt, mostly clay (very hard, moist, medium plasticity, high toughness) (slight chemical-like odor).                                         | CL           |
| 29                |                       |                   | 310          | 54517.                                                                                                                                                                                                                     | 92           |
| 30                |                       |                   |              |                                                                                                                                                                                                                            |              |
| 31                |                       |                   |              |                                                                                                                                                                                                                            |              |
| 32                |                       |                   |              |                                                                                                                                                                                                                            |              |
|                   |                       |                   |              |                                                                                                                                                                                                                            |              |



## SB222

| Start Date:                     | 10/19/2021      | End Date:                | 10/19/2021    |
|---------------------------------|-----------------|--------------------------|---------------|
| Inspector:                      | Sarah Ostertag  | Project Manager:         | Greg Grose    |
| Surface Elevation (ft asml):    |                 | Drilling Contractor:     | Eichelbergers |
| Drilling License Number:        | V00442          | Master Driller:          | Paul Wirrick  |
| Rig Type:                       | Geoprobe 7822DT | Drilling Method:         | Direct Push   |
| Auger Diameter (inches):        | 4.25            | Drilling Fluid:          | None          |
| Borehole Diameter (inches):     | 8               | Hammer Weight:           | N/A           |
| Hammer Drop:                    | N/A             | Total Borehole Depth (ft | 10            |
| Sampler Refusal Depth (ft bgs): | N/A             | Depth to Water (ft bgs): |               |
| Auger Refusal Depth (ft bgs):   | N/A             |                          |               |
| Remarks:                        |                 |                          |               |

# **Well Completion**

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 10             | Drill Cuttings |         |

| Depth<br>(ft bgs)               | Recovery (feet, %) | Analytical Sample                         | PID<br>(ppm) | Material Description                                                                                                                                                                                    | USCS<br>Code |
|---------------------------------|--------------------|-------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6 | 2.0, 40%           | HRP-SB222-0-1-211019 HRP-SB222-2-5-211019 | 0.1          | (0 - 8.4 ft) Light brown to brown SILTY SAND WITH GRAVEL; few fine gravel, mostly fine sand, little to some silt, trace clay (loose, slightly moist) (slight chemical-like odor, minor black staining). | SM           |
| 7<br>8<br>9                     |                    |                                           |              | No recovery 8.4 to 10 ft.                                                                                                                                                                               |              |
| 10                              |                    |                                           |              |                                                                                                                                                                                                         |              |
| 11                              |                    |                                           |              |                                                                                                                                                                                                         |              |
| 12                              |                    |                                           |              |                                                                                                                                                                                                         |              |



### **SB226**

| Start Date:                     | 10/05/2021                 | End Date:                     | 10/05/2021                    |
|---------------------------------|----------------------------|-------------------------------|-------------------------------|
| Inspector:                      | Sarah Ostertag             | Project Manager:              | Greg Grose                    |
| Surface Elevation (ft asml):    |                            | Drilling Contractor:          | Eichelbergers                 |
| Drilling License Number:        | V00442                     | Master Driller:               | Paul Wirrick                  |
| Rig Type:                       | VacMaster 4000             | Drilling Method:              | Vacuum Excavation             |
| Auger Diameter (inches):        | 4.25                       | Drilling Fluid:               | None                          |
| Borehole Diameter (inches):     | 8                          | Hammer Weight:                | N/A                           |
| Hammer Drop:                    | N/A                        | Total Borehole Depth (ft      | 5                             |
| Sampler Refusal Depth (ft bgs): | N/A                        | Depth to Water (ft bgs):      |                               |
| Auger Refusal Depth (ft bgs):   | N/A                        |                               |                               |
| Remarks:                        | VacMaster 4000 used to air | knife upper 5' of boring; sam | ples collected from air knife |

**Well Completion** 

| Purpose     | Starting Depth (ft) | End Depth (ft) | Material       | Remarks |
|-------------|---------------------|----------------|----------------|---------|
| Abandonment | 0                   | 5              | Drill Cuttings |         |

| SB226             |                    |                      |              |                                                                                                                      |              |
|-------------------|--------------------|----------------------|--------------|----------------------------------------------------------------------------------------------------------------------|--------------|
| Depth<br>(ft bgs) | Recovery (feet, %) | Analytical Sample    | PID<br>(ppm) | Material Description                                                                                                 | USCS<br>Code |
| 0 1 2             | 0.0, 0%            | HRP-SB226-0-1-211005 | 0.0          | (0 - 1 ft) Brown WELL-GRADED SAND WITH GRAVEL; few medium gravel, mostly fine sand, few silt, few clay (loose, dry). | SW           |
| 3                 |                    | HRP-SB226-4-5-211005 | 0.0          | (4 - 5 ft) Brown CLAYEY SAND; trace medium gravel, some fine sand, little silt, some clay (dry).                     | SC           |
| 5<br>6<br>7       |                    |                      |              |                                                                                                                      |              |

(NORTHING, EASTING)

Page 1 of 9

| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: 1690022371-003                              |
| SURFACE ELEVATION: 29.821 ft amsl                | LOCATION: MW-201                                            |
| TOP OF CASING: 29.531 ft amsl                    | LOGGED BY: Sarah Ostertag                                   |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): 10/08/2021                                         |
| VERTICAL DATUM: NAVD88                           | WELL PERMIT NO.: N/A                                        |
| COORDINATES: 6985510.77, 11898687.25             |                                                             |

#### WATER LEVELS:



#### COMMENTS:

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-201 www.ramboll.com

(NORTHING, EASTING)

Page 2 of 9

| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: <u>1690022371-003</u>                       |
| SURFACE ELEVATION: 30.405 ft amsl                | LOCATION: MW-202                                            |
| TOP OF CASING: 29.94 ft amsl                     | LOGGED BY: Anne Kelly                                       |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): 10/07/2021                                         |
| VERTICAL DATUM: NAVD88                           | WELL PERMIT NO.: N/A                                        |
| COORDINATES: 6985349 366 11898791 84             |                                                             |

#### WATER LEVELS:



#### COMMENTS:

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

(NORTHING, EASTING)

Page 3 of 9

| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: <u>1690022371-003</u>                       |
| SURFACE ELEVATION: 30.238 ft amsl                | LOCATION: MW-205                                            |
| TOP OF CASING: 29.813 ft amsl                    | LOGGED BY: Sarah Ostertag                                   |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): 10/11/2021                                         |
| VERTICAL DATUM: NAVD88                           | WELL PERMIT NO.: N/A                                        |
| COORDINATES: 6985476.255, 11898506.29            |                                                             |

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-205 www.ramboll.com

(NORTHING, EASTING)

Page 4 of 9

DRILLING CONTRACTOR: Eichelbergers

DRILLER: Paul Wirrick

PROJECT NAME: HRP - Former Potomac River Generating Station

PROJECT NUMBER: 1690022371-003

SURFACE ELEVATION: 24.23 ft amsl

LOCATION: MW-206

TOP OF CASING: 2 ft amsl

HORIZONTAL DATUM: NAD88 / Virginia North (ft US)

VERTICAL DATUM: NAVD88

COORDINATES: 6984697.17811898953.32

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-206 www.ramboll.com

(NORTHING, EASTING)

Page 5 of 9

| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: 1690022371-003                              |
| SURFACE ELEVATION: 21.077 ft amsl                | LOCATION: MW-207                                            |
| TOP OF CASING: 20.775 ft amsl                    | LOGGED BY: Anne Kelly                                       |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): 10/13/2021                                         |
| VERTICAL DATUM: NAVD88                           | WELL PERMIT NO.: N/A                                        |
| COORDINATES: 6984475.37 11899012.87              |                                                             |

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

www.ramboll.com

Page 6 of 9

| DRILLING CONTRACTOR: Eichelbergers                           | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                                        | PROJECT NUMBER: 1690022371-003                              |
| SURFACE ELEVATION: 24.783 ft amsl                            | LOCATION: MW-208                                            |
| TOP OF CASING: 24.567 ft amsl                                | LOGGED BY: Anne Kelly                                       |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US)             | DATE(S): 10/14/2021                                         |
| VERTICAL DATUM: NAVD88                                       | WELL PERMIT NO.: N/A                                        |
| COORDINATES: 6984256.451 11898959.667<br>(NORTHING, EASTING) | _                                                           |

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-208

www.ramboll.com

RAMBOLL

(NORTHING, EASTING)

Page 7 of 9

| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: _ HRP - Former Potomac River Generating Station |
|--------------------------------------------------|---------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: 1690022371-003                                |
| SURFACE ELEVATION: 23.585 ft amsl                | LOCATION: MW-209                                              |
| TOP OF CASING: 23.139 ft amsl                    | LOGGED BY: Anne Kelly                                         |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): 10/13/2021                                           |
| VERTICAL DATUM: NAVD88                           | WELL PERMIT NO.: N/A                                          |
| COORDINATES: 6984138.928, 11899047.01            |                                                               |

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

www.ramboll.com

Page 8 of 9

| DRILLING CONTRACTOR: Eichelbergers                                  | PROJECT NAME: HRP - Former Potomac River Generating Station |
|---------------------------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                                               | PROJECT NUMBER: 1690022371-003                              |
| SURFACE ELEVATION: 24.066 ft amsl                                   | LOCATION: MW-214                                            |
| TOP OF CASING: 23.647 ft amsl                                       | LOGGED BY: Anne Kelly                                       |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US)                    | DATE(S): _10/14/2021                                        |
| VERTICAL DATUM: NAVD88                                              | WELL PERMIT NO.: N/A                                        |
| COORDINATES: <u>6984662.558, 11898736.21</u><br>(NORTHING, EASTING) |                                                             |

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-214 www.ramboll.com



| DRILLING CONTRACTOR: Eichelbergers               | PROJECT NAME: HRP - Former Potomac River Generating Station |
|--------------------------------------------------|-------------------------------------------------------------|
| DRILLER: Paul Wirrick                            | PROJECT NUMBER: 1690022371-003                              |
| SURFACE ELEVATION: 31.343 ft amsl                | LOCATION: MW-221                                            |
| TOP OF CASING: _30.968 ft amsl                   | LOGGED BY: Sarah Ostertag                                   |
| HORIZONTAL DATUM: NAD88 / Virginia North (ft US) | DATE(S): _10/07/2021                                        |
| VEDITON DATUM: NAVD88                            | WELL DEDMIT NO + N/A                                        |

COORDINATES: 6984932.93, 11898352.37

(NORTHING, EASTING)

#### WATER LEVELS:



#### **COMMENTS:**

All measurements based on ground surface at 0 feet. (+) above grade. (-) below grade.

Not To Scale

MW-221 www.ramboll.com

APPENDIX D
LABORATORY ANALYTICAL RESULTS

(704)875-9092



January 20, 2022

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92569119

#### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory between October 13, 2021 and November 04, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace National Mt. Juliet
- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

A revised report is being submitted on 1/20/22 to include revised sample resultts.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, RambollAnne Kelly, Ramboll US Consulting, Inc.Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92569119

**Pace Analytical Services National** 

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469

California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487 Georgia DW Certification #: 923 Georgia Certification: NELAP Idaho Certification #: TN00003 Illinois Certification #: 200008 Indiana Certification #: C-TN-01 Iowa Certification #: 364

Kansas Certification #: E-10277 Kentucky UST Certification #: 16 Kentucky Certification #: 90010 Louisiana Certification #: Al30792 Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086

Nebraska Certification #: NE-OS-15-05

Pace Analytical Services Charlotte
South Carolina Laboratory ID: 99006

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

South Carolina Laboratory ID: 99006

**Pace Analytical Services Asheville** 

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648

North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 Nevada Certification #: TN-03-2002-34

New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification

New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006 Texas Certification #: T 104704245-17-14

Texas Mold Certification #: LAB0152 USDA Soil Permit #: P330-15-00234 Utah Certification #: TN00003 Virginia Certification #: VT2006 Vermont Dept. of Health: ID# VT-2006 Virginia Certification #: 460132

Washington Certification #: C847
West Virginia Certification #: 233
Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221

South Carolina Laboratory ID: 99030 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

(704)875-9092



### **SAMPLE SUMMARY**

Project: HRP PRGS SCR

Pace Project No.: 92569119

| Lab ID      | Sample ID               | Matrix | Date Collected | Date Received  |
|-------------|-------------------------|--------|----------------|----------------|
| 92569119001 | HRP-MW201-211025        | Water  | 10/25/21 15:45 | 10/27/21 15:21 |
| 92569119002 | HRP-MW202-211026        | Water  | 10/26/21 09:50 | 10/27/21 15:21 |
| 92569119003 | HRP-DUP05-211026        | Water  | 10/26/21 10:00 | 10/27/21 15:21 |
| 92569119004 | HRP-MW205-211026        | Water  | 10/26/21 12:30 | 10/27/21 15:21 |
| 92569119005 | HRP-MW206-211026        | Water  | 10/26/21 16:55 | 10/27/21 15:21 |
| 92569119006 | HRP-MW102-211027        | Water  | 10/27/21 10:45 | 10/27/21 15:21 |
| 92569119007 | HRP-MW214-211026        | Water  | 10/26/21 10:10 | 10/27/21 15:21 |
| 92569119008 | HRP-MW208-211026        | Water  | 10/26/21 10:10 | 10/27/21 15:21 |
| 92569119009 | HRP-MW207-211026        | Water  | 10/26/21 10:10 | 10/27/21 15:21 |
| 92569427001 | HRP-MW72S-211027        | Water  | 10/27/21 14:40 | 10/28/21 12:56 |
| 92569427002 | HRP-MW30S-211027        | Water  | 10/27/21 14:58 | 10/28/21 12:56 |
| 92569427003 | HRP-MW209-211028        | Water  | 10/28/21 09:55 | 10/28/21 12:56 |
| 92569427004 | HRP-MW100S-211028       | Water  | 10/28/21 09:50 | 10/28/21 12:56 |
| 92570802001 | HRP-MW201-211102        | Water  | 11/02/21 09:15 | 11/04/21 10:30 |
| 92568327001 | HRP-SB225-0-1-211021    | Solid  | 10/21/21 07:45 | 10/21/21 13:15 |
| 92568327002 | HRP-SB224-0-1-211021    | Solid  | 10/21/21 08:25 | 10/21/21 13:15 |
| 92568327003 | HRP-SB227-0-1-211021    | Solid  | 10/21/21 08:50 | 10/21/21 13:15 |
| 92567560001 | HRP-SB215-0-2-211018    | Solid  | 10/18/21 12:20 | 10/19/21 13:26 |
| 92567560002 | HRP-SB215-5-7-211018    | Solid  | 10/18/21 12:30 | 10/19/21 13:26 |
| 92567560003 | HRP-SB215-16-18-211018  | Solid  | 10/18/21 12:50 | 10/19/21 13:26 |
| 92567560004 | HRP-SB216-1-3-211018    | Solid  | 10/18/21 14:55 | 10/19/21 13:26 |
| 92567218001 | HRP-SB-214-0-2-211014   | Solid  | 10/14/21 13:58 | 10/15/21 13:21 |
| 92567218002 | HRP-SB-214-5-7-211014   | Solid  | 10/14/21 14:10 | 10/15/21 13:21 |
| 92567218003 | HRP-SB-214-14-16-211014 | Solid  | 10/14/21 14:35 | 10/15/21 13:21 |
| 92566661001 | HRP-SB205-0-1-211011    | Solid  | 10/11/21 11:43 | 10/13/21 12:40 |
| 92566661002 | HRP-SB205-13-15-21011   | Solid  | 10/11/21 12:30 | 10/13/21 12:40 |
| 92566661003 | HRP-DUP02-13-15-21011   | Solid  | 10/11/21 12:30 | 10/13/21 12:40 |
| 92566661004 | HRP-SB206-5-7-211012    | Solid  | 10/12/21 12:58 | 10/13/21 12:40 |
| 92566661005 | HRP-SB206-15-17-211012  | Solid  | 10/12/21 13:45 | 10/13/21 12:40 |
| 92566661006 | HRP-SB207-0-1-211013    | Solid  | 10/13/21 08:37 | 10/13/21 12:40 |
| 92566661007 | HRP-SB207-6-8-211013    | Solid  | 10/13/21 09:15 | 10/13/21 12:40 |
| 92566661008 | HRP-DUP03-6-8-211013    | Solid  | 10/13/21 09:15 | 10/13/21 12:40 |
| 92566661009 | HRP-SB207-16-18-211013  | Solid  | 10/13/21 09:32 | 10/13/21 12:40 |





### **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92569119

| Lab ID      | Sample ID               | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------------|-----------|----------|----------------------|------------|
| 92569119004 | HRP-MW205-211026        | EPA 8015C | DMG      | 2                    | PAN        |
| 92569119005 | HRP-MW206-211026        | EPA 8015C | DMG      | 2                    | PAN        |
| 92569119007 | HRP-MW214-211026        | EPA 8015C | DMG      | 2                    | PAN        |
| 92569119008 | HRP-MW208-211026        | EPA 8015C | DMG      | 2                    | PAN        |
| 92569119009 | HRP-MW207-211026        | EPA 8015C | DMG      | 2                    | PAN        |
| 92569427001 | HRP-MW72S-211027        | EPA 8015C | CAG      | 2                    | PAN        |
| 92569427002 | HRP-MW30S-211027        | EPA 8015C | CAG      | 2                    | PAN        |
| 92569427003 | HRP-MW209-211028        | EPA 8015C | CLG      | 2                    | PAN        |
| 92569427004 | HRP-MW100S-211028       | EPA 8015C | CAG      | 2                    | PAN        |
| 92570802001 | HRP-MW201-211102        | EPA 6010D | CBV      | 23                   | PASI-A     |
|             |                         | EPA 7470A | DBB1     | 1                    | PASI-A     |
|             |                         | EPA 8260D | SAS      | 63                   | PASI-C     |
| 92568327001 | HRP-SB225-0-1-211021    | EPA 8015C | AP2      | 2                    | PASI-C     |
|             |                         | SW-846    | KDF      | 1                    | PASI-C     |
| 92568327002 | HRP-SB224-0-1-211021    | EPA 8015C | AP2      | 2                    | PASI-C     |
|             |                         | SW-846    | KDF      | 1                    | PASI-C     |
| 92568327003 | HRP-SB227-0-1-211021    | EPA 8015C | AP2      | 2                    | PASI-C     |
|             |                         | SW-846    | KDF      | 1                    | PASI-C     |
| 92567560001 | HRP-SB215-0-2-211018    | EPA 8015D | JDG      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560002 | HRP-SB215-5-7-211018    | EPA 8015D | JDG      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560003 | HRP-SB215-16-18-211018  | EPA 8015D | JDG      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560004 | HRP-SB216-1-3-211018    | EPA 8015D | JDG      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567218001 | HRP-SB-214-0-2-211014   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567218002 | HRP-SB-214-5-7-211014   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567218003 | HRP-SB-214-14-16-211014 | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661001 | HRP-SB205-0-1-211011    | EPA 8015D | WCR      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661002 | HRP-SB205-13-15-21011   | EPA 8015D | WCR      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661003 | HRP-DUP02-13-15-21011   | EPA 8015D | WCR      | 2                    | PAN        |
|             |                         |           |          |                      |            |





### **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92569119

| Lab ID      | Sample ID              | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------------|-----------|----------|----------------------|------------|
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661004 | HRP-SB206-5-7-211012   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661005 | HRP-SB206-15-17-211012 | EPA 8015D | JAS      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661006 | HRP-SB207-0-1-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661007 | HRP-SB207-6-8-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661008 | HRP-DUP03-6-8-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661009 | HRP-SB207-16-18-211013 | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |

PAN = Pace National - Mt. Juliet

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte





### **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW205-211026     | Lab ID: | 92569119004     | Collecte        | d: 10/26/21 | 12:30  | Received: 10   | /27/21 15:21 Ma | atrix: Water |      |
|------------------------------|---------|-----------------|-----------------|-------------|--------|----------------|-----------------|--------------|------|
| Parameters                   | Results | Units           | Report<br>Limit | MDL         | DF     | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 8015C              | ,       | l Method: EPA i |                 | aration Met | hod: 3 | 511/8015       |                 |              |      |
| Oil Range Organics (C28-C40) | ND      | ug/L            | 100             | 11.8        | 1      | 11/05/21 22:41 | 11/06/21 19:22  |              |      |
| Surrogates                   |         |                 |                 |             |        |                |                 |              |      |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW206-211026                 | Lab ID: | 9256911900                     | 5 Collecte      | d: 10/26/21 | 1 16:55 | Received: 10   | Received: 10/27/21 15:21 Matrix: Water |         |      |  |
|------------------------------------------|---------|--------------------------------|-----------------|-------------|---------|----------------|----------------------------------------|---------|------|--|
| Parameters                               | Results | Units                          | Report<br>Limit | MDL         | DF      | Prepared       | Analyzed                               | CAS No. | Qual |  |
| SVOA (GC) 8015C                          | •       | Method: EPA<br>onal - Mt. Juli |                 | aration Met | hod: 3  | 511/8015       |                                        |         |      |  |
| Oil Range Organics (C28-C40)  Surrogates | 147     | ug/L                           | 100             | 11.8        | 1       | 11/05/21 22:41 | 11/06/21 21:33                         |         |      |  |
| o-Terphenyl (S)                          | 80.0    | %                              | 52.0-156        |             | 4       | 11/05/21 22:41 | 11/06/21 21:33                         | 04 45 4 |      |  |





Project: HRP PRGS SCR

Date: 01/20/2022 03:34 PM

Pace Project No.: 92569119

| Sample: HRP-MW214-211026      | Lab ID: | 92569119007                  | Collecte        | d: 10/26/2   | 1 10:10 | Received: 10/  | /27/21 15:21 Ma | atrix: Water |      |
|-------------------------------|---------|------------------------------|-----------------|--------------|---------|----------------|-----------------|--------------|------|
| Parameters                    | Results | Units                        | Report<br>Limit | MDL          | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 8015C               | ,       | Method: EPA onal - Mt. Julie | '               | paration Met | hod: 35 | 511/8015       |                 |              |      |
| Oil Range Organics (C28-C40)  | ND      | ug/L                         | 100             | 11.8         | 1       | 11/05/21 22:41 | 11/06/21 19:48  |              |      |
| Surrogates<br>o-Terphenyl (S) | 100     | %                            | 52.0-156        |              | 1       | 11/05/21 22:41 | 11/06/21 19:48  | 84-15-1      |      |

11/05/21 22:41 11/06/21 20:14 84-15-1





Surrogates o-Terphenyl (S)

Date: 01/20/2022 03:34 PM

### **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92569119 Sample: HRP-MW208-211026 Lab ID: 92569119008 Collected: 10/26/21 10:10 Received: 10/27/21 15:21 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual SVOA (GC) 8015C Analytical Method: EPA 8015C Preparation Method: 3511/8015 Pace National - Mt. Juliet Oil Range Organics (C28-C40) ND ug/L 100 11.8 11/05/21 22:41 11/06/21 20:14

52.0-156

93.0

%

11/05/21 22:41 11/06/21 20:40 84-15-1





### **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92569119

92.0

%

Pace Project No.:

o-Terphenyl (S)

Date: 01/20/2022 03:34 PM

Sample: HRP-MW207-211026 Lab ID: 92569119009 Collected: 10/26/21 10:10 Received: 10/27/21 15:21 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual SVOA (GC) 8015C Analytical Method: EPA 8015C Preparation Method: 3511/8015 Pace National - Mt. Juliet Oil Range Organics (C28-C40) ND ug/L 100 11.8 11/05/21 22:41 11/06/21 20:40 Surrogates

52.0-156





Project: HRP PRGS SCR

Date: 01/20/2022 03:34 PM

Pace Project No.: 92569119

| Sample: HRP-MW72S-211027                 | Lab ID: | 92569427001                       | Collecte | d: 10/27/2   | 1 14:40  | Received: 10/  | /28/21 12:56 Ma | atrix: Water |      |
|------------------------------------------|---------|-----------------------------------|----------|--------------|----------|----------------|-----------------|--------------|------|
|                                          |         |                                   | Report   |              |          |                |                 |              |      |
| Parameters                               | Results | Units                             | Limit    | MDL          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 8015C                          | ,       | Method: EPA 8<br>onal - Mt. Julie |          | paration Met | thod: 35 | 511/8015       |                 |              |      |
| Oil Range Organics (C28-C40)  Surrogates | 1170    | ug/L                              | 100      | 11.8         | 1        | 11/09/21 10:08 | 11/09/21 23:01  |              |      |
| o-Terphenyl (S)                          | 0.00    | %                                 | 52.0-156 |              | 1        | 11/09/21 10:08 | 11/09/21 23:01  | 84-15-1      | SR   |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW30S-211027                   | Lab ID: | 92569427002                     | 2 Collecte      | d: 10/27/2  | 1 14:58 | Received: 10/  | /28/21 12:56 Ma | atrix: Water |      |
|--------------------------------------------|---------|---------------------------------|-----------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                                 | Results | Units                           | Report<br>Limit | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 8015C                            | •       | Method: EPA<br>onal - Mt. Julie |                 | aration Met | hod: 3  | 511/8015       |                 |              |      |
| Oil Range Organics (C28-C40)<br>Surrogates | 63.6J   | ug/L                            | 100             | 11.8        | 1       | 11/09/21 10:08 | 11/09/21 19:19  |              | J    |
| o-Terphenyl (S)                            | 88.4    | %                               | 52.0-156        |             | 1       | 11/09/21 10:08 | 11/09/21 19:19  | 84-15-1      |      |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW209-211028                 | Lab ID: | 92569427003                  | Collecte        | d: 10/28/2 <sup>2</sup> | 09:55  | Received: 10/  | Received: 10/28/21 12:56 Matrix: Water |         |      |  |
|------------------------------------------|---------|------------------------------|-----------------|-------------------------|--------|----------------|----------------------------------------|---------|------|--|
| Parameters                               | Results | Units                        | Report<br>Limit | MDL                     | DF     | Prepared       | Analyzed                               | CAS No. | Qual |  |
| SVOA (GC) 8015C                          | •       | Method: EPA onal - Mt. Julie |                 | aration Met             | hod: 3 | 511/8015       |                                        |         |      |  |
| Oil Range Organics (C28-C40)  Surrogates | 33.8J   | ug/L                         | 100             | 11.8                    | 1      | 11/09/21 10:16 | 11/10/21 03:39                         |         | J    |  |
| o-Terphenyl (S)                          | 85.3    | %                            | 52.0-156        |                         | 1      | 11/09/21 10:16 | 11/10/21 03:39                         | 84-15-1 |      |  |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW100S-211028                | Lab ID: | 92569427004                     | Collecte        | d: 10/28/2 <sup>2</sup> | 1 09:50 | Received: 10   | Received: 10/28/21 12:56 Matrix: Water |         |      |  |  |
|------------------------------------------|---------|---------------------------------|-----------------|-------------------------|---------|----------------|----------------------------------------|---------|------|--|--|
| Parameters                               | Results | Units                           | Report<br>Limit | MDL                     | DF      | Prepared       | Analyzed                               | CAS No. | Qual |  |  |
| SVOA (GC) 8015C                          | •       | Method: EPA<br>onal - Mt. Julie |                 | aration Met             | hod: 3  | 511/8015       |                                        |         |      |  |  |
| Oil Range Organics (C28-C40)  Surrogates | ND      | ug/L                            | 100             | 11.8                    | 1       | 11/09/21 10:16 | 11/10/21 22:10                         |         |      |  |  |
| o-Terphenyl (S)                          | 90.0    | %                               | 52.0-156        |                         | 1       | 11/09/21 10:16 | 11/10/21 22:10                         | 84-15-1 |      |  |  |

(704)875-9092



Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

| Sample: HRP-MW201-211102                                                                                                                                                                                                                                                                                                      | Lab ID:                                                                | 92570802001                                                                                                                                                                                                                    | Collected:                                                   | 11/02/21                                                                                  | 09:15                                     | Received: 11/  | 04/21 10:30 Ma                                                                                                                                                                                                       | atrix: Water                                                                                                                                  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Parameters                                                                                                                                                                                                                                                                                                                    | Results                                                                | Units                                                                                                                                                                                                                          | Report<br>Limit                                              | MDL                                                                                       | DF                                        | Prepared       | Analyzed                                                                                                                                                                                                             | CAS No.                                                                                                                                       | Qua |
| 6010 MET ICP                                                                                                                                                                                                                                                                                                                  | Analytical                                                             | Method: EPA 6                                                                                                                                                                                                                  | 010D Prepa                                                   | ration Meth                                                                               | od: EE                                    | Α 3010Δ        |                                                                                                                                                                                                                      |                                                                                                                                               |     |
| SO TO WILL TO                                                                                                                                                                                                                                                                                                                 | •                                                                      | lytical Services                                                                                                                                                                                                               | •                                                            | ation weth                                                                                | iou. Li                                   | A 30 TOA       |                                                                                                                                                                                                                      |                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                               |                                                                        | •                                                                                                                                                                                                                              | - Asileville                                                 |                                                                                           |                                           |                |                                                                                                                                                                                                                      |                                                                                                                                               |     |
| Aluminum                                                                                                                                                                                                                                                                                                                      | 245                                                                    | ug/L                                                                                                                                                                                                                           | 100                                                          | 72.0                                                                                      | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Antimony                                                                                                                                                                                                                                                                                                                      | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.0                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Arsenic                                                                                                                                                                                                                                                                                                                       | ND                                                                     | ug/L                                                                                                                                                                                                                           | 10.0                                                         | 4.7                                                                                       | 1                                         |                | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Barium                                                                                                                                                                                                                                                                                                                        | 27.3                                                                   | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.5                                                                                       | 1                                         |                | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Beryllium                                                                                                                                                                                                                                                                                                                     | ND                                                                     | ug/L                                                                                                                                                                                                                           | 1.0                                                          | 0.70                                                                                      | 1                                         |                | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Cadmium                                                                                                                                                                                                                                                                                                                       | 0.54J                                                                  | ug/L                                                                                                                                                                                                                           | 1.0                                                          | 0.40                                                                                      | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-43-9                                                                                                                                     |     |
| Calcium                                                                                                                                                                                                                                                                                                                       | 46900                                                                  | ug/L                                                                                                                                                                                                                           | 100                                                          | 94.2                                                                                      | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-70-2                                                                                                                                     |     |
| Chromium                                                                                                                                                                                                                                                                                                                      | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.7                                                                                       | 1                                         | 11/12/21 12:13 | 11/15/21 05:35                                                                                                                                                                                                       | 7440-47-3                                                                                                                                     |     |
| Cobalt                                                                                                                                                                                                                                                                                                                        | 6.2                                                                    | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.6                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-48-4                                                                                                                                     |     |
| Copper                                                                                                                                                                                                                                                                                                                        | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 4.3                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-50-8                                                                                                                                     |     |
| ron                                                                                                                                                                                                                                                                                                                           | 221                                                                    | ug/L                                                                                                                                                                                                                           | 50.0                                                         | 41.5                                                                                      | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7439-89-6                                                                                                                                     |     |
| Lead                                                                                                                                                                                                                                                                                                                          | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 4.5                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7439-92-1                                                                                                                                     |     |
| Magnesium                                                                                                                                                                                                                                                                                                                     | 12800                                                                  | ug/L                                                                                                                                                                                                                           | 100                                                          | 67.8                                                                                      | 1                                         | 11/12/21 12:13 | 11/15/21 05:35                                                                                                                                                                                                       | 7439-95-4                                                                                                                                     |     |
| Manganese                                                                                                                                                                                                                                                                                                                     | 334                                                                    | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.4                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7439-96-5                                                                                                                                     |     |
| Molybdenum                                                                                                                                                                                                                                                                                                                    | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.9                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7439-98-7                                                                                                                                     |     |
| Nickel                                                                                                                                                                                                                                                                                                                        | 5.6                                                                    | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.5                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-02-0                                                                                                                                     |     |
| Selenium                                                                                                                                                                                                                                                                                                                      | ND                                                                     | ug/L                                                                                                                                                                                                                           | 10.0                                                         | 4.7                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7782-49-2                                                                                                                                     |     |
| Silver                                                                                                                                                                                                                                                                                                                        | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 2.5                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-22-4                                                                                                                                     |     |
| Sodium                                                                                                                                                                                                                                                                                                                        | 15400                                                                  | ug/L                                                                                                                                                                                                                           | 5000                                                         | 611                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-23-5                                                                                                                                     |     |
| Thallium                                                                                                                                                                                                                                                                                                                      | ND                                                                     | ug/L                                                                                                                                                                                                                           | 10.0                                                         | 8.1                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-28-0                                                                                                                                     |     |
| Hardness, Total(SM 2340B)                                                                                                                                                                                                                                                                                                     | 170000                                                                 | ug/L                                                                                                                                                                                                                           | 662                                                          | 131                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       |                                                                                                                                               |     |
| Vanadium                                                                                                                                                                                                                                                                                                                      | ND                                                                     | ug/L                                                                                                                                                                                                                           | 5.0                                                          | 3.9                                                                                       | 1                                         |                | 11/16/21 02:45                                                                                                                                                                                                       | 7440-62-2                                                                                                                                     |     |
| Zinc                                                                                                                                                                                                                                                                                                                          | ND                                                                     | ug/L                                                                                                                                                                                                                           | 10.0                                                         | 9.5                                                                                       | 1                                         | 11/12/21 12:13 | 11/16/21 02:45                                                                                                                                                                                                       | 7440-66-6                                                                                                                                     |     |
| 7470 Mercury                                                                                                                                                                                                                                                                                                                  | Analytical                                                             | Method: EPA 7                                                                                                                                                                                                                  | 470A Prepar                                                  | ation Meth                                                                                | od: EP                                    | A 7470A        |                                                                                                                                                                                                                      |                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                               | Pace Ana                                                               | lytical Services                                                                                                                                                                                                               | - Asheville                                                  |                                                                                           |                                           |                |                                                                                                                                                                                                                      |                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                                                                                                                                                                                                |                                                              |                                                                                           |                                           |                |                                                                                                                                                                                                                      |                                                                                                                                               |     |
| Mercury                                                                                                                                                                                                                                                                                                                       | ND                                                                     | ug/L                                                                                                                                                                                                                           | 0.20                                                         | 0.12                                                                                      | 1                                         | 11/11/21 20:46 | 11/16/21 10:50                                                                                                                                                                                                       | 7439-97-6                                                                                                                                     |     |
| •                                                                                                                                                                                                                                                                                                                             |                                                                        | ug/L<br>Method: EPA 8                                                                                                                                                                                                          |                                                              | 0.12                                                                                      | 1                                         | 11/11/21 20:46 | 11/16/21 10:50                                                                                                                                                                                                       | 7439-97-6                                                                                                                                     |     |
| •                                                                                                                                                                                                                                                                                                                             | Analytical                                                             | _                                                                                                                                                                                                                              | 260D                                                         | 0.12                                                                                      | 1                                         | 11/11/21 20:46 | 11/16/21 10:50                                                                                                                                                                                                       | 7439-97-6                                                                                                                                     |     |
| 3260D MSV Low Level                                                                                                                                                                                                                                                                                                           | Analytical                                                             | Method: EPA 8                                                                                                                                                                                                                  | 260D                                                         | 0.12<br>5.1                                                                               | 1                                         | 11/11/21 20:46 | 11/16/21 10:50<br>11/06/21 21:26                                                                                                                                                                                     |                                                                                                                                               |     |
| 3260D MSV Low Level Acetone                                                                                                                                                                                                                                                                                                   | Analytical<br>Pace Ana                                                 | Method: EPA 8<br>lytical Services                                                                                                                                                                                              | 260D<br>- Charlotte                                          |                                                                                           |                                           | 11/11/21 20:46 |                                                                                                                                                                                                                      | 67-64-1                                                                                                                                       |     |
| Acetone Benzene                                                                                                                                                                                                                                                                                                               | Analytical<br>Pace Ana<br>ND                                           | Method: EPA 8<br>lytical Services<br>ug/L                                                                                                                                                                                      | 260D<br>- Charlotte<br>25.0                                  | 5.1                                                                                       | 1                                         | 11/11/21 20:46 | 11/06/21 21:26                                                                                                                                                                                                       | 67-64-1<br>71-43-2                                                                                                                            |     |
| Acetone Benzene Bromobenzene                                                                                                                                                                                                                                                                                                  | Analytical<br>Pace Ana<br>ND<br>ND                                     | Method: EPA 8<br>lytical Services<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                                      | 260D<br>- Charlotte<br>25.0<br>1.0<br>1.0                    | 5.1<br>0.34                                                                               | 1                                         | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                                                                                                                                   | 67-64-1<br>71-43-2<br>108-86-1                                                                                                                |     |
| Acetone Benzene Bromobenzene Bromochloromethane                                                                                                                                                                                                                                                                               | Analytical<br>Pace Ana<br>ND<br>ND<br>ND                               | Method: EPA 8<br>lytical Services<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                              | 260D<br>- Charlotte<br>25.0<br>1.0<br>1.0                    | 5.1<br>0.34<br>0.29                                                                       | 1<br>1<br>1                               | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26                                                                                                                                                                                     | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5                                                                                                     |     |
| Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane                                                                                                                                                                                                                                                          | Analytical<br>Pace Ana<br>ND<br>ND<br>ND<br>ND                         | Method: EPA 8<br>lytical Services<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                                      | 260D<br>- Charlotte<br>25.0<br>1.0<br>1.0                    | 5.1<br>0.34<br>0.29<br>0.47<br>0.31                                                       | 1<br>1<br>1                               | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                                                                                                                 | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4                                                                                          |     |
| Acetone Benzene Bromobenzene Bromodichloromethane Bromoform                                                                                                                                                                                                                                                                   | Analytical<br>Pace Ana<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND             | Method: EPA 8<br>lytical Services<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                                      | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34                                               | 1<br>1<br>1<br>1<br>1                     | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                                                                             | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2                                                                               |     |
| Acetone Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane                                                                                                                                                                                                                                                      | Analytical<br>Pace Ana<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND       | Method: EPA 8<br>lytical Services<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                                                              | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0               | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34                                               | 1<br>1<br>1<br>1                          | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                                                           | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9                                                                    |     |
| Acetone Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane                                                                                                                                                                                                                            | Analytical<br>Pace Ana<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Method: EPA 8 lytical Services  ug/L                                                                                                             | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0        | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0                                 | 1<br>1<br>1<br>1<br>1<br>1                | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                                         | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3                                                         |     |
| Acetone Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane | Analytical Pace Ana ND             | Method: EPA 8 lytical Services  ug/L                                                                         | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0        | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1           | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                                       | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3<br>56-23-5                                              |     |
| Acetone Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane C-Butanone (MEK) Carbon tetrachloride Chlorobenzene                                                                                                                                                | Analytical Pace Ana ND             | Method: EPA 8 lytical Services  ug/L                                           | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0<br>1.0        | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0<br>0.33<br>0.28                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26<br>11/06/21 21:26                                     | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3<br>56-23-5<br>108-90-7                                  |     |
| Acetone Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane Bromomethane Bromomethane C-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane                                                                                                                                                             | Analytical Pace Ana ND             | Method: EPA 8 lytical Services  ug/L                         | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0<br>1.0        | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0<br>0.33<br>0.28<br>0.65         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26                   | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3<br>56-23-5<br>108-90-7<br>75-00-3                       |     |
| Acetone Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane C-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform                                                                                                                                                             | Analytical Pace Ana ND             | Method: EPA 8 lytical Services  ug/L  ug/L | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0<br>1.0<br>1.0 | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0<br>0.33<br>0.28<br>0.65<br>0.43 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26 | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3<br>56-23-5<br>108-90-7<br>75-00-3<br>67-66-3            |     |
| Mercury  8260D MSV Low Level  Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene                                                                                                        | Analytical Pace Ana ND             | Method: EPA 8 lytical Services  ug/L                         | 25.0<br>1.0<br>1.0<br>1.0<br>1.0<br>2.0<br>5.0<br>1.0        | 5.1<br>0.34<br>0.29<br>0.47<br>0.31<br>0.34<br>1.7<br>4.0<br>0.33<br>0.28<br>0.65         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 11/11/21 20:46 | 11/06/21 21:26<br>11/06/21 21:26                   | 67-64-1<br>71-43-2<br>108-86-1<br>74-97-5<br>75-27-4<br>75-25-2<br>74-83-9<br>78-93-3<br>56-23-5<br>108-90-7<br>75-00-3<br>67-66-3<br>74-87-3 |     |





Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

| Sample: HRP-MW201-211102                         | Lab ID:    | 92570802001     | Collecte        | d: 11/02/21 | 09:15  | Received: 11 | /04/21 10:30 Ma | atrix: Water |     |
|--------------------------------------------------|------------|-----------------|-----------------|-------------|--------|--------------|-----------------|--------------|-----|
| Parameters                                       | Results    | Units           | Report<br>Limit | MDL         | DF     | Prepared     | Analyzed        | CAS No.      | Qua |
| 8260D MSV Low Level                              | Analytical | Method: EPA 8   | 3260D           |             |        |              |                 |              |     |
|                                                  |            | ytical Services |                 |             |        |              |                 |              |     |
| 1.2 Dibromo 2 obloroproposo                      | ND .       | ,<br>ua/l       | 2.0             | 0.34        | 1      |              | 11/06/21 21:26  | 06 12 9      |     |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane | ND<br>ND   | ug/L            | 2.0<br>1.0      | 0.34        | 1<br>1 |              | 11/06/21 21:26  |              |     |
| 1,2-Dibromoethane (EDB)                          | ND<br>ND   | ug/L<br>ug/L    | 1.0             | 0.30        | 1      |              | 11/06/21 21:26  |              |     |
| Dibromomethane                                   | ND         | ug/L<br>ug/L    | 1.0             | 0.27        | 1      |              | 11/06/21 21:26  |              |     |
| 1,2-Dichlorobenzene                              | ND         | ug/L<br>ug/L    | 1.0             | 0.39        | 1      |              | 11/06/21 21:26  |              |     |
| 1,3-Dichlorobenzene                              | ND         | ug/L<br>ug/L    | 1.0             | 0.34        | 1      |              | 11/06/21 21:26  |              |     |
| 1,4-Dichlorobenzene                              | ND         |                 | 1.0             | 0.34        | 1      |              | 11/06/21 21:26  |              |     |
| Dichlorodifluoromethane                          | ND<br>ND   | ug/L            | 1.0             | 0.35        | 1      |              | 11/06/21 21:26  |              |     |
|                                                  |            | ug/L            |                 |             |        |              |                 |              |     |
| 1,1-Dichloroethane                               | ND         | ug/L            | 1.0             | 0.37        | 1      |              | 11/06/21 21:26  |              |     |
| ,2-Dichloroethane                                | ND         | ug/L            | 1.0             | 0.32        | 1      |              | 11/06/21 21:26  |              |     |
| I,1-Dichloroethene                               | ND         | ug/L            | 1.0             | 0.35        | 1      |              | 11/06/21 21:26  |              |     |
| cis-1,2-Dichloroethene                           | ND         | ug/L            | 1.0             | 0.38        | 1      |              | 11/06/21 21:26  |              |     |
| rans-1,2-Dichloroethene                          | ND         | ug/L            | 1.0             | 0.40        | 1      |              | 11/06/21 21:26  |              |     |
| ,2-Dichloropropane                               | ND         | ug/L            | 1.0             | 0.36        | 1      |              | 11/06/21 21:26  |              |     |
| ,3-Dichloropropane                               | ND         | ug/L            | 1.0             | 0.28        | 1      |              | 11/06/21 21:26  |              |     |
| 2,2-Dichloropropane                              | ND         | ug/L            | 1.0             | 0.39        | 1      |              | 11/06/21 21:26  |              |     |
| ,1-Dichloropropene                               | ND         | ug/L            | 1.0             | 0.43        | 1      |              | 11/06/21 21:26  |              |     |
| sis-1,3-Dichloropropene                          | ND         | ug/L            | 1.0             | 0.36        | 1      |              | 11/06/21 21:26  |              |     |
| rans-1,3-Dichloropropene                         | ND         | ug/L            | 1.0             | 0.36        | 1      |              | 11/06/21 21:26  |              |     |
| Diisopropyl ether                                | ND         | ug/L            | 1.0             | 0.31        | 1      |              | 11/06/21 21:26  |              |     |
| Ethylbenzene                                     | ND         | ug/L            | 1.0             | 0.30        | 1      |              | 11/06/21 21:26  |              |     |
| Hexachloro-1,3-butadiene                         | ND         | ug/L            | 2.0             | 1.5         | 1      |              | 11/06/21 21:26  |              |     |
| 2-Hexanone                                       | ND         | ug/L            | 5.0             | 0.48        | 1      |              | 11/06/21 21:26  |              |     |
| o-Isopropyltoluene                               | ND         | ug/L            | 1.0             | 0.41        | 1      |              | 11/06/21 21:26  |              |     |
| Methylene Chloride                               | ND         | ug/L            | 5.0             | 2.0         | 1      |              | 11/06/21 21:26  | 75-09-2      |     |
| I-Methyl-2-pentanone (MIBK)                      | ND         | ug/L            | 5.0             | 2.7         | 1      |              | 11/06/21 21:26  | 108-10-1     |     |
| Methyl-tert-butyl ether                          | ND         | ug/L            | 1.0             | 0.42        | 1      |              | 11/06/21 21:26  | 1634-04-4    |     |
| Naphthalene                                      | ND         | ug/L            | 1.0             | 0.64        | 1      |              | 11/06/21 21:26  | 91-20-3      |     |
| Styrene                                          | ND         | ug/L            | 1.0             | 0.29        | 1      |              | 11/06/21 21:26  | 100-42-5     |     |
| ,1,1,2-Tetrachloroethane                         | ND         | ug/L            | 1.0             | 0.31        | 1      |              | 11/06/21 21:26  | 630-20-6     |     |
| ,1,2,2-Tetrachloroethane                         | ND         | ug/L            | 1.0             | 0.22        | 1      |              | 11/06/21 21:26  | 79-34-5      |     |
| Tetrachloroethene                                | 0.52J      | ug/L            | 1.0             | 0.29        | 1      |              | 11/06/21 21:26  | 127-18-4     |     |
| oluene                                           | ND         | ug/L            | 1.0             | 0.48        | 1      |              | 11/06/21 21:26  | 108-88-3     |     |
| ,2,3-Trichlorobenzene                            | ND         | ug/L            | 1.0             | 0.81        | 1      |              | 11/06/21 21:26  | 87-61-6      |     |
| ,2,4-Trichlorobenzene                            | ND         | ug/L            | 1.0             | 0.64        | 1      |              | 11/06/21 21:26  | 120-82-1     |     |
| ,1,1-Trichloroethane                             | ND         | ug/L            | 1.0             | 0.33        | 1      |              | 11/06/21 21:26  | 71-55-6      |     |
| ,1,2-Trichloroethane                             | ND         | ug/L            | 1.0             | 0.32        | 1      |              | 11/06/21 21:26  | 79-00-5      |     |
| richloroethene                                   | ND         | ug/L            | 1.0             | 0.38        | 1      |              | 11/06/21 21:26  | 79-01-6      |     |
| Frichlorofluoromethane                           | ND         | ug/L            | 1.0             | 0.30        | 1      |              | 11/06/21 21:26  |              |     |
| ,2,3-Trichloropropane                            | ND         | ug/L            | 1.0             | 0.26        | 1      |              | 11/06/21 21:26  | 96-18-4      |     |
| /inyl acetate                                    | ND         | ug/L            | 2.0             | 1.3         | 1      |              | 11/06/21 21:26  |              |     |
| /inyl chloride                                   | ND         | ug/L            | 1.0             | 0.39        | 1      |              | 11/06/21 21:26  |              |     |
| (ylene (Total)                                   | ND         | ug/L            | 1.0             | 0.34        | 1      |              | 11/06/21 21:26  |              |     |
| m&p-Xylene                                       | ND         | ug/L            | 2.0             | 0.71        | 1      |              | 11/06/21 21:26  |              |     |
| o-Xylene                                         | ND         | ug/L            | 1.0             | 0.34        | 1      |              | 11/06/21 21:26  |              |     |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Sample: HRP-MW201-211102  | Lab ID:    | 92570802001      | Collecte    | d: 11/02/2 | 21 09:15 | Received: 11 | /04/21 10:30 Ma | atrix: Water |      |
|---------------------------|------------|------------------|-------------|------------|----------|--------------|-----------------|--------------|------|
|                           |            |                  | Report      |            |          |              |                 |              |      |
| Parameters                | Results    | Units            | Limit       | MDL        | DF       | Prepared     | Analyzed        | CAS No.      | Qual |
| 8260D MSV Low Level       | Analytical | Method: EPA 8    | 3260D       |            |          |              |                 |              |      |
|                           | Pace Ana   | lytical Services | - Charlotte |            |          |              |                 |              |      |
| Surrogates                |            |                  |             |            |          |              |                 |              |      |
| 4-Bromofluorobenzene (S)  | 96         | %                | 70-130      |            | 1        |              | 11/06/21 21:26  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 99         | %                | 70-130      |            | 1        |              | 11/06/21 21:26  | 17060-07-0   |      |
| Toluene-d8 (S)            | 101        | %                | 70-130      |            | 1        |              | 11/06/21 21:26  | 2037-26-5    |      |

11/02/21 16:54



N2



# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Percent Moisture

Date: 01/20/2022 03:34 PM

| Sample: HRP-SB225-0-1-211021             | Lab ID:         | 92568327001    | Collecte   | d: 10/21/21  | 07:45  | Received: 10/     | 21/21 13:15 Ma | atrix: Solid |      |
|------------------------------------------|-----------------|----------------|------------|--------------|--------|-------------------|----------------|--------------|------|
| Results reported on a "dry weight"       | " basis and are | e adjusted for | percent mo | oisture, sar | nple s | ize and any dilut | ions.          |              |      |
|                                          |                 |                | Report     |              |        |                   |                |              |      |
| Parameters                               | Results         | Units          | Limit      | MDL          | DF     | Prepared          | Analyzed       | CAS No.      | Qual |
| 8015 GCS THC-ORO                         | ,               | Method: EPA 8  |            | aration Met  | hod: E | PA 3546           |                |              |      |
| Oil Range Organics (C28-C40)  Surrogates | 105             | mg/kg          | 20.5       | 12.7         | 1      | 11/01/21 11:32    | 11/02/21 10:46 |              |      |
| n-Pentacosane (S)                        | 65              | %              | 32-130     |              | 1      | 11/01/21 11:32    | 11/02/21 10:46 | 629-99-2     |      |
| Percent Moisture                         | Analytical      | Method: SW-8   | 46         |              |        |                   |                |              |      |

0.10

0.10

Pace Analytical Services - Charlotte

%

26.3





Pace Project No.:

Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92569119

Sample: HRP-SB224-0-1-211021 Lab ID: 92568327002 Collected: 10/21/21 08:25 Received: 10/21/21 13:15 Matrix: Solid

|                                          |            |                 | Report                     |             |        |                |                |          |      |
|------------------------------------------|------------|-----------------|----------------------------|-------------|--------|----------------|----------------|----------|------|
| Parameters                               | Results    | Units           | Limit                      | MDL .       | DF     | Prepared       | Analyzed       | CAS No.  | Qual |
| 8015 GCS THC-ORO                         | ,          |                 | A 8015C Prepes - Charlotte | aration Met | hod: E | PA 3546        |                |          |      |
| Oil Range Organics (C28-C40)  Surrogates | 111        | mg/kg           | 29.0                       | 18.0        | 1      | 11/02/21 14:24 | 11/02/21 16:41 |          |      |
| n-Pentacosane (S)                        | 66         | %               | 32-130                     |             | 1      | 11/02/21 14:24 | 11/02/21 16:41 | 629-99-2 |      |
| Percent Moisture                         | Analytical | Method: SW      | -846                       |             |        |                |                |          |      |
|                                          | Pace Ana   | lytical Service | es - Charlotte             |             |        |                |                |          |      |
| Percent Moisture                         | 25.0       | %               | 0.10                       | 0.10        | 1      |                | 11/02/21 16:55 |          | N2   |



Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

Sample: HRP-SB227-0-1-211021 Lab ID: 92568327003 Collected: 10/21/21 08:50 Received: 10/21/21 13:15 Matrix: Solid

|                                          |         |                               | Report                     |      |         |                |                |          |      |
|------------------------------------------|---------|-------------------------------|----------------------------|------|---------|----------------|----------------|----------|------|
| Parameters                               | Results | Units                         | Limit                      | MDL  | DF      | Prepared       | Analyzed       | CAS No.  | Qual |
| 8015 GCS THC-ORO                         | •       |                               | A 8015C Prepes - Charlotte |      | thod: E | PA 3546        |                |          |      |
| Oil Range Organics (C28-C40)  Surrogates | 21.7    | mg/kg                         | 17.9                       | 11.1 | 1       | 11/01/21 11:32 | 11/02/21 11:36 |          |      |
| n-Pentacosane (S)                        | 64      | %                             | 32-130                     |      | 1       | 11/01/21 11:32 | 11/02/21 11:36 | 629-99-2 |      |
| Percent Moisture                         | ,       | Method: SW<br>lytical Service | -846<br>es - Charlotte     |      |         |                |                |          |      |
| Percent Moisture                         | 15.3    | %                             | 0.10                       | 0.10 | 1       |                | 11/02/21 16:55 |          | N2   |





Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Sample: HRP-SB215-0-2-211018 Lab ID: 92567560001 Collected: 10/18/21 12:20 Received: 10/19/21 13:26 Matrix: Solid

| Parameters                                 | Results | Units                        | Report<br>Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
|--------------------------------------------|---------|------------------------------|-----------------------|--------------|---------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                            | •       | Method: EP.<br>onal - Mt. Ju | A 8015D Prep<br>liet  | aration Met  | hod: 3  | 546            |                |         |      |
| Oil Range Organics (C28-C40)<br>Surrogates | 68.5    | mg/kg                        | 4.28                  | 0.293        | 1       | 10/29/21 22:39 | 10/30/21 23:41 |         |      |
| o-Terphenyl (S)                            | 55.9    | %                            | 18.0-148              |              | 1       | 10/29/21 22:39 | 10/30/21 23:41 | 84-15-1 |      |
| Total Solids 2540 G-2011                   | ,       | Method: SM<br>onal - Mt. Ju  | l 2540G Prepa<br>liet | aration Meth | nod: SN | И 2540 G       |                |         |      |
| Total Solids                               | 93.6    | %                            |                       |              | 1       | 10/25/21 14:26 | 10/25/21 14:37 |         |      |





Project: HR

HRP PRGS SCR

Pace Project No.:

**Total Solids** 

Date: 01/20/2022 03:34 PM

92569119

| Sample: HRP-SB215-5-7-211018               | Lab ID:       | 92567560002                     | 2 Collecte      | d: 10/18/21  | 12:30   | Received: 10/      | 19/21 13:26 Ma | atrix: Solid |      |
|--------------------------------------------|---------------|---------------------------------|-----------------|--------------|---------|--------------------|----------------|--------------|------|
| Results reported on a "dry weight"         | basis and are | e adjusted for                  | percent me      | oisture, sar | nple s  | ize and any diluti | ons.           |              |      |
| Parameters                                 | Results       | Units                           | Report<br>Limit | MDL          | DF      | Prepared           | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 8015D                            | ,             | Method: EPA<br>onal - Mt. Julie |                 | aration Met  | hod: 3  | 546                |                |              |      |
| Oil Range Organics (C28-C40)<br>Surrogates | 0.679J        | mg/kg                           | 4.60            | 0.315        | 1       | 10/29/21 22:39     | 10/30/21 19:51 |              | B,J  |
| o-Terphenyl (S)                            | 57.3          | %                               | 18.0-148        |              | 1       | 10/29/21 22:39     | 10/30/21 19:51 | 84-15-1      |      |
| Total Solids 2540 G-2011                   | Analytical    | Method: SM 2                    | 2540G Prepa     | aration Meth | nod: SI | M 2540 G           |                |              |      |

10/25/21 14:26 10/25/21 14:37

Pace National - Mt. Juliet

%

87.0





Pace Project No.:

Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92569119

Sample: HRP-SB215-16-18-211018 Lab ID: 92567560003 Collected: 10/18/21 12:50 Received: 10/19/21 13:26 Matrix: Solid

Collected. 10/10/21 12.50 Necesived. 10/19/21 15.20

| Results reported on a "dry weigh         | nt" basis and ar | e adjusted f                | or percent me<br>Report | oisture, saı | nple s  | ize and any diluti | ions.          |         |      |
|------------------------------------------|------------------|-----------------------------|-------------------------|--------------|---------|--------------------|----------------|---------|------|
| Parameters                               | Results          | Units                       | Limit                   | MDL          | DF      | Prepared           | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,                | Method: EP<br>onal - Mt. Ju | A 8015D Prep<br>liet    | paration Met | hod: 3  | 546                |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 3.36J            | mg/kg                       | 5.08                    | 0.348        | 1       | 10/29/21 22:39     | 10/30/21 21:26 |         | B,J  |
| o-Terphenyl (S)                          | 63.3             | %                           | 18.0-148                |              | 1       | 10/29/21 22:39     | 10/30/21 21:26 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,                | Method: SM<br>onal - Mt. Ju | l 2540G Prepaliet       | aration Meth | nod: SN | M 2540 G           |                |         |      |
| Total Solids                             | 78.7             | %                           |                         |              | 1       | 10/25/21 14:26     | 10/25/21 14:37 |         |      |





Project:

Date: 01/20/2022 03:34 PM

HRP PRGS SCR

Pace Project No.:

92569119

| Sample: HRP-S | B216-1-3-211018 |
|---------------|-----------------|
|---------------|-----------------|

Lab ID: 92567560004

Collected: 10/18/21 14:55 Received: 10/19/21 13:26 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

|                                          |         |                             | Report                | , , , , , , , , , , , , , , , , , , , , | •       | ,              |                |         |      |
|------------------------------------------|---------|-----------------------------|-----------------------|-----------------------------------------|---------|----------------|----------------|---------|------|
| Parameters                               | Results | Units                       | Limit                 | MDL                                     | DF      | Prepared       | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | •       | Method: EP<br>onal - Mt. Ju | A 8015D Prep<br>liet  | aration Me                              | thod: 3 | 546            |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 5.51    | mg/kg                       | 4.92                  | 0.337                                   | 1       | 10/29/21 22:39 | 10/30/21 22:47 |         |      |
| o-Terphenyl (S)                          | 67.5    | %                           | 18.0-148              |                                         | 1       | 10/29/21 22:39 | 10/30/21 22:47 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,       | Method: SM<br>onal - Mt. Ju | l 2540G Prepa<br>liet | aration Metl                            | nod: SN | M 2540 G       |                |         |      |
| Total Solids                             | 81.3    | %                           |                       |                                         | 1       | 10/25/21 14:26 | 10/25/21 14:37 |         |      |





Project: HRP PRGS SCR

92569119

Pace Project No.:

Date: 01/20/2022 03:34 PM

Sample: HRP-SB-214-0-2-211014 Lab ID: 92567218001 Collected: 10/14/21 13:58 Received: 10/15/21 13:21 Matrix: Solid

| Parameters                               | Results | Units                       | Report<br>Limit                 | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
|------------------------------------------|---------|-----------------------------|---------------------------------|--------------|---------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                          | ,       | Method: EP                  | – —— -<br>A 8015D Prep<br>lliet | paration Met | hod: 3  | 546            | -              | -       |      |
| Oil Range Organics (C28-C40)  Surrogates | ND      | mg/kg                       | 4.49                            | 0.308        | 1       | 10/27/21 16:09 | 10/28/21 04:53 |         |      |
| o-Terphenyl (S)                          | 74.4    | %                           | 18.0-148                        |              | 1       | 10/27/21 16:09 | 10/28/21 04:53 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | •       | Method: SM<br>onal - Mt. Ju | l 2540G Prepaliet               | aration Meth | nod: SN | M 2540 G       |                |         |      |
| Total Solids                             | 89.0    | %                           |                                 |              | 1       | 10/22/21 10:31 | 10/22/21 10:37 |         |      |





Project: HRP PRGS SCR

Date: 01/20/2022 03:34 PM

92569119

Pace Project No.:

Sample: HRP-SB-214-5-7-211014 Lab ID: 92567218002 Collected: 10/14/21 14:10 Received: 10/15/21 13:21 Matrix: Solid

| Results reported on a "dry weigh         | t" basis and ar | e adjusted f                | •                    | oisture, sar | nple s  | ize and any diluti | ons.           |         |      |
|------------------------------------------|-----------------|-----------------------------|----------------------|--------------|---------|--------------------|----------------|---------|------|
| Parameters                               | Results         | Units                       | Report<br>Limit      | MDL          | DF      | Prepared           | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,               | Method: EP<br>onal - Mt. Ju | A 8015D Prep<br>liet | paration Met | hod: 3  | 546                |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | ND              | mg/kg                       | 4.68                 | 0.320        | 1       | 10/27/21 16:09     | 10/28/21 05:06 |         |      |
| o-Terphenyl (S)                          | 71.0            | %                           | 18.0-148             |              | 1       | 10/27/21 16:09     | 10/28/21 05:06 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,               | Method: SM<br>onal - Mt. Ju | l 2540G Prepaliet    | aration Meth | nod: SN | И 2540 G           |                |         |      |
| Total Solids                             | 85.5            | %                           |                      |              | 1       | 10/22/21 10:31     | 10/22/21 10:37 |         |      |





Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.:

92569119

Sample: HRP-SB-214-14-16-211014 Lab ID: 92567218003 Collected: 10/14/21 14:35 Received: 10/15/21 13:21 Matrix: Solid

| Parameters                               | Results | Units                       | Report<br>Limit                  | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
|------------------------------------------|---------|-----------------------------|----------------------------------|--------------|---------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                          | ,       | Method: EP                  | – ——— -<br>A 8015D Prep<br>lliet | paration Met | hod: 3  | 546            |                |         | -    |
| Oil Range Organics (C28-C40)  Surrogates | ND      | mg/kg                       | 4.82                             | 0.330        | 1       | 10/27/21 16:09 | 10/28/21 05:19 |         |      |
| o-Terphenyl (S)                          | 72.7    | %                           | 18.0-148                         |              | 1       | 10/27/21 16:09 | 10/28/21 05:19 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | •       | Method: SM<br>onal - Mt. Ju | l 2540G Prepaliet                | aration Meth | nod: SN | M 2540 G       |                |         |      |
| Total Solids                             | 83.0    | %                           |                                  |              | 1       | 10/22/21 10:31 | 10/22/21 10:37 |         |      |





Project:

HRP PRGS SCR

Pace Project No.:

**Total Solids** 

Date: 01/20/2022 03:34 PM

92569119

Sample: HRP-SB205-0-1-211011

Lab ID: 92566661001

83.5

%

Collected: 10/11/21 11:43

Received: 10/13/21 12:40 Matrix: Solid

10/20/21 10:46 10/20/21 10:53

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual SVOA (GC) 8015D Analytical Method: EPA 8015D Preparation Method: 3546 Pace National - Mt. Juliet Oil Range Organics (C28-C40) 1.72J mg/kg 4.79 0.328 10/22/21 07:39 10/22/21 15:09 B.J Surrogates o-Terphenyl (S) 42.1 18.0-148 10/22/21 07:39 10/22/21 15:09 84-15-1 Analytical Method: SM 2540G Preparation Method: SM 2540 G Total Solids 2540 G-2011 Pace National - Mt. Juliet





Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Sample: HRP-SB205-13-15-21011 Lab ID: 92566661002 Collected: 10/11/21 12:30 Received: 10/13/21 12:40 Matrix: Solid

| Results reported on a "dry weigh         | t" basis and ar | e adjusted f                 | or percent m         | oisture, saı | nple s  | ize and any diluti | ions.          |         |      |
|------------------------------------------|-----------------|------------------------------|----------------------|--------------|---------|--------------------|----------------|---------|------|
|                                          |                 |                              | Report               |              |         |                    |                |         |      |
| Parameters                               | Results         | Units                        | Limit                | MDL          | DF      | Prepared           | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,               | Method: EP.<br>onal - Mt. Ju | A 8015D Prep<br>liet | paration Met | hod: 3  | 546                |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 0.452J          | mg/kg                        | 4.33                 | 0.296        | 1       | 10/22/21 07:39     | 10/22/21 14:44 |         | B,J  |
| o-Terphenyl (S)                          | 72.7            | %                            | 18.0-148             |              | 1       | 10/22/21 07:39     | 10/22/21 14:44 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | Analytical      | Method: SM                   | 12540G Prepa         | aration Meth | nod: SN | M 2540 G           |                |         |      |
|                                          | Pace Nati       | onal - Mt. Ju                | liet                 |              |         |                    |                |         |      |
| Total Solids                             | 92.5            | %                            |                      |              | 1       | 10/20/21 10:55     | 10/20/21 11:02 |         |      |





**Total Solids** 

Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Pace National - Mt. Juliet

%

85.8

| Sample: HRP-DUP02-13-15-21011            | Lab ID:       | 92566661003                       | Collected  | d: 10/11/21 | 12:30   | Received: 10/     | 13/21 12:40 Ma | atrix: Solid |      |
|------------------------------------------|---------------|-----------------------------------|------------|-------------|---------|-------------------|----------------|--------------|------|
| Results reported on a "dry weight"       | basis and are | adjusted for                      | percent mo | isture, san | nple si | ze and any diluti | ons.           |              |      |
|                                          |               |                                   | Report     |             |         |                   |                |              |      |
| Parameters                               | Results       | Units                             | Limit      | MDL         | DF      | Prepared          | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 8015D                          | ,             | Method: EPA 8<br>onal - Mt. Julie |            | aration Met | nod: 35 | 546               |                |              |      |
| Oil Range Organics (C28-C40)  Surrogates | ND            | mg/kg                             | 4.66       | 0.319       | 1       | 10/22/21 07:39    | 10/22/21 14:58 |              |      |
| o-Terphenyl (S)                          | 46.2          | %                                 | 18.0-148   |             | 1       | 10/22/21 07:39    | 10/22/21 14:58 | 84-15-1      |      |
| Total Solids 2540 G-2011                 | Analytical    | Method: SM 2                      | 540G Prepa | ration Meth | od: SN  | 1 2540 G          |                |              |      |

10/20/21 10:55 10/20/21 11:02





Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Sample: HRP-SB206-5-7-211012 Lab ID: 92566661004 Collected: 10/12/21 12:58 Received: 10/13/21 12:40 Matrix: Solid

| Results reported on a "dry weigh         | nt" basis and ar | e adjusted f                 | for percent me<br>Report | oisture, sai | nple s  | ize and any diluti | ions.          |         |      |
|------------------------------------------|------------------|------------------------------|--------------------------|--------------|---------|--------------------|----------------|---------|------|
| Parameters                               | Results          | Units                        | Limit                    | MDL          | DF      | Prepared           | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,                | Method: EP                   | A 8015D Prep<br>iliet    | paration Met | hod: 3  | 546                |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 6.11             | mg/kg                        | 4.60                     | 0.315        | 1       | 10/25/21 04:13     | 10/25/21 15:38 |         |      |
| o-Terphenyl (S)                          | 52.5             | %                            | 18.0-148                 |              | 1       | 10/25/21 04:13     | 10/25/21 15:38 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,                | Method: SM<br>ional - Mt. Ju | 1 2540G Prepaliet        | aration Meth | nod: SN | M 2540 G           |                |         |      |
| Total Solids                             | 87.0             | %                            |                          |              | 1       | 10/20/21 10:55     | 10/20/21 11:02 |         |      |



Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Sample: HRP-SB206-15-17-211012 Lab ID: 92566661005 Collected: 10/12/21 13:45 Received: 10/13/21 12:40 Matrix: Solid

|                                          |         |                              | Report                |              |         |                |                |         |      |
|------------------------------------------|---------|------------------------------|-----------------------|--------------|---------|----------------|----------------|---------|------|
| Parameters                               | Results | Units                        | Limit                 | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,       | Method: EP.<br>onal - Mt. Ju | A 8015D Prep<br>liet  | aration Met  | thod: 3 | 546            |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 2.08J   | mg/kg                        | 4.28                  | 0.293        | 1       | 10/25/21 04:13 | 10/25/21 15:24 |         | J    |
| o-Terphenyl (S)                          | 70.7    | %                            | 18.0-148              |              | 1       | 10/25/21 04:13 | 10/25/21 15:24 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,       | Method: SM<br>onal - Mt. Ju  | l 2540G Prepa<br>liet | aration Metl | nod: SN | И 2540 G       |                |         |      |
| Total Solids                             | 93.4    | %                            |                       |              | 1       | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





Pace Project No.:

Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92569119

Sample: HRP-SB207-0-1-211013 Lab ID: 92566661006 Collected: 10/13/21 08:37 Received: 10/13/21 12:40 Matrix: Solid

| Parameters                               | Results | Units                       | Report<br>Limit                 | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
|------------------------------------------|---------|-----------------------------|---------------------------------|--------------|---------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                          | ,       | Method: EP<br>onal - Mt. Ju | – —— -<br>A 8015D Prep<br>Iliet | paration Met | hod: 3  | <br>546        |                |         | -    |
| Oil Range Organics (C28-C40)  Surrogates | 56.2    | mg/kg                       | 4.46                            | 0.305        | 1       | 10/26/21 15:29 | 10/27/21 02:40 |         |      |
| o-Terphenyl (S)                          | 62.0    | %                           | 18.0-148                        |              | 1       | 10/26/21 15:29 | 10/27/21 02:40 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,       | Method: SM<br>onal - Mt. Ju | 1 2540G Prepaliet               | aration Meth | nod: SM | M 2540 G       |                |         |      |
| Total Solids                             | 89.7    | %                           |                                 |              | 1       | 10/20/21 10:55 | 10/20/21 11:02 |         |      |



Date: 01/20/2022 03:34 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92569119

Sample: HRP-SB207-6-8-211013 Lab ID: 92566661007 Collected: 10/13/21 09:15 Received: 10/13/21 12:40 Matrix: Solid

|                                          |         |                             | Report               |              |         |                |                |         |      |
|------------------------------------------|---------|-----------------------------|----------------------|--------------|---------|----------------|----------------|---------|------|
| Parameters                               | Results | Units                       | Limit                | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,       | Method: EP                  | A 8015D Prep<br>liet | aration Met  | hod: 3  | 546            |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | 1.14J   | mg/kg                       | 4.29                 | 0.294        | 1       | 10/26/21 15:29 | 10/27/21 01:10 |         | J    |
| o-Terphenyl (S)                          | 72.6    | %                           | 18.0-148             |              | 1       | 10/26/21 15:29 | 10/27/21 01:10 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,       | Method: SM<br>onal - Mt. Ju | l 2540G Prepaliet    | aration Meth | nod: SN | И 2540 G       |                |         |      |
| Total Solids                             | 93.2    | %                           |                      |              | 1       | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





Project: HRP PRGS SCR Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

Sample: HRP-DUP03-6-8-211013 Lab ID: 92566661008 Collected: 10/13/21 09:15 Received: 10/13/21 12:40 Matrix: Solid

| Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.  Report |         |                              |                      |              |         |                |                |         |      |  |
|------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|----------------------|--------------|---------|----------------|----------------|---------|------|--|
| Parameters                                                                                                             | Results | Units                        | Limit                | MDL          | DF      | Prepared       | Analyzed       | CAS No. | Qual |  |
| SVOA (GC) 8015D                                                                                                        | ,       | Method: EP.<br>onal - Mt. Ju | A 8015D Prep<br>liet | paration Met | hod: 3  | 546            |                |         |      |  |
| Oil Range Organics (C28-C40)  Surrogates                                                                               | 1.64J   | mg/kg                        | 4.32                 | 0.296        | 1       | 10/26/21 15:29 | 10/27/21 00:31 |         | J    |  |
| o-Terphenyl (S)                                                                                                        | 73.5    | %                            | 18.0-148             |              | 1       | 10/26/21 15:29 | 10/27/21 00:31 | 84-15-1 |      |  |
| Total Solids 2540 G-2011                                                                                               | ,       | Method: SM<br>onal - Mt. Ju  | l 2540G Prepaliet    | aration Meth | nod: SN | M 2540 G       |                |         |      |  |
| Total Solids                                                                                                           | 92.7    | %                            |                      |              | 1       | 10/20/21 10:55 | 10/20/21 11:02 |         |      |  |





Project: HRP PRGS SCR Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

Sample: HRP-SB207-16-18-211013 Collected: 10/13/21 09:32 Received: 10/13/21 12:40 Matrix: Solid Lab ID: 92566661009

| Results reported on a "dry weigh         | n baois and an | o aajaotoa i                 | Report               | orotaro, car |         | izo ana any anati | <b></b>        |         |      |
|------------------------------------------|----------------|------------------------------|----------------------|--------------|---------|-------------------|----------------|---------|------|
| Parameters                               | Results        | Units                        | Limit                | MDL          | DF      | Prepared          | Analyzed       | CAS No. | Qual |
| SVOA (GC) 8015D                          | ,              | Method: EP.<br>onal - Mt. Ju | A 8015D Prep<br>liet | aration Met  | hod: 3  | 546               |                |         |      |
| Oil Range Organics (C28-C40)  Surrogates | ND             | mg/kg                        | 4.36                 | 0.299        | 1       | 10/26/21 15:29    | 10/27/21 00:44 |         |      |
| o-Terphenyl (S)                          | 76.1           | %                            | 18.0-148             |              | 1       | 10/26/21 15:29    | 10/27/21 00:44 | 84-15-1 |      |
| Total Solids 2540 G-2011                 | ,              | Method: SM<br>onal - Mt. Ju  | 2540G Prepaliet      | aration Meth | nod: SN | M 2540 G          |                |         |      |
| Total Solids                             | 91.7           | %                            |                      |              | 1       | 10/20/21 10:55    | 10/20/21 11:02 |         |      |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

QC Batch: 1769494 Analysis Method: EPA 8015C

QC Batch Method: 3511/8015 Analysis Description: SVOA (GC) 8015C

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 92569119004, 92569119005, 92569119007, 92569119008, 92569119009

METHOD BLANK: R3726680-1 Matrix: Water

Associated Lab Samples: 92569119004, 92569119005, 92569119007, 92569119008, 92569119009

| Parameter                    | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|------------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Oil Range Organics (C28-C40) | ug/L  | ND              | 100                | 11.8 | 11/06/21 12:24 |            |
| o-Terphenyl (S)              | %     | 89.5            | 52.0-156           |      | 11/06/21 12:24 |            |





Project:

HRP PRGS SCR

Pace Project No.:

QC Batch Method:

92569119

QC Batch:

1770405

3511/8015

Analysis Method:

EPA 8015C

Analysis Description:

SVOA (GC) 8015C

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92569427001, 92569427002

METHOD BLANK: R3727558-1

Matrix: Water

Associated Lab Samples:

Date: 01/20/2022 03:34 PM

Parameter

92569427001, 92569427002

Blank Reporting

Result

Limit

MDL Analyzed 11.8

Oil Range Organics (C28-C40) o-Terphenyl (S)

ug/L %

Units

ND 96.5

100 52.0-156 11/09/21 15:38 11/09/21 15:38 Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

02000..0

QC Batch Method:

1770820 3511/8015 Analysis Method:

EPA 8015C

Analysis Description:

SVOA (GC) 8015C

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92569427003, 92569427004

Matrix: Water

Associated Lab Samples:

Date: 01/20/2022 03:34 PM

METHOD BLANK: R3727822-1

92569427003, 92569427004

. . . . .

Blank Reporting Parameter MDL Qualifiers Units Result Limit Analyzed Oil Range Organics (C28-C40) ug/L ND 100 11.8 11/09/21 19:25 o-Terphenyl (S) % 85.5 52.0-156 11/09/21 19:25





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

QC Batch: 1761238 Analysis Method: EPA 8015D

QC Batch Method: 3546 Analysis Description: SVOA (GC) 8015D

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 92566661001, 92566661002, 92566661003

METHOD BLANK: R3720300-1 Matrix: Solid

Associated Lab Samples: 92566661001, 92566661002, 92566661003

Blank Reporting Parameter Result Limit MDL Qualifiers Units Analyzed Oil Range Organics (C28-C40) 2.13J 4.00 0.274 10/22/21 11:39 J mg/kg o-Terphenyl (S) % 68.5 18.0-148 10/22/21 11:39





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method:

1761241 3546

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661004, 92566661005

METHOD BLANK: R3721248-1

Matrix: Solid

Associated Lab Samples:

Date: 01/20/2022 03:34 PM

92566661004, 92566661005

| Parameter                    | Units | Blank<br>Result | Reporting<br>Limit | MDL   | Analyzed       | Qualifiers |
|------------------------------|-------|-----------------|--------------------|-------|----------------|------------|
| Oil Range Organics (C28-C40) | mg/kg | ND              | 4.00               | 0.274 | 10/25/21 12:55 |            |
| o-Terphenyl (S)              | %     | 58              | 18.0-148           |       | 10/25/21 12:55 |            |





Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

QC Batch: 1763083 Analysis Method: EPA 8015D

QC Batch Method: 3546 Analysis Description: SVOA (GC) 8015D

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 92566661006, 92566661007, 92566661008, 92566661009

METHOD BLANK: R3721895-1 Matrix: Solid

Associated Lab Samples: 92566661006, 92566661007, 92566661008, 92566661009

Blank Reporting Parameter MDL Qualifiers Units Result Limit Analyzed Oil Range Organics (C28-C40) ND 4.00 0.274 10/26/21 22:09 mg/kg o-Terphenyl (S) % 77.5 18.0-148 10/26/21 22:09

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method: 3546

1764424

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567218001, 92567218002, 92567218003

METHOD BLANK: R3722375-1

1 Matrix: Solid

Associated Lab Samples:

Date: 01/20/2022 03:34 PM

92567218001, 92567218002, 92567218003

| Parameter                    | Units | Result | Limit    | MDL   | Analyzed       | Qualifiers |
|------------------------------|-------|--------|----------|-------|----------------|------------|
| Oil Range Organics (C28-C40) | mg/kg | ND     | 4.00     | 0.274 | 10/28/21 02:17 |            |
| o-Terphenyl (S)              | %     | 78.8   | 18.0-148 |       | 10/28/21 02:17 |            |





Project:

HRP PRGS SCR

Pace Project No.:

QC Batch Method:

92569119

QC Batch:

1765155 3546

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

MDL

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

METHOD BLANK: R3723717-1

Date: 01/20/2022 03:34 PM

Matrix: Solid

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

Blank

Reporting Limit

Parameter Oil Range Organics (C28-C40)

Units Result mg/kg

4.00

0.274 10/30/21 19:24 J

Analyzed

Qualifiers

0.389J o-Terphenyl (S) % 65.8 18.0-148 10/30/21 19:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

659243

QC Batch Method:

EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92570802001

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

92570802001

Blank

Reporting

Result

Limit

MDL

Analyzed

Qualifiers

Mercury

Units ug/L

ND

0.20

0.12 11/16/21 09:40

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

3455098

Spike

LCS

LCS % Rec % Rec Limits

Mercury

Date: 01/20/2022 03:34 PM

Units ug/L

Conc. 2.5 Result

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3455099

MS

MSD Spike

MS Result

2.5

MSD MS Result % Rec

98

MSD

% Rec

Max

RPD Qual

Mercury

92570374001 Parameter Units Result

ug/L

ND

Spike Conc. Conc. 2.5 2.5

2.8

3455100

2.7 110 % Rec

108

Limits 75-125

**RPD** 

25

(704)875-9092



## **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

QC Batch: 659439 Analysis Method:
QC Batch Method: EPA 3010A Analysis Description:

Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

EPA 6010D

Associated Lab Samples: 92570802001

METHOD BLANK: 3455976 Matrix: Water

Associated Lab Samples: 92570802001

| Parameter                 |       | Blank  | Reporting |      |                | 0 ""       |
|---------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                 | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Aluminum                  | ug/L  | ND     | 100       | 72.0 | 11/15/21 15:37 |            |
| Antimony                  | ug/L  | ND     | 5.0       | 3.0  | 11/15/21 04:27 |            |
| Arsenic                   | ug/L  | ND     | 10.0      | 4.7  | 11/15/21 04:27 |            |
| Barium                    | ug/L  | ND     | 5.0       | 3.5  | 11/15/21 04:27 |            |
| Beryllium                 | ug/L  | ND     | 1.0       | 0.70 | 11/15/21 04:27 |            |
| Cadmium                   | ug/L  | ND     | 1.0       | 0.40 | 11/15/21 04:27 |            |
| Calcium                   | ug/L  | ND     | 100       | 94.2 | 11/15/21 04:27 |            |
| Chromium                  | ug/L  | ND     | 5.0       | 3.7  | 11/15/21 04:27 |            |
| Cobalt                    | ug/L  | ND     | 5.0       | 3.6  | 11/15/21 04:27 |            |
| Copper                    | ug/L  | ND     | 5.0       | 4.3  | 11/15/21 15:37 |            |
| Hardness, Total(SM 2340B) | ug/L  | ND     | 662       | 131  | 11/15/21 04:27 |            |
| Iron                      | ug/L  | ND     | 50.0      | 41.5 | 11/15/21 04:27 |            |
| Lead                      | ug/L  | ND     | 5.0       | 4.5  | 11/15/21 04:27 |            |
| Magnesium                 | ug/L  | ND     | 100       | 67.8 | 11/15/21 04:27 |            |
| Manganese                 | ug/L  | ND     | 5.0       | 3.4  | 11/15/21 15:37 |            |
| Molybdenum                | ug/L  | ND     | 5.0       | 3.9  | 11/15/21 04:27 |            |
| Nickel                    | ug/L  | ND     | 5.0       | 3.5  | 11/15/21 04:27 |            |
| Selenium                  | ug/L  | ND     | 10.0      | 4.7  | 11/15/21 04:27 |            |
| Silver                    | ug/L  | ND     | 5.0       | 2.5  | 11/15/21 04:27 |            |
| Sodium                    | ug/L  | ND     | 5000      | 611  | 11/15/21 04:27 |            |
| Thallium                  | ug/L  | ND     | 10.0      | 8.1  | 11/15/21 04:27 |            |
| √anadium                  | ug/L  | ND     | 5.0       | 3.9  | 11/15/21 04:27 |            |
| Zinc                      | ug/L  | ND     | 10.0      | 9.5  | 11/15/21 04:27 |            |

| LABORATORY CONTROL SAMPLE: | 3455977 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Aluminum                   | ug/L    | 5000  | 5030   | 101   | 80-120 |            |
| Antimony                   | ug/L    | 500   | 499    | 100   | 80-120 |            |
| Arsenic                    | ug/L    | 500   | 469    | 94    | 80-120 |            |
| Barium                     | ug/L    | 500   | 495    | 99    | 80-120 |            |
| Beryllium                  | ug/L    | 500   | 495    | 99    | 80-120 |            |
| Cadmium                    | ug/L    | 500   | 486    | 97    | 80-120 |            |
| Calcium                    | ug/L    | 5000  | 4910   | 98    | 80-120 |            |
| Chromium                   | ug/L    | 500   | 473    | 95    | 80-120 |            |
| Cobalt                     | ug/L    | 500   | 484    | 97    | 80-120 |            |
| Copper                     | ug/L    | 500   | 490    | 98    | 80-120 |            |
| Hardness, Total(SM 2340B)  | ug/L    | 33100 | 31900  | 96    | 80-120 |            |
| Iron                       | ug/L    | 5000  | 4870   | 97    | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| LABORATORY CONTROL SAMPLE: | 3455977 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Lead                       | ug/L    | 500   | 502    | 100   | 80-120 |            |
| Magnesium                  | ug/L    | 5000  | 4760   | 95    | 80-120 |            |
| Manganese                  | ug/L    | 500   | 462    | 92    | 80-120 |            |
| Molybdenum                 | ug/L    | 500   | 507    | 101   | 80-120 |            |
| Nickel                     | ug/L    | 500   | 484    | 97    | 80-120 |            |
| Selenium                   | ug/L    | 500   | 496    | 99    | 80-120 |            |
| Silver                     | ug/L    | 250   | 239    | 95    | 80-120 |            |
| Sodium                     | ug/L    | 5000  | 4840J  | 97    | 80-120 |            |
| Thallium                   | ug/L    | 500   | 478    | 96    | 80-120 |            |
| Vanadium                   | ug/L    | 500   | 478    | 96    | 80-120 |            |
| Zinc                       | ug/L    | 500   | 508    | 102   | 80-120 |            |

| MATRIX SPIKE & MATRIX SP  | MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3455978 |             |       |       |        |        |       |       |        |     |          |
|---------------------------|------------------------------------------------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|----------|
|                           |                                                |             | MS    | MSD   |        |        |       |       |        |     |          |
|                           |                                                | 92569641006 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max      |
| Parameter                 | Units                                          | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD Qual |
| Aluminum                  | ug/L                                           | 1360        | 5000  | 5000  | 8550   | 9140   | 144   | 156   | 75-125 |     | 20 M1    |
| Antimony                  | ug/L                                           | ND          | 500   | 500   | 486    | 591    | 97    | 118   | 75-125 | 19  | 20       |
| Arsenic                   | ug/L                                           | ND          | 500   | 500   | 479    | 564    | 96    | 112   | 75-125 | 16  | 20       |
| Barium                    | ug/L                                           | 79.9        | 500   | 500   | 565    | 666    | 97    | 117   | 75-125 | 16  | 20       |
| Beryllium                 | ug/L                                           | ND          | 500   | 500   | 492    | 584    | 98    | 117   | 75-125 | 17  | 20       |
| Cadmium                   | ug/L                                           | ND          | 500   | 500   | 486    | 590    | 97    | 118   | 75-125 | 19  | 20       |
| Calcium                   | ug/L                                           | 31400       | 5000  | 5000  | 34000  | 40100  | 52    | 175   | 75-125 | 17  | 20 M1    |
| Chromium                  | ug/L                                           | ND          | 500   | 500   | 471    | 581    | 94    | 116   | 75-125 | 21  | 20 R1    |
| Cobalt                    | ug/L                                           | ND          | 500   | 500   | 473    | 578    | 95    | 115   | 75-125 | 20  | 20       |
| Copper                    | ug/L                                           | ND          | 500   | 500   | 517    | 536    | 103   | 107   | 75-125 | 4   | 20       |
| Hardness, Total(SM 2340B) | ug/L                                           | 129000      | 33100 | 33100 | 152000 | 182000 | 69    | 159   | 75-125 | 18  |          |
| Iron                      | ug/L                                           | 478         | 5000  | 5000  | 5530   | 6620   | 101   | 123   | 75-125 | 18  | 20       |
| Lead                      | ug/L                                           | ND          | 500   | 500   | 491    | 590    | 98    | 118   | 75-125 | 18  | 20       |
| Magnesium                 | ug/L                                           | 12400       | 5000  | 5000  | 16300  | 19900  | 78    | 150   | 75-125 | 20  | 20 M1    |
| Manganese                 | ug/L                                           | 836         | 500   | 500   | 1350   | 1380   | 102   | 108   | 75-125 | 2   | 20       |
| Molybdenum                | ug/L                                           | ND          | 500   | 500   | 493    | 599    | 98    | 120   | 75-125 | 19  | 20       |
| Nickel                    | ug/L                                           | ND          | 500   | 500   | 474    | 578    | 94    | 115   | 75-125 | 20  | 20       |
| Selenium                  | ug/L                                           | ND          | 500   | 500   | 518    | 556    | 103   | 110   | 75-125 | 7   | 20       |
| Silver                    | ug/L                                           | ND          | 250   | 250   | 242    | 281    | 97    | 112   | 75-125 | 15  | 20       |
| Sodium                    | ug/L                                           | 28500       | 5000  | 5000  | 31600  | 36300  | 61    | 156   | 75-125 | 14  | 20 M1    |
| Thallium                  | ug/L                                           | ND          | 500   | 500   | 467    | 552    | 93    | 110   | 75-125 | 17  | 20       |
| Vanadium                  | ug/L                                           | 6.4         | 500   | 500   | 487    | 590    | 96    | 117   | 75-125 | 19  | 20       |
| Zinc                      | ug/L                                           | ND          | 500   | 500   | 516    | 520    | 102   | 103   | 75-125 | 1   | 20       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



## **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

QC Batch: 657968 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570802001

METHOD BLANK: 3448956 Matrix: Water

Associated Lab Samples: 92570802001

|                             |       | Blank  | Reporting |      |                |            |
|-----------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                   | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L  | ND ND  | 1.0       | 0.31 | 11/06/21 12:58 |            |
| 1,1,1-Trichloroethane       | ug/L  | ND     | 1.0       | 0.33 | 11/06/21 12:58 |            |
| 1,1,2,2-Tetrachloroethane   | ug/L  | ND     | 1.0       | 0.22 | 11/06/21 12:58 |            |
| 1,1,2-Trichloroethane       | ug/L  | ND     | 1.0       | 0.32 | 11/06/21 12:58 |            |
| 1,1-Dichloroethane          | ug/L  | ND     | 1.0       | 0.37 | 11/06/21 12:58 |            |
| 1,1-Dichloroethene          | ug/L  | ND     | 1.0       | 0.35 | 11/06/21 12:58 |            |
| 1,1-Dichloropropene         | ug/L  | ND     | 1.0       | 0.43 | 11/06/21 12:58 |            |
| 1,2,3-Trichlorobenzene      | ug/L  | ND     | 1.0       | 0.81 | 11/06/21 12:58 |            |
| 1,2,3-Trichloropropane      | ug/L  | ND     | 1.0       | 0.26 | 11/06/21 12:58 |            |
| 1,2,4-Trichlorobenzene      | ug/L  | ND     | 1.0       | 0.64 | 11/06/21 12:58 |            |
| 1,2-Dibromo-3-chloropropane | ug/L  | ND     | 2.0       | 0.34 | 11/06/21 12:58 |            |
| 1,2-Dibromoethane (EDB)     | ug/L  | ND     | 1.0       | 0.27 | 11/06/21 12:58 |            |
| 1,2-Dichlorobenzene         | ug/L  | ND     | 1.0       | 0.34 | 11/06/21 12:58 |            |
| 1,2-Dichloroethane          | ug/L  | ND     | 1.0       | 0.32 | 11/06/21 12:58 |            |
| 1,2-Dichloropropane         | ug/L  | ND     | 1.0       | 0.36 | 11/06/21 12:58 |            |
| 1,3-Dichlorobenzene         | ug/L  | ND     | 1.0       | 0.34 | 11/06/21 12:58 |            |
| 1,3-Dichloropropane         | ug/L  | ND     | 1.0       | 0.28 | 11/06/21 12:58 |            |
| 1,4-Dichlorobenzene         | ug/L  | ND     | 1.0       | 0.33 | 11/06/21 12:58 |            |
| 2,2-Dichloropropane         | ug/L  | ND     | 1.0       | 0.39 | 11/06/21 12:58 |            |
| 2-Butanone (MEK)            | ug/L  | ND     | 5.0       | 4.0  | 11/06/21 12:58 |            |
| 2-Chlorotoluene             | ug/L  | ND     | 1.0       | 0.32 | 11/06/21 12:58 |            |
| 2-Hexanone                  | ug/L  | ND     | 5.0       | 0.48 | 11/06/21 12:58 |            |
| 4-Chlorotoluene             | ug/L  | ND     | 1.0       | 0.32 | 11/06/21 12:58 |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L  | ND     | 5.0       | 2.7  | 11/06/21 12:58 |            |
| Acetone                     | ug/L  | ND     | 25.0      | 5.1  | 11/06/21 12:58 |            |
| Benzene                     | ug/L  | ND     | 1.0       | 0.34 | 11/06/21 12:58 |            |
| Bromobenzene                | ug/L  | ND     | 1.0       | 0.29 | 11/06/21 12:58 |            |
| Bromochloromethane          | ug/L  | ND     | 1.0       | 0.47 | 11/06/21 12:58 |            |
| Bromodichloromethane        | ug/L  | ND     | 1.0       | 0.31 | 11/06/21 12:58 |            |
| Bromoform                   | ug/L  | ND     | 1.0       | 0.34 | 11/06/21 12:58 |            |
| Bromomethane                | ug/L  | ND     | 2.0       | 1.7  | 11/06/21 12:58 |            |
| Carbon tetrachloride        | ug/L  | ND     | 1.0       | 0.33 | 11/06/21 12:58 |            |
| Chlorobenzene               | ug/L  | ND     | 1.0       | 0.28 | 11/06/21 12:58 |            |
| Chloroethane                | ug/L  | ND     | 1.0       | 0.65 | 11/06/21 12:58 |            |
| Chloroform                  | ug/L  | ND     | 1.0       | 0.43 | 11/06/21 12:58 |            |
| Chloromethane               | ug/L  | ND     | 1.0       | 0.54 | 11/06/21 12:58 |            |
| cis-1,2-Dichloroethene      | ug/L  | ND     | 1.0       | 0.38 | 11/06/21 12:58 |            |
| cis-1,3-Dichloropropene     | ug/L  | ND     | 1.0       | 0.36 | 11/06/21 12:58 |            |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 0.36 | 11/06/21 12:58 |            |
| Dibromomethane              | ug/L  | ND     | 1.0       | 0.39 | 11/06/21 12:58 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

METHOD BLANK: 3448956 Matrix: Water

Associated Lab Samples: 92570802001

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL   | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|-------|----------------|------------|
| raiailletei               |       |                 |                    | IVIDL |                | Qualifiers |
| Dichlorodifluoromethane   | ug/L  | ND              | 1.0                | 0.35  | 11/06/21 12:58 |            |
| Diisopropyl ether         | ug/L  | ND              | 1.0                | 0.31  | 11/06/21 12:58 |            |
| Ethylbenzene              | ug/L  | ND              | 1.0                | 0.30  | 11/06/21 12:58 |            |
| Hexachloro-1,3-butadiene  | ug/L  | ND              | 2.0                | 1.5   | 11/06/21 12:58 |            |
| m&p-Xylene                | ug/L  | ND              | 2.0                | 0.71  | 11/06/21 12:58 |            |
| Methyl-tert-butyl ether   | ug/L  | ND              | 1.0                | 0.42  | 11/06/21 12:58 |            |
| Methylene Chloride        | ug/L  | ND              | 5.0                | 2.0   | 11/06/21 12:58 |            |
| Naphthalene               | ug/L  | ND              | 1.0                | 0.64  | 11/06/21 12:58 |            |
| o-Xylene                  | ug/L  | ND              | 1.0                | 0.34  | 11/06/21 12:58 |            |
| p-Isopropyltoluene        | ug/L  | ND              | 1.0                | 0.41  | 11/06/21 12:58 |            |
| Styrene                   | ug/L  | ND              | 1.0                | 0.29  | 11/06/21 12:58 |            |
| Tetrachloroethene         | ug/L  | ND              | 1.0                | 0.29  | 11/06/21 12:58 |            |
| Toluene                   | ug/L  | ND              | 1.0                | 0.48  | 11/06/21 12:58 |            |
| trans-1,2-Dichloroethene  | ug/L  | ND              | 1.0                | 0.40  | 11/06/21 12:58 |            |
| trans-1,3-Dichloropropene | ug/L  | ND              | 1.0                | 0.36  | 11/06/21 12:58 |            |
| Trichloroethene           | ug/L  | ND              | 1.0                | 0.38  | 11/06/21 12:58 |            |
| Trichlorofluoromethane    | ug/L  | ND              | 1.0                | 0.30  | 11/06/21 12:58 |            |
| Vinyl acetate             | ug/L  | ND              | 2.0                | 1.3   | 11/06/21 12:58 |            |
| Vinyl chloride            | ug/L  | ND              | 1.0                | 0.39  | 11/06/21 12:58 |            |
| Xylene (Total)            | ug/L  | ND              | 1.0                | 0.34  | 11/06/21 12:58 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 96              | 70-130             |       | 11/06/21 12:58 |            |
| 4-Bromofluorobenzene (S)  | %     | 102             | 70-130             |       | 11/06/21 12:58 |            |
| Toluene-d8 (S)            | %     | 104             | 70-130             |       | 11/06/21 12:58 |            |

| LABORATORY CONTROL SAMPLE:  | 3448957 |       |        |       |        |            |
|-----------------------------|---------|-------|--------|-------|--------|------------|
|                             |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                   | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L    | 50    | 53.7   | 107   | 70-130 |            |
| 1,1,1-Trichloroethane       | ug/L    | 50    | 49.6   | 99    | 70-130 |            |
| 1,1,2,2-Tetrachloroethane   | ug/L    | 50    | 51.7   | 103   | 70-130 |            |
| 1,1,2-Trichloroethane       | ug/L    | 50    | 52.4   | 105   | 70-130 |            |
| 1,1-Dichloroethane          | ug/L    | 50    | 49.4   | 99    | 70-130 |            |
| 1,1-Dichloroethene          | ug/L    | 50    | 46.9   | 94    | 70-132 |            |
| 1,1-Dichloropropene         | ug/L    | 50    | 53.2   | 106   | 70-131 |            |
| 1,2,3-Trichlorobenzene      | ug/L    | 50    | 49.4   | 99    | 70-134 |            |
| 1,2,3-Trichloropropane      | ug/L    | 50    | 50.8   | 102   | 70-130 |            |
| 1,2,4-Trichlorobenzene      | ug/L    | 50    | 50.1   | 100   | 70-130 |            |
| 1,2-Dibromo-3-chloropropane | ug/L    | 50    | 46.8   | 94    | 70-132 |            |
| 1,2-Dibromoethane (EDB)     | ug/L    | 50    | 55.1   | 110   | 70-130 |            |
| 1,2-Dichlorobenzene         | ug/L    | 50    | 47.2   | 94    | 70-130 |            |
| 1,2-Dichloroethane          | ug/L    | 50    | 48.2   | 96    | 70-130 |            |
| 1,2-Dichloropropane         | ug/L    | 50    | 52.5   | 105   | 70-130 |            |
| 1,3-Dichlorobenzene         | ug/L    | 50    | 48.7   | 97    | 70-130 |            |
| 1,3-Dichloropropane         | ug/L    | 50    | 51.3   | 103   | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| LABORATORY CONTROL SAMPLE:  | 3448957      | Spike     | LCS          | LCS        | % Rec            |            |
|-----------------------------|--------------|-----------|--------------|------------|------------------|------------|
| Parameter                   | Units        | Conc.     | Result       | % Rec      | Limits           | Qualifiers |
| 1,4-Dichlorobenzene         | ug/L         |           | 47.0         | 94         | 70-130           |            |
| 2,2-Dichloropropane         | ug/L         | 50        | 50.4         | 101        | 70-130           |            |
| 2-Butanone (MEK)            | ug/L         | 100       | 106          | 106        | 70-133           |            |
| 2-Chlorotoluene             | ug/L         | 50        | 49.2         | 98         | 70-130           |            |
| 2-Hexanone                  | ug/L         | 100       | 106          | 106        | 70-130           |            |
| 1-Chlorotoluene             | ug/L         | 50        | 48.8         | 98         | 70-130           |            |
| 1-Methyl-2-pentanone (MIBK) | ug/L         | 100       | 101          | 101        | 70-130           |            |
| Acetone                     | ug/L         | 100       | 98.6         | 99         | 70-144           |            |
| Benzene                     | ug/L         | 50        | 48.7         | 97         | 70-130           |            |
| Bromobenzene                | ug/L         | 50        | 47.5         | 95         | 70-130           |            |
| Bromochloromethane          | ug/L         | 50        | 50.1         | 100        | 70-130           |            |
| Bromodichloromethane        | ug/L         | 50        | 49.0         | 98         | 70-130           |            |
| Bromoform                   | ug/L         | 50        | 54.0         | 108        | 70-131           |            |
| Bromomethane                | ug/L         | 50        | 52.0         | 104        | 30-177           |            |
| Carbon tetrachloride        | ug/L         | 50        | 49.1         | 98         | 70-130           |            |
| Chlorobenzene               | ug/L         | 50        | 49.3         | 99         | 70-130           |            |
| Chloroethane                | ug/L         | 50        | 59.5         | 119        | 46-131           |            |
| Chloroform                  | ug/L         | 50        | 50.5         | 101        | 70-130           |            |
| Chloromethane               | ug/L         | 50        | 49.4         | 99         | 49-130           |            |
| is-1,2-Dichloroethene       | ug/L         | 50        | 48.0         | 96         | 70-130           |            |
| is-1,3-Dichloropropene      | ug/L         | 50        | 53.1         | 106        | 70-130           |            |
| Dibromochloromethane        | ug/L         | 50        | 56.3         | 113        | 70-130           |            |
| Dibromomethane              | ug/L         | 50        | 48.5         | 97         | 70-130           |            |
| Dichlorodifluoromethane     | ug/L         | 50        | 49.5         | 99         | 52-134           |            |
| Diisopropyl ether           | ug/L         | 50        | 51.2         | 102        | 70-131           |            |
| Ethylbenzene                | ug/L         | 50        | 49.7         | 99         | 70-130           |            |
| Hexachloro-1,3-butadiene    | ug/L         | 50        | 51.4         | 103        | 70-131           |            |
| n&p-Xylene                  | ug/L         | 100       | 100          | 100        | 70-130           |            |
| Methyl-tert-butyl ether     | ug/L         | 50        | 52.2         | 104        | 70-130           |            |
| Methylene Chloride          | ug/L         | 50        | 49.8         | 100        | 68-130           |            |
| Naphthalene                 | ug/L         | 50        | 48.3         | 97         | 70-133           |            |
| o-Xylene                    | ug/L         | 50        | 49.6         | 99         | 70-130           |            |
| o-Isopropyltoluene          | ug/L         | 50        | 49.5         | 99         | 70-130           |            |
| Styrene                     | ug/L         | 50        | 52.3         | 105        | 70-130           |            |
| Tetrachloroethene           | ug/L<br>ug/L | 50<br>50  | 49.6         | 99         | 70-130           |            |
| Foluene                     | ug/L         | 50<br>50  | 46.2         | 92         | 70-130           |            |
| rans-1,2-Dichloroethene     | ug/L         | 50<br>50  | 47.8         | 96         | 70-130           |            |
| rans-1,3-Dichloropropene    | ug/L<br>ug/L | 50        | 52.3         | 105        | 70-130           |            |
| richloroethene              |              | 50<br>50  |              | 105        | 70-130<br>70-130 |            |
| richlorofluoromethane       | ug/L<br>ug/L | 50<br>50  | 50.7<br>47.7 | 95         | 61-130           |            |
| /inyl acetate               | _            |           | 47.7<br>105  |            | 70-140           |            |
| •                           | ug/L         | 100       |              | 105        |                  |            |
| /inyl chloride              | ug/L         | 50<br>150 | 50.8<br>150  | 102        | 59-142<br>70-130 |            |
| (ylene (Total)              | ug/L         | 150       | 150          | 100        | 70-130           |            |
| ,2-Dichloroethane-d4 (S)    | %<br>%       |           |              | 101<br>102 | 70-130<br>70-130 |            |
| 1-Bromofluorobenzene (S)    |              |           |              |            |                  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



## **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| MATRIX SPIKE & MATRIX S       | PIKE DUP | LICATE: 3448 |       |       | 3448959 |        |              |       |        |     |     |    |
|-------------------------------|----------|--------------|-------|-------|---------|--------|--------------|-------|--------|-----|-----|----|
|                               |          |              | MS    | MSD   |         |        |              |       |        |     |     |    |
| Davasatas                     | l lesite | 92570812005  | Spike | Spike | MS      | MSD    | MS<br>% Date | MSD   | % Rec  |     | Max | 0  |
| Parameter                     | Units    | Result       | Conc. | Conc. | Result  | Result | % Rec        | % Rec | Limits | RPD | RPD | Qu |
| ,1,1,2-Tetrachloroethane      | ug/L     | ND           | 20    | 20    | 21.0    | 19.9   | 105          | 99    | 70-135 | 5   | 30  |    |
| I,1,1-Trichloroethane         | ug/L     | ND           | 20    | 20    | 23.4    | 22.1   | 117          | 110   | 70-148 | 6   | 30  |    |
| 1,1,2,2-Tetrachloroethane     | ug/L     | ND           | 20    | 20    | 19.9    | 18.7   | 99           | 94    | 70-131 | 6   | 30  |    |
| 1,1,2-Trichloroethane         | ug/L     | ND           | 20    | 20    | 20.9    | 21.8   | 104          | 109   | 70-136 | 4   | 30  |    |
| I,1-Dichloroethane            | ug/L     | ND           | 20    | 20    | 22.6    | 22.5   | 113          | 112   | 70-147 | 1   | 30  |    |
| 1,1-Dichloroethene            | ug/L     | ND           | 20    | 20    | 22.4    | 21.7   | 112          | 108   | 70-158 | 3   | 30  |    |
| I,1-Dichloropropene           | ug/L     | ND           | 20    | 20    | 22.9    | 22.2   | 114          | 111   | 70-149 | 3   | 30  |    |
| 1,2,3-Trichlorobenzene        | ug/L     | ND           | 20    | 20    | 21.5    | 20.6   | 107          | 103   | 68-140 | 4   | 30  |    |
| 1,2,3-Trichloropropane        | ug/L     | ND           | 20    | 20    | 19.5    | 18.5   | 97           | 93    | 67-137 | 5   | 30  |    |
| ,2,4-Trichlorobenzene         | ug/L     | ND           | 20    | 20    | 20.5    | 20.4   | 103          | 102   | 70-139 | 1   | 30  |    |
| 1,2-Dibromo-3-                | ug/L     | ND           | 20    | 20    | 19.0    | 18.7   | 95           | 94    | 69-136 | 2   | 30  |    |
| chloropropane                 |          |              | 00    | 00    | 04.4    | 00.4   | 407          | 400   | 70 407 | ^   | 00  |    |
| I,2-Dibromoethane (EDB)       | ug/L     | ND           | 20    | 20    | 21.4    | 20.1   | 107          | 100   | 70-137 | 6   | 30  |    |
| I,2-Dichlorobenzene           | ug/L     | ND           | 20    | 20    | 20.9    | 20.5   | 105          | 102   | 70-133 | 2   |     |    |
| I,2-Dichloroethane            | ug/L     | ND           | 20    | 20    | 21.1    | 20.7   | 106          | 104   | 67-138 | 2   |     |    |
| 1,2-Dichloropropane           | ug/L     | ND           | 20    | 20    | 21.4    | 22.0   | 107          | 110   | 70-138 | 3   |     |    |
| ,3-Dichlorobenzene            | ug/L     | ND           | 20    | 20    | 20.2    | 19.9   | 101          | 100   | 70-133 | 2   |     |    |
| ,3-Dichloropropane            | ug/L     | ND           | 20    | 20    | 20.4    | 20.4   | 102          | 102   | 70-136 | 0   | 30  |    |
| ,4-Dichlorobenzene            | ug/L     | ND           | 20    | 20    | 19.6    | 19.8   | 98           | 99    | 70-133 | 1   | 30  |    |
| 2,2-Dichloropropane           | ug/L     | ND           | 20    | 20    | 22.0    | 21.8   | 110          | 109   | 52-155 | 1   | 30  |    |
| 2-Butanone (MEK)              | ug/L     | ND           | 40    | 40    | 43.9    | 41.1   | 110          | 103   | 61-147 | 6   | 30  |    |
| 2-Chlorotoluene               | ug/L     | ND           | 20    | 20    | 21.0    | 20.9   | 105          | 105   | 70-141 | 0   |     |    |
| 2-Hexanone                    | ug/L     | ND           | 40    | 40    | 39.9    | 38.8   | 100          | 97    | 67-139 | 3   | 30  |    |
| 1-Chlorotoluene               | ug/L     | ND           | 20    | 20    | 19.8    | 19.9   | 99           | 100   | 70-135 | 1   | 30  |    |
| 1-Methyl-2-pentanone<br>MIBK) | ug/L     | ND           | 40    | 40    | 37.6    | 38.4   | 94           | 96    | 67-136 | 2   |     |    |
| Acetone                       | ug/L     | ND           | 40    | 40    | 41.2    | 38.8   | 103          | 97    | 55-159 | 6   | 30  |    |
| Benzene                       | ug/L     | ND           | 20    | 20    | 21.0    | 20.8   | 105          | 104   | 67-150 | 1   | 30  |    |
| Bromobenzene                  | ug/L     | ND           | 20    | 20    | 21.1    | 20.3   | 106          | 102   | 70-134 | 4   | 30  |    |
| Bromochloromethane            | ug/L     | ND           | 20    | 20    | 22.6    | 22.6   | 113          | 113   | 70-146 | 0   | 30  |    |
| Bromodichloromethane          | ug/L     | ND           | 20    | 20    | 20.6    | 20.5   | 103          | 102   | 70-138 | 1   | 30  |    |
| Bromoform                     | ug/L     | ND           | 20    | 20    | 19.5    | 18.8   | 98           | 94    | 57-138 | 3   |     |    |
| Bromomethane                  | ug/L     | ND           | 20    | 20    | 27.3    | 25.5   | 137          | 127   | 10-200 | 7   | 30  |    |
| Carbon tetrachloride          | ug/L     | ND           | 20    | 20    | 20.9    | 20.5   | 104          | 103   | 70-147 | 2   |     |    |
| Chlorobenzene                 | ug/L     | ND           | 20    | 20    | 21.0    | 20.4   | 105          | 102   | 70-137 | 3   |     |    |
| Chloroethane                  | ug/L     | ND           | 20    | 20    | 28.6    | 27.4   | 143          | 137   | 51-166 | 4   |     | v1 |
| Chloroform                    | ug/L     | ND           | 20    | 20    | 23.4    | 22.2   | 117          | 111   | 70-144 | 5   | 30  |    |
| Chloromethane                 | ug/L     | ND           | 20    | 20    | 22.4    | 20.7   | 112          | 104   | 24-161 | 8   | 30  |    |
| cis-1,2-Dichloroethene        | ug/L     | ND           | 20    | 20    | 21.5    | 21.7   | 108          | 109   | 67-148 | 1   | 30  |    |
| cis-1,3-Dichloropropene       | ug/L     | ND           | 20    | 20    | 20.0    | 20.8   | 100          | 104   | 70-142 | 4   | 30  |    |
| Dibromochloromethane          | ug/L     | ND           | 20    | 20    | 21.9    | 19.9   | 110          | 99    | 68-138 | 10  | 30  |    |
| Dibromomethane                | ug/L     | ND           | 20    | 20    | 20.7    | 20.4   | 103          | 102   | 70-134 | 1   | 30  |    |
| Dichlorodifluoromethane       | ug/L     | ND           | 20    | 20    | 22.4    | 21.7   | 112          | 109   | 43-155 | 3   |     |    |
| Diisopropyl ether             | ug/L     | ND           | 20    | 20    | 20.8    | 19.8   | 104          | 99    | 65-146 | 5   | 30  |    |
| Ethylbenzene                  | ug/L     | ND           | 20    | 20    | 21.4    | 20.6   | 107          | 103   | 68-143 | 4   | 30  |    |
| Hexachloro-1,3-butadiene      | ug/L     | ND           | 20    | 20    | 21.9    | 21.7   | 110          | 108   | 62-151 | 1   | 30  |    |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



**QUALITY CONTROL DATA** 

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| MATRIX SPIKE & MATRIX SF  |       |            | MS    | MSD   | 3448959 |        |       |       |        |     |     |     |
|---------------------------|-------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-----|
|                           | 9     | 2570812005 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter                 | Units | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| m&p-Xylene                | ug/L  | ND         | 40    | 40    | 43.2    | 41.1   | 108   | 103   | 53-157 | 5   | 30  |     |
| Methyl-tert-butyl ether   | ug/L  | ND         | 20    | 20    | 20.7    | 19.3   | 103   | 96    | 59-156 | 7   | 30  |     |
| Methylene Chloride        | ug/L  | ND         | 20    | 20    | 23.2    | 22.6   | 116   | 113   | 64-148 | 2   | 30  |     |
| Naphthalene               | ug/L  | ND         | 20    | 20    | 21.0    | 20.2   | 105   | 101   | 57-150 | 4   | 30  |     |
| o-Xylene                  | ug/L  | ND         | 20    | 20    | 20.8    | 20.1   | 104   | 100   | 68-143 | 3   | 30  |     |
| o-Isopropyltoluene        | ug/L  | ND         | 20    | 20    | 20.9    | 20.5   | 104   | 102   | 70-141 | 2   | 30  |     |
| Styrene                   | ug/L  | ND         | 20    | 20    | 21.1    | 20.2   | 105   | 101   | 70-136 | 4   | 30  |     |
| Tetrachloroethene         | ug/L  | ND         | 20    | 20    | 19.9    | 19.8   | 99    | 99    | 70-139 | 1   | 30  |     |
| Toluene                   | ug/L  | ND         | 20    | 20    | 19.8    | 20.0   | 99    | 100   | 47-157 | 1   | 30  |     |
| rans-1,2-Dichloroethene   | ug/L  | ND         | 20    | 20    | 22.8    | 22.2   | 114   | 111   | 70-149 | 3   | 30  |     |
| trans-1,3-Dichloropropene | ug/L  | ND         | 20    | 20    | 19.7    | 18.9   | 99    | 94    | 70-138 | 4   | 30  |     |
| Trichloroethene           | ug/L  | ND         | 20    | 20    | 21.5    | 21.0   | 107   | 105   | 70-149 | 2   | 30  |     |
| Trichlorofluoromethane    | ug/L  | ND         | 20    | 20    | 22.4    | 22.0   | 112   | 110   | 61-154 | 2   | 30  |     |
| √inyl acetate             | ug/L  | ND         | 40    | 40    | 40.7    | 39.5   | 102   | 99    | 48-156 | 3   | 30  |     |
| Vinyl chloride            | ug/L  | ND         | 20    | 20    | 23.8    | 23.4   | 119   | 117   | 55-172 | 1   | 30  |     |
| Xylene (Total)            | ug/L  | ND         | 60    | 60    | 64.0    | 61.2   | 107   | 102   | 66-145 | 5   | 30  |     |
| 1,2-Dichloroethane-d4 (S) | %     |            |       |       |         |        | 111   | 108   | 70-130 |     |     |     |
| 4-Bromofluorobenzene (S)  | %     |            |       |       |         |        | 103   | 101   | 70-130 |     |     |     |
| Toluene-d8 (S)            | %     |            |       |       |         |        | 97    | 99    | 70-130 |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

656534

QC Batch Method:

EPA 3546

Analysis Method:

EPA 8015C

Analysis Description:

8015 Solid GCSV ORO

MDL

Laboratory:

Pace Analytical Services - Charlotte

9.2

Associated Lab Samples:

92568327001, 92568327003

METHOD BLANK: 3441651

Matrix: Solid

Associated Lab Samples:

92568327001, 92568327003

Blank Result

Reporting Limit

Analyzed

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

Units mg/kg %

Units

mg/kg

ND 51

14.9 32-130 11/02/21 10:12 11/02/21 10:12

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

3441652

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

%

84.2

53.2

63

50-130 32-130

SAMPLE DUPLICATE: 3441654

92568327003 Result

Dup Result

**RPD** 

60

Max **RPD** 

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

Date: 01/20/2022 03:34 PM

Units

mg/kg %

21.7 64 16.3J 40

30





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method:

656925

EPA 3546

Analysis Method:

EPA 8015C

Analysis Description:

8015 Solid GCSV ORO

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92568327002

METHOD BLANK: 3443518

Matrix: Solid

Associated Lab Samples:

Date: 01/20/2022 03:34 PM

92568327002

Blank Reporting Parameter Units Limit MDL Qualifiers Result Analyzed Oil Range Organics (C28-C40) mg/kg ND 15.0 9.3 11/02/21 16:24 n-Pentacosane (S) % 52 32-130 11/02/21 16:24

| LABORATORY CONTROL SAMPLE &  | LCSD: 3443519 |       | 34     | 143520 |       |       |        |     |     |            |
|------------------------------|---------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                              |               | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                    | Units         | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Oil Range Organics (C28-C40) | mg/kg         | 83.3  | 61.6   | 64.2   | 74    | 77    | 50-130 | 4   | 30  |            |
| n-Pentacosane (S)            | %             |       |        |        | 68    | 68    | 32-130 |     |     |            |





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

657008

Analysis Method:

SW-846

QC Batch Method: SW-846 Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92568327001, 92568327002, 92568327003

SAMPLE DUPLICATE: 3444109

Parameter

92568327001 Result

Dup Result

Max RPD RPD

Qualifiers

Percent Moisture

Units %

Units

%

26.3

27.5

26.6

25 N2

SAMPLE DUPLICATE: 3444111

92570104001 Result

Dup Result

**RPD** 

Max **RPD** 

Qualifiers

Parameter Percent Moisture

Date: 01/20/2022 03:34 PM

25.0

9

25 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method:

1759416

SM 2540 G

Analysis Method: Analysis Description: SM 2540G

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661001

METHOD BLANK: R3719273-1

Matrix: Solid

Associated Lab Samples:

92566661001

Blank

Reporting

Parameter Units

Result

Limit

Analyzed

Qualifiers

**Total Solids** 

%

0.00200

10/20/21 10:53

MDL

LABORATORY CONTROL SAMPLE: Parameter

Parameter

Date: 01/20/2022 03:34 PM

R3719273-2

Units

%

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

SAMPLE DUPLICATE: R3719273-3

L1418000-05

Dup

50.0

**RPD** 

100

Max

85.0-115

**Total Solids** 

Units %

Result

78.5

50.0

Result

78.5

0.00484

**RPD** 

10

Qualifiers





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

1759420

QC Batch Method: SM 2540 G Analysis Method:

SM 2540G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

MDL

Associated Lab Samples:

92566661002, 92566661003, 92566661004, 92566661005, 92566661006, 92566661007, 92566661008,

92566661009

METHOD BLANK: R3719276-1

Matrix: Solid

Associated Lab Samples:

92566661002, 92566661003, 92566661004, 92566661005, 92566661006, 92566661007, 92566661008,

92566661009

Blank Result Reporting Limit

Analyzed

Qualifiers

**Total Solids** 

Units %

0.00200

10/20/21 11:02

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

R3719276-2

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

**Total Solids** 

Units %

%

Conc. 50.0

50.0

100

0.169

85.0-115

10

SAMPLE DUPLICATE: R3719276-3

Date: 01/20/2022 03:34 PM

Parameter

92566661004 Units Result

Dup Result

87.0

**RPD** 

86.9

Max **RPD** 

Qualifiers





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method:

1761662

SM 2540 G

Analysis Method:

0.00100

SM 2540G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

MDL

Associated Lab Samples:

Associated Lab Samples:

92567218001, 92567218002, 92567218003

METHOD BLANK: R3720406-1

Matrix: Solid 92567218001, 92567218002, 92567218003

Blank Result

Parameter

Parameter

Units

%

Reporting

Limit

Analyzed 10/22/21 10:37 Qualifiers

**Total Solids** 

LABORATORY CONTROL SAMPLE:

R3720406-2

Units

%

Spike

LCS

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

Conc. 50.0 Result 50.0

100

85.0-115

SAMPLE DUPLICATE: R3720406-3

Date: 01/20/2022 03:34 PM

L1419711-01 Result

Dup Result

**RPD** 

Max **RPD** 

Qualifiers

**Total Solids** 

Parameter Units %

79.4

79.2

0.237

10





Project:

HRP PRGS SCR

Pace Project No.:

92569119

QC Batch:

QC Batch Method:

1762750

Analysis Method:

SM 2540G

SM 2540 G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

METHOD BLANK: R3721347-1

Matrix: Solid

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

Blank Result Reporting

Parameter

Units

MDL Limit

Analyzed

Qualifiers

**Total Solids** 

%

0.00100

10/25/21 14:37

LABORATORY CONTROL SAMPLE: Parameter

R3721347-2

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

Units %

%

50.0

50.0

100

SAMPLE DUPLICATE: R3721347-3

Date: 01/20/2022 03:34 PM

92567560001 Units Result

Dup Result

**RPD** 

Max **RPD** 

85.0-115

Qualifiers

**Total Solids** 

Parameter

93.6

92.8

0.829

10



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### **QUALIFIERS**

Project: HRP PRGS SCR
Pace Project No.: 92569119

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **WORKORDER QUALIFIERS**

WO: 92569119

[1]

## SAMPLE QUALIFIERS

Sample: 92569427001

[1] Semi-Volatile Organic Compounds (GC) by Method 8015C - Surrogate failure due to matrix interference

## **ANALYTE QUALIFIERS**

Date: 01/20/2022 03:34 PM

B Analyte was detected in the associated method blank.

J Analyte detected below the reporting limit, therefore result is an estimate. This qualifier is also used for all TICs.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A

complete list of accreditations/certifications is available upon request.

R1 RPD value was outside control limits.

SR Surrogate recovery was below laboratory control limits. Results may be biased low.



Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## **QUALIFIERS**

Project: HRP PRGS SCR Pace Project No.: 92569119

## **ANALYTE QUALIFIERS**

Date: 01/20/2022 03:34 PM

v1

The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

(704)875-9092



Date: 01/20/2022 03:34 PM

## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR Pace Project No.: 92569119

| _ab ID     | Sample ID               | QC Batch Method | QC Batch    | Analytical Method | Analytica<br>Batch |
|------------|-------------------------|-----------------|-------------|-------------------|--------------------|
| 2569119004 | HRP-MW205-211026        | 3511/8015       | <br>1769494 | EPA 8015C         | 1769494            |
| 2569119005 | HRP-MW206-211026        | 3511/8015       | 1769494     | EPA 8015C         | 1769494            |
| 2569119007 | HRP-MW214-211026        | 3511/8015       | 1769494     | EPA 8015C         | 1769494            |
| 2569119008 | HRP-MW208-211026        | 3511/8015       | 1769494     | EPA 8015C         | 1769494            |
| 2569119009 | HRP-MW207-211026        | 3511/8015       | 1769494     | EPA 8015C         | 1769494            |
| 2569427001 | HRP-MW72S-211027        | 3511/8015       | 1770405     | EPA 8015C         | 1770405            |
| 2569427002 | HRP-MW30S-211027        | 3511/8015       | 1770405     | EPA 8015C         | 1770405            |
| 2569427003 | HRP-MW209-211028        | 3511/8015       | 1770820     | EPA 8015C         | 1770820            |
| 2569427004 | HRP-MW100S-211028       | 3511/8015       | 1770820     | EPA 8015C         | 1770820            |
| 2566661001 | HRP-SB205-0-1-211011    | 3546            | 1761238     | EPA 8015D         | 1761238            |
| 2566661002 | HRP-SB205-13-15-21011   | 3546            | 1761238     | EPA 8015D         | 1761238            |
| 2566661003 | HRP-DUP02-13-15-21011   | 3546            | 1761238     | EPA 8015D         | 1761238            |
| 2566661004 | HRP-SB206-5-7-211012    | 3546            | 1761241     | EPA 8015D         | 1761241            |
| 2566661005 | HRP-SB206-15-17-211012  | 3546            | 1761241     | EPA 8015D         | 1761241            |
| 2566661006 | HRP-SB207-0-1-211013    | 3546            | 1763083     | EPA 8015D         | 1763083            |
| 2566661007 | HRP-SB207-6-8-211013    | 3546            | 1763083     | EPA 8015D         | 1763083            |
| 2566661008 | HRP-DUP03-6-8-211013    | 3546            | 1763083     | EPA 8015D         | 1763083            |
| 2566661009 | HRP-SB207-16-18-211013  | 3546            | 1763083     | EPA 8015D         | 1763083            |
| 2567218001 | HRP-SB-214-0-2-211014   | 3546            | 1764424     | EPA 8015D         | 1764424            |
| 2567218002 | HRP-SB-214-5-7-211014   | 3546            | 1764424     | EPA 8015D         | 1764424            |
| 2567218003 | HRP-SB-214-14-16-211014 | 3546            | 1764424     | EPA 8015D         | 1764424            |
| 2567560001 | HRP-SB215-0-2-211018    | 3546            | 1765155     | EPA 8015D         | 1765155            |
| 2567560002 | HRP-SB215-5-7-211018    | 3546            | 1765155     | EPA 8015D         | 1765155            |
| 2567560003 | HRP-SB215-16-18-211018  | 3546            | 1765155     | EPA 8015D         | 1765155            |
| 2567560004 | HRP-SB216-1-3-211018    | 3546            | 1765155     | EPA 8015D         | 1765155            |
| 2568327001 | HRP-SB225-0-1-211021    | EPA 3546        | 656534      | EPA 8015C         | 656780             |
| 2568327002 | HRP-SB224-0-1-211021    | EPA 3546        | 656925      | EPA 8015C         | 657096             |
| 2568327003 | HRP-SB227-0-1-211021    | EPA 3546        | 656534      | EPA 8015C         | 656780             |
| 2570802001 | HRP-MW201-211102        | EPA 3010A       | 659439      | EPA 6010D         | 659582             |
| 2570802001 | HRP-MW201-211102        | EPA 7470A       | 659243      | EPA 7470A         | 659349             |
| 2570802001 | HRP-MW201-211102        | EPA 8260D       | 657968      |                   |                    |
| 2568327001 | HRP-SB225-0-1-211021    | SW-846          | 657008      |                   |                    |
| 2568327002 | HRP-SB224-0-1-211021    | SW-846          | 657008      |                   |                    |
| 2568327003 | HRP-SB227-0-1-211021    | SW-846          | 657008      |                   |                    |
| 2566661001 | HRP-SB205-0-1-211011    | SM 2540 G       | 1759416     | SM 2540G          | 1759416            |
| 2566661002 | HRP-SB205-13-15-21011   | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |
| 2566661003 | HRP-DUP02-13-15-21011   | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |
| 2566661004 | HRP-SB206-5-7-211012    | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |
| 2566661005 | HRP-SB206-15-17-211012  | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |
| 2566661006 | HRP-SB207-0-1-211013    | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |
| 2566661007 | HRP-SB207-6-8-211013    | SM 2540 G       | 1759420     | SM 2540G          | 1759420            |

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92569119

Date: 01/20/2022 03:34 PM

| Lab ID      | Sample ID               | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------------|-----------------|----------|-------------------|---------------------|
| 92566661008 | HRP-DUP03-6-8-211013    | SM 2540 G       | 1759420  | SM 2540G          | <u>1759420</u>      |
| 92566661009 | HRP-SB207-16-18-211013  | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92567218001 | HRP-SB-214-0-2-211014   | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |
| 92567218002 | HRP-SB-214-5-7-211014   | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |
| 92567218003 | HRP-SB-214-14-16-211014 | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |
| 92567560001 | HRP-SB215-0-2-211018    | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560002 | HRP-SB215-5-7-211018    | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560003 | HRP-SB215-16-18-211018  | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560004 | HRP-SB216-1-3-211018    | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |

Prepackaged Cooler? Y / N Glassware in freezer? Y / N Disclalmer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The esponsible for missing sample: Glassware in the fridge? from prepacked coolers \*Pace Analytical is not GW = Ground Water WW = Waste Water DW = Drinking Water <sup>2</sup> Preservation Codes: I = Iced Total Number Of: X = Sodium Hydroxide B = Sodium Bisulfate Courier Use Only 0 = Other (please 4 6 8 0 = Other (please define) T = Sodium Thiosulfate S = Sulfuric Acid 2 Preservation Code N = Nitric Acid S = Soil SL = Sludge BACTERIA M = Methanol GLASS. ENCORE SOL = Solid PLASTIC VIALS define) H-HCL HUI **GRO** possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -- For to HAP-MW-301-811005, one voc vial brake, please try and can VOCs w/ the remaining vial Please use the following codes to indicate G807 497 Client Comments: - For HRP-mW301-311035, please try and run total metals from the clissolved inchals sample Chromatogram

AlHA-LAP,LLC Nor × ydrasine AgI Code column above: H はSOMercは ANALYSIS REQUESTED XXXXXX 1034 Doc # 381 Rev 5\_07/13/2021 NELAC. Metals × × Metals ź 2000 CT RCP Required
RCP Certification Form Required MA MCP Required MCP Certification Form Required WRTA MA State DW Required YOC 39 Spruce Street East Longmeadow, MA 01028 ENCORE Dissolved Metals Samples BACTERIA Orthophosphate San Field Filtered PCB ONEY Field Filtered Lab to Filter Lab to Filter PLASTIC School S. 10 MWRA Special Reguiren Sasteches & Ramboll. Com NON SOXHLET GLASS SOXHLET CHAIN OF CUSTODY RECORD VIALS No. if possible + if there is enough volume O Data Delivery X O 0 0 To-Day day Conc Code http://www.pacelabs.com Municipality Rumboll EDD Brownfield Requested Turnaround Time GE E 30 GE Sab GW # QISMA \*Matrito Code **GW** 3 3 Grab GW EXCEL 21.1 3-Day 4-Day 3 325 Sinas CLP Like Data Pkg Required: Grab age COMP/GRAB Great Single OH VANCO POF FAS 10-Day (std) Government Email To: Federal ax To#: Format: Other: -Day -Day Project Entity Shall 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 5.7 01 Project Location: 1400 N. Toyal St. Alexandra VA Access COC's and Support Requests HRP- PERF R65- SCR avoice Recipient: SOStertage Rampoll. com HRP- MW 202-211026 Date/Time: 3421 HRP-MW102-211027 97569119-001 HRP-MW801-31103-5 HRP-MW806-BIIDAG HAP-DUPOS-211076 PHIRP TROOP CHIMME ART 1810 211036 Date/Time: HAP-MUSOS-BIJUSG HART-TROP SHEETS 4350 N. Fairflax Dr Ste 200 Date/Time: 25 10 77 133 HRP-T807-211035 Phone: 413-525-2332 Date/Time: Date/Time: Date/Time: Fax: 413-525-6405 Me 12 My 20h Project Manager: 'Grey (Ard & unstreed by (signature) ALA ace Analytical nquished by: (signature) Relinquished by: (signature) Amore Received by: (signature) eceived by: (signature) Pace Quote Name/Numbe 000 600 000 ab Comments: Project Number: Sampled By:

MO#: 92569119

Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will

not be held accountable.

analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Prepackaged Cooler? Y / N responsible for missing samples Glassware in freezer? Y / N Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water "Pace Analytical is not from prepacked coolers 2 Preservation Codes: X - Sodium Hydroxide Total Number Of: B = Sodium Bisulfate SL = Sludge SOL = Solid O = Other (please Courier Use Only 0 = Other (please define) T - Sådium Thiosulfate S = Sulfuric Acid Page 1 of 2 N = Nitric Acid <sup>2</sup> Preservation Code BACTERIA M = Methanol ENCORE GLASS. VIALS PLASTIC A = Air S = Soil define) H=HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate Chromatogram

AHA-LAP,LLC Pc B 5 not be held accountable. Code column above: 212415 × × ANALYSIS REQUESTED × 000 X × Doc # 381 Rev 5\_07/13/2021 K × 686 × 7HI Metals Dissolved TAL Metals X × CT RCP Required X SVOCS MA MCP Required MCP Certification Form Required RCP Certification Form Required WRTA MA State DW Required 5791 均 × × × X × 39 Spruce Street East Longmeadow, MA 01028 ENCORE Med Metals Samples BACTERIA phosphate Samples Field Filtered Field Filtered PCB ONE Lab to Filter Lab to Filter PLASTIC School MBTA 3 3 NON SOXHLET GLASS 女 1 7 2 SOXHLET CHAIN OF CUSTODY RECORD VIALS 4 4 9 × 0 0 0 Sosterta arambillum Conc Code Requested rumanound rume

10-Day

10-Day (std) Due Date: http://www.pacelabs.com Municipality Ramboll EDD Matorix 0-6 30 D-18 GW 0.78 # QISMA 30 到-0 Rush-Approval Required EXCEL 3-Day 4-Day 21.3 CLP Like Data Pkg Required: COMP/GRAB Detection Limit Requirements 9 0 5 Ca ( P O 9 FAS 10-Day (std) POF GIOTAL VA DER Government 010 1655 1655 0101-127201 Email To: 1310 16.26-21 1310 14 27 at 1045 FIRP-MUSSI-SIIOSE IN STAIL (DID Federal Fax To #: Format: Date/Time: | Client Comments: | 10/97, 1330 | 18:Try Blank Due Date: 11/10/21 Other: 2-Day -Day City -Day Project Entity MA 1.92.01 10.26.11 10.24.71 12-77-01 b MO#: 92569119 Access COC's and Support Requests Project Location: 1400 N. Royal St., Alexandre VA HRP-TB1 - 211026 AWAD ALG. 2720 HRP 1813 -2 11026 TL HRP-MW207-211026 Invoice Recipient: Sostertag @ ramboll.com Client Sample ID / Description HRP-MW214-211026 HE1-1512-211076 HRP-MW208-211026 Phone: 413-525-2332 The sales Date/Time: Jate/Time: Date/Time: Date/Time: HRP PRGS SCR Fax: 413-525-6405 Address: 4350 N. Farfack Dr. Ste 300 Rambel Sanh Dsterton Project Manager: Greg Gno Sc. Pace Quote Name/Number: Pace Analytical PM: AMB 703 5142383 Relinquished by: (signature) L00 61169576 Received by: (signature) Received by: (signature) 009 de 800 KK quished by: ab Comments: Project Number: Company Name Sampled By:

CLIENT: 92-RambollEn

Page 66 of 80

http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021

# Pace Analytical\*

Document Name:

# Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

| Durler: Fed Ex UPS                                                                                            | USP           | S                                            | □ci         | Project<br>ient | WO#:92570802                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------|-------------|-----------------|---------------------------------------------------------------------------------------------------------------|
| Commercial Pace                                                                                               | Othe          | er:                                          |             |                 | 92570802                                                                                                      |
| stody Seal Present? Yes No Seals                                                                              | Intact?       | □Yes                                         | ŊŊo         |                 | Date/Initials Person Examining Contents: KH 11/4)                                                             |
| king Material: Bubble Wrap Bub ermometer:  SIR Gun ID: 97 TO 64                                               | ble Bags      | Non                                          | e           | ther            | Blological Tissue Frozen?  ☐Yes ☐No ☒Ñ/A                                                                      |
| Correction Factor                                                                                             | Type of I     |                                              |             |                 | -                                                                                                             |
| oler Temp: Add/Subtract (°C)  oler Temp Corrected (°C): Subtract (°C)  OA Regulated Soil ( N/A, water sample) | 1             | <u>)                                    </u> |             |                 | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun |
| samples originate in a quarantine zone within the Unite  Yes   No                                             | ed States: CA | A, NY, or S                                  | C (check ma |                 | Did samples originate from a foreign source (Internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No   |
|                                                                                                               |               | 14H 10                                       | 14/21       |                 | Comments/Discrepancy:                                                                                         |
| Chain of Custody Present?                                                                                     | Dies          | - 200                                        | □N/A        | 1.              |                                                                                                               |
| Samples Arrived within Hold Time?                                                                             | □Yes          | □No                                          | □N/A        | 2.              |                                                                                                               |
| Short Hold Time Analysis (<72 hr.)?                                                                           | □Yes          | Ď№o                                          | □N/A        | 3.              |                                                                                                               |
| Rush Turn Around Time Requested?                                                                              | □Yes          | □No                                          | □N/A        | 4.              |                                                                                                               |
| Sufficient Volume?                                                                                            | ₩Yes          | □No                                          | ⊡N/A        | 5.              |                                                                                                               |
| Correct Containers Used?                                                                                      | <b>∑</b> yes  | □No                                          | □N/A        | 6.              |                                                                                                               |
| -Pace Containers Used?                                                                                        | ⊠Yes          | □No                                          | □N/A        | 7               |                                                                                                               |
| Containers Intact?                                                                                            | Yes           | □No                                          | □N/A        | 7.              |                                                                                                               |
| Dissolved analysis: Samples Field Filtered?                                                                   | □Yes          | □No                                          | ⊠n/a        | 8.              |                                                                                                               |
| Sample Labels Match COC?                                                                                      | □Yes          | □No                                          | □N/A        | 9.              |                                                                                                               |
| -Includes Date/Time/ID/Analysis Matrix:                                                                       |               |                                              |             |                 |                                                                                                               |
| Headspace in VOA Vials (>5-6mm)?                                                                              | □Yes          | □No                                          | ⊠N/A        | 10.             |                                                                                                               |
| Trip Blank Present?                                                                                           | ☐Yes          | No                                           | □N/A        | 11.             |                                                                                                               |
| Trip Blank Custody Seals Present?                                                                             | □Yes          | □No                                          | D-N/A       |                 |                                                                                                               |
| DMMENTS/SAMPLE DISCREPANCY                                                                                    |               |                                              |             |                 | Field Data Required? ☐Yes ☐No                                                                                 |
| ENT NOTIFICATION/RESOLUTION                                                                                   |               |                                              |             | Lot II          | ID of split containers:                                                                                       |
|                                                                                                               |               |                                              |             |                 |                                                                                                               |
| erson-contacted:                                                                                              |               |                                              | - Date/Ti   | me:             |                                                                                                               |



## Document Name:

Sample Condition Upon Receipt(SCUR)

Document Revised: October 28, 2020 Page 2 of 2

Page 2 of 2
Issuing Authority:

Document No.: F-CAR-CS-033-Rev.07

\*Check mark top half of box if pH and/or dechlorination is Project verified and within the acceptance range for preservation

PM: AMB Due Date: 11/18/21

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

CLIENT: 92-RambollEn

\*\*Bottom half of box is to list number of bottles

| I TE STATE OF THE | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastid Unpreserved (N/A) | BP45-125 mL Plastic H25O4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plast CNaOH (pH > 12) (Cl-) | WGFU-Wide-mouthed Glass Jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG35-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA (Jnp (N/A) | . DG9P-40 ML VOA N3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Steri(e Plastic (N/A – lab) | SP2T-250 mL Ster(le Plastic (N/A - lab) |   | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|---------------------------|------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|---|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                       |                                       | ~                                      | 7                                        | X                                 | 7                                          | 1                                       |                                         |                                            | 1                               |                                           | 7                                 | 7                                | 7                                        | 3                        |                              |                           |                              |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                           |                                       |                                       |                                        | 7                                        | 7                                 | 1                                          | 1                                       |                                         |                                            | 1                               |                                           | 1                                 | 1                                |                                          |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          |                                         |                                         |                                            |                                 |                                           | /                                 | /                                |                                          |                          |                              |                           |                              |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      |                                          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                           |                                       |                                       |                                        | /                                        | 1                                 | 1                                          |                                         |                                         |                                            | 1                               |                                           | /                                 | /                                |                                          |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          |                                         | lei                                     |                                            |                                 |                                           | /                                 | 1                                |                                          |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                           |                                       |                                       |                                        | /                                        | 1                                 | 1                                          | 1                                       |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        |                          |                              |                           |                              |                                       |                                          | A                                       |                                         | 1 | 1                                       | F                                         |                                      |                                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                       |                                         |                                            | 1                               |                                           | /                                 | 7                                | 1                                        |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | 1                                       |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                       |                                         |                                            | /                               |                                           | 7                                 | 1                                | 1                                        |                          | E                            |                           |                              | 11                                    |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                       |                                         |                                            |                                 |                                           | /                                 | 1                                | 1                                        |                          |                              |                           |                              |                                       | G 1                                      |                                         |                                         | 1 | 1                                       |                                           |                                      | 7                                        |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                       |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        |                          |                              |                           |                              |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                       |                                         |                                            |                                 |                                           |                                   | 1                                | 1                                        |                          |                              |                           |                              |                                       | 1                                        |                                         | 1                                       | 1 | 1                                       |                                           |                                      |                                          |

|           |                      | pH Ac           | ljustment Log for Pres     | erved Samples              |                              |      |
|-----------|----------------------|-----------------|----------------------------|----------------------------|------------------------------|------|
| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added | Lot# |
|           |                      |                 |                            |                            |                              |      |
|           |                      |                 |                            |                            |                              |      |
|           | 180                  |                 |                            |                            |                              |      |

Note: Whenever there is a discrepancy affecting North-Carolina-compliance samples, a copy of this form-will-be sent to the North-Carolina-DEHNR-Certification Office (i.e., Out of hold, Incorrect preservative, out of temp, incorrect containers.

Prepackaged Cooler? Y / N Glassware in freezer? Y / N esponsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? from prepacked coolers Matrix Codes:
GW = Ground Water
WW = Waste Water
DW = Drinking Water \*Pace Analytical is not Preservation Codes: Total Number Of Courier Use Only X = Sodium Hydroxide SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate 0 = Other (please define) S = Sulfuric Acid Page of <sup>2</sup> Preservation Code X/N N = Nitric Acid BACTERIA ENCORE M = Methanol PLASTIC GLASS VIALS T = Sodium Thiosulfate A = Air S = Soil H = HCL possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. ANALYSIS REQUESTED Doc # 381 Rev 5\_07/13/2021 storism 155101 2 X CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required WRTA MA State DW Required VOCS X 39 Spruce Street East Longmeadow, MA 01028 ENCORE PLASTIC BACTERIA Field Filtered Field Filtered PCB ONLY Lab to Filter Lab to Filter School MWRA MBTA So Stertage Damboll Con NON SOXHLET GLASS SOXHLET CHAIN OF CUSTODY RECORD VIALS CC 00 0 0 Conc Code http://www.pacelabs.com EXCEL X Municipality Ramboll EDD Due Date: Brownfield 'Matrix Code # QISMd SE 10-Day 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB 5 PDF PFAS 10-Day (std) Ending Date/Time Government 0915 Email To: Fax To #: -ormat: Federal Other: '-Day -Day -Day Client Comments: City Project Entity 18/8/11 Beginning Date/Time Invoice Recipient: Sostertag & Rumball.com Address: 4350 N Fairfelx Dr. Arlington VA Hexandria Access COC's and Support Requests Date/11/16/50 HRP-MW201-211102 Client Sample ID / Description Phone: 413-525-2332 13/2 Fax: 413-525-6405 Date/Time: Project Location: 1400 N Rouce 600SE Dree HVI Face Analytical \* Retinguished by, (signature) Sampled By: Anne ("el Carea 00-20801576 Pace Quote Name/Number: C Relinquished by: (signature) elinquished by: (signature) eceived by: (signature) Received by: (signature) Pace Work Order# Project Manager: Project Number: leceived by: (si .ab Comments: Page 69 of 80

| Part      | Pace Analytical    | Phone: 413-525-2332            |                        |                       | http://www.paraelabs.com<br>CHAIN OF | CHAIN CO           |        |        | 207     | Do 19 Sprace Street                                        | w, MA 010                                          | Doc# 381 Rev 5 07/13/2021<br>28               | 11 Rev 5                                | 07/13/20                                   | 121                                          |                                                            |                                                           | Page of 2                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|------------------------|-----------------------|--------------------------------------|--------------------|--------|--------|---------|------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1-050   10-050   10-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11-050   11   | 1                  |                                |                        |                       |                                      | STREET STREET      | - 中央   | i de   |         |                                                            | Title Str                                          |                                               | 1                                       | NALYS                                      | S REQU                                       | ESTED                                                      |                                                           | 1                                                                                                                        |
| 1-0by   3-0by   0   1-10by     | THE PARTY NAMED IN | Access COC's and Support Reg   |                        | '-Day<br>FAS 10-Day ( | □ □<br>ĝ                             | 10-Day             | N N    | 0 0    | Field 1 | litered                                                    |                                                    | -                                             | H                                       | 1 13                                       | H                                            | _                                                          |                                                           | Preservation Code                                                                                                        |
| Comat:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N Faurfo           | 4 Dr. Ste 30                   |                        |                       | No led                               |                    |        | 3      |         |                                                            | はない                                                |                                               |                                         |                                            |                                              |                                                            |                                                           | The North                                                                                                                |
| Comment   Comm   |                    | 19 9265 S.P.                   |                        | -bay                  |                                      |                    |        | 0 0    | Lab to  | Filter                                                     |                                                    |                                               |                                         | -                                          |                                              |                                                            |                                                           | 8                                                                                                                        |
| CLP Like Data Pig Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 N. Fa          | of St. Recorder, VR            |                        |                       | X                                    |                    | 2      |        | PCB (   | A INC                                                      |                                                    |                                               |                                         | -                                          |                                              |                                                            |                                                           | DLASTIC                                                                                                                  |
| Enail To: Sostet-Huj Clambed   Non Soxhle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grea 5005          | a                              |                        | e Dat                 | AMPOS!                               | 00                 |        | SOXHLE | 1 6     |                                                            |                                                    |                                               |                                         |                                            |                                              | 7                                                          |                                                           | BACTERIA                                                                                                                 |
| HRP-Sedent-13-11-11   10-11-2   1340   CT03   0.764   Co. Code   Vivis   Code   Vivis   Code   Vivis   Code   Code   Code   Code   Vivis   Code   Code   Code   Code   Vivis   Code   Co   | Sostert            | RA ( ambol .com                |                        | mail To:              | Sostate                              | g Trum             | poplar | NON SO | CHLET   |                                                            | <b>A</b>                                           |                                               |                                         |                                            | m                                            |                                                            |                                                           | TOO TO                                                                                                                   |
| HRP-Se20s-0-1-24 01    10-11-3    1143   G   S   C   1   2     HRP-Se20s-0-1-24 01    10-11-3    1143   G   S   C   1   2     HRP-Se20s-13-15-24 04    10-11-3    1230   G   S   C   1   2     HRP-Se20s-13-15-24 04    10-11-3    1240   G   S   C   1   2     HRP-Se20s-13-15-24 04    10-11-3    1240   G   S   C   1   2     HRP-Se20s-13-15-24 04    10-11-3    1240   G   S   C   1   2     HRP-Se20s-1-1-10-12   10-12-3    1240   G   S   C   1   2     HRP-Se20s-1-1-10-12-10-12   10-12-3    1240   G   S   C   1   2     HRP-Se20s-1-1-13-10-12   10-12-3    1240   G   S   C   1   2     HRP-Se20s-1-1-10-12   10-12-3    1240   G   S   C   1   2     HRP-Se20s-1-1-13-10-12   10-12-3    1240   1-12-3    1240   G   S   C   1   2     HRP-Se20s-1-1-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10-12-10   |                    | Client Sample ID / Description | Beginning<br>Date/Time | Ending<br>Date/Time   | COMP/GRAB                            |                    | -      |        |         |                                                            | A ENCORE                                           |                                               |                                         | 7                                          | 74L                                          |                                                            |                                                           | Glassware in the fridge?                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1                 | 1694 HEP-TEO1-211911           |                        | 1300                  | [48]                                 | O Birt             | J      | 7      | H       |                                                            |                                                    | ×                                             | 1                                       | ×                                          |                                              |                                                            |                                                           | Glassware in freezer? Y / N                                                                                              |
| HRP-SB20S-13-15-24164  10-11-21   1230   G   S   C   1   2     HRP-DN02-13-15-24161  10-11-24   07440   G   S   C   1   2     HRP-SB20S-0-1-211612   10-12-34   07440   G   S   C   1   2     HRP-SB20S-0-1-211612   10-12-34   07473   G   S   C   1   2     HRP-SB20S-0-1-241612   10-12-34   12473   G   S   C   4   1.5     HRP-SB20S-5-3-241612   10-12-34   12473   G   S   C   4   1.5     HRP-SB20S-6-15-13-241612   10-12-34   12473   G   S   C   4   1.5     HRP-SB20S-6-15-13-241612   12473   G   S   C   4   1.5     HRP-SB20S-6-15-13-14612   12473   G   S   C   4   1.5     HRP-SB20S-6-15-13-14612   12473   G   S   C   1   2     HRP-SB20S-6-16-13-14612   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473   12473     |                    | 12P-56205-0-1-211011           | _                      | 1143                  | G                                    | S                  | 7      | -      | 7       |                                                            |                                                    | ×                                             | ×                                       | ×                                          | ×                                            |                                                            |                                                           | Prepackaged Cooler? Y / N                                                                                                |
| HRP-DN02-13-15-211011   10-11-31   1230   G   S   C   1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | TRP-58205-13-15-21104          | 10-11-21               | 1230                  | 9                                    | S                  | J      | _      | 7       |                                                            |                                                    | ×                                             | X                                       |                                            | ×                                            |                                                            |                                                           | "Pace Analytical is not                                                                                                  |
| HRP-SB203-0-1-211012   10-12-31   0794 0   G   S   C   2   C   2   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 181- DUPO2-13-15-211011        | 12-11-01               | 1230                  | 9                                    | S                  | J      |        | 7       |                                                            |                                                    | X                                             | ×                                       | ×                                          |                                              | ×                                                          |                                                           | responsible for missing samples<br>from prepacked coolers                                                                |
| HRP-SB203-11-13-21101   10-12-31   0-15-31   0-15-31   124/3   G   S   C   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | tef-56203-0-1-211012           |                        | OPFO                  | 9                                    | S                  | J      |        |         |                                                            |                                                    |                                               |                                         | ×                                          | ×                                            |                                                            |                                                           | 1 Matrix Codes:                                                                                                          |
| HRP-SB206-0-1-211012   1243   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 161-58203-11-13-21101          | 1521.01                | <b>6353</b>           | G                                    | 5                  | 7      |        | 7       |                                                            |                                                    |                                               |                                         | ×                                          | X                                            |                                                            |                                                           | GW = Ground Water<br>WW = Waste Water                                                                                    |
| HTP-SB-30-5-7-34013   12-58   G   S   L   H   3     HTP-SB-30-15-13-24100   10-12-21   13-45   G   G   L   H   1.5     Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                  | HRP-58206-0-1-211012           | 10-(2-2)               | 1243                  | 9                                    | 5                  | ر      |        | 2       |                                                            |                                                    |                                               |                                         |                                            | ×                                            | X                                                          |                                                           | DW = Drinking Water                                                                                                      |
| 1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245   1245      |                    | HRP-56706-5-7-211012           |                        | 1258                  | 9                                    | S                  | د      |        | ~       |                                                            |                                                    | _                                             |                                         | ×                                          | ×                                            | ×                                                          |                                                           | S = Soil                                                                                                                 |
| Date/Time:   Client Comments:   Date/Time:   |                    | MRP-50,206-15-17-2110          |                        | 1345                  | 5                                    | 5                  | ٦      |        | 107.0   | e este                                                     | Ţ.                                                 | X                                             | ×                                       | X                                          | X                                            |                                                            |                                                           | SOL = Solid<br>O = Other (please                                                                                         |
| Date/Time:  Date/T | ignature)          |                                | Client Com             | nents:                | <u> </u>                             |                    |        |        |         |                                                            |                                                    |                                               |                                         |                                            |                                              |                                                            |                                                           | 2 Preservation Codes:                                                                                                    |
| Date/Time: Distriction limit maturations   Control of the control  | (tyre)             |                                |                        |                       |                                      |                    |        |        |         |                                                            |                                                    |                                               |                                         |                                            |                                              |                                                            | *                                                         | H = HCL                                                                                                                  |
| Date/Time:  Date/T | ignature)          | ) Date/Time; /                 | V 18                   | and Title Lie         | Metalents                            |                    |        | 原理     |         | ments                                                      | MA MC                                              | P Requir                                      |                                         | sase use                                   | the follo                                    | wing codes to                                              | o indicate                                                | M = Methanol                                                                                                             |
| Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Government                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ature)             |                                |                        |                       |                                      | E                  |        |        |         | MCP Cert                                                   | iffication Fo                                      | rm Requir                                     |                                         | ble sam                                    | de conce<br>Code col                         | ntration with                                              | in the Conc                                               | S = Sulfuric Acid                                                                                                        |
| Date/Time:    Date/Time:   Project Entity   Virgin: 4 DEQ   Pwsip #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Signature)         | 2                              | THE SECTION ASSESSMENT |                       |                                      |                    |        |        |         | RCP Cert                                                   | iffcation Fo                                       | rm Requir                                     |                                         | ugn; w                                     | Medium                                       | חשטוו ר- רסאין                                             | · Clean; U ·                                              | B = Sodium Bisulfate                                                                                                     |
| Date/Time: Project Entity Government Municipality Covernment 21 J City Brownfield City Brownfield City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ature)             |                                | Others                 | Versia                | 050                                  | □ # DMSID #        |        |        |         |                                                            | MA State DI                                        | V Require                                     | 60                                      | NETARY                                     | of Albiton                                   | APTHEAST                                                   | Water Bird Street                                         | X = Sodium Hydroxide                                                                                                     |
| #:9256661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | signature)         | Date/Time:                     | Project Ent            | lty (1)               |                                      |                    |        | E      |         | ,                                                          |                                                    | 1                                             | 7                                       |                                            | Other                                        |                                                            |                                                           | T = Sodium<br>Thiostifate                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ature)             | Date/Time:                     |                        | Federal<br>City       |                                      | 21 J<br>Brownfield | . P    |        | Scho    | 5 75 ×                                                     |                                                    | 2                                             |                                         |                                            |                                              | AIHA-LA                                                    | D,LLC                                                     | O = Other (please<br>define)                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #                  | 92566661                       | 0.75                   |                       |                                      |                    |        |        | A a G B | sclaimer: I<br>ain of Cust<br>alyses the I<br>alytical val | Pace Anal<br>tody is a l<br>laborator<br>lues your | lytical is<br>egal do<br>y will pe<br>partner | not res<br>cument<br>rrform.<br>ship on | ponsible<br>that mu<br>Any mis<br>each pro | for any<br>st be co<br>sing info<br>yject an | omitted in mplete and immation is a will try to countable. | formation o<br>accurate ar<br>not the labo<br>assist with | on the Chain of Custody. The one is used to determine what or actory's responsibility. Pacomissing information, but will |

WO#:92567218 Sampled By: Awar address: 4350 N. Fairfux Dr., Artington, VA 2220 invoice Recipient: SoStertag (a) ramball. com Pace Quote Name/Number Project Manager: 42567218 00 roject Number: roject Location: Received by: (signature) Relinquished by: (signature) oject Names 2 2 265 When phi Isignatu wished by: (signature) d by (signature) Work Order# 7002 800 610 Munum 1400 N. Doyal St Alexander VA 64088 HAP-MW308-5-7-211014 092 HRP-100-81-806MW-43H HRP-MW208-6-1-211014 HRP-MW209-5-7-211013 HRP-MWDIN-14-110-211014 HRP-11/209-15-17-2103 HRP-MW809-0-1-211013 HRP-EB03-211013 Chent Sample ID / Description Access COC's and Support Requests Fax: 413-525-6405 10/15 /410 10/157 Date/Time: Date/Time: Date/Time: 10-15-21 1600 Date/Time: D-18-21 0/15/21 BLI 13554 Client Con Beginning Date/Time Project Entity Detection Limit Requirements U VA EB: Equipment Blank Ending Date/Time Other: CLP Like Data Pkg Required: Format: PFAS 10-Day (std) Federal Email To: 7. Day City Government Fax To #: Day Day Y Ramboll PDF (Syrab Grand Soste teg (Ox mb/ NON SOXHLET Grab (Surab Gune Grado (mab Grab COMP/GRAB C Grab Grab END! Due Day Municipality 21 J 3-Day 4-Day # DISMA Code 3 S S S Г Conc Code 0 7 ~ VIALS SOXHLET 0 0 0 0 GLASS W Aww 8 P Ø 2 Standards at a local at PCB ONLY Field Filtered Field Filtered Lab to Filter Lab to Filter PLASTIC School Analytical values your partnership on each project and will try to assist with missing information, but will analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. CT RCP Required RCP Certification Form Required MCP Certification Form Required BACTERIA MA State DW Required ENCORE MA MCP Required XX TAL Metals WRTA PH × × Cyanide H - High; M - Medium; L - Low; C - Clean; U possible sample concentration within the Conc Please use the following codes to indicate MB M 10Cs ANALYSIS REQUESTED HELAC and AIHA-LAP, LUC Acco GRO X Code column above: X TPH ORD Other X ☐ Chromatogram
☐ AIHA-LAP,LLC DRO V 199T Preservation Code Prepackaged Cooler? Y / N responsible for missing samples Glassware in freezer? Y / N T ≠Sodium Thiosulfate Glassware in the fridge? 0 = Other (please define) B = Sodium Bisulfate S = Sulfuric Acid N = Nitric Acid SL = Sludge SOL = Solid O = Other (please X = Sodium Hydroxide M = Methanol H = HCL Matrix Codes:
GW = Ground Water
WW = Waste Water
DW = Drinking Water Preservation Codes: = iced from prepacked coolers \*Pace Analytical is not define) S = Soil BACTERIA Turla Number Of: PLASTIC ENCORE GLASS VIALS Courier Use Only

The

Page 72 of 80

Pace Analytical

Phone: 413-525-2332

http://www.paced.do.com

RECORD

39 Sprike Street East Longmeadow, MA 01028

Doc # 381 Rev 5\_07/13/2021

Page

N

W

| WO#:92567560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received by: (signature) Lab Comments: | Relinquished by: (signature)       | neunquished by: (signature)     | Kanled Surrus                                                    | 1017                                       | Charles of Charles | Anh A. Ott                                   |                 | -004 HRP-562        | -003 HRP-5621          | -002 HAP-582                | 4256-1560-001 HRP-5821             |                       | HRP-SB20               | HRP-SB:                 | HRP-EBOG-ZIDIS          | HRP-EB05-211018             | Pace Clent Sam                          | Sampled By: Sarah OStertus | Invoice Recipient: Sostertes @ rampoll, com | Pace Quote Name/Number.                    | Project Number: | 7 11          | 0              | P                      | ompany Name: wbol |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------|----------------------------------------------|-----------------|---------------------|------------------------|-----------------------------|------------------------------------|-----------------------|------------------------|-------------------------|-------------------------|-----------------------------|-----------------------------------------|----------------------------|---------------------------------------------|--------------------------------------------|-----------------|---------------|----------------|------------------------|-------------------|
| 7560<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:                             | Date/Time: Date/Time:              | pace/ ime:                      | 17-19-21 1505                                                    | 10 10 100                                  | 701 KB101          | 10.19.21/1324                                | HRP-7865-211018 | HRP-58216-1-3-21018 | HRP-56215-16-18-211018 | HRP-58215-5-7-211018        | HRP-SBZIS-0-2-211018               | HAP-58204-13-15-21108 | HRP-5B204-68-211018    | HRP-5B204-0-8-1.8-2     | 6-211018                | 5-211018                    | Client Sample ID / Description          |                            | ramball .com                                |                                            |                 | Alexandria of | 000000         | Ste 300, Articolom, VA |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Go Go                                  | Others                             | G                               |                                                                  | 關係                                         | 18:70              | EB: Equipm                                   | 10-18-21        | 10-18-1             | 10-18-21               | 10-18-21                    | 10-18-11                           | 10.8.21               | 10.[8.2]               | 1018 /10                | 10-18-21                | 10-18-21                    | Beginning<br>Date/Time                  |                            | / S = 1                                     |                                            |                 |               |                |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Government<br>Federal<br>City          | VA DEQ                             |                                 |                                                                  | MA Detection came requirements             | TB:Trip Blank      | EB: Equipment Black                          | 1610            | IHSS                | 1250                   | 1230                        | 1220                               | 13%                   |                        | 18-21/110               | 859                     | 9Ho                         | Ending<br>Date/Time                     | 4 1                        | Email To:                                   | Other: Lampoll CLP Like Data Pkg Required: | **              | bay and       | 1-Day          |                        | PFAS 10-Day (std) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                    | ٩                                  |                                 |                                                                  | THE STREET                                 | -                  | Black                                        | NIA             | 6                   | G                      | 9                           | G                                  | 9                     | 9                      | 36                      | S                       | G                           | COMP/GRAB                               |                            | soster                                      | Pkg Required:                              | X.              |               |                | and ploton             | std.              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Municipality<br>21 J<br>Brownfield     | PWSID #                            |                                 |                                                                  |                                            |                    |                                              | 0-TB            | S                   | S                      | S                           | S                                  | S                     | S                      | N                       | 0-68                    | 0-68                        | 'Matrix<br>Code                         | ر                          | sostertag @anball.o                         | EDP                                        | EXCEL X         | 4-Day         | 3-Day          | Jugopha K              | Due Date:         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d &                                    | Н                                  |                                 |                                                                  | 4                                          |                    |                                              | C               | I                   | ٦                      | 7                           | 7                                  | 1                     | ٢                      | 6                       | C                       | c                           | Conc Code                               |                            | Abd/con                                     |                                            | Δ               | Date Dally    |                |                        | 3                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                    |                                 |                                                                  | 257656                                     |                    |                                              | 2               | 8. K                | 4 3                    | 4 3                         | 4 3                                | 3 1                   | 3                      |                         | 4                       | 1                           | VIALS GLASS                             | NON SOXHLE                 |                                             | SOXHLET                                    |                 |               | 0 0            | 動物のはない                 | 0                 |
| Discla<br>Chain<br>analys<br>Analyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MWRA<br>School<br>MBTA                 |                                    |                                 |                                                                  | Special leguirements                       |                    |                                              |                 | 8                   | 3                      |                             |                                    |                       | 4                      |                         | 2                       | 4 2                         | NS PLASTIC                              | HLEI                       |                                             |                                            | PCB ONLY        | Lab to Fitter | Field Filtered | Telephone Su           | Lab to Filter     |
| imer: Pace Analy<br>of Custody is a le<br>es the laboratory<br>ical values your i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000                                    | MA State DW                        | RCP Certification Form Required | MCP Certification Form Required CT RCP Required                  |                                            |                    |                                              |                 |                     |                        |                             |                                    |                       |                        |                         |                         |                             | BACTERIA ENCORE                         | ×                          | )                                           |                                            | LY              | ter           | red            | Sample                 | P                 |
| ytical is n<br>egal docu<br>will perf<br>partnersh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WRTA                                   | State DW Required                  | m Required                      | CT RCP Required                                                  | MA MCP Required                            |                    |                                              |                 | ХX                  | ×                      | ×                           | ×                                  | X                     | XX                     | ダメ                      | ××                      | XX                          | SV<br>TA                                | L                          | M                                           | eta                                        | 15              |               |                |                        | 1                 |
| ot responsible f<br>ment that must<br>orm. Any missii<br>ip on each projo<br>not be l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | NEI AC JA                          |                                 | -                                                                | _                                          |                    |                                              |                 | ×<br>×<br>×         |                        | ×                           | ×<br>×                             |                       |                        |                         | XX                      | X                           | Cy                                      | an                         | GR<br>DR                                    | 0                                          |                 |               |                |                        | ,                 |
| nsible for any omitted in at must be complete and must be complete and my missing information is ch project and will try to not be held accountable.                                                                                                                                                                                                                                                                                                                                                                                                                    | Other  Chromatogram  AIHA-LAP,LLC      | NEIAC and Alka-LAB, LIC Accredited | Unknown                         | Code column above: H - High: M - Medium: L - Low: C - Clean: U - | Please use the following codes to indicate |                    |                                              | ×               | ×                   | ×<br>×<br>×            | ×                           | ×<br>×                             | ×                     | ×                      |                         |                         |                             | 11 1 1 1 1 1                            | ,B                         |                                             | 0                                          |                 |               |                |                        |                   |
| nformation on the discourate and is not the laborate of assist with misting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                    | -                               | 45                                                               |                                            | 0                  | le le                                        |                 |                     |                        |                             |                                    |                       | ŝ                      |                         | Pre                     | GL                          | PH                                      |                            |                                             |                                            |                 |               |                |                        |                   |
| Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what chair of Custody is a legal document in that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable. | Thiosulfate CO = Other (please define) | I                                  | . B = Sodium Bisulfate          | S = Sulfuric Acid                                                | N = Nitric Acid                            | H = HCL            | <sup>2</sup> Preservation Codes:<br>I = Iced | define)         | SOL = Solid         | S = Soil               | DW = Drinking Water A = Air | GW = Ground Water WW = Waste Water | 1 Matrix Codes:       | from prepacked coolers | *Pace Analytical is not | Prepackaged Cooler? Y/N | Glassware in freezer? Y / N | Y/N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | Thomas in the fidee?       | EMCOKE                                      | BACTERIA                                   | PLASTIC         | VIALS         |                | Total Number Of        | Courier Ilse Only |

Page 73 of 80

Page 1 of 2

Phone: 413-525-2332 Fax: 413-525-6405

http://www.pacelabs.com

CHAIN OF CUSTODY RELU-

39 Spruce Street East Longmeadow, MA 01028

Doc # 381 Rev 5\_07/13/2021

Project Manager: Grey Grove Pace Quote Name/Number Project Location: 1400 N Royal St, Alexandra VA 12568327 - OOI HAP-58225-0-1-211021 Sampled By: Project Number: Address: 4350 N Fairfax Dr. Stc 300, Arlington VA Relinquished by: (signature) Received by: (signature) Received by: (signature) Relinquished by: (signature) unpled By: Sarah Ostertas inquished by: (signature) pd by: Jeispation 703 516 2383 Pace Analytical W0#:92568327 nature) Rambell HAPPRGS SCR MP-SB224-0-1-211021 12P-TBD6-211021 成1-28227-0-1-211021 Client Sample ID / Description Access COC's and Support Requests Fax: 413-525-6405 Phone: 413-525-2332 15/21/15.2 10/21/21 15:15 Date/Time: Date/Time: Date/Time: Date/Time: Date/Time Date/Time 10.21.21 1315 EB=Equipment Blank 16.21.21 10.24.2 10.21.21 Project Entity Client Comments: TB = Trip Black MA 0.4.71 DEG VA DEG 9 Detection Limit Requirements Sheo Federal 0925 0925 0850 0825 Ending Date/Time Other: CLP Like Data Pkg Required: Government Email To: 2-Day PFAS 10-Day (std) City Format: -Day 7-Day Ramboll EDD Sostertag@ambdl.ushon SOXHLET COMP/GRAB NIA 9 P G 6 Due Date ? D-18 3-Day 0-E6 4-Day 21 J Municipality PWSID # Code CHAIN OF CUSTODY RECORD S X Conc Code 3 3 0 3 VIALS SOXHLET 0 0 0 0 2 2 GLASS u 0 PCB ONLY Field Filtered Lab to Filter Field Filtered Lab to Filter PLASTIC MWRA School MBTA 39 Spruce Street East Longmeadow, MA 01028 Analytical values your partnership on each project and will try to assist with missing information, but will analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The MCP Certification Form Required CT RCP Required RCP Certification Form Required BACTERIA MA State DW Required X MA MCP Required 185 M × × Vocs WRTA × TPH-GRO TITITI × H - High; M - Medium; L - Low; C - Clean; U possible sample concentration within the Conc Please use the following codes to indicate ANALYSIS REQUESTED X × TPH-DRO PLBS Code column above: Other × SVOCS 7 × 7 TAL Metals Chromatogram AIHA-LAP,LLC × × x PH H × × Cyanide <sup>2</sup> Preservation Code Prepackaged Cooler? Y/N responsible for missing samples Glassware in freezer? Y / N Page | of | T = S6dium Thiosulfate Glassware in the fridge? B = Sodium Bisulfate S = Sulfuric Acid H=HCL <sup>2</sup> Preservation Codes: I = Iced SL = Sludge SOL = Solid O = Other (please N = Nitric Acid 0 = Other (please define) X = Sodium Hydroxide M = Methanol 1 Matrix Codes: GW = Ground Water WW = Waste Water from prepacked coolers \*Pace Analytical is not define) S = Soil A = Air DW = Drinking Water Total Number Of BACTERIA ENCORE PLASTIC GLASS VIALS Courier Use Only

http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

## **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW-201-211025

Collection Method: Grab

Sample Number: 21J2720-01

Collection: 10/25/2021 15:45 Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

## **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW-202-211026

Collection Method: Grab

Sample Number: 21J2720-02 Collection: 10/26/2021 09:50

Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

## **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted Sample: HRP-DUP-211026 Collection Method: Grab

Sample Number: 21J2720-03 Collection: 10/26/2021 10:00 Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte       | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|---------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | ral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine     | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

## **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW205-211026

Collection Method: Grab

Sample Number: 21J2720-04

Collection: 10/26/2021 12:30 Received: 10/29/2021 10:00

Matrix: NPW

| Cert              | Analyte   | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|-------------------|-----------|--------|-----------------|-------|------------------|---------|---------------|
| General Chemistry |           |        |                 |       |                  |         |               |
| PA-DEP            | Hydrazine | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director



# **CWM Environmental**

101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW102-211027

Collection Method: Grab

Sample Number: 21J2720-05 Collection: 10/27/2021 10:45

Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | 0.002  | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director

PA DEP - Analytes associated with this are accredited under this matrix through 03-00457 scope expiring January 30, 2022. If no Cert appears next to the analyte no accreditation

| 000                           | 3 | 2 1     | Transfers   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O.               | 4                | 3                | 2                | -                | ttem                      | State                      |                     | Phon                                                     | Hunte                  | Ange                                    | Repor               | PASI PASI                                                      |
|-------------------------------|---|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|---------------------------|----------------------------|---------------------|----------------------------------------------------------|------------------------|-----------------------------------------|---------------------|----------------------------------------------------------------|
| er Ten                        |   | 6       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-M            | HRP-M            | HRP-D            | HRP-M            | HRP-M            | Sample ID                 | of San                     |                     | e (704)                                                  | rsville,               | Angela Baloni<br>Pace Analytica         | t / Invol           | Charl                                                          |
| Cooler Temperature on Receipt |   | 1       | Released By | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HRP-MW102-211027 | HRP-MW205-211026 | HRP-DUP05-211026 | HRP-MW202-211026 | HRP-MW201-211025 |                           | State of Sample Origin: VA |                     | Phone (704)875-9092<br>Email: angela.baioni@pacelabs.com | Huntersville, NC 28078 | Angela Baloni Pace Analytical Charlotte | Report / Invoice To | Chain of Custody PASI Charlotte Laboratory Workorder: 92569119 |
| eipt                          |   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                  |                  |                           | NOW THE PERSON             |                     | mod                                                      |                        |                                         |                     |                                                                |
| ၁ိ                            |   | 16      | Da          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/27/2021 10:45 | 10/26/2021 12:30 | 10/26/2021 10:00 | 10/26/2021 09:50 | 10/25/2021 15:45 | Collect<br>Date/Time      | 72                         | とまる                 | 101                                                      | ten                    | CWM                                     | Subcontract To      | Workorder Name:                                                |
| Cu                            |   | 12/8/21 | Date/Time   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                | -                | _                | _                |                  |                           | 5-10                       | MILL                | Park                                                     | 1 rol                  | 2                                       | bcontra             |                                                                |
| Custody Seal Y or             |   | 1854    | Received By | Alika                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92569119006      | 92569119004      | 92569119003      | 92569119002      | 92569119001      |                           | 43 - 301                   | Katanning, PA 16201 | 101 Parkview Dr. Extension                               | Envi ronmental         |                                         | act To              | HRP PRGS SCR                                                   |
| Y)or N                        |   | Koko    | d By        | 100世間は100円                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water            | Water            | Water            | Water            | Water            |                           |                            | 10201               | DY. EXT                                                  | 6                      | P.O.                                    |                     | SCR                                                            |
|                               |   |         |             | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                |                  |                  |                  | _                | HCL<br>Uthpreserved<br>HM | Presen                     |                     | nsign                                                    | 425                    | P.O. AMB                                | World Co.           |                                                                |
| Rece                          |   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                  |                  |                           | Preserved Containers       |                     | 2                                                        | 42569119               |                                         | N. Caller           |                                                                |
| Received on Ice               |   | DEGIT   | Date/Time   | Same and the same |                  |                  |                  |                  |                  |                           | amers.                     |                     |                                                          | 19                     |                                         | では、日本の              |                                                                |
|                               |   | 100     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                | ×                | ×                | ×                | ×                | al e u                    | Hyd                        | razine              |                                                          |                        |                                         |                     | Resu                                                           |
| Yor                           | ) | 1000    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                  |                  |                           |                            |                     |                                                          |                        |                                         |                     | its Rec                                                        |
| z                             |   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                  |                  |                           |                            |                     |                                                          |                        | .5.8                                    | Requested Analysis  | questec                                                        |
| H                             |   |         |             | E WOLLD IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                  |                  |                  |                           | _                          |                     |                                                          |                        |                                         | Sted An             | ву:                                                            |
| Sam                           |   |         |             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                  | 10               |                  | 1                |                           |                            |                     |                                                          |                        |                                         | alysis -            | Results Requested By: 11/10/2021                               |
| Samples Intact                |   |         |             | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |                  | 100              |                  |                           | _                          |                     |                                                          |                        | , V.                                    |                     | 2                                                              |
| tact Y                        |   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                  |                  |                           |                            |                     |                                                          |                        |                                         | 高麗 三                | Cre                                                            |
| or                            | 1 |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                | 0.4              | 40               | 1.1              | 36               | LAB US                    |                            |                     |                                                          |                        |                                         |                     | ace Analytical Page 80 of 8                                    |
| Z                             |   |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |                  |                  |                  |                  | LAB USE ONLY              |                            |                     |                                                          |                        |                                         |                     | Vtical Page 80 of 8                                            |

21J2720

RECEIVED on ICE



January 11, 2022

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 144 N Royal St, Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21J1472

Enclosed are results of analyses for samples as received by the laboratory on October 23, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# **Table of Contents**

| Sample Summary                          | 4  |
|-----------------------------------------|----|
| Case Narrative                          | 5  |
| Sample Results                          | 11 |
| 21J1472-01                              | 11 |
| 21J1472-02                              | 19 |
| 21J1472-03                              | 27 |
| 21J1472-04                              | 35 |
| 21J1472-05                              | 41 |
| Sample Preparation Information          | 43 |
| QC Data                                 | 46 |
| Volatile Organic Compounds by GC/MS     | 46 |
| B293105                                 | 46 |
| B293183                                 | 51 |
| B293187                                 | 55 |
| Semivolatile Organic Compounds by GC/MS | 61 |
| B293200                                 | 61 |
| B293321                                 | 69 |
| Polychlorinated Biphenyls By GC/ECD     | 74 |
| B293133                                 | 74 |
| B293271                                 | 75 |
| Petroleum Hydrocarbons Analyses         | 77 |
| B293116                                 | 77 |
| B293199                                 | 77 |
| B293367                                 | 77 |
| Metals Analyses (Total)                 | 79 |

# Table of Contents (continued)

| B293091                                                              | 79 |
|----------------------------------------------------------------------|----|
| B293093                                                              | 80 |
| B293193                                                              | 80 |
| B293196                                                              | 82 |
| B293278                                                              | 82 |
| B296454                                                              | 82 |
| B298295                                                              | 83 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 84 |
| B293120                                                              | 84 |
| B293214                                                              | 84 |
| B293335                                                              | 84 |
| B293536                                                              | 84 |
| Dual Column RPD Report                                               | 85 |
| Flag/Qualifier Summary                                               | 87 |
| Certifications                                                       | 88 |
| Chain of Custody/Sample Receipt                                      | 99 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

PURCHASE ORDER NUMBER:

REPORT DATE: 1/11/2022

ATTN: Sarah Ostertag

PROJECT NUMBER: [none]

### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1472

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 144 N Royal St, Alexandria, VA

| FIELD SAMPLE #       | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|----------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB225-0-1-211021 | 21J1472-01 | Soil   |                    | -            |         |
|                      |            |        |                    | SM 2540G     |         |
|                      |            |        |                    | SW-846 6010D |         |
|                      |            |        |                    | SW-846 7471B |         |
|                      |            |        |                    | SW-846 8015C |         |
|                      |            |        |                    | SW-846 8082A |         |
|                      |            |        |                    | SW-846 8260D |         |
|                      |            |        |                    | SW-846 8270E |         |
|                      |            |        |                    | SW-846 9014  |         |
|                      |            |        |                    | SW-846 9045C |         |
| HRP-SB224-0-1-211021 | 21J1472-02 | Soil   |                    | SM 2540G     |         |
|                      |            |        |                    | SW-846 6010D |         |
|                      |            |        |                    | SW-846 7471B |         |
|                      |            |        |                    | SW-846 8015C |         |
|                      |            |        |                    | SW-846 8082A |         |
|                      |            |        |                    | SW-846 8260D |         |
|                      |            |        |                    | SW-846 8270E |         |
|                      |            |        |                    | SW-846 9014  |         |
|                      |            |        |                    | SW-846 9045C |         |
| HRP-SB227-0-1-211021 | 21J1472-03 | Soil   |                    | SM 2540G     |         |
|                      |            |        |                    | SW-846 6010D |         |
|                      |            |        |                    | SW-846 7471B |         |
|                      |            |        |                    | SW-846 8015C |         |
|                      |            |        |                    | SW-846 8082A |         |
|                      |            |        |                    | SW-846 8260D |         |
|                      |            |        |                    | SW-846 8270E |         |
|                      |            |        |                    | SW-846 9014  |         |
|                      |            |        |                    | SW-846 9045C |         |
| HRP-EB07-211021      | 21J1472-04 | Water  |                    | SW-846 6010D |         |
|                      |            |        |                    | SW-846 6020B |         |
|                      |            |        |                    | SW-846 7470A |         |
|                      |            |        |                    | SW-846 8015C |         |
|                      |            |        |                    | SW-846 8082A |         |
|                      |            |        |                    | SW-846 8270E |         |
|                      |            |        |                    | SW-846 9014  |         |
| HRP-TB06-211021      | 21J1472-05 | Water  |                    | SW-846 8260D |         |
|                      |            |        |                    |              |         |

# CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT - Thallium results for 21J1472-03 was rerun in order to meet lower reporting limit.



### SW-846 6010D

### Qualifications:

DL-03

Elevated reporting limit due to matrix interference.

Analyte & Samples(s) Qualified:

21J1472-03[HRP-SB227-0-1-211021]

SW-846 7471B

#### **Qualifications:**

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

Mercury

B293278-BSD1

SW-846 8015C

### Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.

Analyte & Samples(s) Qualified:

**Diesel Range Organics** 

B293199-MS1, B293199-MSD1

SW-846 8260D

#### **Qualifications:**

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-05[HRP-TB06-211021], B293105-BK1, B293105-BS1, B293105-BSB293183-BLK1, B293183-BS1, B293183-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

B293105-BSD1, B293183-BSD1

**RL-11** 

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

21J1472-02[HRP-SB224-0-1-211021]



#### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

#### 1,2,3-Trichlorobenzene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-05[HRP-TB06-211021], B293105-BK1, B293105-BS1, B293183-BLK1, B293183-BS1, B293183-BSD1, S064642-CCV1, S064643-CCV1

#### 1,2,4-Trichlorobenzene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-05[HRP-TB06-211021], B293105-BK1, B293105-BS1, B293105-BSB293183-BLK1, B293183-BS1, B293183-BSD1, S064642-CCV1, S064643-CCV1

#### 2,2-Dichloropropane

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-05[HRP-TB06-211021], B293105-BK1, B293105-BS1, B293105-BSB293183-BLK1, B293183-BS1, B293183-BSD1, S064642-CCV1, S064643-CCV1

#### Dichlorodifluoromethane (Freon 12

21J1472-03[HRP-SB227-0-1-211021], B293187-BLK1, B293187-BS1, B293187-BSD1, S064620-CCV1

#### Naphthalene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-05[HRP-TB06-211021], B293105-BLK1, B293105-BS1, B293105-BS1

#### B293183-BLK1, B293183-BS1, B293183-BSD1, S064642-CCV1, S064643-CCV1

#### V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

#### Chloroethane

B293187-BS1, B293187-BSD1, S064620-CCV1

#### Chloromethane

B293105-BS1, B293105-BSD1, B293183-BS1, B293183-BSD1, S064642-CCV1, S064643-CCV1

#### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

# estimated. Analyte & Samples(s) Qualified:

#### **Bromomethane**

21J1472-03[HRP-SB227-0-1-211021], B293187-BLK1, B293187-BS1, B293187-BSD1, S064620-CCV1

# V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

# Analyte & Samples(s) Qualified:

## 2-Hexanone (MBK)

B293187-BS1, B293187-BSD1, S064620-CCV1

B293187-BS1, B293187-BSD1, S064620-CCV1

SW-846 8270E

#### **Qualifications:**



#### L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

#### 1,2-Dichlorobenzene

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1

#### 1.3-Dichlorobenzene

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1

### 1,4-Dichlorobenzene

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1

#### 2,4-Dinitrophenol

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-BSD

#### Benzoic Acid

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-BSD

#### Hexachlorobutadiene

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1

### Hexachlorocyclopentadiene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-BSD

#### Hexachloroethane

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1

#### **Pyridine**

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-BSD

#### L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

#### Hexachloroethane

B293200-BSD1

### L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

# Analyte & Samples(s) Qualified:

#### Benzidine

B293321-BS1

# MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

#### 2,4-Dimethylphenol

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

#### 3,3-Dichlorobenzidine

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

#### 4-Chloroaniline

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

# Hexachlorocyclopentadiene

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

## Pentachlorophenol

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

# MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

# Analyte & Samples(s) Qualified:

## 4-Nitroaniline

B293200-MS1



#### MS-23

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

#### 3-Nitroaniline

B293200-MS1

#### R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

### Analyte & Samples(s) Qualified:

#### Benzidine

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BSD1

#### R-06

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

#### Analyte & Samples(s) Qualified:

#### 3-Nitroaniline

21J1472-03[HRP-SB227-0-1-211021], B293200-MSD1

21J1472-03[HRP-SB227-0-1-211021], B293200-MS1, B293200-MSD1

#### V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

#### 2,4-Dinitrophenol

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], 21J1472-04[HRP-EB07-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-MS1, B293200-MSD1, B293321-BLK1, B293321-BS1, B293321-BSD1, S064782-CCV1, S064784-CCV1, S064791-CCV1

#### Benzidine

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1, S064784-CCV1, S064791-CCV1

#### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

### 1,2-Diphenylhydrazine/Azobenzenc

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], 21J1472-04[HRP-EB07-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-MS1, B293200-MSD1, B293321-BLK1, B293321-BS1, B293321-BSD1, S064782-CCV1, S064784-CCV1

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B29320 B293200-MS1, B293200-MSD1, S064782-CCV1

### Bis(2-chloroisopropyl)ether

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1, S064784-CCV1

#### Hexachlorocyclopentadiene

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BK1, B293200-BS1, B293200-BSD1, B293200-MS1, B293200-MSD1, S064782-CCV1

### Pentachlorophenol

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], B293200-BLK1, B293200-BS1, B29320 B293200-MS1, B293200-MSD1, S064782-CCV1

## V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

# Analyte & Samples(s) Qualified:

### 2.4-Dinitrophenol

S064791-CCV1

#### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

#### Analyte & Samples(s) Qualified:

### 3,3-Dichlorobenzidine

21J1472-04[HRP-EB07-211021], B293321-BLK1, B293321-BS1, B293321-BSD1, S064784-CCV1

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], 21J1472-04[HRP-EB07-211021], B293200-BLK1, B293200-BS1, B293200-BSD1, B293200-MS1, B293200-MSD1, B293321-BLK1, B293321-BS1, B293321-BSD1, S064782-CCV1, S064784-CCV1



### Qualifications:

H-03

Sample received after recommended holding time was exceeded.

### Analyte & Samples(s) Qualified:

pН

21J1472-01[HRP-SB225-0-1-211021], 21J1472-02[HRP-SB224-0-1-211021], 21J1472-03[HRP-SB227-0-1-211021], 21J1472-03[HRP-SB27-0-1-211021], 21J1472-03[HRP-SB27-0-1-211021], 21J1472-03[HRP-SB27-0-1-211021], 21J1472

#### SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard. Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB225-0-1-211021** Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

| Volatile Organic Compounds by GC/MS |         |       |        |           |          |           |              |                  |                       |         |  |  |
|-------------------------------------|---------|-------|--------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|--|--|
| Analyte                             | Results | RL    | DL     | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |  |
| Acetone                             | 1.6     | 5.4   | 0.25   | mg/Kg dry | 1        | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Acrylonitrile                       | ND      | 0.54  | 0.074  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| tert-Amyl Methyl Ether (TAME)       | ND      | 0.054 | 0.016  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Benzene                             | 0.38    | 0.11  | 0.014  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Bromobenzene                        | ND      | 0.11  | 0.014  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Bromochloromethane                  | ND      | 0.11  | 0.039  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Bromodichloromethane                | ND      | 0.11  | 0.015  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Bromoform                           | ND      | 0.11  | 0.031  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Bromomethane                        | ND      | 0.22  | 0.12   | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 2-Butanone (MEK)                    | 0.51    | 2.2   | 0.20   | mg/Kg dry | 1        | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| tert-Butyl Alcohol (TBA)            | ND      | 2.2   | 0.57   | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| n-Butylbenzene                      | 0.056   | 0.11  | 0.015  | mg/Kg dry | 1        | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| sec-Butylbenzene                    | 0.041   | 0.11  | 0.011  | mg/Kg dry | 1        | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| tert-Butylbenzene                   | ND      | 0.11  | 0.0097 | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| tert-Butyl Ethyl Ether (TBEE)       | ND      | 0.054 | 0.012  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Carbon Disulfide                    | ND      | 0.54  | 0.16   | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Carbon Tetrachloride                | ND      | 0.11  | 0.018  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Chlorobenzene                       | ND      | 0.11  | 0.0086 | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Chlorodibromomethane                | ND      | 0.054 | 0.017  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Chloroethane                        | ND      | 0.22  | 0.040  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Chloroform                          | ND      | 0.22  | 0.020  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Chloromethane                       | ND      | 0.22  | 0.041  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 2-Chlorotoluene                     | ND      | 0.11  | 0.0097 | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 4-Chlorotoluene                     | ND      | 0.11  | 0.011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,2-Dibromo-3-chloropropane (DBCP)  | ND      | 0.54  | 0.077  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,2-Dibromoethane (EDB)             | ND      | 0.054 | 0.016  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Dibromomethane                      | ND      | 0.11  | 0.031  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,2-Dichlorobenzene                 | ND      | 0.11  | 0.011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,3-Dichlorobenzene                 | ND      | 0.11  | 0.0097 | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,4-Dichlorobenzene                 | ND      | 0.11  | 0.012  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| trans-1,4-Dichloro-2-butene         | ND      | 0.22  | 0.19   | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Dichlorodifluoromethane (Freon 12)  | ND      | 0.22  | 0.022  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,1-Dichloroethane                  | ND      | 0.11  | 0.017  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,2-Dichloroethane                  | ND      | 0.11  | 0.034  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,1-Dichloroethylene                | ND      | 0.11  | 0.017  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| cis-1,2-Dichloroethylene            | ND      | 0.11  | 0.016  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| trans-1,2-Dichloroethylene          | ND      | 0.11  | 0.018  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,2-Dichloropropane                 | ND      | 0.11  | 0.019  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,3-Dichloropropane                 | ND      | 0.054 | 0.013  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 2,2-Dichloropropane                 | ND      | 0.11  | 0.033  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| 1,1-Dichloropropene                 | ND      | 0.22  | 0.028  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| cis-1,3-Dichloropropene             | ND      | 0.054 | 0.013  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| trans-1,3-Dichloropropene           | ND      | 0.054 | 0.016  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |
| Diethyl Ether                       | ND      | 0.22  | 0.024  | mg/Kg dry | 1        |           | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |  |  |

Page 11 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB225-0-1-211021 Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL     | Units          | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|--------|----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.054  | 0.016  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,4-Dioxane                                       | ND      | 5.4    | 2.3    | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Ethylbenzene                                      | 0.47    | 0.11   | 0.0097 | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.11   | 0.044  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 1.1    | 0.15   | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Isopropylbenzene (Cumene)                         | 0.14    | 0.11   | 0.011  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | 0.057   | 0.11   | 0.0097 | mg/Kg dry      | 1        | J          | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Methyl Acetate                                    | 0.65    | 1.1    | 0.042  | mg/Kg dry      | 1        | J          | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.11   | 0.018  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Methyl Cyclohexane                                | 5.3     | 0.11   | 0.035  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Methylene Chloride                                | ND      | 0.54   | 0.032  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 1.1    | 0.17   | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Naphthalene                                       | 1.1     | 0.22   | 0.016  | mg/Kg dry      | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| n-Propylbenzene                                   | 0.13    | 0.11   | 0.0086 | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Styrene                                           | ND      | 0.11   | 0.0086 | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.11   | 0.015  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.054  | 0.0097 | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Tetrachloroethylene                               | ND      | 0.11   | 0.022  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Tetrahydrofuran                                   | ND      | 1.1    | 0.062  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Toluene                                           | 3.2     | 0.11   | 0.012  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.54   | 0.015  | mg/Kg dry      | 1        | V-05, L-04 | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.11   | 0.017  | mg/Kg dry      | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.11   | 0.019  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.11   | 0.018  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.11   | 0.016  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Trichloroethylene                                 | ND      | 0.11   | 0.019  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.22   | 0.020  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.22   | 0.033  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.11   | 0.026  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,2,4-Trimethylbenzene                            | 0.96    | 0.11   | 0.011  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| 1,3,5-Trimethylbenzene                            | 0.31    | 0.11   | 0.011  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Vinyl Chloride                                    | ND      | 0.22   | 0.022  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| m+p Xylene                                        | 2.4     | 0.22   | 0.019  | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| o-Xylene                                          | 2.0     | 0.11   | 0.0097 | mg/Kg dry      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 6:18         | MFF     |
| Surrogates                                        |         | % Reco | overy  | Recovery Limit | s        | Flag/Qual  |              |                  |                       |         |
| 1,2-Dichloroethane-d4                             |         | 107    |        | 70-130         |          |            |              |                  | 10/26/21 6:18         |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB225-0-1-211021** Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

| A                                | Dlk-     | DI   | DI    | TI        | D!l4!    | FI/OI      | Madhad                       | Date     | Date/Time      | A l4    |
|----------------------------------|----------|------|-------|-----------|----------|------------|------------------------------|----------|----------------|---------|
| Analyte                          | Results  | RL   | DL    | Units     | Dilution | Flag/Qual  | Method                       | Prepared | Analyzed       | Analyst |
| Acenaphthelene                   | 0.13     | 0.26 | 0.080 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Acetaphthylene                   | 0.11     | 0.26 | 0.078 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Acetophenone                     | ND       | 0.51 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Aniline                          | ND       | 0.51 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Anthracene                       | 0.14     | 0.26 | 0.083 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzidine                        | ND       | 0.99 | 0.23  | mg/Kg dry | 1        | V-05       | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzo(a)anthracene               | 0.58     | 0.26 | 0.071 | mg/Kg dry | 1        | _          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzo(a)pyrene                   | 0.25     | 0.26 | 0.078 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzo(b)fluoranthene             | 0.79     | 0.26 | 0.077 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzo(g,h,i)perylene             | 0.25     | 0.26 | 0.11  | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzo(k)fluoranthene             | 0.20     | 0.26 | 0.069 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Benzoic Acid                     | ND       | 1.5  | 0.61  | mg/Kg dry | 1        | L-04       | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 0.51 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 0.51 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 0.51 | 0.12  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Bis(2-Ethylhexyl)phthalate       | 0.39     | 0.51 | 0.086 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 4-Bromophenylphenylether         | ND       | 0.51 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Butylbenzylphthalate             | ND       | 0.51 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Carbazole                        | 0.33     | 0.26 | 0.084 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 4-Chloroaniline                  | ND       | 0.99 | 0.068 | mg/Kg dry | 1        | V-34       | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 0.99 | 0.085 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2-Chloronaphthalene              | ND       | 0.51 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2-Chlorophenol                   | ND       | 0.51 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 4-Chlorophenylphenylether        | ND       | 0.51 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Chrysene                         | 1.3      | 0.26 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Dibenz(a,h)anthracene            | ND       | 0.26 | 0.10  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Dibenzofuran                     | 2.7      | 0.51 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Di-n-butylphthalate              | ND       | 0.51 | 0.072 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 1,2-Dichlorobenzene              | ND       | 0.51 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 1,3-Dichlorobenzene              | ND       | 0.51 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 1,4-Dichlorobenzene              | ND       | 0.51 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 0.26 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2,4-Dichlorophenol               | ND       | 0.51 | 0.076 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Diethylphthalate                 | ND       | 0.51 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2,4-Dimethylphenol               | 0.20     | 0.51 | 0.14  | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Dimethylphthalate                | ND       | 0.51 | 0.074 | mg/Kg dry | 1        | ,          | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.51 | 0.34  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2,4-Dinitrophenol                |          | 0.99 |       |           |          | 1 04 V 04  | SW-846 8270E<br>SW-846 8270E |          |                |         |
| 2,4-Dinitrotoluene               | ND<br>ND |      | 0.44  | mg/Kg dry | 1        | L-04, V-04 |                              | 10/25/21 | 10/27/21 17:14 | BGL     |
|                                  | ND<br>ND | 0.51 | 0.10  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 2,6-Dinitrotoluene               | ND       | 0.51 | 0.085 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Di-n-octylphthalate              | ND       | 0.51 | 0.18  | mg/Kg dry | 1        | ****       | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 0.51 | 0.073 | mg/Kg dry | 1        | V-05       | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Fluoranthene                     | 1.1      | 0.26 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |
| Fluorene                         | 0.32     | 0.26 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/25/21 | 10/27/21 17:14 | BGL     |

Page 13 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB225-0-1-211021 Sampled: 10/21/2021 07:45

p-Terphenyl-d14

| Sample ID: 21J1472-01                |         |              |        |                  |             |            |              |          |                                  |         |
|--------------------------------------|---------|--------------|--------|------------------|-------------|------------|--------------|----------|----------------------------------|---------|
| Sample Matrix: Soil                  |         |              |        |                  |             |            |              |          |                                  |         |
|                                      |         |              | Semivo | latile Organic C | ompounds by | GC/MS      |              |          |                                  |         |
|                                      |         |              |        |                  |             |            |              | Date     | Date/Time                        |         |
| Analyte                              | Results | RL           | DL     | Units            | Dilution    | Flag/Qual  | Method       | Prepared | Analyzed                         | Analyst |
| Hexachlorobenzene                    | ND      | 0.51         | 0.069  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Hexachlorobutadiene                  | ND      | 0.51         | 0.065  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.51         | 0.21   | mg/Kg dry        | 1           | L-04, V-05 | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Hexachloroethane                     | ND      | 0.51         | 0.061  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Indeno(1,2,3-cd)pyrene               | 0.15    | 0.26         | 0.12   | mg/Kg dry        | 1           | J          | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Isophorone                           | ND      | 0.51         | 0.085  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 1-Methylnaphthalene                  | 8.8     | 1.3          | 0.35   | mg/Kg dry        | 5           |            | SW-846 8270E | 10/25/21 | 10/28/21 15:00                   | IMR     |
| 2-Methylnaphthalene                  | 14      | 1.3          | 0.40   | mg/Kg dry        | 5           |            | SW-846 8270E | 10/25/21 | 10/28/21 15:00                   | IMR     |
| 2-Methylphenol                       | 0.13    | 0.51         | 0.094  | mg/Kg dry        | 1           | J          | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 3/4-Methylphenol                     | 0.12    | 0.51         | 0.082  | mg/Kg dry        | 1           | J          | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Naphthalene                          | 8.2     | 1.3          | 0.35   | mg/Kg dry        | 5           |            | SW-846 8270E | 10/25/21 | 10/28/21 15:00                   | IMR     |
| 2-Nitroaniline                       | ND      | 0.51         | 0.11   | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 3-Nitroaniline                       | ND      | 0.51         | 0.087  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 4-Nitroaniline                       | ND      | 0.51         | 0.11   | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Nitrobenzene                         |         |              | 0.074  |                  |             |            |              | 10/25/21 |                                  | BGL     |
| 2-Nitrophenol                        | ND      | 0.51         |        | mg/Kg dry        | 1           |            | SW-846 8270E |          | 10/27/21 17:14                   |         |
| •                                    | ND      | 0.51         | 0.080  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 4-Nitrophenol                        | ND      | 0.99         | 0.21   | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.51         | 0.076  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.51         | 0.077  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.51         | 0.070  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Pentachloronitrobenzene              | ND      | 0.51         | 0.086  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Pentachlorophenol                    | ND      | 0.51         | 0.22   | mg/Kg dry        | 1           | V-05       | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Phenanthrene                         | 5.1     | 0.26         | 0.080  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Phenol                               | ND      | 0.51         | 0.073  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Pyrene                               | 1.1     | 0.26         | 0.081  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Pyridine                             | ND      | 0.51         | 0.052  | mg/Kg dry        | 1           | L-04       | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.51         | 0.066  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.51         | 0.064  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.51         | 0.079  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.51         | 0.079  | mg/Kg dry        | 1           |            | SW-846 8270E | 10/25/21 | 10/27/21 17:14                   | BGL     |
| Surrogates                           |         | % Reco       | very   | Recovery Limit   | ts          | Flag/Qual  |              |          |                                  |         |
| 2-Fluorophenol                       |         | 43.4         |        | 30-130           |             | -          |              |          | 10/27/21 17:14                   | -       |
| 2-Fluorophenol                       |         | 55.9         |        | 30-130           |             |            |              |          | 10/28/21 15:00                   |         |
| Phenol-d6                            |         | 43.0         |        | 30-130           |             |            |              |          | 10/27/21 17:14                   |         |
| Phenol-d6                            |         | 64.7         |        | 30-130           |             |            |              |          | 10/28/21 15:00                   |         |
| Nitrobenzene-d5<br>Nitrobenzene-d5   |         | 44.7<br>58.0 |        | 30-130<br>30-130 |             |            |              |          | 10/27/21 17:14<br>10/28/21 15:00 |         |
| 2-Fluorobiphenyl                     |         | 54.3         |        | 30-130           |             |            |              |          | 10/28/21 13:00                   |         |
| 2-Fluorobiphenyl                     |         | 66.7         |        | 30-130           |             |            |              |          | 10/28/21 15:00                   |         |
| 2,4,6-Tribromophenol                 |         | 53.3         |        | 30-130           |             |            |              |          | 10/27/21 17:14                   |         |
| 2,4,6-Tribromophenol                 |         | 58.0         |        | 30-130           |             |            |              |          | 10/28/21 15:00                   |         |
| p-Terphenyl-d14                      |         | 85.9         |        | 30-130           |             |            |              |          | 10/27/21 17:14                   |         |

30-130

82.5

10/28/21 15:00



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB225-0-1-211021** Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

| Polychlorinated | Biphenyls By GC/ECD |  |
|-----------------|---------------------|--|
|-----------------|---------------------|--|

| Analyte                  | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Aroclor-1016 [1]         | ND      | 0.12   | 0.072 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1221 [1]         | ND      | 0.12   | 0.078 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1232 [1]         | ND      | 0.12   | 0.054 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1242 [1]         | ND      | 0.12   | 0.060 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1248 [1]         | ND      | 0.12   | 0.072 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1254 [1]         | ND      | 0.12   | 0.078 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1260 [1]         | ND      | 0.12   | 0.084 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1262 [1]         | ND      | 0.12   | 0.060 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Aroclor-1268 [1]         | ND      | 0.12   | 0.048 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 15:50        | TG      |
| Surrogates               |         | % Reco | very  | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| Decachlorobiphenyl [1]   |         | 83.3   |       | 30-150          |          |           |              |                  | 10/27/21 15:50        |         |
| Decachlorobiphenyl [2]   |         | 72.7   |       | 30-150          |          |           |              |                  | 10/27/21 15:50        |         |
| Tetrachloro-m-xylene [1] |         | 77.8   |       | 30-150          |          |           |              |                  | 10/27/21 15:50        |         |
| Tetrachloro-m-xylene [2] |         | 71.3   |       | 30-150          |          |           |              |                  | 10/27/21 15:50        |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB225-0-1-211021 Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | 92      | 2.2    | 2.1  | mg/Kg dry      | 1        |           | SW-846 8015C | 10/27/21         | 10/28/21 4:58         | KMB     |
| Diesel Range Organics         | 1000    | 62     | 29   | mg/Kg dry      | 5        |           | SW-846 8015C | 10/25/21         | 10/29/21 8:04         | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 89.5   |      | 70-130         |          |           |              |                  | 10/28/21 4:58         |         |
| 2-Fluorobiphenyl              |         | 60.5   |      | 40-140         |          |           |              |                  | 10/29/21 8:04         |         |



Analyte

39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB225-0-1-211021 Sampled: 10/21/2021 07:45

Results

2300

ND

6.5

100

2.0

ND

980

27

8.6

39

11000

12

530

99

0.027

22

310

ND

ND

110

ND

25

48

RL

25

2.5

5.0

2.5

0.25

0.50

25

0.99

2.5

0.99

25

0.75

25

0.50

0.042

0.99

250

5.0

0.50

250

2.5

0.99

0.99

0.51

94

1.8

0.23

97

1.2

0.49

0.64

1

1

1

1

1

1

1

J

mg/Kg dry

Sample ID: 21J1472-01 Sample Matrix: Soil

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Chromium

|       | Metals Analy | yses (Total) |           |              |                  |                       |         |
|-------|--------------|--------------|-----------|--------------|------------------|-----------------------|---------|
| DL    | Units        | Dilution     | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| 9.1   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 1.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 1.8   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.95  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.094 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.25  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 9.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.57  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.92  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.48  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 10    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.36  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 8.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/25/21         | 10/26/21 16:22        | QNW     |
| 0.014 | mg/Kg dry    | 1            | J         | SW-846 7471B | 10/26/21         | 10/28/21 10:47        | DRL     |
|       |              |              |           |              |                  |                       |         |

SW-846 6010D

10/25/21

10/25/21

10/25/21

10/25/21

10/25/21

10/25/21

10/25/21

10/25/21

10/26/21 16:22

10/26/21 16:22

10/26/21 16:22

10/26/21 16:22

10/26/21 16:22

10/26/21 16:18

10/26/21 16:22

10/26/21 16:22

QNW

QNW

QNW

QNW

QNW

QNW

QNW

QNW



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB225-0-1-211021** Sampled: 10/21/2021 07:45

Sample ID: 21J1472-01
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 66.7    |      |      | % Wt      | 1        |           | SM 2540G     | 10/27/21 | 10/28/21 15:27 | AP      |
| Cyanide    |         | ND      | 0.65 | 0.46 | mg/Kg dry | 1        |           | SW-846 9014  | 10/25/21 | 10/25/21 19:45 | DJM     |
| рН @17.3°C |         | 6.0     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/25/21 | 10/25/21 18:10 | CB2     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB224-0-1-211021** Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

| Sample Flags: RL-11                |         |      | Volatil | le Organic Con | npounds by G | C/MS      |              |                  |                       |         |
|------------------------------------|---------|------|---------|----------------|--------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                            | Results | RL   | DL      | Units          | Dilution     | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Acetone                            | 4.9     | 16   | 0.76    | mg/Kg dry      | 4            | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Acrylonitrile                      | ND      | 1.6  | 0.22    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.16 | 0.049   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Benzene                            | 1.5     | 0.32 | 0.042   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Bromobenzene                       | ND      | 0.32 | 0.042   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Bromochloromethane                 | ND      | 0.32 | 0.12    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Bromodichloromethane               | ND      | 0.32 | 0.045   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Bromoform                          | ND      | 0.32 | 0.094   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Bromomethane                       | ND      | 0.65 | 0.35    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 2-Butanone (MEK)                   | 1.8     | 6.5  | 0.61    | mg/Kg dry      | 4            | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 6.5  | 1.7     | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| n-Butylbenzene                     | 0.43    | 0.32 | 0.045   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| sec-Butylbenzene                   | 0.19    | 0.32 | 0.032   | mg/Kg dry      | 4            | J         | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| tert-Butylbenzene                  | ND      | 0.32 | 0.029   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.16 | 0.036   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Carbon Disulfide                   | ND      | 1.6  | 0.49    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Carbon Tetrachloride               | ND      | 0.32 | 0.055   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Chlorobenzene                      | ND      | 0.32 | 0.026   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Chlorodibromomethane               | ND      | 0.16 | 0.052   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Chloroethane                       | ND      | 0.65 | 0.12    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Chloroform                         | ND      | 0.65 | 0.062   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Chloromethane                      | ND      | 0.65 | 0.12    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.32 | 0.029   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.32 | 0.032   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 1.6  | 0.23    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.16 | 0.049   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Dibromomethane                     | ND      | 0.32 | 0.094   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.32 | 0.032   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.32 | 0.029   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.32 | 0.036   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.65 | 0.58    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.65 | 0.065   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.32 | 0.052   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.32 | 0.10    | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.32 | 0.052   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.32 | 0.049   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.32 | 0.055   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.32 | 0.058   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.16 | 0.039   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.32 | 0.10    | mg/Kg dry      | 4            | V-05      | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.65 | 0.084   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.16 | 0.039   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.16 | 0.049   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |
| Diethyl Ether                      | ND      | 0.65 | 0.071   | mg/Kg dry      | 4            |           | SW-846 8260D | 10/25/21         | 10/26/21 6:42         | MFF     |

Page 19 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB224-0-1-211021 Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil
Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

| Analysta                                             | Dagulta       | DI         | DI       | Unita          | Dilution | Flog/Ougl  | Mathad       | Date                 | Date/Time     | Amalua     |
|------------------------------------------------------|---------------|------------|----------|----------------|----------|------------|--------------|----------------------|---------------|------------|
| Analyte Diisopropyl Ether (DIPE)                     | Results<br>ND | RL<br>0.16 | DL 0.040 | Units          | Dilution | Flag/Qual  | Method       | Prepared             | Analyzed      | Analys     |
| 1,4-Dioxane                                          | ND<br>ND      |            | 0.049    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21<br>10/25/21 | 10/26/21 6:42 | MFF<br>MFF |
| Ethylbenzene                                         |               | 16         | 7.0      | mg/Kg dry      | 4        |            | SW-846 8260D |                      | 10/26/21 6:42 | MFF        |
| Hexachlorobutadiene                                  | 1.4           | 0.32       | 0.029    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 2-Hexanone (MBK)                                     | ND            | 0.32       | 0.13     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Isopropylbenzene (Cumene)                            | ND            | 3.2        | 0.45     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 |            |
|                                                      | 0.49          | 0.32       | 0.032    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| p-Isopropyltoluene (p-Cymene)                        | 0.30          | 0.32       | 0.029    | mg/Kg dry      | 4        | J          | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Methyl Acetate  Methyl test Putyl Ether (MTPE)       | 0.95          | 3.2        | 0.13     | mg/Kg dry      | 4        | J          | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Methyl tert-Butyl Ether (MTBE)                       | ND            | 0.32       | 0.055    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Methyl Cyclohexane                                   | 22            | 0.32       | 0.11     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Methylene Chloride                                   | ND            | 1.6        | 0.097    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 4-Methyl-2-pentanone (MIBK)                          | ND            | 3.2        | 0.53     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Naphthalene                                          | 7.6           | 0.65       | 0.049    | mg/Kg dry      | 4        | V-05       | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| n-Propylbenzene                                      | 0.70          | 0.32       | 0.026    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Styrene                                              | ND            | 0.32       | 0.026    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,1,1,2-Tetrachloroethane                            | ND            | 0.32       | 0.045    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,1,2,2-Tetrachloroethane                            | ND            | 0.16       | 0.029    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Tetrachloroethylene                                  | ND            | 0.32       | 0.065    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Tetrahydrofuran                                      | ND            | 3.2        | 0.19     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Toluene                                              | 13            | 0.32       | 0.036    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,2,3-Trichlorobenzene                               | ND            | 1.6        | 0.045    | mg/Kg dry      | 4        | L-04, V-05 | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,2,4-Trichlorobenzene                               | ND            | 0.32       | 0.052    | mg/Kg dry      | 4        | V-05       | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,3,5-Trichlorobenzene                               | ND            | 0.32       | 0.058    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,1,1-Trichloroethane                                | ND            | 0.32       | 0.055    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,1,2-Trichloroethane                                | ND            | 0.32       | 0.049    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Trichloroethylene                                    | ND            | 0.32       | 0.058    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Trichlorofluoromethane (Freon 11)                    | ND            | 0.65       | 0.062    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,2,3-Trichloropropane                               | ND            | 0.65       | 0.10     | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND            | 0.32       | 0.078    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,2,4-Trimethylbenzene                               | 4.4           | 0.32       | 0.032    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| 1,3,5-Trimethylbenzene                               | 1.3           | 0.32       | 0.032    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Vinyl Chloride                                       | ND            | 0.65       | 0.065    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| m+p Xylene                                           | 12            | 0.65       | 0.058    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| o-Xylene                                             | 7.5           | 0.32       | 0.029    | mg/Kg dry      | 4        |            | SW-846 8260D | 10/25/21             | 10/26/21 6:42 | MFF        |
| Surrogates                                           |               | % Reco     | overy    | Recovery Limit | s        | Flag/Qual  |              |                      |               |            |
| 1,2-Dichloroethane-d4                                |               | 106        |          | 70-130         |          |            |              |                      | 10/26/21 6:42 |            |
| Toluene d8                                           |               | 106        |          | 70 120         |          |            |              |                      | 10/26/21 6:42 |            |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB224-0-1-211021** Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Accomplainers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | Semivolatile Organic Compounds by GC/MS |      |       |           |          |            |              |                  |                       |         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|--|--|
| Acetophorone   0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte                          | Results                                 | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |  |
| Acceptane   Part   P    | Acenaphthene                     | 0.17                                    | 0.19 | 0.060 | mg/Kg dry | 1        | J          | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Antimene         ND         3.83         0.80         mgKg dys         1         SW-846 276         10-252         10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741         16-10-272 11741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acenaphthylene                   | 0.29                                    | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Authaneane         0.41         0.19         0.05         mgKg dy         1         SW-864 68270E         0.02-02         102-11 1/1         08-10           Beradian         ND         0.74         0.18         mgKg dy         1         N-05         SW-864 8270E         0.0252         102-11 1/1         08-10           Berade(alphranea         1.5         0.19         0.19         0.19         mgKg dy         1         SW-846 8270E         0.0252         0.022-11 1/1         0.08           Berade(alphranea         2.6         0.19         0.09         mgKg dy         1         SW-846 8270E         0.022-11 1/2         102-11         0.08           Browley Develore         0.0         0.19         0.02         mgKg dy         1         SW-846 8270E         0.022-11         0.022-11 1/2         0.02           Beracic Alboroschyndrate         1.0         0.9         0.08         mgKg dy         1         SW-846 8270E         0.022-11 1/2         0.022-11 1/2         0.022-11 1/2         0.022-11 1/2         0.022-11         0.022-11 1/2         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11         0.022-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acetophenone                     | 0.56                                    | 0.38 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Personalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aniline                          | ND                                      | 0.38 | 0.080 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Beamo(s)unthaneene   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anthracene                       | 0.41                                    | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Paramophysphone   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzidine                        | ND                                      | 0.74 | 0.18  | mg/Kg dry | 1        | V-05       | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Permoth/blummthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(a)anthracene               | 1.5                                     | 0.19 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Bernoxing, hi/purplemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(a)pyrene                   | 0.71                                    | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Bernoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(b)fluoranthene             | 2.8                                     | 0.19 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Barcole Acide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(g,h,i)perylene             | 0.50                                    | 0.19 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Big C-shiorethoxyinethane   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(k)fluoranthene             | 1.0                                     | 0.19 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Birgle-chlorosthyltherin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzoic Acid                     | 1.2                                     | 1.1  | 0.46  | mg/Kg dry | 1        | L-04       | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Bis   C-chlorosiogneynylethers   N   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroethoxy)methane       | ND                                      | 0.38 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Big   Part   P   | Bis(2-chloroethyl)ether          | ND                                      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 4-Bromophenylphenylether         ND         0.38         0.09         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           Buylbenzylphthalate         ND         0.38         0.061         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           Carbazole         0.46         0.19         0.063         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           4-Chloro-anethylphenol         ND         0.74         0.064         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           2-Chlorosphethylphenol         ND         0.38         0.053         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           2-Chlorosphenylphenylether         ND         0.38         0.053         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           2-Chlorosphenylphenylether         ND         0.38         0.055         mg/Kg dry         1         SW-846 8270E         102521         102721 17-41         BG           Dibenzoshiran         3.6         0.38         0.057         mg/Kg dry <td>Bis(2-chloroisopropyl)ether</td> <td>ND</td> <td>0.38</td> <td>0.087</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8270E</td> <td>10/25/21</td> <td>10/27/21 17:41</td> <td>BGL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroisopropyl)ether      | ND                                      | 0.38 | 0.087 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Burylbenzylphthalate   Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bis(2-Ethylhexyl)phthalate       | 0.12                                    | 0.38 | 0.065 | mg/Kg dry | 1        | J          | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Curbazole         0.46         0.19         0.063         mg/kg dry         1         SW-846 8270E         0.02721         102721 17-14         BG           4-Chloroaniline         ND         0.74         0.051         mg/kg dry         1         V-34         SW-846 8270E         0.02721         17-14         BG           4-Chloroa-methylphenol         ND         0.74         0.064         mg/kg dry         1         SW-846 8270E         0.02521         102721 17-41         BG           2-Chloroaphthalene         ND         0.38         0.055         mg/kg dry         1         SW-846 8270E         102521         102721 17-41         BG           2-Chlorophenylphenylether         ND         0.38         0.055         mg/kg dry         1         SW-846 8270E         102521         102721 17-41         BG           4-Chlorophenylphenylether         ND         0.19         0.055         mg/kg dry         1         SW-846 8270E         102521         102721 17-41         BG           10-brodynemylphenylether         0.24         0.19         0.055         mg/kg dry         1         SW-846 8270E         102521         102721 17-41         BG           10-brodynemylphenylether         ND         0.38         0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Bromophenylphenylether         | ND                                      | 0.38 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| A-Chloroaniline ND 0.74 0.051 mg/kg dry 1 N-34 NW-846 8270E 1025/21 027/21 1741 BGL 4-Chloro-3-methylphenol ND 0.74 0.064 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chloroaphthalene ND 0.38 0.045 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenol ND 0.38 0.053 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylether ND 0.38 0.053 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylether ND 0.38 0.053 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylether ND 0.38 0.053 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylether ND 0.38 0.053 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylether ND 0.38 0.054 mg/kg dry 1 NW-846 8270E 1025/21 027/21 1741 BGL 2-Chlorophenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylph | Butylbenzylphthalate             | ND                                      | 0.38 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| A-Chloro-3-methylphenol   ND   0.74   0.04   mg/kg dry   1   SW-346 8270E   102521   102721 17:41   BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbazole                        | 0.46                                    | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2-Chloronaphthalene ND 0,38 0,045 mg/kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 2-Chlorophenol ND 0,38 0,053 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 4-Chlorophenylether ND 0,38 0,055 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL Chrysene 29 0,19 0,055 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL Dibenzofuran 3.6 0,38 0,057 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL Dibenzofuran 3.6 0,38 0,057 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL Dibenzofuran 3.6 0,38 0,057 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL Di-h-butylphthalate ND 0,38 0,054 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.6 0,38 0,054 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.6 0,38 0,054 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.6 0,38 0,054 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,044 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,040 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,056 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,057 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,057 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,059 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,050 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,056 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,38 0,056 mg/Kg dry 1 SW-846 8270E 1025/21 1027/21 17/41 BGL 1-2-Dibenzofuran 3.0 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 0,058 | 4-Chloroaniline                  | ND                                      | 0.74 | 0.051 | mg/Kg dry | 1        | V-34       | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2-Chlorophenol ND 0.38 0.053 ng/Kg dry 1 SW-846 8270E 1025721 17.141 BGL Chrysene 2.9 0.19 0.055 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Chrysene 2.9 0.19 0.055 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Dibenz(a,h)anthracene 0.24 0.19 0.078 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Dibenz(a,h)anthracene 0.24 0.19 0.078 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Dibenz(a,h)anthracene 0.24 0.19 0.088 0.055 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Dibenz(a,h)anthracene 0.24 0.19 0.38 0.054 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL Di-n-butylphthalate 0.08 0.38 0.044 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.044 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.044 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.044 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.040 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.040 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.38 0.056 ng/Kg dry 1 SW-846 8270E 1025721 1027721 17.141 BGL 1.3-Dichlorobenzene 0.05 0.3-Bicklorobenzene 0.05 0.3-Bicklorobenzen | 4-Chloro-3-methylphenol          | ND                                      | 0.74 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 4-Chlorophenylphenylether ND 0.38 0.055 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL Chrysene 2.9 0.19 0.055 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL Dibenz(a,h)anthracene 0.24 0.19 0.078 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL Dibenz/duran 3.6 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL Di-n-butylphthalate ND 0.38 0.054 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 1,2-Dichlorobenzene ND 0.38 0.044 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 1,3-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 1,4-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 3,3-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 3,3-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 3,3-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dinethylphthalate ND 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dinethylphthalate ND 0.38 0.050 mg/Kg dry 1 SW-846 8270E 10/25/21 10/25/21 10/27/21 17.41 BGL 2,4-Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17.41 BGL 2,4-Dimitro-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10 | 2-Chloronaphthalene              | ND                                      | 0.38 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Chrysene         2.9         0.19         0.055         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           Dibenz/La, h)anthracene         0.24         0.19         0.078         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           Dibenz/La, h)anthracene         0.03         0.038         0.057         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           Di-n-butylphthalate         ND         0.38         0.044         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           1,2-Dichlorobenzene         ND         0.38         0.042         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           1,4-Dichlorobenzene         ND         0.38         0.040         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           3,3-Dichlorobenzidine         ND         0.98         0.056         mg/Kg dry         1         SW-846 8270E         1025/21         1027/21 17:41         BG           2,4-Dinitrolophenol         ND         0.38         0.059         mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chlorophenol                   | ND                                      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Diben/(a,h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Chlorophenylphenylether        | ND                                      | 0.38 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Dibenzofuran 3.6 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Dichlorobenzene ND 0.38 0.054 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,3-Dichlorobenzene ND 0.38 0.044 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,3-Dichlorobenzene ND 0.38 0.042 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,3-Dichlorobenzene ND 0.38 0.042 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,4-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 3,3-Dichlorobenzidine ND 0.19 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorophenol ND 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorophenol ND 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.26 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-1-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrop-1-methylphenol ND 0.38 0.056 mg/Kg | Chrysene                         | 2.9                                     | 0.19 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibenz(a,h)anthracene            | 0.24                                    | 0.19 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 1,2-Dichlorobenzene ND 0.38 0.044 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,3-Dichlorobenzene ND 0.38 0.042 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,4-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 3,3-Dichlorobenzene ND 0.19 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorophenol ND 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 JSW-846 8270E 10/25/21 10/27/21 17:41 BGL 4,6-Dimitro-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrophenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrophenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrophenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrophenol ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dimitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-84 | Dibenzofuran                     | 3.6                                     | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 1,3-Dichlorobenzene ND 0.38 0.042 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,4-Dichlorobenzene ND 0.38 0.040 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorobenzidine ND 0.38 0.050 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorophenol ND 0.38 0.050 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinethylphenol 0.14 0.38 0.050 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphenol 0.14 0.38 0.050 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphenol 0.14 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 4,6-Dinitro-2-methylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.38 0.075 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0 | Di-n-butylphthalate              | ND                                      | 0.38 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 1,4-Dichlorobenzene         ND         0.38         0.040         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           3,3-Dichlorobenzidine         ND         0.19         0.056         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dichlorophenol         ND         0.38         0.057         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dinethylphthalate         ND         0.38         0.059         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dimethylphthalate         ND         0.38         0.056         mg/Kg dry         1         J         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dimethylphthalate         ND         0.38         0.056         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           4,6-Dinitro-2-methylphenol         ND         0.38         0.26         mg/Kg dry         1         L-04, V-04         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dinitroluene         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dichlorobenzene              | ND                                      | 0.38 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 3,3-Dichlorobenzidine ND 0.19 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dichlorophenol ND 0.38 0.057 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Diethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphenol 0.14 0.38 0.10 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 4,6-Dinitro-2-methylphenol ND 0.38 0.26 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.74 0.33 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.38 0.075 mg/Kg dry 1 L-04, V-04 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.065 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotol | 1,3-Dichlorobenzene              | ND                                      | 0.38 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2,4-Dichlorophenol         ND         0.38         0.057         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           Diethylphthalate         ND         0.38         0.059         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dimethylphenol         0.14         0.38         0.10         mg/Kg dry         1         J         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           Dimethylphthalate         ND         0.38         0.056         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           4,6-Dinitro-2-methylphenol         ND         0.38         0.26         mg/Kg dry         1         L-04, V-04         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dinitrophenol         ND         0.38         0.075         mg/Kg dry         1         L-04, V-04         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,4-Dinitrotoluene         ND         0.38         0.075         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           2,6-Dinitrotoluene<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-Dichlorobenzene              | ND                                      | 0.38 | 0.040 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Diethylphthalate ND 0.38 0.059 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dimethylphenol ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 5W-846 8270E 10/25/21 10/27/21  | 3,3-Dichlorobenzidine            | ND                                      | 0.19 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2,4-Dimethylphenol 0.14 0.38 0.10 mg/Kg dry 1 J SW-846 8270E 10/25/21 10/27/21 17:41 BGL Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 4,6-Dinitro-2-methylphenol ND 0.38 0.26 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.74 0.33 mg/Kg dry 1 L-04, V-04 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.075 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL Di-n-octylphthalate ND 0.38 0.14 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.38 0.055 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4-Dichlorophenol               | ND                                      | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Dimethylphthalate ND 0.38 0.056 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 4,6-Dinitro-2-methylphenol ND 0.38 0.26 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.74 0.33 mg/Kg dry 1 L-04, V-04 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.075 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL Di-n-octylphthalate ND 0.38 0.14 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.38 0.055 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diethylphthalate                 | ND                                      | 0.38 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 4,6-Dinitro-2-methylphenol ND 0.38 0.26 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrophenol ND 0.38 0.075 mg/Kg dry 1 L-04, V-04 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.075 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL Di-n-octylphthalate ND 0.38 0.14 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.38 0.055 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4-Dimethylphenol               | 0.14                                    | 0.38 | 0.10  | mg/Kg dry | 1        | J          | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2,4-Dinitrophenol ND 0.74 0.33 mg/Kg dry 1 L-04, V-04 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,4-Dinitrotoluene ND 0.38 0.075 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 2,6-Dinitrotoluene ND 0.38 0.064 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL Di-n-octylphthalate ND 0.38 0.14 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.38 0.055 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dimethylphthalate                | ND                                      | 0.38 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2,4-Dinitrotoluene       ND       0.38       0.075       mg/Kg dry       1       SW-846 8270E       10/25/21       10/27/21 17:41       BGL         2,6-Dinitrotoluene       ND       0.38       0.064       mg/Kg dry       1       SW-846 8270E       10/25/21       10/27/21 17:41       BGL         Di-n-octylphthalate       ND       0.38       0.14       mg/Kg dry       1       SW-846 8270E       10/25/21       10/27/21 17:41       BGL         1,2-Diphenylhydrazine/Azobenzene       ND       0.38       0.055       mg/Kg dry       1       V-05       SW-846 8270E       10/25/21       10/27/21 17:41       BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,6-Dinitro-2-methylphenol       | ND                                      | 0.38 | 0.26  | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 2,6-Dinitrotoluene       ND       0.38       0.064       mg/Kg dry       1       SW-846 8270E       10/25/21       10/27/21 17:41       BGL         Di-n-octylphthalate       ND       0.38       0.14       mg/Kg dry       1       SW-846 8270E       10/25/21       10/27/21 17:41       BGL         1,2-Diphenylhydrazine/Azobenzene       ND       0.38       0.055       mg/Kg dry       1       V-05       SW-846 8270E       10/25/21       10/27/21 17:41       BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-Dinitrophenol                | ND                                      | 0.74 | 0.33  | mg/Kg dry | 1        | L-04, V-04 | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Di-n-octylphthalate         ND         0.38         0.14         mg/Kg dry         1         SW-846 8270E         10/25/21         10/27/21 17:41         BGL           1,2-Diphenylhydrazine/Azobenzene         ND         0.38         0.055         mg/Kg dry         1         V-05         SW-846 8270E         10/25/21         10/27/21 17:41         BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dinitrotoluene               | ND                                      | 0.38 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| 1,2-Diphenylhydrazine/Azobenzene ND 0.38 0.055 mg/Kg dry 1 V-05 SW-846 8270E 10/25/21 10/27/21 17:41 BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,6-Dinitrotoluene               | ND                                      | 0.38 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-octylphthalate              | ND                                      | 0.38 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Fluoranthene 2.6 0.19 0.061 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Diphenylhydrazine/Azobenzene | ND                                      | 0.38 | 0.055 | mg/Kg dry | 1        | V-05       | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluoranthene                     | 2.6                                     | 0.19 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |
| Fluorene 0.22 0.19 0.065 mg/Kg dry 1 SW-846 8270E 10/25/21 10/27/21 17:41 BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluorene                         | 0.22                                    | 0.19 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/25/21         | 10/27/21 17:41        | BGL     |  |  |

Page 21 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB224-0-1-211021 Sampled: 10/21/2021 08:25

p-Terphenyl-d14

| Sample ID: 21J1472-02                |                                         |              |       |                  |          |            |              |          |                                  |         |  |  |
|--------------------------------------|-----------------------------------------|--------------|-------|------------------|----------|------------|--------------|----------|----------------------------------|---------|--|--|
| Sample Matrix: Soil                  |                                         |              |       |                  |          |            |              |          |                                  |         |  |  |
|                                      | Semivolatile Organic Compounds by GC/MS |              |       |                  |          |            |              |          |                                  |         |  |  |
|                                      |                                         |              |       |                  |          |            |              | Date     | Date/Time                        |         |  |  |
| Analyte                              | Results                                 | RL           | DL    | Units            | Dilution | Flag/Qual  | Method       | Prepared | Analyzed                         | Analyst |  |  |
| Hexachlorobenzene                    | ND                                      | 0.38         | 0.052 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Hexachlorobutadiene                  | ND                                      | 0.38         | 0.049 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Hexachlorocyclopentadiene            | ND                                      | 0.38         | 0.16  | mg/Kg dry        | 1        | L-04, V-05 | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Hexachloroethane                     | ND                                      | 0.38         | 0.046 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Indeno(1,2,3-cd)pyrene               | 0.62                                    | 0.19         | 0.087 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Isophorone                           | ND                                      | 0.38         | 0.064 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 1-Methylnaphthalene                  | 9.8                                     | 0.96         | 0.27  | mg/Kg dry        | 5        |            | SW-846 8270E | 10/25/21 | 10/28/21 15:29                   | IMR     |  |  |
| 2-Methylnaphthalene                  | 16                                      | 0.96         | 0.30  | mg/Kg dry        | 5        |            | SW-846 8270E | 10/25/21 | 10/28/21 15:29                   | IMR     |  |  |
| 2-Methylphenol                       | 0.085                                   | 0.38         | 0.071 | mg/Kg dry        | 1        | J          | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 3/4-Methylphenol                     | 0.088                                   | 0.38         | 0.062 | mg/Kg dry        | 1        | J          | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Naphthalene                          | 11                                      | 0.96         | 0.26  | mg/Kg dry        | 5        | ·          | SW-846 8270E | 10/25/21 | 10/28/21 15:29                   | IMR     |  |  |
| 2-Nitroaniline                       | ND                                      | 0.38         | 0.082 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 3-Nitroaniline                       | ND                                      | 0.38         | 0.065 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 4-Nitroaniline                       |                                         |              |       |                  |          |            |              |          |                                  |         |  |  |
|                                      | ND                                      | 0.38         | 0.082 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Nitrobenzene                         | ND                                      | 0.38         | 0.056 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 2-Nitrophenol                        | ND                                      | 0.38         | 0.060 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 4-Nitrophenol                        | ND                                      | 0.74         | 0.16  | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| N-Nitrosodimethylamine               | ND                                      | 0.38         | 0.057 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| N-Nitrosodiphenylamine/Diphenylamine | ND                                      | 0.38         | 0.058 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| N-Nitrosodi-n-propylamine            | ND                                      | 0.38         | 0.053 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Pentachloronitrobenzene              | ND                                      | 0.38         | 0.065 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Pentachlorophenol                    | ND                                      | 0.38         | 0.17  | mg/Kg dry        | 1        | V-05       | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Phenanthrene                         | 7.0                                     | 0.96         | 0.30  | mg/Kg dry        | 5        |            | SW-846 8270E | 10/25/21 | 10/28/21 15:29                   | IMR     |  |  |
| Phenol                               | ND                                      | 0.38         | 0.055 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Pyrene                               | 2.9                                     | 0.19         | 0.061 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Pyridine                             | ND                                      | 0.38         | 0.039 | mg/Kg dry        | 1        | L-04       | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 1,2,4,5-Tetrachlorobenzene           | ND                                      | 0.38         | 0.050 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 1,2,4-Trichlorobenzene               | ND                                      | 0.38         | 0.048 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 2,4,5-Trichlorophenol                | ND                                      | 0.38         | 0.060 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| 2,4,6-Trichlorophenol                | ND                                      | 0.38         | 0.059 | mg/Kg dry        | 1        |            | SW-846 8270E | 10/25/21 | 10/27/21 17:41                   | BGL     |  |  |
| Surrogates                           |                                         | % Reco       |       | Recovery Limit   |          | Flag/Qual  |              |          |                                  |         |  |  |
| 2-Fluorophenol                       |                                         | 46.9         |       | 30-130           |          |            |              |          | 10/27/21 17:41                   | -       |  |  |
| 2-Fluorophenol                       |                                         | 57.1         |       | 30-130           |          |            |              |          | 10/28/21 15:29                   |         |  |  |
| Phenol-d6                            |                                         | 43.7         |       | 30-130           |          |            |              |          | 10/27/21 17:41                   |         |  |  |
| Phenol-d6                            |                                         | 61.4         |       | 30-130           |          |            |              |          | 10/28/21 15:29                   |         |  |  |
| Nitrobenzene-d5                      |                                         | 48.9         |       | 30-130           |          |            |              |          | 10/27/21 17:41                   |         |  |  |
| Nitrobenzene-d5<br>2-Fluorobiphenyl  |                                         | 59.2<br>55.1 |       | 30-130<br>30-130 |          |            |              |          | 10/28/21 15:29<br>10/27/21 17:41 |         |  |  |
| 2-Fluorobiphenyl                     |                                         | 64.0         |       | 30-130           |          |            |              |          | 10/28/21 17:41                   |         |  |  |
| 2,4,6-Tribromophenol                 |                                         | 57.3         |       | 30-130           |          |            |              |          | 10/27/21 17:41                   |         |  |  |
| 2,4,6-Tribromophenol                 |                                         | 57.1         |       | 30-130           |          |            |              |          | 10/28/21 15:29                   |         |  |  |
| p-Terphenyl-d14                      |                                         | 89.2         |       | 30-130           |          |            |              |          | 10/27/21 17:41                   |         |  |  |

30-130

77.5

10/28/21 15:29



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB224-0-1-211021** Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

|                          |         |        |       |                 |          |           |              | Date     | Date/Time      |          |
|--------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|----------|----------------|----------|
| Analyte                  | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst  |
| Aroclor-1016 [1]         | ND      | 0.090  | 0.054 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1221 [1]         | ND      | 0.090  | 0.059 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1232 [1]         | ND      | 0.090  | 0.041 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1242 [1]         | ND      | 0.090  | 0.045 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1248 [1]         | ND      | 0.090  | 0.054 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1254 [1]         | ND      | 0.090  | 0.059 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1260 [1]         | ND      | 0.090  | 0.063 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1262 [1]         | ND      | 0.090  | 0.045 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Aroclor-1268 [1]         | ND      | 0.090  | 0.036 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21 | 10/27/21 16:07 | TG       |
| Surrogates               |         | % Reco | very  | Recovery Limits | i        | Flag/Qual |              |          |                |          |
| Decachlorobiphenyl [1]   |         | 83.8   |       | 30-150          |          |           |              |          | 10/27/21 16:07 | <u> </u> |
| Decachlorobiphenyl [2]   |         | 80.7   |       | 30-150          |          |           |              |          | 10/27/21 16:07 |          |
| Tetrachloro-m-xylene [1] |         | 77.8   |       | 30-150          |          |           |              |          | 10/27/21 16:07 |          |
| Tetrachloro-m-xylene [2] |         | 71.4   |       | 30-150          |          |           |              |          | 10/27/21 16:07 |          |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB224-0-1-211021** Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | 320     | 1.6    | 1.6  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/27/21         | 10/28/21 5:39         | KMB     |
| Diesel Range Organics         | 1200    | 47     | 22   | mg/Kg dry       | 5        |           | SW-846 8015C | 10/25/21         | 10/29/21 7:33         | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 95.9   |      | 70-130          |          |           |              |                  | 10/28/21 5:39         |         |
| 2-Fluorobiphenyl              |         | 61.9   |      | 40-140          |          |           |              |                  | 10/29/21 7:33         |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB224-0-1-211021 Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

| Metals | Anal | VEGE ! | (Total) |
|--------|------|--------|---------|
|        |      |        |         |

|           |         |       |        | •         | , ,      |           |              |          |                |         |
|-----------|---------|-------|--------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |           |          |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 1200    | 18    | 6.7    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Antimony  | ND      | 1.8   | 0.74   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Arsenic   | 9.9     | 3.7   | 1.3    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Barium    | 81      | 1.8   | 0.70   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Beryllium | 1.5     | 0.18  | 0.069  | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Cadmium   | 0.21    | 0.37  | 0.19   | mg/Kg dry | 1        | J         | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Calcium   | 810     | 18    | 7.1    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Chromium  | 14      | 0.73  | 0.42   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Cobalt    | 5.9     | 1.8   | 0.67   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Copper    | 27      | 0.73  | 0.35   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Iron      | 11000   | 18    | 7.4    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Lead      | 28      | 0.55  | 0.27   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Magnesium | 280     | 18    | 6.4    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Manganese | 76      | 0.37  | 0.14   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Mercury   | 0.023   | 0.029 | 0.0097 | mg/Kg dry | 1        | J         | SW-846 7471B | 10/26/21 | 10/28/21 10:49 | DRL     |
| Nickel    | 13      | 0.73  | 0.37   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Potassium | 240     | 180   | 69     | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Selenium  | ND      | 3.7   | 1.3    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Silver    | ND      | 0.37  | 0.17   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Sodium    | 80      | 180   | 71     | mg/Kg dry | 1        | J         | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Thallium  | ND      | 1.8   | 0.88   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:25 | QNW     |
| Vanadium  | 15      | 0.73  | 0.36   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |
| Zinc      | 54      | 0.73  | 0.47   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:28 | QNW     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB224-0-1-211021 Sampled: 10/21/2021 08:25

Sample ID: 21J1472-02
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 88.6    |      |      | % Wt      | 1        |           | SM 2540G     | 10/27/21 | 10/28/21 15:27 | AP      |
| Cyanide    |         | ND      | 0.52 | 0.36 | mg/Kg dry | 1        |           | SW-846 9014  | 10/25/21 | 10/25/21 19:45 | DJM     |
| рН @19.4°С |         | 5.9     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/25/21 | 10/25/21 18:10 | CB2     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

|                                    |          |                  | voiatiio           | e Organic Con          | ipounds by G | C/MS      |                              |                      |                       |            |
|------------------------------------|----------|------------------|--------------------|------------------------|--------------|-----------|------------------------------|----------------------|-----------------------|------------|
| Analyte                            | Results  | RL               | DL                 | Units                  | Dilution     | Flag/Qual | Method                       | Date<br>Prepared     | Date/Time<br>Analyzed | Analyst    |
| Acetone                            | ND       | 0.086            | 0.027              | mg/Kg dry              | 1            | riag/Quai | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Acrylonitrile                      | ND       | 0.0051           | 0.00083            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.00086          | 0.00039            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Benzene                            | ND       | 0.0017           | 0.00039            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Bromobenzene                       | ND       | 0.0017           | 0.00040            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Bromochloromethane                 | ND<br>ND | 0.0017           | 0.00029            |                        | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Bromodichloromethane               |          |                  |                    | mg/Kg dry<br>mg/Kg dry |              |           |                              |                      | 10/25/21 10:51        |            |
| Bromoform                          | ND<br>ND | 0.0017<br>0.0017 | 0.00041<br>0.00052 |                        | 1            |           | SW-846 8260D<br>SW-846 8260D | 10/25/21<br>10/25/21 |                       | MFF        |
| Bromomethane                       |          |                  |                    | mg/Kg dry              |              | W 24      |                              |                      | 10/25/21 10:51        | MFF<br>MFF |
|                                    | ND       | 0.0086           | 0.0031             | mg/Kg dry              | 1            | V-34      | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        |            |
| 2-Butanone (MEK)                   | ND       | 0.034            | 0.010              | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| tert-Butyl Alcohol (TBA)           | ND       | 0.086            | 0.041              | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| n-Butylbenzene                     | ND       | 0.0017           | 0.00044            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| sec-Butylbenzene                   | ND       | 0.0017           | 0.00083            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| tert-Butylbenzene                  | ND       | 0.0034           | 0.00072            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.00086          | 0.00044            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Carbon Disulfide                   | ND       | 0.0086           | 0.0061             | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Carbon Tetrachloride               | ND       | 0.0017           | 0.00066            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Chlorobenzene                      | ND       | 0.0017           | 0.00046            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Chlorodibromomethane               | ND       | 0.00086          | 0.00044            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Chloroethane                       | ND       | 0.017            | 0.0030             | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Chloroform                         | ND       | 0.0034           | 0.00085            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Chloromethane                      | ND       | 0.0086           | 0.0028             | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 2-Chlorotoluene                    | ND       | 0.0017           | 0.00039            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 4-Chlorotoluene                    | ND       | 0.0017           | 0.00030            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 0.0017           | 0.00057            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,2-Dibromoethane (EDB)            | ND       | 0.00086          | 0.00053            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Dibromomethane                     | ND       | 0.0017           | 0.00062            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,2-Dichlorobenzene                | ND       | 0.0017           | 0.00034            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,3-Dichlorobenzene                | ND       | 0.0017           | 0.00036            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,4-Dichlorobenzene                | ND       | 0.0017           | 0.00044            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| trans-1,4-Dichloro-2-butene        | ND       | 0.0034           | 0.00048            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Dichlorodifluoromethane (Freon 12) | ND       | 0.017            | 0.00099            | mg/Kg dry              | 1            | V-05      | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,1-Dichloroethane                 | ND       | 0.0017           | 0.00043            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,2-Dichloroethane                 | ND       | 0.0017           | 0.00052            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,1-Dichloroethylene               | ND       | 0.0034           | 0.0011             | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| cis-1,2-Dichloroethylene           | ND       | 0.0017           | 0.00045            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| trans-1,2-Dichloroethylene         | ND       | 0.0017           | 0.00048            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,2-Dichloropropane                | ND       | 0.0017           | 0.00040            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,3-Dichloropropane                | ND       | 0.00086          | 0.00040            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 2,2-Dichloropropane                | ND       | 0.0017           | 0.00041            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| 1,1-Dichloropropene                | ND<br>ND | 0.0017           | 0.00067            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| cis-1,3-Dichloropropene            | ND<br>ND | 0.0017           | 0.00033            |                        | 1            |           | SW-846 8260D<br>SW-846 8260D |                      |                       | MFF        |
| trans-1,3-Dichloropropene          |          |                  |                    | mg/Kg dry              |              |           |                              | 10/25/21             | 10/25/21 10:51        |            |
|                                    | ND<br>ND | 0.00086          | 0.00042            | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |
| Diethyl Ether                      | ND       | 0.017            | 0.0019             | mg/Kg dry              | 1            |           | SW-846 8260D                 | 10/25/21             | 10/25/21 10:51        | MFF        |

Page 27 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB227-0-1-211021 Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00086 | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,4-Dioxane                                       | ND      | 0.086   | 0.019   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Ethylbenzene                                      | ND      | 0.0017  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0017  | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.017   | 0.0050  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0017  | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0017  | 0.00039 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Methyl Acetate                                    | ND      | 0.0017  | 0.0012  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0034  | 0.00032 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Methylene Chloride                                | ND      | 0.017   | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.017   | 0.0038  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Naphthalene                                       | ND      | 0.0034  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| n-Propylbenzene                                   | ND      | 0.0017  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Styrene                                           | ND      | 0.0017  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00086 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Tetrachloroethylene                               | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0086  | 0.0022  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Toluene                                           | 0.00048 | 0.0017  | 0.00048 | mg/Kg dry      | 1        | J         | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0017  | 0.00041 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0017  | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Trichloroethylene                                 | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0086  | 0.0031  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0017  | 0.00082 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0086  | 0.0023  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0017  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0017  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Vinyl Chloride                                    | ND      | 0.0086  | 0.0026  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| m+p Xylene                                        | ND      | 0.0034  | 0.00065 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| o-Xylene                                          | ND      | 0.0017  | 0.00035 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 10:51        | MFF     |
| Surrogates                                        |         | % Reco  | very F  | Recovery Limit | s        | Flag/Qual |              | _                | _                     |         |
| 1,2-Dichloroethane-d4                             |         | 99.9    |         | 70-130         |          |           |              |                  | 10/25/21 10:51        |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual       | Method           | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------------|------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Acenaphthylene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Acetophenone                     | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Aniline                          | ND      | 0.39 | 0.081 | mg/Kg dry | 1        | MS-09, R-06     | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Anthracene                       | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzidine                        | ND      | 0.75 | 0.18  | mg/Kg dry | 1        | MS-09, V-05     | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzo(a)anthracene               | 0.074   | 0.19 | 0.054 | mg/Kg dry | 1        | J               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzo(a)pyrene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzo(b)fluoranthene             | 0.13    | 0.19 | 0.059 | mg/Kg dry | 1        | J               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.19 | 0.081 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.19 | 0.052 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.46  | mg/Kg dry | 1        | L-04            | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.39 | 0.050 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.39 | 0.088 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.39 | 0.049 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Butylbenzylphthalate             | ND      | 0.39 | 0.062 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Carbazole                        | ND      | 0.19 | 0.064 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Chloroaniline                  | ND      | 0.75 | 0.051 | mg/Kg dry | 1        | MS-09, V-34     | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.75 | 0.064 | mg/Kg dry | 1        | , in the second | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Chloronaphthalene              | ND      | 0.39 | 0.045 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Chlorophenol                   | ND      | 0.39 | 0.054 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Chrysene                         | 0.16    | 0.19 | 0.056 | mg/Kg dry | 1        | J               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.19 | 0.079 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Dibenzofuran                     | 0.27    | 0.39 | 0.057 | mg/Kg dry | 1        | J               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Di-n-butylphthalate              | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.39 | 0.044 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.39 | 0.042 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.39 | 0.040 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.057 | mg/Kg dry | 1        | MS-09           | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.39 | 0.057 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Diethylphthalate                 | ND      | 0.39 | 0.059 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.39 | 0.11  | mg/Kg dry | 1        | MS-09           | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Dimethylphthalate                | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.39 | 0.26  | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.75 | 0.33  | mg/Kg dry | 1        | L-04, V-04      | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.39 | 0.076 | mg/Kg dry | 1        | , · · ·         | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.39 | 0.064 | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Di-n-octylphthalate              | ND      | 0.39 | 0.14  | mg/Kg dry | 1        |                 | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.39 | 0.056 | mg/Kg dry | 1        | V-05            | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Fluoranthene                     | 0.12    | 0.19 | 0.062 | mg/Kg dry | 1        | J               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
| Fluorene                         | ND      | 0.19 | 0.065 | mg/Kg dry | 1        | ·               | SW-846 8270E     | 10/25/21         | 10/27/21 18:09        | BGL     |
|                                  | ND      | 0.17 | 0.003 | mg/mg ury | 1        |                 | 5 11 '0 TO 02/0E | 10/23/21         | Dogo 20 c             |         |

Page 29 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

| Semivolatile | Organic | Compounds | by | GC/MS |  |
|--------------|---------|-----------|----|-------|--|
|--------------|---------|-----------|----|-------|--|

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual         | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-------------------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.39   | 0.053 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Hexachlorobutadiene                  | ND      | 0.39   | 0.049 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.39   | 0.16  | mg/Kg dry      | 1        | L-04, MS-09, V-05 | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Hexachloroethane                     | ND      | 0.39   | 0.046 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.088 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Isophorone                           | ND      | 0.39   | 0.065 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1-Methylnaphthalene                  | 0.74    | 0.19   | 0.054 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Methylnaphthalene                  | 1.2     | 0.19   | 0.061 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Methylphenol                       | ND      | 0.39   | 0.072 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 3/4-Methylphenol                     | ND      | 0.39   | 0.062 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Naphthalene                          | 0.68    | 0.19   | 0.053 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Nitroaniline                       | ND      | 0.39   | 0.082 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 3-Nitroaniline                       | ND      | 0.39   | 0.066 | mg/Kg dry      | 1        | R-06              | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Nitroaniline                       | ND      | 0.39   | 0.083 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Nitrobenzene                         | ND      | 0.39   | 0.056 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2-Nitrophenol                        | ND      | 0.39   | 0.061 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 4-Nitrophenol                        | ND      | 0.75   | 0.16  | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.39   | 0.058 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.39   | 0.058 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.39   | 0.053 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Pentachloronitrobenzene              | ND      | 0.39   | 0.065 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Pentachlorophenol                    | ND      | 0.39   | 0.17  | mg/Kg dry      | 1        | MS-09, V-05       | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Phenanthrene                         | 0.57    | 0.19   | 0.061 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Phenol                               | ND      | 0.39   | 0.055 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Pyrene                               | 0.14    | 0.19   | 0.062 | mg/Kg dry      | 1        | J                 | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Pyridine                             | ND      | 0.39   | 0.040 | mg/Kg dry      | 1        | L-04, MS-09       | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.39   | 0.050 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.39   | 0.049 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.39   | 0.060 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.39   | 0.060 | mg/Kg dry      | 1        |                   | SW-846 8270E | 10/25/21         | 10/27/21 18:09        | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual         |              |                  |                       |         |
| 2 Elyananhanal                       |         | 20.0   |       | 20 120         |          |                   |              |                  | 10/27/21 19:00        |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |                |
|----------------------|------------|-----------------|-----------|----------------|
| 2-Fluorophenol       | 39.9       | 30-130          |           | 10/27/21 18:09 |
| Phenol-d6            | 41.0       | 30-130          |           | 10/27/21 18:09 |
| Nitrobenzene-d5      | 45.7       | 30-130          |           | 10/27/21 18:09 |
| 2-Fluorobiphenyl     | 55.9       | 30-130          |           | 10/27/21 18:09 |
| 2,4,6-Tribromophenol | 42.2       | 30-130          |           | 10/27/21 18:09 |
| p-Terphenyl-d14      | 83.6       | 30-130          |           | 10/27/21 18:09 |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

| Analyte                  | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Aroclor-1016 [1]         | ND      | 0.091  | 0.055 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1221 [1]         | ND      | 0.091  | 0.059 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1232 [1]         | ND      | 0.091  | 0.041 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1242 [1]         | ND      | 0.091  | 0.046 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1248 [1]         | ND      | 0.091  | 0.055 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1254 [1]         | ND      | 0.091  | 0.059 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1260 [1]         | ND      | 0.091  | 0.064 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1262 [1]         | ND      | 0.091  | 0.046 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Aroclor-1268 [1]         | ND      | 0.091  | 0.036 | mg/Kg dry       | 4        |           | SW-846 8082A | 10/25/21         | 10/27/21 16:25        | TG      |
| Surrogates               |         | % Reco | very  | Recovery Limits | 1        | Flag/Qual |              |                  |                       |         |
| Decachlorobiphenyl [1]   |         | 84.3   |       | 30-150          |          |           |              |                  | 10/27/21 16:25        | _       |
| Decachlorobiphenyl [2]   |         | 71.4   |       | 30-150          |          |           |              |                  | 10/27/21 16:25        |         |
| Tetrachloro-m-xylene [1] |         | 79.8   |       | 30-150          |          |           |              |                  | 10/27/21 16:25        |         |
| Tetrachloro-m-xylene [2] |         | 73.4   |       | 30-150          |          |           |              |                  | 10/27/21 16:25        |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | 8.9     | 0.89   | 0.88 | mg/Kg dry       | 1        |           | SW-846 8015C | 10/27/21         | 10/28/21 4:20         | KMB     |
| Diesel Range Organics         | 150     | 9.5    | 4.4  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/25/21         | 10/29/21 7:03         | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 87.7   |      | 70-130          |          |           |              |                  | 10/28/21 4:20         |         |
| 2-Fluorobiphenyl              |         | 60.4   |      | 40-140          |          |           |              |                  | 10/29/21 7:03         |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-SB227-0-1-211021** Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

|  | (Total) |  |
|--|---------|--|
|  |         |  |

|           |         |       |        |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|-------|--------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL    | DL     | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 3400    | 19    | 6.8    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Antimony  | ND      | 1.9   | 0.75   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Arsenic   | 25      | 3.7   | 1.4    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Barium    | 140     | 1.9   | 0.70   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Beryllium | 0.86    | 0.19  | 0.070  | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Cadmium   | ND      | 0.37  | 0.19   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Calcium   | 2100    | 19    | 7.2    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Chromium  | 1400    | 0.74  | 0.42   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Cobalt    | 18      | 1.9   | 0.68   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Copper    | 1000    | 0.74  | 0.35   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Iron      | 330000  | 370   | 150    | mg/Kg dry | 20       |           | SW-846 6010D | 10/25/21 | 10/27/21 14:08 | QNW     |
| Lead      | 13      | 0.56  | 0.27   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Magnesium | 1700    | 19    | 6.5    | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Manganese | 2700    | 0.37  | 0.14   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Mercury   | 0.019   | 0.029 | 0.0099 | mg/Kg dry | 1        | J         | SW-846 7471B | 10/26/21 | 10/28/21 10:55 | DRL     |
| Nickel    | 730     | 0.74  | 0.38   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Potassium | 290     | 190   | 70     | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Selenium  | ND      | 74    | 26     | mg/Kg dry | 20       |           | SW-846 6010D | 10/25/21 | 10/26/21 16:11 | QNW     |
| Silver    | ND      | 7.4   | 3.4    | mg/Kg dry | 20       | DL-03     | SW-846 6010D | 10/25/21 | 10/27/21 14:08 | QNW     |
| Sodium    | 400     | 190   | 72     | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Thallium  | ND      | 1.9   | 0.90   | mg/Kg dry | 1        |           | SW-846 6010D | 1/4/22   | 1/6/22 15:10   | MJH     |
| Vanadium  | 110     | 0.74  | 0.37   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |
| Zinc      | 67      | 0.74  | 0.47   | mg/Kg dry | 1        |           | SW-846 6010D | 10/25/21 | 10/26/21 16:35 | QNW     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-SB227-0-1-211021 Sam

Sampled: 10/21/2021 08:50

Sample ID: 21J1472-03
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 87.8    |      |      | % Wt      | 1        |           | SM 2540G     | 10/27/21 | 10/28/21 15:27 | AP      |
| Cyanide    |         | ND      | 0.38 | 0.27 | mg/Kg dry | 1        |           | SW-846 9014  | 10/29/21 | 10/29/21 19:45 | DJM     |
| рН @20.7°С |         | 7.4     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/25/21 | 10/25/21 18:10 | CB2     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-EB07-211021 Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units        | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|--------------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 4.8 | 0.32 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Acenaphthylene                   | ND      | 4.8 | 0.31 | $\mu g/L$    | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Acetophenone                     | ND      | 9.6 | 0.43 | $\mu g/L$    | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Aniline                          | ND      | 4.8 | 0.79 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Anthracene                       | ND      | 4.8 | 0.38 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzidine                        | ND      | 19  | 9.6  | μg/L         | 1        | R-05, V-04 | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzo(a)anthracene               | ND      | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzo(a)pyrene                   | ND      | 4.8 | 0.46 | $\mu g/L$    | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzo(b)fluoranthene             | ND      | 4.8 | 0.40 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 4.8 | 0.62 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzo(k)fluoranthene             | ND      | 4.8 | 0.35 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Benzoic Acid                     | ND      | 9.6 | 8.9  | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 9.6 | 0.42 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 9.6 | 0.50 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 9.6 | 0.57 | μg/L         | 1        | V-05       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 9.6 | 0.89 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Bromophenylphenylether         | ND      | 9.6 | 0.37 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Butylbenzylphthalate             | ND      | 9.6 | 0.67 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Carbazole                        | ND      | 9.6 | 0.40 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Chloroaniline                  | ND      | 9.6 | 0.42 | μg/L         | 1        | V-34       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 9.6 | 0.52 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Chloronaphthalene              | ND      | 9.6 | 0.25 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Chlorophenol                   | ND      | 9.6 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 9.6 | 0.32 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Chrysene                         | ND      | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 4.8 | 0.68 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Dibenzofuran                     | ND      | 4.8 | 0.33 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Di-n-butylphthalate              | ND      | 9.6 | 0.48 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 4.8 | 0.22 | μg/L         | 1        | L-04       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L         | 1        | L-04       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 4.8 | 0.25 | μg/L         | 1        | L-04       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 9.6 | 0.60 | μg/L         | 1        | V-34       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4-Dichlorophenol               | ND      | 9.6 | 0.35 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Diethylphthalate                 | ND      | 9.6 | 0.46 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4-Dimethylphenol               | ND      | 9.6 | 0.93 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        |         |
| Dimethylphthalate                | ND      | 9.6 | 0.39 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 9.6 | 6.3  | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4-Dinitrophenol                | ND      | 9.6 | 7.7  | μg/L         | 1        | V-04       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 9.6 | 0.59 | μg/L         | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 9.6 | 0.48 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Di-n-octylphthalate              | ND      | 9.6 | 5.4  | μg/L<br>μg/L | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 9.6 | 0.51 | μg/L<br>μg/L | 1        | V-05       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Fluoranthene                     | ND      | 4.8 | 0.36 | μg/L<br>μg/L | 1        | , 05       | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Fluorene                         | ND      | 4.8 | 0.40 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | 1.1111  |

Page 35 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-EB07-211021 Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.6    | 0.35 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Hexachlorobutadiene                  | ND      | 9.6    | 0.26 | μg/L            | 1        | L-04      | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 9.6    | 4.1  | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Hexachloroethane                     | ND      | 9.6    | 0.30 | μg/L            | 1        | L-04      | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.76 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Isophorone                           | ND      | 9.6    | 0.47 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Methylphenol                       | ND      | 9.6    | 0.35 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 3/4-Methylphenol                     | ND      | 9.6    | 0.37 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Naphthalene                          | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Nitroaniline                       | ND      | 9.6    | 0.72 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 3-Nitroaniline                       | ND      | 9.6    | 0.49 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Nitroaniline                       | ND      | 9.6    | 0.47 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Nitrobenzene                         | ND      | 9.6    | 0.51 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2-Nitrophenol                        | ND      | 9.6    | 0.45 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 4-Nitrophenol                        | ND      | 9.6    | 2.0  | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| N-Nitrosodimethylamine               | ND      | 9.6    | 0.79 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.6    | 0.38 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 9.6    | 0.51 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Pentachloronitrobenzene              | ND      | 9.6    | 0.61 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Pentachlorophenol                    | ND      | 9.6    | 3.6  | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Phenanthrene                         | ND      | 4.8    | 0.38 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Phenol                               | ND      | 9.6    | 0.24 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Pyrene                               | ND      | 4.8    | 0.45 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Pyridine                             | ND      | 4.8    | 2.5  | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.6    | 0.26 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.24 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 9.6    | 0.45 | $\mu g/L$       | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 9.6    | 0.39 | μg/L            | 1        |           | SW-846 8270E | 10/27/21         | 10/28/21 16:06        | IMR     |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 43.7   |      | 15-110          |          |           |              |                  | 10/28/21 16:06        |         |
| Phenol-d6                            |         | 32.3   |      | 15-110          |          |           |              |                  | 10/28/21 16:06        |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-EB07-211021** Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

| Polychlorinated Bi | phenyls By GC/ECD |
|--------------------|-------------------|
|--------------------|-------------------|

| Analyte                  | Results | RL     | DL   | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------|---------|--------|------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Aroclor-1016 [1]         | ND      | 0.19   | 0.17 | μg/L           | 1        | -         | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1221 [1]         | ND      | 0.19   | 0.16 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1232 [1]         | ND      | 0.19   | 0.16 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1242 [1]         | ND      | 0.19   | 0.17 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1248 [1]         | ND      | 0.19   | 0.16 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1254 [1]         | ND      | 0.19   | 0.18 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1260 [1]         | ND      | 0.19   | 0.16 | μg/L           | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1262 [1]         | ND      | 0.19   | 0.17 | $\mu g/L$      | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Aroclor-1268 [1]         | ND      | 0.19   | 0.18 | $\mu g/L$      | 1        |           | SW-846 8082A | 10/26/21         | 10/27/21 19:19        | TG      |
| Surrogates               |         | % Reco | very | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| Decachlorobiphenyl [1]   |         | 52.1   |      | 30-150         |          |           |              |                  | 10/27/21 19:19        |         |
| Decachlorobiphenyl [2]   |         | 43.7   |      | 30-150         |          |           |              |                  | 10/27/21 19:19        |         |
| Tetrachloro-m-xylene [1] |         | 89.1   |      | 30-150         |          |           |              |                  | 10/27/21 19:19        |         |
| Tetrachloro-m-xylene [2] |         | 80.2   |      | 30-150         |          |           |              |                  | 10/27/21 19:19        |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-EB07-211021 Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

## Petroleum Hydrocarbons Analyses

| Analyte               | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diesel Range Organics | 0.085   | 0.19   | 0.082 | mg/L            | 1        | J         | SW-846 8015C | 10/25/21         | 10/29/21 4:11         | SFM     |
| Surrogates            |         | % Reco | very  | Recovery Limits | 5        | Flag/Qual |              |                  |                       |         |
| 2-Fluorobiphenyl      |         | 69.4   |       | 40-140          |          |           |              |                  | 10/29/21 4:11         |         |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-EB07-211021** Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

| Metal | c Ana | VEGE | (Total) |
|-------|-------|------|---------|
|       |       |      |         |

|           |         |         |          |       |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Barium    | ND      | 10      | 1.2      | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Beryllium | 0.14    | 0.40    | 0.066    | μg/L  | 1        | J         | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Cadmium   | ND      | 0.20    | 0.027    | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Calcium   | ND      | 0.50    | 0.11     | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/25/21 15:58 | MJH     |
| Cobalt    | ND      | 1.0     | 0.14     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Copper    | 7.6     | 1.0     | 0.27     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Magnesium | ND      | 0.050   | 0.023    | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Manganese | ND      | 1.0     | 0.24     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L  | 1        |           | SW-846 7470A | 10/25/21 | 10/26/21 7:33  | DRL     |
| Nickel    | ND      | 5.0     | 0.52     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Potassium | ND      | 2.0     | 0.40     | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Sodium    | ND      | 2.0     | 0.56     | mg/L  | 1        |           | SW-846 6010D | 10/23/21 | 10/27/21 18:06 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |
| Zinc      | ND      | 10      | 3.4      | μg/L  | 1        |           | SW-846 6020B | 10/23/21 | 10/24/21 20:08 | QNW     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

Field Sample #: HRP-EB07-211021 Sampled: 10/21/2021 09:25

Sample ID: 21J1472-04
Sample Matrix: Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |       |        |       |          |           |             | Date     | Date/Time      |         |
|---------|---------|---------|-------|--------|-------|----------|-----------|-------------|----------|----------------|---------|
|         | Analyte | Results | RL    | DL     | Units | Dilution | Flag/Qual | Method      | Prepared | Analyzed       | Analyst |
| Cyanide |         | ND      | 0.010 | 0.0073 | mg/L  | 1        |           | SW-846 9014 | 10/27/21 | 10/27/21 16:50 | DJM     |



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-TB06-211021** Sampled: 10/21/2021 09:25

Sample ID: 21J1472-05
Sample Matrix: Water

## Volatile Organic Compounds by GC/MS

|                                    |          |      | Volatile | Organic Co   | mpounds by G | C/MS      |              |          |               |               |
|------------------------------------|----------|------|----------|--------------|--------------|-----------|--------------|----------|---------------|---------------|
|                                    |          |      |          |              |              |           |              | Date     | Date/Time     |               |
| Analyte                            | Results  | RL   | DL       | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed      | Analyst       |
| Acetone                            | ND       | 50   | 2.4      | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Acrylonitrile                      | ND       | 5.0  | 0.69     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Benzene                            | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Bromobenzene                       | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Bromochloromethane                 | ND       | 1.0  | 0.36     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Bromodichloromethane               | ND       | 0.50 | 0.14     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Bromoform                          | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Bromomethane                       | ND       | 2.0  | 1.1      | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9      | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3      | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| n-Butylbenzene                     | ND       | 1.0  | 0.14     | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10     | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090    | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11     | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Carbon Disulfide                   | ND       | 5.0  | 1.5      | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17     | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Chlorobenzene                      | ND       | 1.0  | 0.080    | $\mu g/L$    | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Chlorodibromomethane               | ND       | 0.50 | 0.16     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Chloroethane                       | ND       | 2.0  | 0.37     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Chloroform                         | ND       | 2.0  | 0.19     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Chloromethane                      | ND       | 2.0  | 0.38     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Dibromomethane                     | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8      | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.17     | μg/L<br>μg/L | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.18     | μg/L<br>μg/L | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 1,3-Dichloropropane                | ND       | 0.50 | 0.12     | μg/L<br>μg/L | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| 2,2-Dichloropropane                | ND       | 1.0  |          |              | 1            | V-05      | SW-846 8260D |          |               | MFF           |
| 1,1-Dichloropropene                |          |      | 0.31     | μg/L<br>μg/I |              | v-03      |              | 10/25/21 | 10/26/21 1:27 | MFF           |
| cis-1,3-Dichloropropene            | ND<br>ND | 2.0  | 0.26     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 |               |
|                                    | ND<br>ND | 0.50 | 0.12     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| trans-1,3-Dichloropropene          | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF           |
| Diethyl Ether                      | ND       | 2.0  | 0.22     | μg/L         | 1            |           | SW-846 8260D | 10/25/21 | 10/26/21 1:27 | MFF<br>of 101 |

Page 41 of 101



Project Location: 144 N Royal St, Alexandria, VA Sample Description: Work Order: 21J1472

Date Received: 10/23/2021

**Field Sample #: HRP-TB06-211021** Sampled: 10/21/2021 09:25

Sample ID: 21J1472-05
Sample Matrix: Water

| Volatile | Organic | Compounds | by | GC/MS |
|----------|---------|-----------|----|-------|
|          |         |           |    |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | L-04, V-05 | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/26/21 1:27         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 108        | 70-130          |           | 10/26/21 1:27 |
| Toluene-d8            | 109        | 70-130          |           | 10/26/21 1:27 |
| 4-Bromofluorobenzene  | 102        | 70-130          |           | 10/26/21 1:27 |



## **Sample Extraction Data**

| Prep Method: % Solids | Analytical Method: SM 2540G |
|-----------------------|-----------------------------|
|-----------------------|-----------------------------|

| Lab Number [Field ID]             | Batch   | Date     |
|-----------------------------------|---------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293350 | 10/27/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293350 | 10/27/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293350 | 10/27/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293193 | 1.51        | 50.0       | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293193 | 1.54        | 50.0       | 10/25/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293193 | 1.54        | 50.0       | 10/25/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]                | Batch   | Initial [g] | Final [mL] | Date     |
|--------------------------------------|---------|-------------|------------|----------|
| 21J1472-03RE2 [HRP-SB227-0-1-211021] | B298295 | 1.52        | 50.0       | 01/04/22 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293093 | 50.0         | 50.0       | 10/23/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293091 | 50.0         | 50.0       | 10/23/21 |

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293196 | 10.0         | 10.0       | 10/25/21 |

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293278 | 0.540       | 50.0       | 10/26/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293278 | 0.591       | 50.0       | 10/26/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293278 | 0.584       | 50.0       | 10/26/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8015C

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293199 | 30.0        | 1.00       | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293199 | 30.0        | 1.00       | 10/25/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293199 | 30.0        | 1.00       | 10/25/21 |



## **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]             | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------------------|---------|--------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293367 | 4.54         | 6.51       | 10/27/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293367 | 3.78         | 5.43       | 10/27/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293367 | 7.59         | 5.93       | 10/27/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8015C

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293116 | 1030         | 1.00       | 10/25/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8082A

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293133 | 10.0        | 10.0       | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293133 | 10.0        | 10.0       | 10/25/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293133 | 10.0        | 10.0       | 10/25/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8082A

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293271 | 1030         | 10.0       | 10/26/21 |

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

| Lab Number [Field ID]             | Batch   | Sample<br>Amount(g) | Methanol<br>Volume(mL) | Methanol<br>Aliquot(mL) | Final<br>Volume(mL) | Date     |
|-----------------------------------|---------|---------------------|------------------------|-------------------------|---------------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293105 | 4.54                | 6.51                   | 1                       | 50                  | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293105 | 3.78                | 5.43                   | 0.25                    | 50                  | 10/25/21 |

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-03 [HRP-SB227-0-1-211021] | B293187 | 6.66        | 10.0       | 10/25/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-05 [HRP-TB06-211021] | B293183 | 5            | 5.00       | 10/25/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]                | Batch   | Initial [g] | Final [mL] | Date     |  |
|--------------------------------------|---------|-------------|------------|----------|--|
| 21J1472-01 [HRP-SB225-0-1-211021]    | B293200 | 30.0        | 1.00       | 10/25/21 |  |
| 21J1472-01RE1 [HRP-SB225-0-1-211021] | B293200 | 30.0        | 1.00       | 10/25/21 |  |
| 21J1472-02 [HRP-SB224-0-1-211021]    | B293200 | 30.0        | 1.00       | 10/25/21 |  |
| 21J1472-02RE1 [HRP-SB224-0-1-211021] | B293200 | 30.0        | 1.00       | 10/25/21 |  |
| 21J1472-03 [HRP-SB227-0-1-211021]    | B293200 | 30.0        | 1.00       | 10/25/21 |  |



## **Sample Extraction Data**

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293321 | 1040         | 1.00       | 10/27/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293120 | 1.16        | 50.0       | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293120 | 1.10        | 50.0       | 10/25/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J1472-03 [HRP-SB227-0-1-211021] | B293536 | 1.48        | 50.0       | 10/29/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1472-04 [HRP-EB07-211021] | B293335 | 50.0         | 50.0       | 10/27/21 |

### SW-846 9045C

| Lab Number [Field ID]             | Batch   | Initial [g] | Date     |
|-----------------------------------|---------|-------------|----------|
| 21J1472-01 [HRP-SB225-0-1-211021] | B293214 | 20.0        | 10/25/21 |
| 21J1472-02 [HRP-SB224-0-1-211021] | B293214 | 20.0        | 10/25/21 |
| 21J1472-03 [HRP-SB227-0-1-211021] | B293214 | 20.0        | 10/25/21 |



## QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                  | Result   | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------------------|----------|--------------------|------------------------|----------------|------------------|---------------|----------------|-----|--------------|-------|
| Batch B293105 - SW-846 5035              | _        |                    |                        |                |                  |               |                |     |              |       |
| Blank (B293105-BLK1)                     |          |                    |                        | Prepared: 10   | )/25/21 Analy    | yzed: 10/26/2 | 1              |     |              |       |
| Acetone                                  | ND       | 2.5                | mg/Kg wet              |                |                  |               |                |     |              |       |
| Acrylonitrile                            | ND       | 0.25               | mg/Kg wet              |                |                  |               |                |     |              |       |
| ert-Amyl Methyl Ether (TAME)             | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Benzene                                  | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Bromobenzene                             | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Bromochloromethane                       | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Bromodichloromethane                     | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Bromoform                                | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Bromomethane                             | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| -Butanone (MEK)                          | ND       | 1.0                | mg/Kg wet              |                |                  |               |                |     |              |       |
| ert-Butyl Alcohol (TBA)                  | ND       | 1.0                | mg/Kg wet              |                |                  |               |                |     |              |       |
| -Butylbenzene                            | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ec-Butylbenzene                          | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ert-Butylbenzene                         | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ert-Butyl Ethyl Ether (TBEE)             | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Carbon Disulfide                         | ND       | 0.25               | mg/Kg wet              |                |                  |               |                |     |              |       |
| Carbon Tetrachloride                     | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Chlorobenzene                            | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Chlorodibromomethane                     | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Chloroethane                             | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| Chloroform                               | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| hloromethane                             | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| -Chlorotoluene                           | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| -Chlorotoluene                           | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| 2-Dibromo-3-chloropropane (DBCP)         | ND       | 0.25               | mg/Kg wet              |                |                  |               |                |     |              |       |
| 2-Dibromoethane (EDB)                    | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Dibromomethane                           | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,2-Dichlorobenzene                       | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,3-Dichlorobenzene                       | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,4-Dichlorobenzene                       | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| rans-1,4-Dichloro-2-butene               | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| Dichlorodifluoromethane (Freon 12)       | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,1-Dichloroethane                        | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,2-Dichloroethane                        | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,1-Dichloroethylene                      | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| is-1,2-Dichloroethylene                  | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| rans-1,2-Dichloroethylene                | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Dichlorofluoromethane (Freon 21)         | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| ,2-Dichloropropane                       | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| 3-Dichloropropane                        | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              | 11.05 |
| ,2-Dichloropropane<br>,1-Dichloropropene | ND       | 0.050<br>0.10      | mg/Kg wet<br>mg/Kg wet |                |                  |               |                |     |              | V-05  |
| is-1,3-Dichloropropene                   | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
| ans-1,3-Dichloropropene                  | ND       | 0.025              | mg/Kg wet              |                |                  |               |                |     |              |       |
| viethyl Ether                            | ND       | 0.023              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Diffuorochloromethane (Freon 22)         | ND       | 0.10               | mg/Kg wet              |                |                  |               |                |     |              |       |
|                                          | ND       |                    |                        |                |                  |               |                |     |              |       |
| hisopropyl Ether (DIPE)<br>,4-Dioxane    | ND       | 0.025<br>2.5       | mg/Kg wet<br>mg/Kg wet |                |                  |               |                |     |              |       |
| thylbenzene                              | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| Mexachlorobutadiene                      | ND<br>ND | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| -Hexanone (MBK)                          | ND       | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |
| sopropylbenzene (Cumene)                 | ND<br>ND | 0.050              | mg/Kg wet              |                |                  |               |                |     |              |       |

%REC

RPD



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                      | Result  | Limit   | Units     | Level        | Result       | %REC          | Limits | RPD | Limit | Notes      |
|----------------------------------------------|---------|---------|-----------|--------------|--------------|---------------|--------|-----|-------|------------|
| Batch B293105 - SW-846 5035                  |         |         |           |              |              |               |        |     |       |            |
| Blank (B293105-BLK1)                         |         |         |           | Prepared: 10 | /25/21 Anal  | yzed: 10/26/2 | 1      |     |       |            |
| p-Isopropyltoluene (p-Cymene)                | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Methyl Acetate                               | ND      | 0.50    | mg/Kg wet |              |              |               |        |     |       |            |
| Methyl tert-Butyl Ether (MTBE)               | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Methyl Cyclohexane                           | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Methylene Chloride                           | ND      | 0.25    | mg/Kg wet |              |              |               |        |     |       |            |
| 4-Methyl-2-pentanone (MIBK)                  | ND      | 0.50    | mg/Kg wet |              |              |               |        |     |       |            |
| Naphthalene                                  | ND      | 0.10    | mg/Kg wet |              |              |               |        |     |       | V-05       |
| n-Propylbenzene                              | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Styrene                                      | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| ,1,1,2-Tetrachloroethane                     | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| ,1,2,2-Tetrachloroethane                     | ND      | 0.025   | mg/Kg wet |              |              |               |        |     |       |            |
| Tetrachloroethylene                          | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Tetrahydrofuran                              | ND      | 0.50    | mg/Kg wet |              |              |               |        |     |       |            |
| Toluene                                      | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| ,2,3-Trichlorobenzene                        | ND      | 0.25    | mg/Kg wet |              |              |               |        |     |       | L-04, V-05 |
| 1,2,4-Trichlorobenzene                       | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       | V-05       |
| 1,3,5-Trichlorobenzene                       | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| 1,1,1-Trichloroethane                        | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| ,1,2-Trichloroethane                         | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Frichloroethylene                            | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Frichlorofluoromethane (Freon 11)            | ND      | 0.10    | mg/Kg wet |              |              |               |        |     |       |            |
| ,2,3-Trichloropropane                        | ND      | 0.10    | mg/Kg wet |              |              |               |        |     |       |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| 113)                                         | ND      |         | 0 0       |              |              |               |        |     |       |            |
| ,2,4-Trimethylbenzene                        | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| 1,3,5-Trimethylbenzene                       | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Vinyl Chloride                               | ND      | 0.10    | mg/Kg wet |              |              |               |        |     |       |            |
| n+p Xylene                                   | ND      | 0.10    | mg/Kg wet |              |              |               |        |     |       |            |
| o-Xylene                                     | ND      | 0.050   | mg/Kg wet |              |              |               |        |     |       |            |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0268  |         | mg/Kg wet | 0.0250       |              | 107           | 70-130 |     |       |            |
| Surrogate: Toluene-d8                        | 0.0269  |         | mg/Kg wet | 0.0250       |              | 107           | 70-130 |     |       |            |
| Surrogate: 4-Bromofluorobenzene              | 0.0262  |         | mg/Kg wet | 0.0250       |              | 105           | 70-130 |     |       |            |
| LCS (B293105-BS1)                            |         |         |           | Prepared & A | Analyzed: 10 | /25/21        |        |     |       |            |
| Acetone                                      | 0.112   | 0.057   | mg/Kg wet | 0.113        |              | 98.5          | 70-160 |     |       |            |
| Acrylonitrile                                | 0.00947 | 0.0057  | mg/Kg wet | 0.0113       |              | 83.6          | 70-130 |     |       |            |
| ert-Amyl Methyl Ether (TAME)                 | 0.0111  | 0.00057 | mg/Kg wet | 0.0113       |              | 98.3          | 70-130 |     |       |            |
| Benzene                                      | 0.0114  | 0.0011  | mg/Kg wet | 0.0113       |              | 101           | 70-130 |     |       |            |
| Bromobenzene                                 | 0.0103  | 0.0011  | mg/Kg wet | 0.0113       |              | 90.6          | 70-130 |     |       |            |
| Bromochloromethane                           | 0.0122  | 0.0011  | mg/Kg wet | 0.0113       |              | 108           | 70-130 |     |       |            |
| Bromodichloromethane                         | 0.0116  | 0.0011  | mg/Kg wet | 0.0113       |              | 102           | 70-130 |     |       |            |
| Bromoform                                    | 0.0105  | 0.0011  | mg/Kg wet | 0.0113       |              | 92.7          | 70-130 |     |       |            |
| Bromomethane                                 | 0.0117  | 0.0023  | mg/Kg wet | 0.0113       |              | 104           | 40-130 |     |       |            |
| 2-Butanone (MEK)                             | 0.113   | 0.023   | mg/Kg wet | 0.113        |              | 99.5          | 70-160 |     |       |            |
| ert-Butyl Alcohol (TBA)                      | 0.102   | 0.023   | mg/Kg wet | 0.113        |              | 90.1          | 40-130 |     |       |            |
| n-Butylbenzene                               | 0.00942 | 0.0011  | mg/Kg wet | 0.0113       |              | 83.1          | 70-130 |     |       |            |
| sec-Butylbenzene                             | 0.0103  | 0.0011  | mg/Kg wet | 0.0113       |              | 90.7          | 70-130 |     |       |            |
| ert-Butylbenzene                             | 0.0103  | 0.0011  | mg/Kg wet | 0.0113       |              | 94.1          | 70-160 |     |       |            |
| ert-Butyl Ethyl Ether (TBEE)                 | 0.0107  | 0.00057 | mg/Kg wet | 0.0113       |              | 97.3          | 70-100 |     |       |            |
| Carbon Disulfide                             | 0.0110  | 0.0057  | mg/Kg wet | 0.0113       |              | 99.6          | 70-130 |     |       |            |
| Carbon Tetrachloride                         | 0.0109  | 0.0037  | mg/Kg wet | 0.113        |              | 96.1          | 70-130 |     |       |            |
| Chlorobenzene                                |         | 0.0011  | mg/Kg wet | 0.0113       |              | 99.5          | 70-130 |     |       |            |
| Chlorodibromomethane                         | 0.0113  | 0.00011 | mg/Kg wet |              |              |               |        |     |       |            |
| Chrorodionomediane                           | 0.0117  | 0.0005/ | mg/kg wet | 0.0113       |              | 103           | 70-130 |     | Р     | age 47     |
|                                              |         |         |           |              |              |               |        |     |       |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| 0.0132<br>0.0114<br>0.0144<br>0.0107<br>0.0105<br>0.00951<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109<br>0.0114 | 0.0023<br>0.0023<br>0.0023<br>0.0011<br>0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023 | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prepared & A 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyzed: 10/25/21  116 101 127 94.1 92.6 83.9 101 101 97.8 96.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0.0114<br>0.0144<br>0.0107<br>0.0105<br>0.00951<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                     | 0.0023<br>0.0023<br>0.0011<br>0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023 | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116<br>101<br>127<br>94.1<br>92.6<br>83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 0.0114<br>0.0144<br>0.0107<br>0.0105<br>0.00951<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                     | 0.0023<br>0.0023<br>0.0011<br>0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023 | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101<br>127<br>94.1<br>92.6<br>83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 0.0144<br>0.0107<br>0.0105<br>0.00951<br>0.0114<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0116<br>0.0109                               | 0.0023<br>0.0011<br>0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023           | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127<br>94.1<br>92.6<br>83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 0.0107<br>0.0105<br>0.00951<br>0.0114<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                               | 0.0011<br>0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                     | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.1<br>92.6<br>83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 0.0105<br>0.00951<br>0.0114<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                         | 0.0011<br>0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                               | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.6<br>83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.00951<br>0.0114<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                   | 0.0057<br>0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                               | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0113<br>0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.9<br>101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70-130<br>70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0114<br>0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                              | 0.00057<br>0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                                         | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0113<br>0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101<br>101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70-130<br>70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0114<br>0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                                        | 0.0011<br>0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                                                    | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0113<br>0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101<br>97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70-130<br>70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0111<br>0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                                                  | 0.0011<br>0.0011<br>0.0011<br>0.0023<br>0.0023                                                              | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0113<br>0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0109<br>0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                                                            | 0.0011<br>0.0011<br>0.0023<br>0.0023                                                                        | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0110<br>0.00991<br>0.0115<br>0.0116<br>0.0109                                                                                                      | 0.0011<br>0.0023<br>0.0023                                                                                  | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.00991<br>0.0115<br>0.0116<br>0.0109                                                                                                                | 0.0023<br>0.0023                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /0-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0115<br>0.0116<br>0.0109                                                                                                                           | 0.0023                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0116<br>0.0109                                                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0109                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0114                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0114                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0110                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0108                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0112                                                                                                                                               | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.0112                                                                                                                                               | 0.00057                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| 0.00895                                                                                                                                              | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                      | 0.0023                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.00057                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.00057                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0023                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.00057                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.057                                                                                                       | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.011                                                                                                       | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.011                                                                                                       | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0011                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0023                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                      | 0.0011                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L-04 V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v-U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                      | 0.0114<br>0.0110<br>0.0108<br>0.0112<br>0.0112                                                              | 0.0114         0.0011           0.0110         0.0011           0.0112         0.0011           0.0112         0.00057           0.00895         0.0011           0.0109         0.0023           0.0113         0.00057           0.0104         0.00057           0.0105         0.0023           0.00940         0.0011           0.0110         0.00057           0.106         0.057           0.0108         0.0011           0.00936         0.0011           0.0109         0.0011           0.0129         0.0011           0.0129         0.0011           0.0120         0.0011           0.0121         0.0011           0.00926         0.0011           0.00926         0.0011           0.00662         0.0023           0.0104         0.0011           0.0113         0.0011           0.0114         0.0011           0.0115         0.00057           0.0114         0.0011           0.0115         0.00057           0.0114         0.0011           0.0115         0.00057           0. | 0.0114         0.0011         mg/Kg wet           0.0110         0.0011         mg/Kg wet           0.0108         0.0011         mg/Kg wet           0.0112         0.00057         mg/Kg wet           0.0112         0.00057         mg/Kg wet           0.0103         0.00057         mg/Kg wet           0.0109         0.0023         mg/Kg wet           0.0101         0.00057         mg/Kg wet           0.0105         0.0023         mg/Kg wet           0.0105         0.0023         mg/Kg wet           0.0106         0.057         mg/Kg wet           0.0107         0.00057         mg/Kg wet           0.0108         0.0011         mg/Kg wet           0.0108         0.0011         mg/Kg wet           0.0109         0.0011         mg/Kg wet           0.0120         0.0011         mg/Kg wet           0.0121         0.011         mg/Kg wet           0.0126         0.011         mg/Kg wet           0.00997         0.0011         mg/Kg wet           0.00926         0.0011         mg/Kg wet           0.0119         0.0057         mg/Kg wet           0.0110         0.0011         < | 0.0114         0.0011         mg/Kg wet         0.0113           0.0110         0.0011         mg/Kg wet         0.0113           0.0108         0.0011         mg/Kg wet         0.0113           0.0112         0.00011         mg/Kg wet         0.0113           0.0112         0.00057         mg/Kg wet         0.0113           0.00895         0.0011         mg/Kg wet         0.0113           0.0109         0.0023         mg/Kg wet         0.0113           0.0113         0.00057         mg/Kg wet         0.0113           0.0104         0.00057         mg/Kg wet         0.0113           0.0105         0.0023         mg/Kg wet         0.0113           0.0104         0.00057         mg/Kg wet         0.0113           0.0105         0.0023         mg/Kg wet         0.0113           0.0106         0.0057         mg/Kg wet         0.0113           0.0106         0.057         mg/Kg wet         0.0113           0.0108         0.0011         mg/Kg wet         0.0113           0.0109         0.0011         mg/Kg wet         0.0113           0.0126         0.011         mg/Kg wet         0.0113           0.00926 | 0.0114         0.0011         mg/Kg wet         0.0113         101           0.0110         0.0011         mg/Kg wet         0.0113         96.7           0.0108         0.0011         mg/Kg wet         0.0113         95.7           0.0112         0.0011         mg/Kg wet         0.0113         99.2           0.0112         0.00057         mg/Kg wet         0.0113         98.7           0.00895         0.0011         mg/Kg wet         0.0113         79.0           0.0109         0.0023         mg/Kg wet         0.0113         96.2           0.0113         0.00057         mg/Kg wet         0.0113         99.5           0.0104         0.00057         mg/Kg wet         0.0113         91.7           0.0105         0.0023         mg/Kg wet         0.0113         92.4           0.0104         0.00057         mg/Kg wet         0.0113         92.4           0.0105         0.0023         mg/Kg wet         0.0113         92.4           0.0106         0.0057         mg/Kg wet         0.0113         96.8           0.110         0.00057         mg/Kg wet         0.0113         95.0           0.00936         0.0011         mg/Kg wet< | 0.0114         0.0011         mg/Kg wet         0.0113         101         70-130           0.0110         0.0011         mg/Kg wet         0.0113         96.7         70-130           0.0108         0.0011         mg/Kg wet         0.0113         95.7         70-130           0.0112         0.00011         mg/Kg wet         0.0113         99.2         70-130           0.0112         0.00057         mg/Kg wet         0.0113         98.7         70-130           0.0012         0.00057         mg/Kg wet         0.0113         79.0         70-130           0.0109         0.0023         mg/Kg wet         0.0113         96.2         70-130           0.0113         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0104         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0105         0.0023         mg/Kg wet         0.0113         92.4         70-130           0.0105         0.0023         mg/Kg wet         0.0113         92.4         70-130           0.0106         0.057         mg/Kg wet         0.0113         92.4         70-130           0.0108         0.0011         mg/K | 0.0114         0.0011         mg/Kg wet         0.0113         101         70-130           0.0110         0.0011         mg/Kg wet         0.0113         96.7         70-130           0.0112         0.0011         mg/Kg wet         0.0113         95.7         70-130           0.0112         0.00057         mg/Kg wet         0.0113         99.2         70-130           0.0112         0.00057         mg/Kg wet         0.0113         98.7         70-130           0.0109         0.0023         mg/Kg wet         0.0113         96.2         70-130           0.0113         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0114         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0104         0.00057         mg/Kg wet         0.0113         91.7         70-130           0.0105         0.0023         mg/Kg wet         0.0113         92.4         70-130           0.0105         0.0023         mg/Kg wet         0.0113         82.4         70-130           0.0106         0.057         mg/Kg wet         0.0113         92.4         70-130           0.0106         0.057         mg/Kg | 0.0114         0.0011         mg/Kg wet         0.0113         101         70-130           0.0110         0.0011         mg/Kg wet         0.0113         96.7         70-130           0.0112         0.0011         mg/Kg wet         0.0113         95.7         70-130           0.0112         0.00057         mg/Kg wet         0.0113         99.2         70-130           0.0112         0.00057         mg/Kg wet         0.0113         99.2         70-130           0.0109         0.0023         mg/Kg wet         0.0113         96.2         70-130           0.0113         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0104         0.00057         mg/Kg wet         0.0113         99.5         70-130           0.0105         0.0023         mg/Kg wet         0.0113         92.4         70-130           0.0105         0.0023         mg/Kg wet         0.0113         92.4         70-130           0.0110         0.00057         mg/Kg wet         0.0113         92.4         70-130           0.0110         0.00057         mg/Kg wet         0.0113         93.4         40-160           0.0110         0.00057         m | 0.0114 |



# QUALITY CONTROL

| Analyte                                           | Result           | Reporting<br>Limit | Units                  | Spike<br>Level   | Source<br>Result | %REC          | %REC<br>Limits   | RPD           | RPD<br>Limit | Notes       |
|---------------------------------------------------|------------------|--------------------|------------------------|------------------|------------------|---------------|------------------|---------------|--------------|-------------|
| Batch B293105 - SW-846 5035                       |                  |                    |                        |                  |                  |               |                  |               |              |             |
| LCS (B293105-BS1)                                 |                  |                    |                        | Prepared & A     | Analyzed: 10     | /25/21        |                  |               |              |             |
| Trichloroethylene                                 | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 99.0          | 70-130           |               |              |             |
| Trichlorofluoromethane (Freon 11)                 | 0.0109           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 96.5          | 70-130           |               |              |             |
| 1,2,3-Trichloropropane                            | 0.0102           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 89.6          | 70-130           |               |              |             |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 0.00963          | 0.0011             | mg/Kg wet              | 0.0113           |                  | 85.0          | 70-130           |               |              |             |
| 1,2,4-Trimethylbenzene                            | 0.0106           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 93.5          | 70-130           |               |              |             |
| 1,3,5-Trimethylbenzene                            | 0.0104           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 92.1          | 70-130           |               |              |             |
| Vinyl Chloride                                    | 0.0128           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 113           | 40-130           |               |              |             |
| m+p Xylene                                        | 0.0218           | 0.0023             | mg/Kg wet              | 0.0227           |                  | 96.2          | 70-130           |               |              |             |
| o-Xylene                                          | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 98.4          | 70-130           |               |              |             |
| Surrogate: 1,2-Dichloroethane-d4                  | 0.0301           |                    | mg/Kg wet              | 0.0283           |                  | 106           | 70-130           |               |              |             |
| Surrogate: Toluene-d8                             | 0.0309           |                    | mg/Kg wet              | 0.0283           |                  | 109           | 70-130           |               |              |             |
| Surrogate: 4-Bromofluorobenzene                   | 0.0294           |                    | mg/Kg wet              | 0.0283           |                  | 104           | 70-130           |               |              |             |
| LCS Dup (B293105-BSD1)                            |                  |                    |                        | Prepared: 10     | /25/21 Anal      | yzed: 10/26/2 | 21               |               |              |             |
| Acetone                                           | 0.111            | 0.057              | mg/Kg wet              | 0.113            |                  | 98.3          | 70-160           | 0.122         | 25           |             |
| Acrylonitrile                                     | 0.0102           | 0.0057             | mg/Kg wet              | 0.0113           |                  | 90.0          | 70-130           | 7.37          | 25           |             |
| tert-Amyl Methyl Ether (TAME)                     | 0.0105           | 0.00057            | mg/Kg wet              | 0.0113           |                  | 92.7          | 70-130           | 5.86          | 25           |             |
| Benzene                                           | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 99.1          | 70-130           | 1.80          | 25           |             |
| Bromobenzene                                      | 0.0102           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 90.2          | 70-130           | 0.442         | 25           |             |
| Bromochloromethane                                | 0.0113           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 99.7          | 70-130           | 7.81          | 25           |             |
| Bromodichloromethane                              | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 98.8          | 70-130           | 3.19          | 25           |             |
| Bromoform                                         | 0.0102           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 89.7          | 70-130           | 3.29          | 25           |             |
| Bromomethane                                      | 0.0116           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 103           | 40-130           | 0.776         | 25           |             |
| 2-Butanone (MEK)                                  | 0.110            | 0.023              | mg/Kg wet              | 0.113            |                  | 96.8          | 70-160           | 2.66          | 25           |             |
| tert-Butyl Alcohol (TBA)                          | 0.104            | 0.023              | mg/Kg wet              | 0.113            |                  | 91.6          | 40-130           | 1.71          | 25           |             |
| n-Butylbenzene                                    | 0.00891          | 0.0011             | mg/Kg wet              | 0.0113           |                  | 78.6          | 70-130           | 5.57          | 25           |             |
| sec-Butylbenzene                                  | 0.00986          | 0.0011             | mg/Kg wet              | 0.0113           |                  | 87.0          | 70-130           | 4.16          | 25           |             |
| tert-Butylbenzene                                 | 0.0103           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 91.2          | 70-160           | 3.13          | 25           |             |
| tert-Butyl Ethyl Ether (TBEE)                     | 0.0106           | 0.00057            | mg/Kg wet              | 0.0113           |                  | 93.1          | 70-130           | 4.41          | 25           |             |
| Carbon Disulfide                                  | 0.108            | 0.0057             | mg/Kg wet              | 0.113            |                  | 95.5          | 70-130           | 4.14          | 25           |             |
| Carbon Tetrachloride Chlorobenzene                | 0.0105           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 92.5          | 70-130           | 3.82          | 25           |             |
| Chlorodibromomethane                              | 0.0108           | 0.0011<br>0.00057  | mg/Kg wet              | 0.0113           |                  | 95.6          | 70-130           | 4.00          | 25           |             |
| Chloroethane                                      | 0.0111           | 0.00037            | mg/Kg wet<br>mg/Kg wet | 0.0113           |                  | 98.1          | 70-130           | 4.68          | 25<br>25     |             |
| Chloroform                                        | 0.0131           | 0.0023             | mg/Kg wet              | 0.0113<br>0.0113 |                  | 116<br>98.9   | 70-130<br>70-130 | 0.518<br>1.80 |              |             |
| Chloromethane                                     | 0.0112           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 118           | 70-130           | 7.53          | 25<br>25     | V-20        |
| 2-Chlorotoluene                                   | 0.0133<br>0.0104 | 0.0023             | mg/Kg wet              | 0.0113           |                  | 91.8          | 70-130           | 2.47          | 25           | V-20        |
| 4-Chlorotoluene                                   | 0.0104           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 89.5          | 70-130           | 3.40          | 25           |             |
| 1,2-Dibromo-3-chloropropane (DBCP)                | 0.00991          | 0.0057             | mg/Kg wet              | 0.0113           |                  | 87.4          | 70-130           | 4.09          | 25           |             |
| 1,2-Dibromoethane (EDB)                           | 0.00991          | 0.00057            | mg/Kg wet              | 0.0113           |                  | 98.1          | 70-130           | 2.81          | 25           |             |
| Dibromomethane                                    | 0.0111           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 99.9          | 70-130           | 0.798         | 25           |             |
| 1,2-Dichlorobenzene                               | 0.0119           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 97.0          | 70-130           | 0.821         | 25           |             |
| 1,3-Dichlorobenzene                               | 0.0110           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 94.0          | 70-130           | 2.21          | 25           |             |
| 1,4-Dichlorobenzene                               | 0.0107           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 91.5          | 70-130           | 5.94          | 25           |             |
| trans-1,4-Dichloro-2-butene                       | 0.0104           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 88.8          | 70-130           | 1.59          | 25           |             |
| Dichlorodifluoromethane (Freon 12)                | 0.0104           | 0.0023             | mg/Kg wet              | 0.0113           |                  | 91.7          | 40-160           | 9.95          | 25           |             |
| 1,1-Dichloroethane                                | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 98.4          | 70-130           | 4.28          | 25           |             |
| 1,2-Dichloroethane                                | 0.0107           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 94.2          | 70-130           | 1.68          | 25           |             |
| 1,1-Dichloroethylene                              | 0.0112           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 98.8          | 70-130           | 2.20          | 25           |             |
| cis-1,2-Dichloroethylene                          | 0.0111           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 97.6          | 70-130           | 3.42          | 25           |             |
| trans-1,2-Dichloroethylene                        | 0.0105           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 93.0          | 70-130           | 3.90          | 25           |             |
| Dichlorofluoromethane (Freon 21)                  | 0.0103           | 0.0011             | mg/Kg wet              | 0.0113           |                  | 91.0          | 70-130           | 5.03          | 25           |             |
|                                                   |                  |                    |                        |                  |                  |               |                  |               | Р            | age 49 of 1 |
|                                                   |                  |                    |                        |                  |                  |               |                  |               |              |             |



## QUALITY CONTROL

| Analyte                                           | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |    |
|---------------------------------------------------|---------|--------------------|-----------|----------------|------------------|--------------|----------------|-------|--------------|------------|----|
| Batch B293105 - SW-846 5035                       | reguit  |                    | - Cinto   |                | resure           | 7,01420      | - Emilio       |       |              | 11000      |    |
| LCS Dup (B293105-BSD1)                            |         |                    |           | Prepared: 10   | )/25/21 Analy    | zed: 10/26/2 | 21             |       |              |            | _  |
| 1,2-Dichloropropane                               | 0.0110  | 0.0011             | mg/Kg wet | 0.0113         |                  | 97.3         | 70-130         | 1.93  | 25           |            |    |
| 1,3-Dichloropropane                               | 0.0110  | 0.00057            | mg/Kg wet | 0.0113         |                  | 97.2         | 70-130         | 1.53  | 25           |            |    |
| 2,2-Dichloropropane                               | 0.00861 | 0.0011             | mg/Kg wet | 0.0113         |                  | 76.0         | 70-130         | 3.87  | 25           | V-05       |    |
| 1,1-Dichloropropene                               | 0.0103  | 0.0023             | mg/Kg wet | 0.0113         |                  | 91.2         | 70-130         | 5.34  | 25           |            |    |
| cis-1,3-Dichloropropene                           | 0.0110  | 0.00057            | mg/Kg wet | 0.0113         |                  | 97.0         | 70-130         | 2.54  | 25           |            |    |
| trans-1,3-Dichloropropene                         | 0.00992 | 0.00057            | mg/Kg wet | 0.0113         |                  | 87.5         | 70-130         | 4.69  | 25           |            |    |
| Diethyl Ether                                     | 0.0108  | 0.0023             | mg/Kg wet | 0.0113         |                  | 94.9         | 70-130         | 2.67  | 25           |            |    |
| Difluorochloromethane (Freon 22)                  | 0.00917 | 0.0011             | mg/Kg wet | 0.0113         |                  | 80.9         | 70-130         | 2.44  | 25           |            |    |
| Diisopropyl Ether (DIPE)                          | 0.0107  | 0.00057            | mg/Kg wet | 0.0113         |                  | 94.1         | 70-130         | 2.83  | 25           |            |    |
| 1,4-Dioxane                                       | 0.0948  | 0.057              | mg/Kg wet | 0.113          |                  | 83.7         | 40-160         | 11.0  | 50           |            | †‡ |
| Ethylbenzene                                      | 0.0104  | 0.0011             | mg/Kg wet | 0.0113         |                  | 91.6         | 70-130         | 3.64  | 25           |            |    |
| Hexachlorobutadiene                               | 0.00969 | 0.0011             | mg/Kg wet | 0.0113         |                  | 85.5         | 70-160         | 3.45  | 25           |            |    |
| 2-Hexanone (MBK)                                  | 0.108   | 0.011              | mg/Kg wet | 0.113          |                  | 95.6         | 70-160         | 3.35  | 25           |            | †  |
| Isopropylbenzene (Cumene)                         | 0.0104  | 0.0011             | mg/Kg wet | 0.0113         |                  | 92.0         | 70-130         | 4.26  | 25           |            |    |
| p-Isopropyltoluene (p-Cymene)                     | 0.00953 | 0.0011             | mg/Kg wet | 0.0113         |                  | 84.1         | 70-130         | 4.53  | 25           |            |    |
| Methyl Acetate                                    | 0.0122  | 0.011              | mg/Kg wet | 0.0113         |                  | 108          | 70-130         | 2.92  | 25           |            |    |
| Methyl tert-Butyl Ether (MTBE)                    | 0.0104  | 0.0011             | mg/Kg wet | 0.0113         |                  | 91.9         | 70-130         | 0.434 | 25           |            |    |
| Methyl Cyclohexane                                | 0.00870 | 0.0011             | mg/Kg wet | 0.0113         |                  | 76.8         | 70-130         | 6.18  | 25           |            |    |
| Methylene Chloride                                | 0.0116  | 0.0057             | mg/Kg wet | 0.0113         |                  | 102          | 40-160         | 2.80  | 25           |            | †  |
| 4-Methyl-2-pentanone (MIBK)                       | 0.112   | 0.011              | mg/Kg wet | 0.113          |                  | 98.5         | 70-160         | 3.89  | 25           |            | †  |
| Naphthalene                                       | 0.00639 | 0.0023             | mg/Kg wet | 0.0113         |                  | 56.4         | 40-130         | 3.48  | 25           | V-05       | †  |
| n-Propylbenzene                                   | 0.00994 | 0.0011             | mg/Kg wet | 0.0113         |                  | 87.7         | 70-130         | 4.68  | 25           |            |    |
| Styrene                                           | 0.0110  | 0.0011             | mg/Kg wet | 0.0113         |                  | 96.7         | 70-130         | 2.85  | 25           |            |    |
| 1,1,1,2-Tetrachloroethane                         | 0.0110  | 0.0011             | mg/Kg wet | 0.0113         |                  | 97.4         | 70-130         | 3.33  | 25           |            |    |
| 1,1,2,2-Tetrachloroethane                         | 0.0111  | 0.00057            | mg/Kg wet | 0.0113         |                  | 98.1         | 70-130         | 3.51  | 25           |            |    |
| Tetrachloroethylene                               | 0.0107  | 0.0011             | mg/Kg wet | 0.0113         |                  | 94.5         | 70-130         | 6.25  | 25           |            |    |
| Tetrahydrofuran                                   | 0.0109  | 0.011              | mg/Kg wet | 0.0113         |                  | 96.1         | 70-130         | 4.67  | 25           | J          |    |
| Toluene                                           | 0.0108  | 0.0011             | mg/Kg wet | 0.0113         |                  | 95.7         | 70-130         | 5.78  | 25           |            |    |
| 1,2,3-Trichlorobenzene                            | 0.00726 | 0.0057             | mg/Kg wet | 0.0113         |                  | 64.1 *       | 70-130         | 4.72  | 25           | L-04, V-05 |    |
| 1,2,4-Trichlorobenzene                            | 0.00751 | 0.0011             | mg/Kg wet | 0.0113         |                  | 66.3 *       | 70-130         | 9.62  | 25           | L-07, V-05 |    |
| 1,3,5-Trichlorobenzene                            | 0.00874 | 0.0011             | mg/Kg wet | 0.0113         |                  | 77.1         | 70-130         | 3.94  | 25           |            |    |
| 1,1,1-Trichloroethane                             | 0.0107  | 0.0011             | mg/Kg wet | 0.0113         |                  | 94.8         | 70-130         | 5.44  | 25           |            |    |
| 1,1,2-Trichloroethane                             | 0.0118  | 0.0011             | mg/Kg wet | 0.0113         |                  | 104          | 70-130         | 0.00  | 25           |            |    |
| Trichloroethylene                                 | 0.0109  | 0.0011             | mg/Kg wet | 0.0113         |                  | 96.2         | 70-130         | 2.87  | 25           |            |    |
| Trichlorofluoromethane (Freon 11)                 | 0.0105  | 0.0023             | mg/Kg wet | 0.0113         |                  | 92.6         | 70-130         | 4.12  | 25           |            |    |
| 1,2,3-Trichloropropane                            | 0.00971 | 0.0023             | mg/Kg wet | 0.0113         |                  | 85.7         | 70-130         | 4.45  | 25           |            |    |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 0.00911 | 0.0011             | mg/Kg wet | 0.0113         |                  | 80.4         | 70-130         | 5.56  | 25           |            |    |
| 1,2,4-Trimethylbenzene                            | 0.0101  | 0.0011             | mg/Kg wet | 0.0113         |                  | 89.1         | 70-130         | 4.82  | 25           |            |    |
| 1,3,5-Trimethylbenzene                            | 0.00994 | 0.0011             | mg/Kg wet | 0.0113         |                  | 87.7         | 70-130         | 4.89  | 25           |            |    |
| Vinyl Chloride                                    | 0.0120  | 0.0023             | mg/Kg wet | 0.0113         |                  | 106          | 40-130         | 6.39  | 25           |            | †  |
| m+p Xylene                                        | 0.0208  | 0.0023             | mg/Kg wet | 0.0227         |                  | 91.8         | 70-130         | 4.73  | 25           |            |    |
| o-Xylene                                          | 0.0108  | 0.0011             | mg/Kg wet | 0.0113         |                  | 95.6         | 70-130         | 2.89  | 25           |            |    |
| Surrogate: 1,2-Dichloroethane-d4                  | 0.0302  |                    | mg/Kg wet | 0.0283         |                  | 106          | 70-130         |       |              |            | _  |
| Surrogate: Toluene-d8                             | 0.0307  |                    | mg/Kg wet | 0.0283         |                  | 109          | 70-130         |       |              |            |    |
| Surrogate: 4-Bromofluorobenzene                   | 0.0299  |                    | mg/Kg wet | 0.0283         |                  | 105          | 70-130         |       |              |            |    |
|                                                   |         |                    |           |                |                  |              |                |       |              |            |    |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

| Analyte                            | Result   | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------------|----------|--------------------|------------------|----------------|------------------|---------------|----------------|-----|--------------|-------|
| Batch B293183 - SW-846 5030B       |          |                    |                  |                |                  |               |                |     |              |       |
| Blank (B293183-BLK1)               |          |                    |                  | Prepared: 10   | )/25/21 Analy    | yzed: 10/26/2 | :1             |     |              |       |
| Acetone                            | ND       | 50                 | μg/L             | -              |                  |               |                |     |              |       |
| Acrylonitrile                      | ND       | 5.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50               | $\mu g/L$        |                |                  |               |                |     |              |       |
| Benzene                            | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| Bromobenzene                       | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| Bromochloromethane                 | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| Bromodichloromethane               | ND       | 0.50               | $\mu g/L$        |                |                  |               |                |     |              |       |
| Bromoform                          | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| Bromomethane                       | ND       | 2.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| -Butanone (MEK)                    | ND       | 20                 | $\mu g/L$        |                |                  |               |                |     |              |       |
| ert-Butyl Alcohol (TBA)            | ND       | 20                 | μg/L             |                |                  |               |                |     |              |       |
| n-Butylbenzene                     | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ec-Butylbenzene                    | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ert-Butylbenzene                   | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ert-Butyl Ethyl Ether (TBEE)       | ND       | 0.50               | μg/L             |                |                  |               |                |     |              |       |
| Carbon Disulfide                   | ND       | 5.0                | μg/L             |                |                  |               |                |     |              |       |
| Carbon Tetrachloride               | ND       | 5.0                | μg/L             |                |                  |               |                |     |              |       |
| Chlorobenzene                      | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| Chlorodibromomethane               | ND       | 0.50               | μg/L             |                |                  |               |                |     |              |       |
| hloroethane<br>hloroform           | ND       | 2.0                | μg/L             |                |                  |               |                |     |              |       |
| hloromethane                       | ND       | 2.0                | μg/L             |                |                  |               |                |     |              |       |
| -Chlorotoluene                     | ND       | 2.0<br>1.0         | μg/L<br>μg/L     |                |                  |               |                |     |              |       |
| -Chlorotoluene                     | ND       | 1.0                | μg/L<br>μg/L     |                |                  |               |                |     |              |       |
| ,2-Dibromo-3-chloropropane (DBCP)  | ND       | 5.0                | μg/L<br>μg/L     |                |                  |               |                |     |              |       |
| ,2-Dibromoethane (EDB)             | ND       | 0.50               | μg/L<br>μg/L     |                |                  |               |                |     |              |       |
| Dibromomethane                     | ND<br>ND | 1.0                | μg/L<br>μg/L     |                |                  |               |                |     |              |       |
| ,2-Dichlorobenzene                 | ND<br>ND | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,3-Dichlorobenzene                 | ND<br>ND | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,4-Dichlorobenzene                 | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| rans-1,4-Dichloro-2-butene         | ND       | 2.0                | μg/L             |                |                  |               |                |     |              |       |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0                | μg/L             |                |                  |               |                |     |              |       |
| ,1-Dichloroethane                  | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,2-Dichloroethane                  | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,1-Dichloroethylene                | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| is-1,2-Dichloroethylene            | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| rans-1,2-Dichloroethylene          | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,2-Dichloropropane                 | ND       | 1.0                | μg/L             |                |                  |               |                |     |              |       |
| ,3-Dichloropropane                 | ND       | 0.50               | μg/L             |                |                  |               |                |     |              |       |
| ,2-Dichloropropane                 | ND       | 1.0                | μg/L             |                |                  |               |                |     |              | V-05  |
| ,1-Dichloropropene                 | ND       | 2.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| is-1,3-Dichloropropene             | ND       | 0.50               | $\mu g/L$        |                |                  |               |                |     |              |       |
| rans-1,3-Dichloropropene           | ND       | 0.50               | $\mu g/L$        |                |                  |               |                |     |              |       |
| Diethyl Ether                      | ND       | 2.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| Diisopropyl Ether (DIPE)           | ND       | 0.50               | $\mu g/L$        |                |                  |               |                |     |              |       |
| ,4-Dioxane                         | ND       | 50                 | $\mu g/L$        |                |                  |               |                |     |              |       |
| Ethylbenzene                       | ND       | 1.0                | $\mu \text{g}/L$ |                |                  |               |                |     |              |       |
| Iexachlorobutadiene                | ND       | 0.60               | $\mu \text{g/L}$ |                |                  |               |                |     |              |       |
| -Hexanone (MBK)                    | ND       | 10                 | $\mu g/L$        |                |                  |               |                |     |              |       |
| sopropylbenzene (Cumene)           | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |
| -Isopropyltoluene (p-Cymene)       | ND       | 1.0                | $\mu \text{g/L}$ |                |                  |               |                |     |              |       |
| Methyl Acetate                     | ND       | 1.0                | $\mu g/L$        |                |                  |               |                |     |              |       |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                                                                                                                                                                                    | Result                                                                               | Reporting<br>Limit                                                 | Units                                                        | Spike<br>Level                                                  | Source<br>Result | %REC                                                                                | %REC<br>Limits                                                                                   | RPD | RPD<br>Limit | Notes      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|--------------|------------|
| atch B293183 - SW-846 5030B                                                                                                                                                                                                |                                                                                      |                                                                    |                                                              |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| lank (B293183-BLK1)                                                                                                                                                                                                        |                                                                                      |                                                                    |                                                              | Prepared: 10                                                    | )/25/21 Analy    | zed: 10/26/2                                                                        | .1                                                                                               |     |              |            |
| Methyl tert-Butyl Ether (MTBE)                                                                                                                                                                                             | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| fethyl Cyclohexane                                                                                                                                                                                                         | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 1ethylene Chloride                                                                                                                                                                                                         | ND                                                                                   | 5.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| -Methyl-2-pentanone (MIBK)                                                                                                                                                                                                 | ND                                                                                   | 10                                                                 | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| aphthalene                                                                                                                                                                                                                 | ND                                                                                   | 2.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              | V-05       |
| -Propylbenzene                                                                                                                                                                                                             | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| tyrene                                                                                                                                                                                                                     | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 1,1,2-Tetrachloroethane                                                                                                                                                                                                    | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| ,1,2,2-Tetrachloroethane                                                                                                                                                                                                   | ND                                                                                   | 0.50                                                               | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| etrachloroethylene                                                                                                                                                                                                         | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| etrahydrofuran                                                                                                                                                                                                             | ND                                                                                   | 10                                                                 | $\mu g \! / \! L$                                            |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| bluene                                                                                                                                                                                                                     | ND                                                                                   | 1.0                                                                | $\mu \text{g/L}$                                             |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 2,3-Trichlorobenzene                                                                                                                                                                                                       | ND                                                                                   | 5.0                                                                | $\mu g \! / \! L$                                            |                                                                 |                  |                                                                                     |                                                                                                  |     |              | L-04, V-05 |
| ,2,4-Trichlorobenzene                                                                                                                                                                                                      | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              | V-05       |
| 3,5-Trichlorobenzene                                                                                                                                                                                                       | ND                                                                                   | 1.0                                                                | $\mu g \! / \! L$                                            |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 1,1-Trichloroethane                                                                                                                                                                                                        | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 1,2-Trichloroethane                                                                                                                                                                                                        | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| richloroethylene                                                                                                                                                                                                           | ND                                                                                   | 1.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| richlorofluoromethane (Freon 11)                                                                                                                                                                                           | ND                                                                                   | 2.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 2,3-Trichloropropane                                                                                                                                                                                                       | ND                                                                                   | 2.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)                                                                                                                                                                              | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 2,4-Trimethylbenzene                                                                                                                                                                                                       | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| 3,5-Trimethylbenzene                                                                                                                                                                                                       | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| inyl Chloride                                                                                                                                                                                                              | ND                                                                                   | 2.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| ı+p Xylene                                                                                                                                                                                                                 | ND                                                                                   | 2.0                                                                | $\mu g/L$                                                    |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| Xylene                                                                                                                                                                                                                     | ND                                                                                   | 1.0                                                                | μg/L                                                         |                                                                 |                  |                                                                                     |                                                                                                  |     |              |            |
| urrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                            | 26.8                                                                                 |                                                                    | $\mu g/L$                                                    | 25.0                                                            |                  | 107                                                                                 | 70-130                                                                                           |     |              |            |
| urrogate: Toluene-d8                                                                                                                                                                                                       | 26.9                                                                                 |                                                                    | μg/L                                                         | 25.0                                                            |                  | 107                                                                                 | 70-130                                                                                           |     |              |            |
| urrogate: 4-Bromofluorobenzene                                                                                                                                                                                             | 26.2                                                                                 |                                                                    | μg/L                                                         | 25.0                                                            |                  | 105                                                                                 | 70-130                                                                                           |     |              |            |
| CS (B293183-BS1)                                                                                                                                                                                                           |                                                                                      |                                                                    |                                                              | Prepared &                                                      | Analyzed: 10     | /25/21                                                                              |                                                                                                  |     |              |            |
| cetone                                                                                                                                                                                                                     | 98.5                                                                                 | 50                                                                 | μg/L                                                         | 100                                                             |                  | 98.5                                                                                | 70-160                                                                                           |     |              |            |
| crylonitrile                                                                                                                                                                                                               | 8.36                                                                                 | 5.0                                                                | μg/L                                                         | 10.0                                                            |                  | 83.6                                                                                | 70-130                                                                                           |     |              |            |
| ert-Amyl Methyl Ether (TAME)                                                                                                                                                                                               | 9.83                                                                                 | 0.50                                                               | μg/L                                                         | 10.0                                                            |                  | 98.3                                                                                | 70-130                                                                                           |     |              |            |
| enzene                                                                                                                                                                                                                     | 10.1                                                                                 | 1.0                                                                | μg/L                                                         | 10.0                                                            |                  | 101                                                                                 | 70-130                                                                                           |     |              |            |
| romobenzene                                                                                                                                                                                                                | 9.06                                                                                 | 1.0                                                                | μg/L                                                         | 10.0                                                            |                  | 90.6                                                                                | 70-130                                                                                           |     |              |            |
| romochloromethane                                                                                                                                                                                                          |                                                                                      |                                                                    | /=                                                           | 10.0                                                            |                  | 108                                                                                 | 70-130                                                                                           |     |              |            |
|                                                                                                                                                                                                                            | 10.8                                                                                 | 1.0                                                                | μg/L                                                         | 10.0                                                            |                  |                                                                                     |                                                                                                  |     |              |            |
| romodichloromethane                                                                                                                                                                                                        | 10.8<br>10.2                                                                         | 1.0<br>0.50                                                        | μg/L<br>μg/L                                                 | 10.0                                                            |                  | 102                                                                                 | 70-130                                                                                           |     |              |            |
| romoform                                                                                                                                                                                                                   |                                                                                      |                                                                    |                                                              |                                                                 |                  | 102<br>92.7                                                                         | 70-130<br>70-130                                                                                 |     |              |            |
| romoform                                                                                                                                                                                                                   | 10.2                                                                                 | 0.50                                                               | $\mu g/L$                                                    | 10.0                                                            |                  |                                                                                     |                                                                                                  |     |              |            |
| romoform<br>romomethane                                                                                                                                                                                                    | 10.2<br>9.27                                                                         | 0.50<br>1.0                                                        | μg/L<br>μg/L                                                 | 10.0<br>10.0                                                    |                  | 92.7                                                                                | 70-130                                                                                           |     |              |            |
| romoform<br>romomethane<br>Butanone (MEK)                                                                                                                                                                                  | 10.2<br>9.27<br>10.4                                                                 | 0.50<br>1.0<br>2.0                                                 | μg/L<br>μg/L<br>μg/L                                         | 10.0<br>10.0<br>10.0                                            |                  | 92.7<br>104                                                                         | 70-130<br>40-160                                                                                 |     |              |            |
| romoform<br>romomethane<br>Butanone (MEK)<br>rt-Butyl Alcohol (TBA)                                                                                                                                                        | 10.2<br>9.27<br>10.4<br>99.5                                                         | 0.50<br>1.0<br>2.0<br>20                                           | μg/L<br>μg/L<br>μg/L<br>μg/L                                 | 10.0<br>10.0<br>10.0<br>100                                     |                  | 92.7<br>104<br>99.5                                                                 | 70-130<br>40-160<br>40-160                                                                       |     |              |            |
| romoform<br>romomethane<br>Butanone (MEK)<br>rt-Butyl Alcohol (TBA)<br>Butylbenzene                                                                                                                                        | 10.2<br>9.27<br>10.4<br>99.5<br>90.1                                                 | 0.50<br>1.0<br>2.0<br>20<br>20                                     | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         | 10.0<br>10.0<br>10.0<br>100<br>100                              |                  | 92.7<br>104<br>99.5<br>90.1                                                         | 70-130<br>40-160<br>40-160<br>40-160                                                             |     |              |            |
| romoform<br>romomethane<br>Butanone (MEK)<br>rt-Butyl Alcohol (TBA)<br>Butylbenzene<br>cc-Butylbenzene                                                                                                                     | 9.27<br>10.4<br>99.5<br>90.1<br>8.31                                                 | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                 | 10.0<br>10.0<br>10.0<br>100<br>100<br>100                       |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1                                                 | 70-130<br>40-160<br>40-160<br>40-160<br>70-130                                                   |     |              |            |
| romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butylbenzene                                                                                                                    | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07                                         | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0              |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7                                         | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130                                         |     |              |            |
| romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butylbenzene                                                                                                    | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07<br>9.41                                 | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0<br>1.0                       | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0              |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7<br>94.1                                 | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130                                         |     |              |            |
| romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene cc-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide                                                                        | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07<br>9.41<br>9.73                         | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0<br>1.0<br>1.0<br>0.50        | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0<br>10.0      |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7<br>94.1<br>97.3                         | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130<br>70-130                               |     |              |            |
| romoform romomethane -Butanone (MEK) ert-Butyl Alcohol (TBA) -Butylbenzene ec-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride                                               | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07<br>9.41<br>9.73<br>99.6<br>9.61         | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0<br>1.0<br>0.50               | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0<br>10.0<br>1 |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7<br>94.1<br>97.3<br>99.6                 | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130           |     |              |            |
| cromodichloromethane cromoform cromomethane -Butanone (MEK) crt-Butyl Alcohol (TBA) -Butylbenzene cc-Butylbenzene crt-Butylbenzene crt-Butyl Ethyl Ether (TBEE) carbon Disulfide carbon Tetrachloride chlorodibromomethane | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07<br>9.41<br>9.73<br>99.6<br>9.61<br>9.95 | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0<br>1.0<br>0.50<br>5.0<br>1.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0<br>10.0<br>1 |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7<br>94.1<br>97.3<br>99.6<br>96.1         | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130 |     |              |            |
| romoform romomethane -Butanone (MEK) ert-Butyl Alcohol (TBA) -Butylbenzene ec-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) arbon Disulfide ert-Borobenzene                                                   | 9.27<br>10.4<br>99.5<br>90.1<br>8.31<br>9.07<br>9.41<br>9.73<br>99.6<br>9.61         | 0.50<br>1.0<br>2.0<br>20<br>20<br>1.0<br>1.0<br>0.50<br>5.0        | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>100<br>100<br>10.0<br>10.0<br>10.0<br>1 |                  | 92.7<br>104<br>99.5<br>90.1<br>83.1<br>90.7<br>94.1<br>97.3<br>99.6<br>96.1<br>99.5 | 70-130<br>40-160<br>40-160<br>40-160<br>70-130<br>70-130<br>70-130<br>70-130<br>70-130           |     |              |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                            | Result | Limit | Units             | Level      | Result        | %REC   | Limits | RPD | Limit | Notes      |   |
|------------------------------------|--------|-------|-------------------|------------|---------------|--------|--------|-----|-------|------------|---|
| Batch B293183 - SW-846 5030B       |        |       |                   |            |               |        |        |     |       |            | _ |
| LCS (B293183-BS1)                  |        |       |                   | Prepared & | Analyzed: 10/ | 25/21  |        |     |       |            |   |
| Chloromethane                      | 12.7   | 2.0   | $\mu g/L$         | 10.0       |               | 127    | 40-160 |     |       | V-20       | i |
| 2-Chlorotoluene                    | 9.41   | 1.0   | μg/L              | 10.0       |               | 94.1   | 70-130 |     |       |            |   |
| 4-Chlorotoluene                    | 9.26   | 1.0   | μg/L              | 10.0       |               | 92.6   | 70-130 |     |       |            |   |
| 1,2-Dibromo-3-chloropropane (DBCP) | 8.39   | 5.0   | μg/L              | 10.0       |               | 83.9   | 70-130 |     |       |            |   |
| 1,2-Dibromoethane (EDB)            | 10.1   | 0.50  | $\mu g \! / \! L$ | 10.0       |               | 101    | 70-130 |     |       |            |   |
| Dibromomethane                     | 10.1   | 1.0   | μg/L              | 10.0       |               | 101    | 70-130 |     |       |            |   |
| 1,2-Dichlorobenzene                | 9.78   | 1.0   | μg/L              | 10.0       |               | 97.8   | 70-130 |     |       |            |   |
| 1,3-Dichlorobenzene                | 9.61   | 1.0   | μg/L              | 10.0       |               | 96.1   | 70-130 |     |       |            |   |
| 1,4-Dichlorobenzene                | 9.71   | 1.0   | μg/L              | 10.0       |               | 97.1   | 70-130 |     |       |            |   |
| trans-1,4-Dichloro-2-butene        | 8.74   | 2.0   | μg/L              | 10.0       |               | 87.4   | 70-130 |     |       |            |   |
| Dichlorodifluoromethane (Freon 12) | 10.1   | 2.0   | $\mu g \! / \! L$ | 10.0       |               | 101    | 40-160 |     |       |            | i |
| 1,1-Dichloroethane                 | 10.3   | 1.0   | $\mu g \! / \! L$ | 10.0       |               | 103    | 70-130 |     |       |            |   |
| 1,2-Dichloroethane                 | 9.58   | 1.0   | $\mu g \! / \! L$ | 10.0       |               | 95.8   | 70-130 |     |       |            |   |
| 1,1-Dichloroethylene               | 10.1   | 1.0   | $\mu g/L$         | 10.0       |               | 101    | 70-130 |     |       |            |   |
| cis-1,2-Dichloroethylene           | 10.1   | 1.0   | $\mu g/L$         | 10.0       |               | 101    | 70-130 |     |       |            |   |
| trans-1,2-Dichloroethylene         | 9.67   | 1.0   | $\mu g \! / \! L$ | 10.0       |               | 96.7   | 70-130 |     |       |            |   |
| 1,2-Dichloropropane                | 9.92   | 1.0   | μg/L              | 10.0       |               | 99.2   | 70-130 |     |       |            |   |
| 1,3-Dichloropropane                | 9.87   | 0.50  | μg/L              | 10.0       |               | 98.7   | 70-130 |     |       |            |   |
| 2,2-Dichloropropane                | 7.90   | 1.0   | $\mu g \! / \! L$ | 10.0       |               | 79.0   | 40-130 |     |       | V-05       | 1 |
| 1,1-Dichloropropene                | 9.62   | 2.0   | μg/L              | 10.0       |               | 96.2   | 70-130 |     |       |            |   |
| cis-1,3-Dichloropropene            | 9.95   | 0.50  | μg/L              | 10.0       |               | 99.5   | 70-130 |     |       |            |   |
| trans-1,3-Dichloropropene          | 9.17   | 0.50  | μg/L              | 10.0       |               | 91.7   | 70-130 |     |       |            |   |
| Diethyl Ether                      | 9.24   | 2.0   | μg/L              | 10.0       |               | 92.4   | 70-130 |     |       |            |   |
| Diisopropyl Ether (DIPE)           | 9.68   | 0.50  | μg/L              | 10.0       |               | 96.8   | 70-130 |     |       |            |   |
| 1,4-Dioxane                        | 93.4   | 50    | $\mu g/L$         | 100        |               | 93.4   | 40-130 |     |       |            | 1 |
| Ethylbenzene                       | 9.50   | 1.0   | $\mu g/L$         | 10.0       |               | 95.0   | 70-130 |     |       |            |   |
| Hexachlorobutadiene                | 8.26   | 0.60  | $\mu g/L$         | 10.0       |               | 82.6   | 70-130 |     |       |            |   |
| 2-Hexanone (MBK)                   | 98.8   | 10    | $\mu g/L$         | 100        |               | 98.8   | 70-160 |     |       |            | 1 |
| Isopropylbenzene (Cumene)          | 9.60   | 1.0   | μg/L              | 10.0       |               | 96.0   | 70-130 |     |       |            |   |
| p-Isopropyltoluene (p-Cymene)      | 8.80   | 1.0   | $\mu g/L$         | 10.0       |               | 88.0   | 70-130 |     |       |            |   |
| Methyl Acetate                     | 11.1   | 1.0   | μg/L              | 10.0       |               | 111    | 70-130 |     |       |            |   |
| Methyl tert-Butyl Ether (MTBE)     | 9.23   | 1.0   | $\mu g/L$         | 10.0       |               | 92.3   | 70-130 |     |       |            |   |
| Methyl Cyclohexane                 | 8.17   | 1.0   | μg/L              | 10.0       |               | 81.7   | 70-130 |     |       |            |   |
| Methylene Chloride                 | 10.5   | 5.0   | $\mu g/L$         | 10.0       |               | 105    | 70-130 |     |       |            |   |
| 4-Methyl-2-pentanone (MIBK)        | 102    | 10    | $\mu g/L$         | 100        |               | 102    | 70-160 |     |       |            | 1 |
| Naphthalene                        | 5.84   | 2.0   | μg/L              | 10.0       |               | 58.4   | 40-130 |     |       | V-05       | 1 |
| n-Propylbenzene                    | 9.19   | 1.0   | $\mu g/L$         | 10.0       |               | 91.9   | 70-130 |     |       |            |   |
| Styrene                            | 9.95   | 1.0   | $\mu g/L$         | 10.0       |               | 99.5   | 70-130 |     |       |            |   |
| 1,1,1,2-Tetrachloroethane          | 10.1   | 1.0   | $\mu g/L$         | 10.0       |               | 101    | 70-130 |     |       |            |   |
| 1,1,2,2-Tetrachloroethane          | 10.2   | 0.50  | μg/L              | 10.0       |               | 102    | 70-130 |     |       |            |   |
| Tetrachloroethylene                | 10.1   | 1.0   | μg/L              | 10.0       |               | 101    | 70-130 |     |       |            |   |
| Tetrahydrofuran                    | 10.1   | 10    | μg/L              | 10.0       |               | 101    | 70-130 |     |       |            |   |
| Toluene                            | 10.1   | 1.0   | μg/L              | 10.0       |               | 101    | 70-130 |     |       |            |   |
| 1,2,3-Trichlorobenzene             | 6.72   | 5.0   | μg/L              | 10.0       |               | 67.2 * | 70-130 |     |       | L-04, V-05 |   |
| 1,2,4-Trichlorobenzene             | 7.30   | 1.0   | μg/L              | 10.0       |               | 73.0   | 70-130 |     |       | V-05       |   |
| 1,3,5-Trichlorobenzene             | 8.02   | 1.0   | μg/L              | 10.0       |               | 80.2   | 70-130 |     |       |            |   |
| 1,1,1-Trichloroethane              | 10.0   | 1.0   | μg/L              | 10.0       |               | 100    | 70-130 |     |       |            |   |
| 1,1,2-Trichloroethane              | 10.4   | 1.0   | μg/L              | 10.0       |               | 104    | 70-130 |     |       |            |   |
| Trichloroethylene                  | 9.90   | 1.0   | μg/L              | 10.0       |               | 99.0   | 70-130 |     |       |            |   |
| Trichlorofluoromethane (Freon 11)  | 9.65   | 2.0   | μg/L              | 10.0       |               | 96.5   | 70-130 |     |       |            |   |
| 1,2,3-Trichloropropane             | 8.96   | 2.0   | μg/L              | 10.0       |               | 89.6   | 70-130 |     |       |            |   |



# QUALITY CONTROL

| Analyte                                     | Result       | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes    |   |
|---------------------------------------------|--------------|--------------------|-------------------|----------------|------------------|---------------|----------------|-------|--------------|----------|---|
| Batch B293183 - SW-846 5030B                |              |                    |                   |                |                  |               |                |       |              |          |   |
| LCS (B293183-BS1)                           |              |                    |                   | Prepared & A   | Analyzed: 10     | /25/21        |                |       |              |          |   |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 8.50         | 1.0                | μg/L              | 10.0           |                  | 85.0          | 70-130         |       |              |          |   |
| 13)<br>,2,4-Trimethylbenzene                | 0.25         | 1.0                | μg/L              | 10.0           |                  | 93.5          | 70-130         |       |              |          |   |
| ,3,5-Trimethylbenzene                       | 9.35         | 1.0                | μg/L<br>μg/L      | 10.0           |                  | 93.3          | 70-130         |       |              |          |   |
| Vinyl Chloride                              | 9.21         | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 113           | 40-160         |       |              |          |   |
| n+p Xylene                                  | 11.3         | 2.0                | μg/L<br>μg/L      | 20.0           |                  | 96.2          | 70-130         |       |              |          |   |
| p-Xylene                                    | 19.2<br>9.84 | 1.0                | μg/L<br>μg/L      | 10.0           |                  | 98.4          | 70-130         |       |              |          |   |
| <u> </u>                                    |              | 1.0                |                   |                |                  |               |                |       |              |          | _ |
| Surrogate: 1,2-Dichloroethane-d4            | 26.6         |                    | μg/L              | 25.0           |                  | 106           | 70-130         |       |              |          |   |
| Surrogate: Toluene-d8                       | 27.3         |                    | μg/L              | 25.0           |                  | 109           | 70-130         |       |              |          |   |
| Surrogate: 4-Bromofluorobenzene             | 26.0         |                    | μg/L              | 25.0           |                  | 104           | 70-130         |       |              |          |   |
| .CS Dup (B293183-BSD1)                      |              |                    |                   | Prepared: 10   | /25/21 Anal      | yzed: 10/26/2 | 1              |       |              |          |   |
| Acetone                                     | 98.3         | 50                 | $\mu \text{g/L}$  | 100            |                  | 98.3          | 70-160         | 0.122 | 25           |          |   |
| Acrylonitrile                               | 9.00         | 5.0                | μg/L              | 10.0           |                  | 90.0          | 70-130         | 7.37  | 25           |          |   |
| ert-Amyl Methyl Ether (TAME)                | 9.27         | 0.50               | $\mu g \! / \! L$ | 10.0           |                  | 92.7          | 70-130         | 5.86  | 25           |          |   |
| Benzene                                     | 9.91         | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 99.1          | 70-130         | 1.80  | 25           |          |   |
| Bromobenzene                                | 9.02         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 90.2          | 70-130         | 0.442 | 25           |          |   |
| Bromochloromethane                          | 9.97         | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 99.7          | 70-130         | 7.81  | 25           |          |   |
| Bromodichloromethane                        | 9.88         | 0.50               | $\mu g \! / \! L$ | 10.0           |                  | 98.8          | 70-130         | 3.19  | 25           |          |   |
| Bromoform                                   | 8.97         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 89.7          | 70-130         | 3.29  | 25           |          |   |
| Bromomethane                                | 10.3         | 2.0                | $\mu g/L$         | 10.0           |                  | 103           | 40-160         | 0.776 | 25           |          |   |
| -Butanone (MEK)                             | 96.8         | 20                 | $\mu g/L$         | 100            |                  | 96.8          | 40-160         | 2.66  | 25           |          |   |
| ert-Butyl Alcohol (TBA)                     | 91.6         | 20                 | $\mu g/L$         | 100            |                  | 91.6          | 40-160         | 1.71  | 25           |          |   |
| -Butylbenzene                               | 7.86         | 1.0                | $\mu g/L$         | 10.0           |                  | 78.6          | 70-130         | 5.57  | 25           |          |   |
| ec-Butylbenzene                             | 8.70         | 1.0                | $\mu g/L$         | 10.0           |                  | 87.0          | 70-130         | 4.16  | 25           |          |   |
| ert-Butylbenzene                            | 9.12         | 1.0                | $\mu g/L$         | 10.0           |                  | 91.2          | 70-130         | 3.13  | 25           |          |   |
| ert-Butyl Ethyl Ether (TBEE)                | 9.31         | 0.50               | $\mu g/L$         | 10.0           |                  | 93.1          | 70-130         | 4.41  | 25           |          |   |
| Carbon Disulfide                            | 95.5         | 5.0                | $\mu g/L$         | 100            |                  | 95.5          | 70-130         | 4.14  | 25           |          |   |
| Carbon Tetrachloride                        | 9.25         | 5.0                | $\mu g/L$         | 10.0           |                  | 92.5          | 70-130         | 3.82  | 25           |          |   |
| Chlorobenzene                               | 9.56         | 1.0                | $\mu g/L$         | 10.0           |                  | 95.6          | 70-130         | 4.00  | 25           |          |   |
| Chlorodibromomethane                        | 9.81         | 0.50               | $\mu g/L$         | 10.0           |                  | 98.1          | 70-130         | 4.68  | 25           |          |   |
| Chloroethane                                | 11.6         | 2.0                | $\mu g/L$         | 10.0           |                  | 116           | 70-130         | 0.518 | 25           |          |   |
| Chloroform                                  | 9.89         | 2.0                | $\mu g/L$         | 10.0           |                  | 98.9          | 70-130         | 1.80  | 25           |          |   |
| Chloromethane                               | 11.8         | 2.0                | $\mu g \! / \! L$ | 10.0           |                  | 118           | 40-160         | 7.53  | 25           | V-20     |   |
| -Chlorotoluene                              | 9.18         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 91.8          | 70-130         | 2.47  | 25           |          |   |
| -Chlorotoluene                              | 8.95         | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 89.5          | 70-130         | 3.40  | 25           |          |   |
| ,2-Dibromo-3-chloropropane (DBCP)           | 8.74         | 5.0                | $\mu \text{g/L}$  | 10.0           |                  | 87.4          | 70-130         | 4.09  | 25           |          |   |
| ,2-Dibromoethane (EDB)                      | 9.81         | 0.50               | $\mu \text{g/L}$  | 10.0           |                  | 98.1          | 70-130         | 2.81  | 25           |          |   |
| Dibromomethane                              | 9.99         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 99.9          | 70-130         | 0.798 | 25           |          |   |
| ,2-Dichlorobenzene                          | 9.70         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 97.0          | 70-130         | 0.821 | 25           |          |   |
| ,3-Dichlorobenzene                          | 9.40         | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 94.0          | 70-130         | 2.21  | 25           |          |   |
| ,4-Dichlorobenzene                          | 9.15         | 1.0                | $\mu \text{g/L}$  | 10.0           |                  | 91.5          | 70-130         | 5.94  | 25           |          |   |
| rans-1,4-Dichloro-2-butene                  | 8.88         | 2.0                | $\mu \text{g/L}$  | 10.0           |                  | 88.8          | 70-130         | 1.59  | 25           |          |   |
| Dichlorodifluoromethane (Freon 12)          | 9.17         | 2.0                | μg/L              | 10.0           |                  | 91.7          | 40-160         | 9.95  | 25           |          |   |
| 1-Dichloroethane                            | 9.84         | 1.0                | μg/L              | 10.0           |                  | 98.4          | 70-130         | 4.28  | 25           |          |   |
| ,2-Dichloroethane                           | 9.42         | 1.0                | μg/L              | 10.0           |                  | 94.2          | 70-130         | 1.68  | 25           |          |   |
| ,1-Dichloroethylene                         | 9.88         | 1.0                | μg/L              | 10.0           |                  | 98.8          | 70-130         | 2.20  | 25           |          |   |
| is-1,2-Dichloroethylene                     | 9.76         | 1.0                | μg/L              | 10.0           |                  | 97.6          | 70-130         | 3.42  | 25           |          |   |
| rans-1,2-Dichloroethylene                   | 9.30         | 1.0                | μg/L              | 10.0           |                  | 93.0          | 70-130         | 3.90  | 25           |          |   |
| ,2-Dichloropropane                          | 9.73         | 1.0                | μg/L              | 10.0           |                  | 97.3          | 70-130         | 1.93  | 25           |          |   |
| ,3-Dichloropropane                          | 9.72         | 0.50               | μg/L              | 10.0           |                  | 97.2          | 70-130         | 1.53  | 25           |          |   |
| ,2-Dichloropropane                          | 7.60         | 1.0                | $\mu g/L$         | 10.0           |                  | 76.0          | 40-130         | 3.87  | 25           | V-05     |   |
| ,1-Dichloropropene                          | 9.12         | 2.0                | $\mu g/L$         | 10.0           |                  | 91.2          | 70-130         | 5.34  | 25           | age 54 o | _ |



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|---------------------------------------------------|--------|--------------------|--------------|----------------|------------------|--------------|----------------|-------|--------------|------------|---|
| Batch B293183 - SW-846 5030B                      |        |                    |              |                |                  |              |                |       |              |            |   |
| LCS Dup (B293183-BSD1)                            |        |                    |              | Prepared: 10   | 0/25/21 Analy    | zed: 10/26/2 | 21             |       |              |            |   |
| cis-1,3-Dichloropropene                           | 9.70   | 0.50               | $\mu g/L$    | 10.0           |                  | 97.0         | 70-130         | 2.54  | 25           |            |   |
| trans-1,3-Dichloropropene                         | 8.75   | 0.50               | $\mu g/L$    | 10.0           |                  | 87.5         | 70-130         | 4.69  | 25           |            |   |
| Diethyl Ether                                     | 9.49   | 2.0                | $\mu g/L$    | 10.0           |                  | 94.9         | 70-130         | 2.67  | 25           |            |   |
| Diisopropyl Ether (DIPE)                          | 9.41   | 0.50               | $\mu g/L$    | 10.0           |                  | 94.1         | 70-130         | 2.83  | 25           |            |   |
| 1,4-Dioxane                                       | 83.6   | 50                 | $\mu g/L$    | 100            |                  | 83.6         | 40-130         | 11.0  | 50           |            |   |
| Ethylbenzene                                      | 9.16   | 1.0                | $\mu g/L$    | 10.0           |                  | 91.6         | 70-130         | 3.64  | 25           |            |   |
| Hexachlorobutadiene                               | 8.55   | 0.60               | $\mu g/L$    | 10.0           |                  | 85.5         | 70-130         | 3.45  | 25           |            |   |
| 2-Hexanone (MBK)                                  | 95.6   | 10                 | $\mu g/L$    | 100            |                  | 95.6         | 70-160         | 3.35  | 25           |            |   |
| Isopropylbenzene (Cumene)                         | 9.20   | 1.0                | $\mu g/L$    | 10.0           |                  | 92.0         | 70-130         | 4.26  | 25           |            |   |
| p-Isopropyltoluene (p-Cymene)                     | 8.41   | 1.0                | $\mu g/L$    | 10.0           |                  | 84.1         | 70-130         | 4.53  | 25           |            |   |
| Methyl Acetate                                    | 10.8   | 1.0                | $\mu g/L$    | 10.0           |                  | 108          | 70-130         | 2.92  | 25           |            |   |
| Methyl tert-Butyl Ether (MTBE)                    | 9.19   | 1.0                | $\mu g/L$    | 10.0           |                  | 91.9         | 70-130         | 0.434 | 25           |            |   |
| Methyl Cyclohexane                                | 7.68   | 1.0                | $\mu g/L$    | 10.0           |                  | 76.8         | 70-130         | 6.18  | 25           |            |   |
| Methylene Chloride                                | 10.2   | 5.0                | μg/L         | 10.0           |                  | 102          | 70-130         | 2.80  | 25           |            |   |
| 4-Methyl-2-pentanone (MIBK)                       | 98.5   | 10                 | μg/L         | 100            |                  | 98.5         | 70-160         | 3.89  | 25           |            |   |
| Naphthalene                                       | 5.64   | 2.0                | μg/L         | 10.0           |                  | 56.4         | 40-130         | 3.48  | 25           | V-05       |   |
| n-Propylbenzene                                   | 8.77   | 1.0                | μg/L         | 10.0           |                  | 87.7         | 70-130         | 4.68  | 25           |            |   |
| Styrene                                           | 9.67   | 1.0                | μg/L         | 10.0           |                  | 96.7         | 70-130         | 2.85  | 25           |            |   |
| 1,1,1,2-Tetrachloroethane                         | 9.74   | 1.0                | μg/L         | 10.0           |                  | 97.4         | 70-130         | 3.33  | 25           |            |   |
| 1,1,2,2-Tetrachloroethane                         | 9.81   | 0.50               | μg/L         | 10.0           |                  | 98.1         | 70-130         | 3.51  | 25           |            |   |
| Tetrachloroethylene                               | 9.45   | 1.0                | μg/L         | 10.0           |                  | 94.5         | 70-130         | 6.25  | 25           |            |   |
| Tetrahydrofuran                                   | 9.61   | 10                 | μg/L         | 10.0           |                  | 96.1         | 70-130         | 4.67  | 25           | J          |   |
| Toluene                                           | 9.57   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 95.7         | 70-130         | 5.78  | 25           | J          |   |
| 1,2,3-Trichlorobenzene                            | 6.41   | 5.0                | μg/L<br>μg/L | 10.0           |                  | 64.1 *       |                | 4.72  | 25           | L-04, V-05 |   |
| 1,2,4-Trichlorobenzene                            |        | 1.0                | μg/L<br>μg/L | 10.0           |                  | 66.3 *       |                | 9.62  | 25           | L-04, V-05 |   |
| 1,3,5-Trichlorobenzene                            | 6.63   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 77.1         | 70-130         | 3.94  | 25           | L-07, V-03 |   |
| 1,1,1-Trichloroethane                             | 7.71   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 94.8         | 70-130         | 5.44  | 25           |            |   |
| 1,1,2-Trichloroethane                             | 9.48   | 1.0                | μg/L<br>μg/L |                |                  |              |                |       | 25           |            |   |
| Trichloroethylene                                 | 10.4   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 104          | 70-130         | 0.00  |              |            |   |
| Trichlorofluoromethane (Freon 11)                 | 9.62   | 2.0                | μg/L<br>μg/L | 10.0           |                  | 96.2         | 70-130         | 2.87  | 25           |            |   |
|                                                   | 9.26   | 2.0                |              | 10.0           |                  | 92.6         | 70-130         | 4.12  | 25           |            |   |
| 1,2,3-Trichloropropane                            | 8.57   |                    | μg/L         | 10.0           |                  | 85.7         | 70-130         | 4.45  | 25           |            |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 8.04   | 1.0                | μg/L         | 10.0           |                  | 80.4         | 70-130         | 5.56  | 25           |            |   |
| 1,2,4-Trimethylbenzene                            | 8.91   | 1.0                | μg/L         | 10.0           |                  | 89.1         | 70-130         | 4.82  | 25           |            |   |
| 1,3,5-Trimethylbenzene                            | 8.77   | 1.0                | μg/L         | 10.0           |                  | 87.7         | 70-130         | 4.89  | 25           |            |   |
| Vinyl Chloride                                    | 10.6   | 2.0                | μg/L         | 10.0           |                  | 106          | 40-160         | 6.39  | 25           |            | + |
| m+p Xylene                                        | 18.4   | 2.0                | μg/L         | 20.0           |                  | 91.8         | 70-130         | 4.73  | 25           |            |   |
| o-Xylene                                          | 9.56   | 1.0                | μg/L         | 10.0           |                  | 95.6         | 70-130         | 2.89  | 25           |            |   |
| ·                                                 |        |                    |              |                |                  |              |                |       |              |            | — |
| Surrogate: 1,2-Dichloroethane-d4                  | 26.6   |                    | μg/L         | 25.0           |                  | 106          | 70-130         |       |              |            |   |
| Surrogate: Toluene-d8                             | 27.1   |                    | μg/L         | 25.0           |                  | 109          | 70-130         |       |              |            |   |
| Surrogate: 4-Bromofluorobenzene                   | 26.3   |                    | μg/L         | 25.0           |                  | 105          | 70-130         |       |              |            |   |
| Batch B293187 - SW-846 5035                       |        |                    |              |                |                  |              |                |       |              |            | — |
| Blank (B293187-BLK1)                              |        |                    |              | Prepared &     | Analyzed: 10/    | 25/21        |                |       |              |            |   |
| Acetone                                           | ND     | 0.10               | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Acrylonitrile                                     | ND     | 0.0060             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| tert-Amyl Methyl Ether (TAME)                     | ND     | 0.0010             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Benzene                                           | ND     | 0.0020             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Bromobenzene                                      | ND     | 0.0020             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Bromochloromethane                                | ND     | 0.0020             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Bromodichloromethane                              | ND     | 0.0020             | mg/Kg wet    |                |                  |              |                |       |              |            |   |
| Bromoform                                         |        | 0.0020             | mg/Kg wet    |                |                  |              |                |       |              |            |   |

RPD

%REC



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

## Volatile Organic Compounds by GC/MS - Quality Control

| A nalyte                           | Pacult   | Reporting<br>Limit | Unite     | Spike<br>Level | Source       | %REC   | %KEC<br>Limits | RPD | L imit | Notes |
|------------------------------------|----------|--------------------|-----------|----------------|--------------|--------|----------------|-----|--------|-------|
| Analyte                            | Result   | Limit              | Units     | Level          | Result       | 70KEU  | Limits         | KLD | Limit  | Notes |
| Batch B293187 - SW-846 5035        |          |                    |           |                |              |        |                |     |        |       |
| Blank (B293187-BLK1)               |          |                    |           | Prepared & A   | Analyzed: 10 | /25/21 |                |     |        |       |
| Bromomethane                       | ND       | 0.010              | mg/Kg wet |                |              |        |                |     |        | V-34  |
| 2-Butanone (MEK)                   | ND       | 0.040              | mg/Kg wet |                |              |        |                |     |        |       |
| tert-Butyl Alcohol (TBA)           | ND       | 0.10               | mg/Kg wet |                |              |        |                |     |        |       |
| n-Butylbenzene                     | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| sec-Butylbenzene                   | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| tert-Butylbenzene                  | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| Carbon Disulfide                   | ND       | 0.010              | mg/Kg wet |                |              |        |                |     |        |       |
| Carbon Tetrachloride               | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Chlorobenzene                      | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Chlorodibromomethane               | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| Chloroethane                       | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        |       |
| Chloroform                         | ND       | 0.0040             | mg/Kg wet |                |              |        |                |     |        |       |
| Chloromethane                      | ND       | 0.010              | mg/Kg wet |                |              |        |                |     |        |       |
| 2-Chlorotoluene                    | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 4-Chlorotoluene                    | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,2-Dibromoethane (EDB)            | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| Dibromomethane                     | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,2-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,3-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,4-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| trans-1,4-Dichloro-2-butene        | ND       | 0.0040             | mg/Kg wet |                |              |        |                |     |        |       |
| Dichlorodifluoromethane (Freon 12) | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        | V-05  |
| 1,1-Dichloroethane                 | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,2-Dichloroethane                 | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,1-Dichloroethylene               | ND       | 0.0040             | mg/Kg wet |                |              |        |                |     |        |       |
| cis-1,2-Dichloroethylene           | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| trans-1,2-Dichloroethylene         | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,2-Dichloropropane                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,3-Dichloropropane                | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| 2,2-Dichloropropane                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,1-Dichloropropene                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| cis-1,3-Dichloropropene            | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| trans-1,3-Dichloropropene          | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| Diethyl Ether                      | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        |       |
| Diisopropyl Ether (DIPE)           | ND       | 0.0010             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,4-Dioxane                        | ND       | 0.10               | mg/Kg wet |                |              |        |                |     |        |       |
| Ethylbenzene                       | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Hexachlorobutadiene                | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 2-Hexanone (MBK)                   | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        |       |
| Isopropylbenzene (Cumene)          | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| p-Isopropyltoluene (p-Cymene)      | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Methyl Acetate                     | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Methyl tert-Butyl Ether (MTBE)     | ND       | 0.0040             | mg/Kg wet |                |              |        |                |     |        |       |
| Methyl Cyclohexane                 | ND       | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Methylene Chloride                 | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        |       |
| 4-Methyl-2-pentanone (MIBK)        | ND       | 0.020              | mg/Kg wet |                |              |        |                |     |        |       |
| Naphthalene                        | ND<br>ND | 0.0040             | mg/Kg wet |                |              |        |                |     |        |       |
| n-Propylbenzene                    | ND<br>ND | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| Styrene                            | ND<br>ND | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,1,1,2-Tetrachloroethane          |          | 0.0020             | mg/Kg wet |                |              |        |                |     |        |       |
| 1,1,1,2-10Hacillotochianc          | ND       | 0.0020             | mg/Kg wel |                |              |        |                |     |        |       |

%REC

RPD



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                 | Result           | Limit  | Units     | Level        | Result        | %REC   | Limits           | RPD | Limit | Notes |
|---------------------------------------------------------|------------------|--------|-----------|--------------|---------------|--------|------------------|-----|-------|-------|
| Batch B293187 - SW-846 5035                             |                  |        |           |              |               |        |                  |     |       |       |
| Blank (B293187-BLK1)                                    |                  |        |           | Prepared & A | Analyzed: 10  | /25/21 |                  |     |       |       |
| ,1,2,2-Tetrachloroethane                                | ND               | 0.0010 | mg/Kg wet |              |               |        |                  |     |       |       |
| Tetrachloroethylene                                     | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| etrahydrofuran                                          | ND               | 0.010  | mg/Kg wet |              |               |        |                  |     |       |       |
| Coluene                                                 | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,2,3-Trichlorobenzene                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,2,4-Trichlorobenzene                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,3,5-Trichlorobenzene                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,1,1-Trichloroethane                                    | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,1,2-Trichloroethane                                    | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| richloroethylene                                        | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| richlorofluoromethane (Freon 11)                        | ND               | 0.010  | mg/Kg wet |              |               |        |                  |     |       |       |
| ,2,3-Trichloropropane                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)         | ND               | 0.010  | mg/Kg wet |              |               |        |                  |     |       |       |
| ,2,4-Trimethylbenzene                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| ,3,5-Trimethylbenzene                                   | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| Tinyl Chloride                                          | ND               | 0.010  | mg/Kg wet |              |               |        |                  |     |       |       |
| n+p Xylene                                              | ND               | 0.0040 | mg/Kg wet |              |               |        |                  |     |       |       |
| -Xylene                                                 | ND               | 0.0020 | mg/Kg wet |              |               |        |                  |     |       |       |
| urrogate: 1,2-Dichloroethane-d4                         | 0.0519           |        |           | 0.0500       |               | 104    | 70-130           |     |       |       |
| urrogate: 1,2-Dichioroethane-d4<br>urrogate: Toluene-d8 | 0.0519           |        | mg/Kg wet | 0.0500       |               | 104    | 70-130<br>70-130 |     |       |       |
| urrogate: 101uene-a8<br>urrogate: 4-Bromofluorobenzene  | 0.0505<br>0.0501 |        | mg/Kg wet | 0.0500       |               | 101    | 70-130<br>70-130 |     |       |       |
| _                                                       | 0.0301           |        | mg/Kg wet |              | Amalaga-J. 10 |        | /0-130           |     |       |       |
| CS (B293187-BS1) cetone                                 | 0.206            | 0.10   | mg/Kg wet | 0.200        | Analyzed: 10  | 103    | 70-160           |     |       | V-35  |
| crylonitrile                                            |                  | 0.0060 | mg/Kg wet | 0.0200       |               | 114    | 70-130           |     |       | V-33  |
| rt-Amyl Methyl Ether (TAME)                             | 0.0228           | 0.0010 | mg/Kg wet | 0.0200       |               | 93.3   | 70-130           |     |       |       |
| enzene                                                  | 0.0187           | 0.0020 | mg/Kg wet | 0.0200       |               | 103    | 70-130           |     |       |       |
| romobenzene                                             | 0.0205           | 0.0020 | mg/Kg wet | 0.0200       |               |        | 70-130           |     |       |       |
| romochloromethane                                       | 0.0201           | 0.0020 | mg/Kg wet |              |               | 100    |                  |     |       |       |
|                                                         | 0.0219           |        |           | 0.0200       |               | 109    | 70-130           |     |       |       |
| romodichloromethane                                     | 0.0216           | 0.0020 | mg/Kg wet | 0.0200       |               | 108    | 70-130           |     |       |       |
| romoform                                                | 0.0217           | 0.0020 | mg/Kg wet | 0.0200       |               | 108    | 70-130           |     |       | ****  |
| romomethane                                             | 0.0203           | 0.010  | mg/Kg wet | 0.0200       |               | 101    | 40-130           |     |       | V-34  |
| -Butanone (MEK)                                         | 0.212            | 0.040  | mg/Kg wet | 0.200        |               | 106    | 70-160           |     |       |       |
| ert-Butyl Alcohol (TBA)                                 | 0.192            | 0.10   | mg/Kg wet | 0.200        |               | 96.1   | 40-130           |     |       |       |
| -Butylbenzene                                           | 0.0208           | 0.0020 | mg/Kg wet | 0.0200       |               | 104    | 70-130           |     |       |       |
| ec-Butylbenzene                                         | 0.0202           | 0.0020 | mg/Kg wet | 0.0200       |               | 101    | 70-130           |     |       |       |
| ert-Butylbenzene                                        | 0.0194           | 0.0020 | mg/Kg wet | 0.0200       |               | 97.2   | 70-160           |     |       |       |
| ert-Butyl Ethyl Ether (TBEE)                            | 0.0183           | 0.0010 | mg/Kg wet | 0.0200       |               | 91.6   | 70-130           |     |       |       |
| arbon Disulfide                                         | 0.198            | 0.010  | mg/Kg wet | 0.200        |               | 99.0   | 70-130           |     |       |       |
| arbon Tetrachloride                                     | 0.0212           | 0.0020 | mg/Kg wet | 0.0200       |               | 106    | 70-130           |     |       |       |
| hlorobenzene                                            | 0.0207           | 0.0020 | mg/Kg wet | 0.0200       |               | 103    | 70-130           |     |       |       |
| hlorodibromomethane                                     | 0.0222           | 0.0010 | mg/Kg wet | 0.0200       |               | 111    | 70-130           |     |       |       |
| hloroethane                                             | 0.0239           | 0.020  | mg/Kg wet | 0.0200       |               | 120    | 70-130           |     |       | V-20  |
| hloroform                                               | 0.0211           | 0.0040 | mg/Kg wet | 0.0200       |               | 105    | 70-130           |     |       |       |
| hloromethane                                            | 0.0176           | 0.010  | mg/Kg wet | 0.0200       |               | 87.8   | 70-130           |     |       |       |
| -Chlorotoluene                                          | 0.0214           | 0.0020 | mg/Kg wet | 0.0200       |               | 107    | 70-130           |     |       |       |
| -Chlorotoluene                                          | 0.0225           | 0.0020 | mg/Kg wet | 0.0200       |               | 113    | 70-130           |     |       |       |
| 2-Dibromo-3-chloropropane (DBCP)                        | 0.0195           | 0.0020 | mg/Kg wet | 0.0200       |               | 97.4   | 70-130           |     |       |       |
| ,2-Dibromoethane (EDB)                                  | 0.0226           | 0.0010 | mg/Kg wet | 0.0200       |               | 113    | 70-130           |     |       |       |
| Dibromomethane                                          | 0.0225           | 0.0020 | mg/Kg wet | 0.0200       |               | 112    | 70-130           |     |       |       |
|                                                         |                  |        |           |              |               |        |                  |     |       |       |
| ,2-Dichlorobenzene                                      | 0.0214           | 0.0020 | mg/Kg wet | 0.0200       |               | 107    | 70-130           |     |       |       |

RPD

%REC



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

## Volatile Organic Compounds by GC/MS - Quality Control

| Back B29187 - SW-846 5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7     | KPD   | D.F.= | %KEC   | 0.45   | Source        | Spike        |           | Reporting | = .    |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|--------|--------|---------------|--------------|-----------|-----------|--------|----------------------------------------------|
| Prepared & Analyzed: 10/25/21   1,4-Dichforherbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes   | Limit | RPD   | Limits | %REC   | Result        | Level        | Units     | Limit     | Result | Analyte                                      |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       |        |        |               |              |           |           |        | Batch B293187 - SW-846 5035                  |
| Camp   |         |       |       |        | /25/21 | Analyzed: 10/ | Prepared & A |           |           |        | LCS (B293187-BS1)                            |
| Dichlorodifiancomeshane (Freen 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       | 70-130 | 99.9   |               | 0.0200       | mg/Kg wet |           | 0.0200 |                                              |
| 1.1-Dichlorocethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | 70-130 | 109    |               | 0.0200       | mg/Kg wet | 0.0040    | 0.0218 | trans-1,4-Dichloro-2-butene                  |
| 1.2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V-05, J |       |       | 40-160 | 71.6   |               | 0.0200       | mg/Kg wet | 0.020     | 0.0143 | Dichlorodifluoromethane (Freon 12)           |
| 1.1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |       | 70-130 | 104    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0207 | 1,1-Dichloroethane                           |
| cis-1,2-Dichloroethylene         0.0218         0.0020         mg/K g wet         0.0200         104         70-130           trans-1,2-Dichloroethylene         0.0207         0.0020         mg/K g wet         0.0200         104         70-130           1,2-Dichloropropane         0.0228         0.0010         mg/K g wet         0.0200         114         70-130           1,3-Dichloropropane         0.0211         0.0020         mg/K g wet         0.0200         116         70-130           1,1-Dichloropropane         0.0205         0.0020         mg/K g wet         0.0200         112         70-130           1,1-Dichloropropane         0.0223         0.0010         mg/K g wet         0.0200         112         70-130           1,1-Dichloropropene         0.0226         0.020         mg/K g wet         0.0200         94,9         70-130           1,1-Dichloropropene         0.0226         0.020         mg/K g wet         0.0200         113         70-130           1,1-Dichloropropene         0.0222         0.020         mg/K g wet         0.0200         113         70-130           1,1-Dichloropropene         0.0222         0.020         mg/K g wet         0.0200         110         70-130           1,1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |       | 70-130 | 107    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0214 | 1,2-Dichloroethane                           |
| trans-1,2-Dichloroethylene         0,0207         0,0200         mg/K g wet         0,0200         104         70-130           1,2-Dichloropropane         0,0207         0,002         mg/K g wet         0,0200         114         70-130           2,2-Dichloropropane         0,0211         0,0020         mg/K g wet         0,0200         116         70-130           1,1-Dichloropropene         0,0203         0,000         mg/K g wet         0,0200         102         70-130           1,1-Dichloropropene         0,0203         0,0010         mg/K g wet         0,0200         112         70-130           1,1-Dichloropropene         0,0223         0,0010         mg/K g wet         0,0200         113         70-130           1,1-Dichloropropene         0,0226         0,0010         mg/K g wet         0,0200         113         70-130           1,1-Dichloropropene         0,0220         0,0010         mg/K g wet         0,0200         113         70-130           1,1-Dichloropropene         0,0220         0,0010         mg/K g wet         0,0200         113         70-130           1,1-Dichloropropene         0,0220         0,0010         mg/K g wet         0,0200         111         70-130           1,4-Dich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |       | 70-130 | 101    |               | 0.0200       | mg/Kg wet | 0.0040    | 0.0202 | 1,1-Dichloroethylene                         |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | 70-130 | 109    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0218 | cis-1,2-Dichloroethylene                     |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | 70-130 | 104    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0207 | trans-1,2-Dichloroethylene                   |
| 2,2-Dichloropropane         0,0211         0,0020         mg/Kg wet         0,0200         106         70-130           1,1-Dichloropropene         0,0205         0,0020         mg/Kg wet         0,0200         112         70-130           sics 1,3-Dichloropropene         0,0190         0,0010         mg/Kg wet         0,0200         112         70-130           Dichyl Elfer         0,0190         0,0010         mg/Kg wet         0,0200         113         70-130           Dissopropyl Ether (DIPE)         0,0226         0,0001         mg/Kg wet         0,0200         113         70-130           1,4-Dioxane         0,184         0,10         mg/Kg wet         0,0200         111         70-130           Ethlybenzne         0,0222         0,0020         mg/Kg wet         0,000         111         70-130           Ethlybenzne         0,0222         0,0020         mg/Kg wet         0,000         111         70-130           Ethlybenzne         0,0226         0,0020         mg/Kg wet         0,000         111         70-130           Ethlybenzne         0,0226         0,0020         mg/Kg wet         0,000         118         70-130           Sopropylbenzene (Cumene)         0,0216         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       | 70-130 | 104    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0207 | 1,2-Dichloropropane                          |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | 70-130 | 114    |               | 0.0200       | mg/Kg wet | 0.0010    | 0.0228 | 1,3-Dichloropropane                          |
| cis-1,3-Dichloropropene         0,0223         0,0010         mg/Kg wet         0,0200         94,9         70-130           brinshy1-Dichloropropene         0,0190         0,0010         mg/Kg wet         0,0200         94,9         70-130           Disopropyl Ether (DIPE)         0,0220         0,0010         mg/Kg wet         0,0200         113         70-130           1,4-Dioxane         0,184         0,10         mg/Kg wet         0,0200         110         70-130           Hexachlorobutadiene         0,0226         0,0020         mg/Kg wet         0,0200         111         70-130           Hexachlorobutadiene         0,0266         0,0020         mg/Kg wet         0,0200         113         70-160           2-Hexanone (MBK)         0,229         0,020         mg/Kg wet         0,0200         115         70-160           Stopropylbenzene (Cumene)         0,0213         0,0020         mg/Kg wet         0,0200         116         70-130           Herryl Schefter (MTBE)         0,0221         0,000         mg/Kg wet         0,0200         110         70-130           Methyl Acetate         0,020         0,002         mg/Kg wet         0,0200         111         70-130           Methyl Scelebasene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       | 70-130 | 106    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0211 | 2,2-Dichloropropane                          |
| trans-1,3-Dichloropropene   0,0190   0,0010   mg/Kg wet   0,0200   94,9   70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       | 70-130 | 102    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0205 | 1,1-Dichloropropene                          |
| trans-1,3-Dichloropropene Dichyl Ether 0,0226 0,000 mg/Kg wet 0,0200 113 70-130 Dichyl Ether 0,0226 0,000 mg/Kg wet 0,0200 1110 70-130 1,4-Dioxane 0,184 0,101 mg/Kg wet 0,0200 1110 70-130 1,4-Dioxane 0,184 0,101 mg/Kg wet 0,0200 1111 70-130 1,4-Dioxane 0,0222 0,0000 mg/Kg wet 0,0200 1111 70-130 1111 70-130 1111 70-130 1111 70-130 1115 70-160 1115 170-160 1115 170-160 1115 170-160 1115 170-160 1115 170-160 1115 170-160 1115 170-160 1115 170-160 1116 1115 170-160 1116 1115 170-160 1116 1115 170-160 1116 1117 1115 1115 1115 1115 1115 1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |       | 70-130 | 112    |               | 0.0200       | mg/Kg wet | 0.0010    | 0.0223 | cis-1,3-Dichloropropene                      |
| Diethyl Ether         0.0226         0.020         mg/Kg wet         0.0200         113         70-130           Diisopropyl Ether (DIPE)         0.0220         0.0010         mg/Kg wet         0.0200         110         70-130           1.4-Dioxane         0.184         0.10         mg/Kg wet         0.0200         111         70-130           Ethylbenzen         0.0222         0.0020         mg/Kg wet         0.0200         111         70-130           Hexachlorobutadiene         0.0206         0.0020         mg/Kg wet         0.0200         103         70-160           2-Hexanone (MBK)         0.229         0.020         mg/Kg wet         0.0200         108         70-160           Sopropylbrazene (Cumene)         0.0213         0.0020         mg/Kg wet         0.0200         100         70-130           Methyl Acetate         0.0200         0.0020         mg/Kg wet         0.0200         100         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         111         70-130           Methyl Gyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         111         70-130           Methyl Cyclohexane         0.0216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       | 70-130 |        |               |              |           | 0.0010    |        | trans-1,3-Dichloropropene                    |
| Disspropyl Ether (DIPE)         0.0220         0.0010         mg/Kg wet         0.0200         110         70-130           1.4-Dioxane         0.184         0.10         mg/Kg wet         0.200         92.1         40-160           Ethylbenzene         0.0222         0.0020         mg/Kg wet         0.0200         111         70-130           Hexachlorobutadiene         0.0206         0.0020         mg/Kg wet         0.0200         113         70-160           2-Hexanone (MBK)         0.229         0.020         mg/Kg wet         0.0200         115         70-160           Isopropylbenzene (Cumene)         0.0216         0.0020         mg/Kg wet         0.0200         108         70-130           Jesporpylbluence (p-Cymene)         0.0213         0.0020         mg/Kg wet         0.0200         100         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         111         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         113         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         113         70-130           Methyl cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |       |       |        |        |               |              |           |           |        |                                              |
| 1,4-Dioxane       0,184       0.10       mg/Kg wet       0,200       92.1       40-160         Eihylbenzene       0,0222       0,0002       mg/Kg wet       0,0200       111       70-130         Hexachlorobutadiene       0,0206       0,0020       mg/Kg wet       0,0200       115       70-160         2-Hexanone (MBK)       0,229       0,0020       mg/Kg wet       0,200       115       70-160         Isopropylbenzene (Cumene)       0,0216       0,0020       mg/Kg wet       0,2000       107       70-130         p-Isopropylbenzene (Cumene)       0,0213       0,0020       mg/Kg wet       0,0200       107       70-130         Methyl Acetate       0,0200       0,0020       mg/Kg wet       0,0200       100       70-130         Methyl Gerburge       0,0213       0,0020       mg/Kg wet       0,0200       110       70-130         Methyl Gerburge       0,0222       0,0040       mg/Kg wet       0,0200       110       70-130         Methyl Gerburge       0,0225       0,020       mg/Kg wet       0,0200       113       70-160         Methyl-Perplanene (MIBK)       0,225       0,020       mg/Kg wet       0,020       113       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |       |        |        |               |              |           |           |        | -                                            |
| Ethylbenzene         0.0222         0.0020         mg/Kg wet         0.0200         111         70-130           Hexachlorobutadiene         0.0206         0.0020         mg/Kg wet         0.0200         103         70-160           2-Hexanone (MBK)         0.229         0.020         mg/Kg wet         0.0200         115         70-160           Sopropylbenzene (Cumene)         0.0216         0.0020         mg/Kg wet         0.0200         108         70-130           Methyl Acetate         0.0200         0.0020         mg/Kg wet         0.0200         100         70-130           Methyl Lecher (MTBE)         0.0222         0.0040         mg/Kg wet         0.0200         111         70-130           Methyl Lecher (MTBE)         0.0222         0.0040         mg/Kg wet         0.0200         111         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         118         70-130           Methyl Cyclohexane         0.0205         0.020         mg/Kg wet         0.0200         118         70-130           Methyl Cyclohexane         0.0205         0.020         mg/Kg wet         0.0200         113         70-130           Methyl Cyclohexane         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |       |       |        |        |               |              |           | 0.10      |        | * **                                         |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       |        |        |               |              |           |           |        |                                              |
| 2-Hexanone (MBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       |        |        |               |              |           |           |        | •                                            |
| Isopropylbenzene (Cumene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V-35    |       |       |        |        |               |              |           |           |        |                                              |
| p-Isopropyltoluene (p-Cymene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • 33    |       |       |        |        |               |              |           |           |        |                                              |
| Methyl Acetate         0,0200         0,0020         mg/kg wet         0,0200         100         70-130           Methyl tert-Butyl Ether (MTBE)         0,0222         0,0040         mg/kg wet         0,0200         111         70-130           Methyl Cyclohexane         0,0216         0,0020         mg/kg wet         0,0200         108         70-130           Methylene Chloride         0,0205         0,020         mg/kg wet         0,0200         102         40-160           4-Methyl-2-pentanone (MIBK)         0,225         0,020         mg/kg wet         0,0200         113         70-160           Naphthalene         0,0228         0,0040         mg/kg wet         0,0200         104         40-130           n-Propylbenzene         0,0227         0,0020         mg/kg wet         0,0200         113         70-130           Styrene         0,0230         0,0020         mg/kg wet         0,0200         115         70-130           1,1,2,2-Tetrachloroethane         0,0216         0,0020         mg/kg wet         0,0200         111         70-130           1,1,2,2-Tetrachloroethane         0,0222         0,0010         mg/kg wet         0,0200         104         70-130           Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |       |        |        |               |              |           |           |        | * **                                         |
| Methyl tert-Butyl Ether (MTBE)         0.0222         0.0040         mg/Kg wet         0.0200         111         70-130           Methyl Cyclohexane         0.0216         0.0020         mg/Kg wet         0.0200         108         70-130           Methylene Chloride         0.0205         0.020         mg/Kg wet         0.0200         102         40-160           4-Methyl-2-pentanone (MIBK)         0.225         0.020         mg/Kg wet         0.0200         113         70-160           Naphthalene         0.0208         0.0040         mg/Kg wet         0.0200         104         40-130           Naphthalene         0.0227         0.0020         mg/Kg wet         0.0200         113         70-160           Naphthalene         0.0227         0.0020         mg/Kg wet         0.0200         113         70-130           Porpylbenzene         0.0227         0.0020         mg/Kg wet         0.0200         115         70-130           Styrene         0.0223         0.0020         mg/Kg wet         0.0200         115         70-130           1,1,2,2-Tetrachloroethane         0.0221         0.0010         mg/Kg wet         0.0200         111         70-130           Tetrachloroethylene         0.0207 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |       |        |        |               |              |           |           |        |                                              |
| Methyl Cyclohexane         0.0216         0.0020         mg/kg wet         0.0200         108         70-130           Methylene Chloride         0.0205         0.020         mg/kg wet         0.0200         102         40-160           4-Methyl-2-pentanone (MIBK)         0.225         0.020         mg/kg wet         0.200         113         70-160           Naphthalene         0.0208         0.0040         mg/kg wet         0.0200         104         40-130           n-Propylbenzene         0.0227         0.0020         mg/kg wet         0.0200         113         70-130           Styrene         0.0230         0.0020         mg/kg wet         0.0200         115         70-130           Styrene         0.0216         0.0020         mg/kg wet         0.0200         108         70-130           1,1,2,2-Tetrachloroethane         0.0216         0.0020         mg/kg wet         0.0200         111         70-130           Tetrachloroethylene         0.0227         0.0020         mg/kg wet         0.0200         114         70-130           Tetrachlorothylene         0.0200         0.010         mg/kg wet         0.0200         100         70-130           Toluene         0.0219         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       |        |        |               |              |           |           |        | •                                            |
| Methylene Chloride         0.0205         0.020 mg/Kg wet         0.0200         102 dollar         40-160           4-Methyl-2-pentanone (MIBK)         0.225         0.020 mg/Kg wet         0.200         113 dollar         70-160           Naphthalene         0.0208         0.0040 mg/Kg wet         0.0200         104 dollar         40-130           n-Propylbenzene         0.0227 dollar         0.0020 mg/Kg wet         0.0200 dollar         113 dollar         70-130           Styrene         0.0230 dollar         0.0020 mg/Kg wet         0.0200 dollar         115 dollar         70-130           1,1,2-Tetrachloroethane         0.0216 dollar         0.0020 mg/Kg wet         0.0200 dollar         110 dollar         70-130           1,1,2-2-Tetrachloroethane         0.0222 dollar         0.0010 mg/Kg wet         0.0200 dollar         111 dollar         70-130           1,1,2-2-Tetrachloroethane         0.0207 dollar         0.0020 mg/Kg wet         0.0200 dollar         104 dollar         70-130           Tetrachloroethylene         0.0207 dollar         0.0020 mg/Kg wet         0.0200 dollar         100 dollar         70-130           Toluene         0.0199 dollar         0.0020 mg/Kg wet         0.0200 dollar         100 dollar         70-130           1,2,3-Trichlorobenzene         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |       |        |        |               |              |           |           |        |                                              |
| 4-Methyl-2-pentanone (MIBK) 0 225 0.020 mg/Kg wet 0.200 113 70-160 Naphthalene 0 0.0208 0.0040 mg/Kg wet 0.0200 104 40-130 n-Propylbenzene 0 0.0227 0.0020 mg/Kg wet 0.0200 113 70-130 Styrene 0 0.0230 0.0020 mg/Kg wet 0.0200 115 70-130 1,1,1,2-Tetrachloroethane 0 0.0216 0.0020 mg/Kg wet 0.0200 115 70-130 1,1,2,2-Tetrachloroethane 0 0.0222 0.0010 mg/Kg wet 0.0200 111 70-130 Tetrachloroethylene 0 0.0207 0.0020 mg/Kg wet 0.0200 111 70-130 Tetrachloroethylene 0 0.0207 0.0020 mg/Kg wet 0.0200 104 70-130 Toluene 0 0.0199 0.0020 mg/Kg wet 0.0200 100 70-130 Toluene 0 0.0199 0.0020 mg/Kg wet 0.0200 100 70-130 1,2,3-Trichlorobenzene 0 0.0210 0.0020 mg/Kg wet 0.0200 110 70-130 1,3,5-Trichlorobenzene 0 0.0210 0.0020 mg/Kg wet 0.0200 105 70-130 1,1,1-Trichloroethane 0 0.0212 0.0020 mg/Kg wet 0.0200 106 70-130 1,1,1-Trichloroethane 0 0.0223 0.0020 mg/Kg wet 0.0200 106 70-130 1,1,1-Trichloroethane 0 0.0223 0.0020 mg/Kg wet 0.0200 111 70-130 1,1,2-Trichloroethane 0 0.0228 0.0020 mg/Kg wet 0.0200 111 70-130 1,1,2-Trichloroethane 0 0.0223 0.0020 mg/Kg wet 0.0200 111 70-130 1,1,2-Trichloroethylene 0 0.0208 0.0020 mg/Kg wet 0.0200 111 70-130 111 70-130 111,2-Trichloroethylene 0 0.0208 0.0020 mg/Kg wet 0.0200 111 70-130 111 70-130 111,2-Trichloroethylene 0 0.0208 0.0020 mg/Kg wet 0.0200 111 70-130 111 70-130 112,3-Trichloropopane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |       |        |        |               |              |           |           |        |                                              |
| Naphthalene         0.0208         0.0040         mg/Kg wet         0.0200         104         40-130           n-Propylbenzene         0.0227         0.0020         mg/Kg wet         0.0200         113         70-130           Styrene         0.0230         0.0020         mg/Kg wet         0.0200         115         70-130           1,1,1,2-Tetrachloroethane         0.0216         0.0020         mg/Kg wet         0.0200         108         70-130           1,1,2,2-Tetrachloroethane         0.0222         0.0010         mg/Kg wet         0.0200         111         70-130           Tetrachloroethylene         0.0207         0.0020         mg/Kg wet         0.0200         104         70-130           Tetrahydrofuran         0.0200         0.010         mg/Kg wet         0.0200         100         70-130           Toluene         0.0199         0.0020         mg/Kg wet         0.0200         99.6         70-130           1,2,3-Trichlorobenzene         0.0220         0.0020         mg/Kg wet         0.0200         110         70-130           1,3,5-Trichlorobenzene         0.0202         0.0020         mg/Kg wet         0.0200         105         70-130           1,1,1-Trichloroethane         0.0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |       |       |        |        |               |              |           |           |        | •                                            |
| No.   No. |         |       |       |        |        |               |              |           |           |        |                                              |
| Styrene         0.0230         0.0020         mg/Kg wet         0.0200         115         70-130           1,1,1,2-Tetrachloroethane         0.0216         0.0020         mg/Kg wet         0.0200         108         70-130           1,1,2,2-Tetrachloroethane         0.0222         0.0010         mg/Kg wet         0.0200         111         70-130           Tetrachloroethylene         0.0207         0.0020         mg/Kg wet         0.0200         104         70-130           Tetrahydrofuran         0.0200         0.010         mg/Kg wet         0.0200         100         70-130           Toluene         0.0199         0.0020         mg/Kg wet         0.0200         99.6         70-130           1,2,3-Trichlorobenzene         0.0220         0.0020         mg/Kg wet         0.0200         110         70-130           1,3,5-Trichlorobenzene         0.0210         0.0020         mg/Kg wet         0.0200         101         70-130           1,1,1-Trichloroethane         0.0212         0.0020         mg/Kg wet         0.0200         106         70-130           1,1,2-Trichloroethane         0.0223         0.0020         mg/Kg wet         0.0200         111         70-130           Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |       |        |        |               |              |           |           |        | ·                                            |
| 1,1,1,2-Tetrachloroethane       0.0216       0.0020       mg/Kg wet       0.0200       108       70-130         1,1,2,2-Tetrachloroethane       0.0222       0.0010       mg/Kg wet       0.0200       111       70-130         Tetrachloroethylene       0.0207       0.0020       mg/Kg wet       0.0200       104       70-130         Tetrahydrofuran       0.0200       0.010       mg/Kg wet       0.0200       100       70-130         Toluene       0.0199       0.0020       mg/Kg wet       0.0200       99.6       70-130         1,2,3-Trichlorobenzene       0.0220       0.0020       mg/Kg wet       0.0200       110       70-130         1,3,5-Trichlorobenzene       0.0210       0.0020       mg/Kg wet       0.0200       105       70-130         1,1,1-Trichloroethane       0.0212       0.0020       mg/Kg wet       0.0200       101       70-130         1,1,2-Trichloroethylene       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       104       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       |        |        |               |              |           |           |        | **                                           |
| 1,1,2,2-Tetrachloroethane       0.0222       0.0010       mg/Kg wet       0.0200       111       70-130         Tetrachloroethylene       0.0207       0.0020       mg/Kg wet       0.0200       104       70-130         Tetrahydrofuran       0.0200       0.010       mg/Kg wet       0.0200       100       70-130         Toluene       0.0199       0.0020       mg/Kg wet       0.0200       99.6       70-130         1,2,3-Trichlorobenzene       0.0220       0.0020       mg/Kg wet       0.0200       110       70-130         1,2,4-Trichlorobenzene       0.0210       0.0020       mg/Kg wet       0.0200       105       70-130         1,3,5-Trichlorobenzene       0.0202       0.0020       mg/Kg wet       0.0200       101       70-130         1,1,1-Trichloroethane       0.0212       0.0020       mg/Kg wet       0.0200       106       70-130         1,1,2-Trichloroethylene       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       115       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1 <td></td> <td>·</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |       |        |        |               |              |           |           |        | ·                                            |
| Tetrachloroethylene         0.0207         0.0020         mg/Kg wet         0.0200         104         70-130           Tetrahydrofuran         0.0200         0.010         mg/Kg wet         0.0200         100         70-130           Toluene         0.0199         0.0020         mg/Kg wet         0.0200         99.6         70-130           1,2,3-Trichlorobenzene         0.0220         0.0020         mg/Kg wet         0.0200         110         70-130           1,2,4-Trichlorobenzene         0.0210         0.0020         mg/Kg wet         0.0200         105         70-130           1,3,5-Trichlorobenzene         0.0202         0.0020         mg/Kg wet         0.0200         101         70-130           1,1,1-Trichloroethane         0.0212         0.0020         mg/Kg wet         0.0200         106         70-130           1,1,2-Trichloroethylene         0.0223         0.0020         mg/Kg wet         0.0200         111         70-130           Trichlorofluoromethane (Freon 11)         0.0229         0.010         mg/Kg wet         0.0200         115         70-130           1,2,3-Trichloropropane         0.0186         0.0020         mg/Kg wet         0.0200         93.1         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       |        |        |               |              |           |           |        |                                              |
| Tetrahydrofuran         0.0200         0.010         mg/Kg wet         0.0200         100         70-130           Toluene         0.0199         0.0020         mg/Kg wet         0.0200         99.6         70-130           1,2,3-Trichlorobenzene         0.0220         0.0020         mg/Kg wet         0.0200         110         70-130           1,2,4-Trichlorobenzene         0.0210         0.0020         mg/Kg wet         0.0200         105         70-130           1,3,5-Trichlorobenzene         0.0202         0.0020         mg/Kg wet         0.0200         101         70-130           1,1,1-Trichloroethane         0.0212         0.0020         mg/Kg wet         0.0200         106         70-130           1,1,2-Trichloroethane         0.0223         0.0020         mg/Kg wet         0.0200         111         70-130           Trichloroethylene         0.0208         0.0020         mg/Kg wet         0.0200         104         70-130           Trichloropropane         0.0186         0.0020         mg/Kg wet         0.0200         93.1         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |       |       |        |        |               |              |           |           |        |                                              |
| Toluene 0.0199 0.0020 mg/Kg wet 0.0200 99.6 70-130 1,2,3-Trichlorobenzene 0.0220 0.0020 mg/Kg wet 0.0200 110 70-130 1,2,4-Trichlorobenzene 0.0210 0.0020 mg/Kg wet 0.0200 105 70-130 1,3,5-Trichlorobenzene 0.0202 0.0020 mg/Kg wet 0.0200 101 70-130 1,1,1-Trichloroethane 0.0212 0.0020 mg/Kg wet 0.0200 106 70-130 1,1,2-Trichloroethane 0.0223 0.0020 mg/Kg wet 0.0200 111 70-130 1,1,2-Trichloroethylene 0.0208 0.0020 mg/Kg wet 0.0200 111 70-130 Trichloroethylene 0.0208 0.0020 mg/Kg wet 0.0200 114 70-130 Trichlorofluoromethane (Freon 11) 0.0229 0.010 mg/Kg wet 0.0200 115 70-130 1,2,3-Trichloropropane 0.0186 0.0020 mg/Kg wet 0.0200 93.1 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       |        |        |               |              |           |           |        | <u>-</u>                                     |
| 1,2,3-Trichlorobenzene       0.0220       0.0020       mg/Kg wet       0.0200       110       70-130         1,2,4-Trichlorobenzene       0.0210       0.0020       mg/Kg wet       0.0200       105       70-130         1,3,5-Trichlorobenzene       0.0202       0.0020       mg/Kg wet       0.0200       101       70-130         1,1,1-Trichloroethane       0.0212       0.0020       mg/Kg wet       0.0200       106       70-130         1,1,2-Trichloroethane       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichloroethylene       0.0208       0.0020       mg/Kg wet       0.0200       104       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       93.1       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |       |        |        |               |              |           |           | 0.0200 |                                              |
| 1,2,4-Trichlorobenzene       0.0210       0.0020       mg/Kg wet       0.0200       105       70-130         1,3,5-Trichlorobenzene       0.0202       0.0020       mg/Kg wet       0.0200       101       70-130         1,1,1-Trichloroethane       0.0212       0.0020       mg/Kg wet       0.0200       106       70-130         1,1,2-Trichloroethane       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichloroethylene       0.0208       0.0020       mg/Kg wet       0.0200       104       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       93.1       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |       | 70-130 | 99.6   |               |              | mg/Kg wet | 0.0020    |        |                                              |
| 1,3,5-Trichlorobenzene       0.0202       0.0020       mg/Kg wet       0.0200       101       70-130         1,1,1-Trichloroethane       0.0212       0.0020       mg/Kg wet       0.0200       106       70-130         1,1,2-Trichloroethane       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichloroethylene       0.0208       0.0020       mg/Kg wet       0.0200       104       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       115       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |       |       | 70-130 | 110    |               | 0.0200       |           |           | 0.0220 |                                              |
| 1,1,1-Trichloroethane     0.0212     0.0020     mg/Kg wet     0.0200     106     70-130       1,1,2-Trichloroethane     0.0223     0.0020     mg/Kg wet     0.0200     111     70-130       Trichloroethylene     0.0208     0.0020     mg/Kg wet     0.0200     104     70-130       Trichlorofluoromethane (Freon 11)     0.0229     0.010     mg/Kg wet     0.0200     115     70-130       1,2,3-Trichloropropane     0.0186     0.0020     mg/Kg wet     0.0200     93.1     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |       | 70-130 | 105    |               | 0.0200       |           |           | 0.0210 |                                              |
| 1,1,2-Trichloroethane       0.0223       0.0020       mg/Kg wet       0.0200       111       70-130         Trichloroethylene       0.0208       0.0020       mg/Kg wet       0.0200       104       70-130         Trichlorofluoromethane (Freon 11)       0.0229       0.010       mg/Kg wet       0.0200       115       70-130         1,2,3-Trichloropropane       0.0186       0.0020       mg/Kg wet       0.0200       93.1       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       | 70-130 | 101    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0202 | 1,3,5-Trichlorobenzene                       |
| Trichloroethylene         0.0208         0.0020         mg/Kg wet         0.0200         104         70-130           Trichlorofluoromethane (Freon 11)         0.0229         0.010         mg/Kg wet         0.0200         115         70-130           1,2,3-Trichloropropane         0.0186         0.0020         mg/Kg wet         0.0200         93.1         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |       | 70-130 | 106    |               | 0.0200       | mg/Kg wet |           | 0.0212 | 1,1,1-Trichloroethane                        |
| Trichlorofluoromethane (Freon 11)     0.0229     0.010 mg/Kg wet     0.0200     115 70-130       1,2,3-Trichloropropane     0.0186     0.0020 mg/Kg wet     0.0200     93.1 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       | 70-130 | 111    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0223 | 1,1,2-Trichloroethane                        |
| 1,2,3-Trichloropropane 0.0186 0.0020 mg/Kg wet 0.0200 93.1 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |       | 70-130 | 104    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0208 | Trichloroethylene                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |       | 70-130 | 115    |               | 0.0200       | mg/Kg wet | 0.010     | 0.0229 | Trichlorofluoromethane (Freon 11)            |
| 1.1.2-Trichloro-1.2.2-trifluoroethane (Freon 0.0214 0.010 mg/Kg wet 0.0200 107 70.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       | 70-130 | 93.1   |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0186 | 1,2,3-Trichloropropane                       |
| 7,5,2 1100000 1,5,2 0110000 (11000 0.0124 0.010 mg/rs wet 0.0200 107 /0-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |       | 70-130 | 107    |               | 0.0200       | mg/Kg wet | 0.010     | 0.0214 | 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon |
| 113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |       |        |        |               |              |           |           |        |                                              |
| 1,2,4-Trimethylbenzene 0.0200 0.0020 mg/Kg wet 0.0200 100 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       |        |        |               |              |           |           |        | * *                                          |
| 1,3,5-Trimethylbenzene 0.0229 0.0020 mg/Kg wet 0.0200 114 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       |        |        |               |              |           |           |        | · · ·                                        |
| Vinyl Chloride 0.0199 0.010 mg/Kg wet 0.0200 99.7 40-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |       | 40-130 | 99.7   |               | 0.0200       |           |           | 0.0199 | <del>-</del>                                 |
| m+p Xylene 0.0455 0.0040 mg/Kg wet 0.0400 114 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |       | 70-130 | 114    |               | 0.0400       | mg/Kg wet |           | 0.0455 | m+p Xylene                                   |
| o-Xylene 0.0227 0.0020 mg/Kg wet 0.0200 114 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |       | 70-130 | 114    |               | 0.0200       | mg/Kg wet | 0.0020    | 0.0227 | o-Xylene                                     |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |       | 70-130 | 102    |               | 0.0500       | mg/Kg wet |           | 0.0511 | Surrogate: 1,2-Dichloroethane-d4             |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       |        |        |               |              |           |           |        | <u> </u>                                     |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                            | Result | Limit  | Units     | Level        | Result       | %REC   | Limits | RPD    | Limit | Notes   |       |
|------------------------------------|--------|--------|-----------|--------------|--------------|--------|--------|--------|-------|---------|-------|
| Batch B293187 - SW-846 5035        |        |        |           |              |              |        |        |        |       |         |       |
| LCS (B293187-BS1)                  |        |        |           | Prepared & A | Analyzed: 10 | /25/21 |        |        |       |         |       |
| Surrogate: 4-Bromofluorobenzene    | 0.0517 |        | mg/Kg wet | 0.0500       |              | 103    | 70-130 |        |       |         | =     |
| LCS Dup (B293187-BSD1)             |        |        |           | Prepared & A | Analyzed: 10 | /25/21 |        |        |       |         |       |
| Acetone                            | 0.201  | 0.10   | mg/Kg wet | 0.200        |              | 100    | 70-160 | 2.69   | 25    | V-35    | <br>† |
| Acrylonitrile                      | 0.0223 | 0.0060 | mg/Kg wet | 0.0200       |              | 112    | 70-130 | 2.39   | 25    |         |       |
| tert-Amyl Methyl Ether (TAME)      | 0.0191 | 0.0010 | mg/Kg wet | 0.0200       |              | 95.6   | 70-130 | 2.44   | 25    |         |       |
| Benzene                            | 0.0206 | 0.0020 | mg/Kg wet | 0.0200       |              | 103    | 70-130 | 0.292  | 25    |         |       |
| Bromobenzene                       | 0.0197 | 0.0020 | mg/Kg wet | 0.0200       |              | 98.4   | 70-130 | 2.01   | 25    |         |       |
| Bromochloromethane                 | 0.0215 | 0.0020 | mg/Kg wet | 0.0200       |              | 108    | 70-130 | 1.66   | 25    |         |       |
| Bromodichloromethane               | 0.0215 | 0.0020 | mg/Kg wet | 0.0200       |              | 107    | 70-130 | 0.742  | 25    |         |       |
| Bromoform                          | 0.0219 | 0.0020 | mg/Kg wet | 0.0200       |              | 110    | 70-130 | 1.10   | 25    |         |       |
| Bromomethane                       | 0.0228 | 0.010  | mg/Kg wet | 0.0200       |              | 114    | 40-130 | 12.0   | 25    | V-34    | †     |
| 2-Butanone (MEK)                   | 0.208  | 0.040  | mg/Kg wet | 0.200        |              | 104    | 70-160 | 1.99   | 25    |         | †     |
| tert-Butyl Alcohol (TBA)           | 0.187  | 0.10   | mg/Kg wet | 0.200        |              | 93.6   | 40-130 | 2.66   | 25    |         | †     |
| n-Butylbenzene                     | 0.0203 | 0.0020 | mg/Kg wet | 0.0200       |              | 102    | 70-130 | 2.53   | 25    |         |       |
| sec-Butylbenzene                   | 0.0198 | 0.0020 | mg/Kg wet | 0.0200       |              | 99.0   | 70-130 | 2.00   | 25    |         |       |
| tert-Butylbenzene                  | 0.0192 | 0.0020 | mg/Kg wet | 0.0200       |              | 96.0   | 70-160 | 1.24   | 25    |         | †     |
| tert-Butyl Ethyl Ether (TBEE)      | 0.0186 | 0.0010 | mg/Kg wet | 0.0200       |              | 92.9   | 70-130 | 1.41   | 25    |         | ,     |
| Carbon Disulfide                   | 0.196  | 0.010  | mg/Kg wet | 0.200        |              | 98.1   | 70-130 | 0.944  | 25    |         |       |
| Carbon Tetrachloride               | 0.0211 | 0.0020 | mg/Kg wet | 0.0200       |              | 105    | 70-130 | 0.663  | 25    |         |       |
| Chlorobenzene                      | 0.0208 | 0.0020 | mg/Kg wet | 0.0200       |              | 104    | 70-130 | 0.482  | 25    |         |       |
| Chlorodibromomethane               | 0.0226 | 0.0010 | mg/Kg wet | 0.0200       |              | 113    | 70-130 | 1.79   | 25    |         |       |
| Chloroethane                       | 0.0242 | 0.020  | mg/Kg wet | 0.0200       |              | 121    | 70-130 | 0.998  | 25    | V-20    |       |
| Chloroform                         | 0.0212 | 0.0040 | mg/Kg wet | 0.0200       |              | 106    | 70-130 | 0.663  | 25    |         |       |
| Chloromethane                      | 0.0170 | 0.010  | mg/Kg wet | 0.0200       |              | 85.1   | 70-130 | 3.12   | 25    |         |       |
| 2-Chlorotoluene                    | 0.0211 | 0.0020 | mg/Kg wet | 0.0200       |              | 105    | 70-130 | 1.41   | 25    |         |       |
| 4-Chlorotoluene                    | 0.0221 | 0.0020 | mg/Kg wet | 0.0200       |              | 111    | 70-130 | 1.34   | 25    |         |       |
| 1,2-Dibromo-3-chloropropane (DBCP) | 0.0189 | 0.0020 | mg/Kg wet | 0.0200       |              | 94.3   | 70-130 | 3.23   | 25    |         |       |
| 1,2-Dibromoethane (EDB)            | 0.0226 | 0.0010 | mg/Kg wet | 0.0200       |              | 113    | 70-130 | 0.0886 | 25    |         |       |
| Dibromomethane                     | 0.0224 | 0.0020 | mg/Kg wet | 0.0200       |              | 112    | 70-130 | 0.446  | 25    |         |       |
| 1,2-Dichlorobenzene                | 0.0215 | 0.0020 | mg/Kg wet | 0.0200       |              | 108    | 70-130 | 0.372  | 25    |         |       |
| 1,3-Dichlorobenzene                | 0.0205 | 0.0020 | mg/Kg wet | 0.0200       |              | 103    | 70-130 | 0.776  | 25    |         |       |
| 1,4-Dichlorobenzene                | 0.0197 | 0.0020 | mg/Kg wet | 0.0200       |              | 98.7   | 70-130 | 1.21   | 25    |         |       |
| trans-1,4-Dichloro-2-butene        | 0.0216 | 0.0040 | mg/Kg wet | 0.0200       |              | 108    | 70-130 | 0.645  | 25    |         |       |
| Dichlorodifluoromethane (Freon 12) | 0.0142 | 0.020  | mg/Kg wet | 0.0200       |              | 71.2   | 40-160 | 0.560  | 25    | V-05, J | †     |
| 1,1-Dichloroethane                 | 0.0204 | 0.0020 | mg/Kg wet | 0.0200       |              | 102    | 70-130 | 1.56   | 25    | ,       |       |
| 1,2-Dichloroethane                 | 0.0213 | 0.0020 | mg/Kg wet | 0.0200       |              | 106    | 70-130 | 0.750  | 25    |         |       |
| 1,1-Dichloroethylene               | 0.0200 | 0.0040 | mg/Kg wet | 0.0200       |              | 99.9   | 70-130 | 1.10   | 25    |         |       |
| cis-1,2-Dichloroethylene           | 0.0217 | 0.0020 | mg/Kg wet | 0.0200       |              | 109    | 70-130 | 0.184  | 25    |         |       |
| trans-1,2-Dichloroethylene         | 0.0207 | 0.0020 | mg/Kg wet | 0.0200       |              | 104    | 70-130 | 0.00   | 25    |         |       |
| 1,2-Dichloropropane                | 0.0209 | 0.0020 | mg/Kg wet | 0.0200       |              | 104    | 70-130 | 0.865  | 25    |         |       |
| 1,3-Dichloropropane                | 0.0230 | 0.0010 | mg/Kg wet | 0.0200       |              | 115    | 70-130 | 1.22   | 25    |         |       |
| 2,2-Dichloropropane                | 0.0208 | 0.0020 | mg/Kg wet | 0.0200       |              | 104    | 70-130 | 1.34   | 25    |         |       |
| 1,1-Dichloropropene                | 0.0205 | 0.0020 | mg/Kg wet | 0.0200       |              | 102    | 70-130 | 0.0977 | 25    |         |       |
| cis-1,3-Dichloropropene            | 0.0203 | 0.0010 | mg/Kg wet | 0.0200       |              | 110    | 70-130 | 1.08   | 25    |         |       |
| trans-1,3-Dichloropropene          | 0.0186 | 0.0010 | mg/Kg wet | 0.0200       |              | 93.2   | 70-130 | 1.81   | 25    |         |       |
| Diethyl Ether                      | 0.0226 | 0.020  | mg/Kg wet | 0.0200       |              | 113    | 70-130 | 0.0885 | 25    |         |       |
| Diisopropyl Ether (DIPE)           | 0.0227 | 0.0010 | mg/Kg wet | 0.0200       |              | 114    | 70-130 | 3.22   | 25    |         |       |
| 1,4-Dioxane                        | 0.178  | 0.10   | mg/Kg wet | 0.200        |              | 89.2   | 40-160 | 3.13   | 50    |         | † :   |
| Ethylbenzene                       | 0.0220 | 0.0020 | mg/Kg wet | 0.0200       |              | 110    | 70-130 | 0.725  | 25    |         |       |
| Hexachlorobutadiene                | 0.0220 | 0.0020 | mg/Kg wet | 0.0200       |              | 100    | 70-160 | 2.66   | 25    |         |       |
| 2-Hexanone (MBK)                   | 0.227  | 0.020  | mg/Kg wet | 0.200        |              | 114    | 70-160 | 0.894  | 25    | V-35    | †     |



## QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|---------------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|-------|---|
| Batch B293187 - SW-846 5035                       |        |                    |           |                |                  |        |                |       |              |       | _ |
| LCS Dup (B293187-BSD1)                            |        |                    | 1         | Prepared & A   | Analyzed: 10     | /25/21 |                |       |              |       | _ |
| Isopropylbenzene (Cumene)                         | 0.0212 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106    | 70-130         | 1.87  | 25           |       |   |
| p-Isopropyltoluene (p-Cymene)                     | 0.0212 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106    | 70-130         | 0.847 | 25           |       |   |
| Methyl Acetate                                    | 0.0195 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.7   | 70-130         | 2.43  | 25           |       |   |
| Methyl tert-Butyl Ether (MTBE)                    | 0.0222 | 0.0040             | mg/Kg wet | 0.0200         |                  | 111    | 70-130         | 0.270 | 25           |       |   |
| Methyl Cyclohexane                                | 0.0208 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         | 3.78  | 25           |       |   |
| Methylene Chloride                                | 0.0206 | 0.020              | mg/Kg wet | 0.0200         |                  | 103    | 40-160         | 0.682 | 25           |       | † |
| 4-Methyl-2-pentanone (MIBK)                       | 0.227  | 0.020              | mg/Kg wet | 0.200          |                  | 113    | 70-160         | 0.699 | 25           |       | † |
| Naphthalene                                       | 0.0204 | 0.0040             | mg/Kg wet | 0.0200         |                  | 102    | 40-130         | 1.94  | 25           |       | † |
| n-Propylbenzene                                   | 0.0222 | 0.0020             | mg/Kg wet | 0.0200         |                  | 111    | 70-130         | 1.96  | 25           |       |   |
| Styrene                                           | 0.0231 | 0.0020             | mg/Kg wet | 0.0200         |                  | 115    | 70-130         | 0.435 | 25           |       |   |
| 1,1,1,2-Tetrachloroethane                         | 0.0221 | 0.0020             | mg/Kg wet | 0.0200         |                  | 110    | 70-130         | 2.38  | 25           |       |   |
| 1,1,2,2-Tetrachloroethane                         | 0.0223 | 0.0010             | mg/Kg wet | 0.0200         |                  | 112    | 70-130         | 0.629 | 25           |       |   |
| Tetrachloroethylene                               | 0.0212 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106    | 70-130         | 2.48  | 25           |       |   |
| Tetrahydrofuran                                   | 0.0191 | 0.010              | mg/Kg wet | 0.0200         |                  | 95.7   | 70-130         | 4.49  | 25           |       |   |
| Toluene                                           | 0.0199 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.4   | 70-130         | 0.201 | 25           |       |   |
| 1,2,3-Trichlorobenzene                            | 0.0215 | 0.0020             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         | 2.39  | 25           |       |   |
| 1,2,4-Trichlorobenzene                            | 0.0203 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 3.58  | 25           |       |   |
| 1,3,5-Trichlorobenzene                            | 0.0196 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.8   | 70-130         | 3.42  | 25           |       |   |
| 1,1,1-Trichloroethane                             | 0.0210 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         | 0.853 | 25           |       |   |
| 1,1,2-Trichloroethane                             | 0.0225 | 0.0020             | mg/Kg wet | 0.0200         |                  | 112    | 70-130         | 1.07  | 25           |       |   |
| Trichloroethylene                                 | 0.0208 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         | 0.00  | 25           |       |   |
| Trichlorofluoromethane (Freon 11)                 | 0.0224 | 0.010              | mg/Kg wet | 0.0200         |                  | 112    | 70-130         | 2.29  | 25           |       |   |
| 1,2,3-Trichloropropane                            | 0.0190 | 0.0020             | mg/Kg wet | 0.0200         |                  | 95.1   | 70-130         | 2.13  | 25           |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 0.0213 | 0.010              | mg/Kg wet | 0.0200         |                  | 106    | 70-130         | 0.843 | 25           |       |   |
| 1,2,4-Trimethylbenzene                            | 0.0201 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 0.498 | 25           |       |   |
| 1,3,5-Trimethylbenzene                            | 0.0226 | 0.0020             | mg/Kg wet | 0.0200         |                  | 113    | 70-130         | 1.32  | 25           |       |   |
| Vinyl Chloride                                    | 0.0197 | 0.010              | mg/Kg wet | 0.0200         |                  | 98.7   | 40-130         | 1.01  | 25           |       | † |
| m+p Xylene                                        | 0.0447 | 0.0040             | mg/Kg wet | 0.0400         |                  | 112    | 70-130         | 1.68  | 25           |       |   |
| o-Xylene                                          | 0.0224 | 0.0020             | mg/Kg wet | 0.0200         |                  | 112    | 70-130         | 1.42  | 25           |       |   |
| Surrogate: 1,2-Dichloroethane-d4                  | 0.0506 |                    | mg/Kg wet | 0.0500         |                  | 101    | 70-130         |       |              |       | _ |
| Surrogate: Toluene-d8                             | 0.0510 |                    | mg/Kg wet | 0.0500         |                  | 102    | 70-130         |       |              |       |   |
| Surrogate: 4-Bromofluorobenzene                   | 0.0512 |                    | mg/Kg wet | 0.0500         |                  | 102    | 70-130         |       |              |       |   |



## QUALITY CONTROL

Spike

Source

%REC

RPD

# Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                          | Result   | Reporting | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes            |
|--------------------------------------------------|----------|-----------|-----------|----------------|------------------|---------------|----------------|-----|--------------|------------------|
| <u> </u>                                         |          |           |           |                |                  |               |                |     |              |                  |
| Batch B293200 - SW-846 3546 Blank (B293200-BLK1) |          |           |           | Prepared: 10   | 0/25/21 Analy    | wzed: 10/27/2 | 1              |     |              |                  |
| Acenaphthene                                     | ND       | 0.17      | mg/Kg wet | ricparcu. IC   | JIZJIZI MIIAI    | yzcu. 10/2//2 | .1             |     |              |                  |
| Acenaphthylene                                   | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Acetophenone                                     | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Aniline                                          | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Anthracene                                       | ND       | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Benzidine                                        | ND       | 0.66      | mg/Kg wet |                |                  |               |                |     |              | V-05             |
| Benzo(a)anthracene                               | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              | V-03             |
| Benzo(a)pyrene                                   | ND       | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Benzo(b)fluoranthene                             | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Benzo(g,h,i)perylene                             | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Benzo(k)fluoranthene                             | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Benzoic Acid                                     | ND<br>ND | 1.0       | mg/Kg wet |                |                  |               |                |     |              | L-04             |
| Bis(2-chloroethoxy)methane                       | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              | L-0 <del>1</del> |
| Bis(2-chloroethyl)ether                          | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Bis(2-chloroisopropyl)ether                      | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Bis(2-Ethylhexyl)phthalate                       | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| l-Bromophenylphenylether                         | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Butylbenzylphthalate                             |          | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Carbazole                                        | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| -Chloroaniline                                   | ND<br>ND | 0.66      | mg/Kg wet |                |                  |               |                |     |              | V-34             |
| l-Chloro-3-methylphenol                          | ND<br>ND | 0.66      | mg/Kg wet |                |                  |               |                |     |              | v-J4             |
| 2-Chloronaphthalene                              | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 2-Chlorophenol                                   | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| l-Chlorophenylphenylether                        | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Chrysene                                         | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Dibenz(a,h)anthracene                            | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Dibenzofuran                                     | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Di-n-butylphthalate                              | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| ,2-Dichlorobenzene                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| ,3-Dichlorobenzene                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| ,4-Dichlorobenzene                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 3.3-Dichlorobenzidine                            | ND       | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 2,4-Dichlorophenol                               | ND       | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Diethylphthalate                                 | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 2,4-Dimethylphenol                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Dimethylphthalate                                | ND       | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| I,6-Dinitro-2-methylphenol                       | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 2,4-Dinitrophenol                                | ND       | 0.66      | mg/Kg wet |                |                  |               |                |     |              | L-04, V-04       |
| 2,4-Dinitrotoluene                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              | L 01, 1-04       |
| 2,6-Dinitrotoluene                               | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Di-n-octylphthalate                              | ND       | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| ,2-Diphenylhydrazine/Azobenzene                  | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              | V-05             |
| Fluoranthene                                     | ND       | 0.17      | mg/Kg wet |                |                  |               |                |     |              | . 55             |
| Fluorene                                         | ND       | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Hexachlorobenzene                                | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Hexachlorobutadiene                              | ND       | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| Hexachlorocyclopentadiene                        | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              | L-04, V-05       |
| Hexachloroethane                                 | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              | L-04, ¥-03       |
| ndeno(1,2,3-cd)pyrene                            | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| sophorone                                        | ND<br>ND | 0.34      | mg/Kg wet |                |                  |               |                |     |              |                  |
| -Methylnaphthalene                               |          | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |
| 2-Methylnaphthalene                              | ND<br>ND | 0.17      | mg/Kg wet |                |                  |               |                |     |              |                  |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| nalyte                                 | Result         | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes   |
|----------------------------------------|----------------|--------------------|-----------|----------------|------------------|---------------|----------------|-----|--------------|---------|
| atch B293200 - SW-846 3546             |                |                    |           |                |                  |               |                |     |              |         |
| ank (B293200-BLK1)                     |                |                    |           | Prepared: 10   | /25/21 Analy     | yzed: 10/27/2 | .1             |     |              |         |
| Methylphenol                           | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| 4-Methylphenol                         | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| aphthalene                             | ND             | 0.17               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitroaniline                           | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitroaniline                           | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitroaniline                           | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| trobenzene                             | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitrophenol                            | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitrophenol                            | ND             | 0.66               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitrosodimethylamine                   | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitrosodiphenylamine/Diphenylamine     | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| Nitrosodi-n-propylamine                | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| entachloronitrobenzene                 | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| entachlorophenol                       | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              | V-05    |
| enanthrene                             | ND             | 0.17               | mg/Kg wet |                |                  |               |                |     |              |         |
| enol                                   | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| rene                                   | ND             | 0.17               | mg/Kg wet |                |                  |               |                |     |              |         |
| ridine                                 | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              | L-04    |
| 2,4,5-Tetrachlorobenzene               | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| 2,4-Trichlorobenzene                   | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| 4,5-Trichlorophenol                    | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| 4,6-Trichlorophenol                    | ND             | 0.34               | mg/Kg wet |                |                  |               |                |     |              |         |
| rrogate: 2-Fluorophenol                | 3.59           |                    | mg/Kg wet | 6.67           |                  | 53.8          | 30-130         |     |              |         |
| rrogate: Phenol-d6                     | 3.37           |                    | mg/Kg wet | 6.67           |                  | 50.5          | 30-130         |     |              |         |
| rrogate: Nitrobenzene-d5               | 1.60           |                    | mg/Kg wet | 3.33           |                  | 48.0          | 30-130         |     |              |         |
| rrogate: 2-Fluorobiphenyl              | 2.06           |                    | mg/Kg wet | 3.33           |                  | 61.7          | 30-130         |     |              |         |
| rrogate: 2,4,6-Tribromophenol          | 4.96           |                    | mg/Kg wet | 6.67           |                  | 74.5          | 30-130         |     |              |         |
| rrogate: p-Terphenyl-d14               | 2.47           |                    | mg/Kg wet | 3.33           |                  | 74.1          | 30-130         |     |              |         |
| CS (B293200-BS1)                       |                |                    | 1         | Prepared: 10   | /25/21 Analy     | yzed: 10/27/2 | .1             |     |              |         |
| cenaphthene                            | 0.886          | 0.17               | mg/Kg wet | 1.67           |                  | 53.2          | 40-140         |     |              |         |
| eenaphthylene                          | 1.02           | 0.17               | mg/Kg wet | 1.67           |                  | 60.9          | 40-140         |     |              |         |
| cetophenone                            | 0.778          | 0.34               | mg/Kg wet | 1.67           |                  | 46.7          | 40-140         |     |              |         |
| niline                                 | 0.639          | 0.34               | mg/Kg wet | 1.67           |                  | 38.4          | 10-140         |     |              |         |
| nthracene                              | 1.00           | 0.17               | mg/Kg wet | 1.67           |                  | 60.1          | 40-140         |     |              |         |
| enzidine                               | 0.810          | 0.66               | mg/Kg wet | 1.67           |                  | 48.6          | 40-140         |     |              | V-05    |
| enzo(a)anthracene                      | 0.986          | 0.17               | mg/Kg wet | 1.67           |                  | 59.2          | 40-140         |     |              |         |
| enzo(a)pyrene                          | 1.08           | 0.17               | mg/Kg wet | 1.67           |                  | 64.6          | 40-140         |     |              |         |
| enzo(b)fluoranthene                    | 1.01           | 0.17               | mg/Kg wet | 1.67           |                  | 60.9          | 40-140         |     |              |         |
| enzo(g,h,i)perylene                    | 1.11           | 0.17               | mg/Kg wet | 1.67           |                  | 66.8          | 40-140         |     |              |         |
| enzo(k)fluoranthene                    | 1.10           | 0.17               | mg/Kg wet | 1.67           |                  | 66.2          | 40-140         |     |              |         |
| enzoic Acid                            | 0.230          | 1.0                | mg/Kg wet | 1.67           |                  | 13.8 *        | 30-130         |     |              | L-04, J |
| s(2-chloroethoxy)methane               | 0.849          | 0.34               | mg/Kg wet | 1.67           |                  | 50.9          | 40-140         |     |              | ,       |
| s(2-chloroethyl)ether                  | 0.817          | 0.34               | mg/Kg wet | 1.67           |                  | 49.0          | 40-140         |     |              |         |
| s(2-chloroisopropyl)ether              | 1.03           | 0.34               | mg/Kg wet | 1.67           |                  | 61.6          | 40-140         |     |              |         |
| s(2-Ethylhexyl)phthalate               | 0.996          | 0.34               | mg/Kg wet | 1.67           |                  | 59.7          | 40-140         |     |              |         |
| Bromophenylphenylether                 | 0.985          | 0.34               | mg/Kg wet | 1.67           |                  | 59.1          | 40-140         |     |              |         |
| ntylbenzylphthalate                    | 0.959          | 0.34               | mg/Kg wet | 1.67           |                  | 57.5          | 40-140         |     |              |         |
| arbazole                               | 0.939          | 0.17               | mg/Kg wet | 1.67           |                  | 58.5          | 40-140         |     |              |         |
|                                        |                | 0.66               | mg/Kg wet | 1.67           |                  | 42.1          | 10-140         |     |              | V-34    |
| Chloroaniline                          |                |                    |           |                |                  |               |                |     |              | v - J=  |
| Chloroaniline<br>Chloro-3-methylphenol | 0.702<br>0.888 | 0.66               | mg/Kg wet | 1.67           |                  | 53.3          | 30-130         |     |              |         |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes         |
|-------------------------------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|-----|--------------|---------------|
| Batch B293200 - SW-846 3546                                       |        |                    |           |                |                  |              |                |     |              |               |
| LCS (B293200-BS1)                                                 |        |                    |           | Prepared: 10   | )/25/21 Analy    | zed: 10/27/2 | 21             |     |              |               |
| 2-Chlorophenol                                                    | 0.898  | 0.34               | mg/Kg wet | 1.67           |                  | 53.9         | 30-130         |     |              |               |
| -Chlorophenylphenylether                                          | 0.961  | 0.34               | mg/Kg wet | 1.67           |                  | 57.7         | 40-140         |     |              |               |
| Chrysene                                                          | 1.01   | 0.17               | mg/Kg wet | 1.67           |                  | 60.4         | 40-140         |     |              |               |
| Dibenz(a,h)anthracene                                             | 1.09   | 0.17               | mg/Kg wet | 1.67           |                  | 65.3         | 40-140         |     |              |               |
| Dibenzofuran                                                      | 1.01   | 0.34               | mg/Kg wet | 1.67           |                  | 60.5         | 40-140         |     |              |               |
| Di-n-butylphthalate                                               | 0.957  | 0.34               | mg/Kg wet | 1.67           |                  | 57.4         | 40-140         |     |              |               |
| ,2-Dichlorobenzene                                                | 0.833  | 0.34               | mg/Kg wet | 1.67           |                  | 50.0         | 40-140         |     |              |               |
| ,3-Dichlorobenzene                                                | 0.813  | 0.34               | mg/Kg wet | 1.67           |                  | 48.8         | 40-140         |     |              |               |
| ,4-Dichlorobenzene                                                | 0.819  | 0.34               | mg/Kg wet | 1.67           |                  | 49.1         | 40-140         |     |              |               |
| ,3-Dichlorobenzidine                                              | 0.739  | 0.17               | mg/Kg wet | 1.67           |                  | 44.4         | 20-140         |     |              |               |
| ,4-Dichlorophenol                                                 | 0.885  | 0.34               | mg/Kg wet | 1.67           |                  | 53.1         | 30-130         |     |              |               |
| Piethylphthalate                                                  | 0.978  | 0.34               | mg/Kg wet | 1.67           |                  | 58.7         | 40-140         |     |              |               |
| ,4-Dimethylphenol                                                 | 0.907  | 0.34               | mg/Kg wet | 1.67           |                  | 54.4         | 30-130         |     |              |               |
| Dimethylphthalate                                                 | 0.977  | 0.34               | mg/Kg wet | 1.67           |                  | 58.6         | 40-140         |     |              |               |
| ,6-Dinitro-2-methylphenol                                         | 0.895  | 0.34               | mg/Kg wet | 1.67           |                  | 53.7         | 30-130         |     |              |               |
| ,4-Dinitrophenol                                                  | 0.462  | 0.66               | mg/Kg wet | 1.67           |                  | 27.7 *       | 30-130         |     |              | L-04, V-04, J |
| ,4-Dinitrotoluene                                                 | 1.14   | 0.34               | mg/Kg wet | 1.67           |                  | 68.5         | 40-140         |     |              |               |
| ,6-Dinitrotoluene                                                 | 1.15   | 0.34               | mg/Kg wet | 1.67           |                  | 68.8         | 40-140         |     |              |               |
| Di-n-octylphthalate                                               | 0.882  | 0.34               | mg/Kg wet | 1.67           |                  | 52.9         | 40-140         |     |              |               |
| ,2-Diphenylhydrazine/Azobenzene                                   | 0.825  | 0.34               | mg/Kg wet | 1.67           |                  | 49.5         | 40-140         |     |              | V-05          |
| luoranthene                                                       | 0.945  | 0.17               | mg/Kg wet | 1.67           |                  | 56.7         | 40-140         |     |              |               |
| luorene                                                           | 0.987  | 0.17               | mg/Kg wet | 1.67           |                  | 59.2         | 40-140         |     |              |               |
| Iexachlorobenzene                                                 | 1.08   | 0.34               | mg/Kg wet | 1.67           |                  | 64.7         | 40-140         |     |              |               |
| Iexachlorobutadiene                                               | 0.782  | 0.34               | mg/Kg wet | 1.67           |                  | 46.9         | 40-140         |     |              |               |
| lexachlorocyclopentadiene                                         | 0.539  | 0.34               | mg/Kg wet | 1.67           |                  | 32.3 *       | 40-140         |     |              | L-04, V-05    |
| lexachloroethane                                                  | 0.735  | 0.34               | mg/Kg wet | 1.67           |                  | 44.1         | 40-140         |     |              | 20., 100      |
| ndeno(1,2,3-cd)pyrene                                             | 1.11   | 0.17               | mg/Kg wet | 1.67           |                  | 66.9         | 40-140         |     |              |               |
| sophorone                                                         | 0.845  | 0.34               | mg/Kg wet | 1.67           |                  | 50.7         | 40-140         |     |              |               |
| -Methylnaphthalene                                                | 0.809  | 0.17               | mg/Kg wet | 1.67           |                  | 48.5         | 40-140         |     |              |               |
| -Methylnaphthalene                                                | 1.01   | 0.17               | mg/Kg wet | 1.67           |                  | 60.4         | 40-140         |     |              |               |
| -Methylphenol                                                     | 0.876  | 0.34               | mg/Kg wet | 1.67           |                  | 52.5         | 30-130         |     |              |               |
| /4-Methylphenol                                                   | 0.888  | 0.34               | mg/Kg wet | 1.67           |                  | 53.3         | 30-130         |     |              |               |
| Japhthalene                                                       | 0.901  | 0.17               | mg/Kg wet | 1.67           |                  | 54.1         | 40-140         |     |              |               |
| -Nitroaniline                                                     | 0.990  | 0.34               | mg/Kg wet | 1.67           |                  | 59.4         | 40-140         |     |              |               |
| -Nitroaniline                                                     | 1.08   | 0.34               | mg/Kg wet | 1.67           |                  | 64.9         | 30-140         |     |              |               |
| -Nitroaniline                                                     | 1.14   | 0.34               | mg/Kg wet | 1.67           |                  | 68.6         | 40-140         |     |              |               |
| litrobenzene                                                      |        | 0.34               | mg/Kg wet | 1.67           |                  | 46.9         | 40-140         |     |              |               |
| -Nitrophenol                                                      | 0.782  | 0.34               | mg/Kg wet |                |                  |              |                |     |              |               |
| -Nitrophenol                                                      | 0.977  | 0.66               | mg/Kg wet | 1.67           |                  | 58.6         | 30-130         |     |              |               |
| N-Nitrosodimethylamine                                            | 0.896  | 0.34               | mg/Kg wet | 1.67           |                  | 53.8         | 30-130         |     |              |               |
|                                                                   | 0.832  |                    | mg/Kg wet | 1.67           |                  | 49.9         | 40-140         |     |              |               |
| N-Nitrosodiphenylamine/Diphenylamine<br>N-Nitrosodi-n-propylamine | 1.06   | 0.34<br>0.34       | mg/Kg wet | 1.67           |                  | 63.7         | 40-140         |     |              |               |
| entachloronitrobenzene                                            | 0.787  | 0.34               | mg/Kg wet | 1.67           |                  | 47.2         | 40-140         |     |              |               |
| entachlorophenol                                                  | 1.05   |                    |           | 1.67           |                  | 63.1         | 40-140         |     |              | V 05          |
|                                                                   | 0.659  | 0.34               | mg/Kg wet | 1.67           |                  | 39.5         | 30-130         |     |              | V-05          |
| henanthrene                                                       | 1.00   | 0.17               | mg/Kg wet | 1.67           |                  | 60.1         | 40-140         |     |              |               |
| henol                                                             | 0.903  | 0.34               | mg/Kg wet | 1.67           |                  | 54.2         | 30-130         |     |              |               |
| yrene                                                             | 0.982  | 0.17               | mg/Kg wet | 1.67           |                  | 58.9         | 40-140         |     |              |               |
| yridine                                                           | 0.457  | 0.34               | mg/Kg wet | 1.67           |                  | 27.4 *       | 30-140         |     |              | L-04          |
| ,2,4,5-Tetrachlorobenzene                                         | 0.905  | 0.34               | mg/Kg wet | 1.67           |                  | 54.3         | 40-140         |     |              |               |
| ,2,4-Trichlorobenzene                                             | 0.853  | 0.34               | mg/Kg wet | 1.67           |                  | 51.2         | 40-140         |     |              |               |
| 2,4,5-Trichlorophenol                                             | 1.02   | 0.34               | mg/Kg wet | 1.67           |                  | 61.0         | 30-130         |     |              |               |
| 2,4,6-Trichlorophenol                                             | 0.963  | 0.34               | mg/Kg wet | 1.67           |                  | 57.8         | 30-130         |     |              |               |



## QUALITY CONTROL

|                                                | D 1    | Reporting | TI '4     | Spike        | Source        | 0/DEG         | %REC   | DDD    | RPD   | N             |     |
|------------------------------------------------|--------|-----------|-----------|--------------|---------------|---------------|--------|--------|-------|---------------|-----|
| Analyte                                        | Result | Limit     | Units     | Level        | Result        | %REC          | Limits | RPD    | Limit | Notes         |     |
| Batch B293200 - SW-846 3546  LCS (B293200-BS1) |        |           |           | Prepared: 10 | 0/25/21 Anal  | vzed: 10/27/2 | 21     |        |       |               | _   |
| Surrogate: 2-Fluorophenol                      | 3.80   |           | mg/Kg wet | 6.67         |               | 57.1          | 30-130 |        |       |               | =   |
| Surrogate: Phenol-d6                           | 3.52   |           | mg/Kg wet | 6.67         |               | 52.7          | 30-130 |        |       |               |     |
| Surrogate: Nitrobenzene-d5                     | 1.73   |           | mg/Kg wet | 3.33         |               | 51.9          | 30-130 |        |       |               |     |
| Surrogate: 2-Fluorobiphenyl                    | 2.08   |           | mg/Kg wet | 3.33         |               | 62.5          | 30-130 |        |       |               |     |
| Surrogate: 2,4,6-Tribromophenol                | 5.10   |           | mg/Kg wet | 6.67         |               | 76.5          | 30-130 |        |       |               |     |
| Surrogate: p-Terphenyl-d14                     | 2.25   |           | mg/Kg wet | 3.33         |               | 67.4          | 30-130 |        |       |               |     |
| LCS Dup (B293200-BSD1)                         |        |           |           | Prepared: 10 | 0/25/21 Analy | yzed: 10/27/2 | 21     |        |       |               |     |
| Acenaphthene                                   | 0.847  | 0.17      | mg/Kg wet | 1.67         |               | 50.8          | 40-140 | 4.54   | 30    |               |     |
| Acenaphthylene                                 | 0.973  | 0.17      | mg/Kg wet | 1.67         |               | 58.4          | 40-140 | 4.33   | 30    |               |     |
| Acetophenone                                   | 0.720  | 0.34      | mg/Kg wet | 1.67         |               | 43.2          | 40-140 | 7.65   | 30    |               |     |
| Aniline                                        | 0.617  | 0.34      | mg/Kg wet | 1.67         |               | 37.0          | 10-140 | 3.61   | 50    |               | † ‡ |
| Anthracene                                     | 0.992  | 0.17      | mg/Kg wet | 1.67         |               | 59.5          | 40-140 | 1.04   | 30    |               |     |
| Benzidine                                      | 0.860  | 0.66      | mg/Kg wet | 1.67         |               | 51.6          | 40-140 | 6.07   | 30    | V-05          |     |
| Benzo(a)anthracene                             | 0.984  | 0.17      | mg/Kg wet | 1.67         |               | 59.0          | 40-140 | 0.271  | 30    |               |     |
| Benzo(a)pyrene                                 | 1.06   | 0.17      | mg/Kg wet | 1.67         |               | 63.8          | 40-140 | 1.15   | 30    |               |     |
| Benzo(b)fluoranthene                           | 1.01   | 0.17      | mg/Kg wet | 1.67         |               | 60.6          | 40-140 | 0.395  | 30    |               |     |
| Benzo(g,h,i)perylene                           | 1.13   | 0.17      | mg/Kg wet | 1.67         |               | 67.6          | 40-140 | 1.13   | 30    |               |     |
| Benzo(k)fluoranthene                           | 1.10   | 0.17      | mg/Kg wet | 1.67         |               | 66.0          | 40-140 | 0.272  | 30    |               |     |
| Benzoic Acid                                   | 0.230  | 1.0       | mg/Kg wet | 1.67         |               | 13.8 *        | 30-130 | 0.290  | 50    | L-04, J       | ‡   |
| Bis(2-chloroethoxy)methane                     | 0.745  | 0.34      | mg/Kg wet | 1.67         |               | 44.7          | 40-140 | 13.0   | 30    |               |     |
| Bis(2-chloroethyl)ether                        | 0.734  | 0.34      | mg/Kg wet | 1.67         |               | 44.0          | 40-140 | 10.7   | 30    |               |     |
| Bis(2-chloroisopropyl)ether                    | 0.927  | 0.34      | mg/Kg wet | 1.67         |               | 55.6          | 40-140 | 10.2   | 30    |               |     |
| Bis(2-Ethylhexyl)phthalate                     | 0.975  | 0.34      | mg/Kg wet | 1.67         |               | 58.5          | 40-140 | 2.10   | 30    |               |     |
| 4-Bromophenylphenylether                       | 0.987  | 0.34      | mg/Kg wet | 1.67         |               | 59.2          | 40-140 | 0.270  | 30    |               |     |
| Butylbenzylphthalate                           | 0.969  | 0.34      | mg/Kg wet | 1.67         |               | 58.2          | 40-140 | 1.07   | 30    |               |     |
| Carbazole                                      | 0.961  | 0.17      | mg/Kg wet | 1.67         |               | 57.7          | 40-140 | 1.41   | 30    |               |     |
| 4-Chloroaniline                                | 0.675  | 0.66      | mg/Kg wet | 1.67         |               | 40.5          | 10-140 | 3.97   | 30    | V-34          | †   |
| 4-Chloro-3-methylphenol                        | 0.866  | 0.66      | mg/Kg wet | 1.67         |               | 52.0          | 30-130 | 2.51   | 30    |               |     |
| 2-Chloronaphthalene                            | 0.861  | 0.34      | mg/Kg wet | 1.67         |               | 51.7          | 40-140 | 6.59   | 30    |               |     |
| 2-Chlorophenol                                 | 0.805  | 0.34      | mg/Kg wet | 1.67         |               | 48.3          | 30-130 | 11.0   | 30    |               |     |
| 4-Chlorophenylphenylether                      | 0.923  | 0.34      | mg/Kg wet | 1.67         |               | 55.4          | 40-140 | 4.07   | 30    |               |     |
| Chrysene                                       | 1.01   | 0.17      | mg/Kg wet | 1.67         |               | 60.4          | 40-140 | 0.0663 | 30    |               |     |
| Dibenz(a,h)anthracene                          | 1.09   | 0.17      | mg/Kg wet | 1.67         |               | 65.6          | 40-140 | 0.367  | 30    |               |     |
| Dibenzofuran                                   | 0.988  | 0.34      | mg/Kg wet | 1.67         |               | 59.3          | 40-140 | 2.00   | 30    |               |     |
| Di-n-butylphthalate                            | 0.955  | 0.34      | mg/Kg wet | 1.67         |               | 57.3          | 40-140 | 0.174  | 30    |               |     |
| 1,2-Dichlorobenzene                            | 0.757  | 0.34      | mg/Kg wet | 1.67         |               | 45.4          | 40-140 | 9.56   | 30    |               |     |
| 1,3-Dichlorobenzene                            | 0.734  | 0.34      | mg/Kg wet | 1.67         |               | 44.1          | 40-140 | 10.1   | 30    |               |     |
| 1,4-Dichlorobenzene                            | 0.741  | 0.34      | mg/Kg wet | 1.67         |               | 44.5          | 40-140 | 9.96   | 30    |               |     |
| 3,3-Dichlorobenzidine                          | 0.781  | 0.17      | mg/Kg wet | 1.67         |               | 46.9          | 20-140 | 5.52   | 50    |               | † ‡ |
| 2,4-Dichlorophenol                             | 0.820  | 0.34      | mg/Kg wet | 1.67         |               | 49.2          | 30-130 | 7.66   | 30    |               |     |
| Diethylphthalate                               | 0.952  | 0.34      | mg/Kg wet | 1.67         |               | 57.1          | 40-140 | 2.70   | 30    |               |     |
| 2,4-Dimethylphenol                             | 0.842  | 0.34      | mg/Kg wet | 1.67         |               | 50.5          | 30-130 | 7.39   | 30    |               |     |
| Dimethylphthalate                              | 0.956  | 0.34      | mg/Kg wet | 1.67         |               | 57.4          | 40-140 | 2.21   | 30    |               |     |
| 4,6-Dinitro-2-methylphenol                     | 0.903  | 0.34      | mg/Kg wet | 1.67         |               | 54.2          | 30-130 | 0.890  | 30    |               |     |
| 2,4-Dinitrophenol                              | 0.458  | 0.66      | mg/Kg wet | 1.67         |               | 27.5 *        | 30-130 | 0.942  | 30    | L-04, V-04, J |     |
| 2,4-Dinitrotoluene                             | 1.13   | 0.34      | mg/Kg wet | 1.67         |               | 67.7          | 40-140 | 1.15   | 30    |               |     |
| 2,6-Dinitrotoluene                             | 1.14   | 0.34      | mg/Kg wet | 1.67         |               | 68.4          | 40-140 | 0.671  | 30    |               |     |
| Di-n-octylphthalate                            | 0.858  | 0.34      | mg/Kg wet | 1.67         |               | 51.5          | 40-140 | 2.68   | 30    |               |     |
| 1,2-Diphenylhydrazine/Azobenzene               | 0.819  | 0.34      | mg/Kg wet | 1.67         |               | 49.1          | 40-140 | 0.811  | 30    | V-05          |     |
| Fluoranthene                                   | 0.931  | 0.17      | mg/Kg wet | 1.67         |               | 55.8          | 40-140 | 1.53   | 30    |               |     |
| Fluorene                                       | 0.958  | 0.17      | mg/Kg wet | 1.67         |               | 57.5          | 40-140 | 2.91   | 30    |               |     |



## QUALITY CONTROL

| Analyte                                                    | Result        | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD           | RPD<br>Limit | Notes          |
|------------------------------------------------------------|---------------|--------------------|------------------------|----------------|------------------|--------------|------------------|---------------|--------------|----------------|
| Batch B293200 - SW-846 3546                                |               |                    |                        |                |                  |              |                  |               |              |                |
| .CS Dup (B293200-BSD1)                                     |               |                    |                        | Prepared: 10   | 0/25/21 Analy    | zed: 10/27/2 | 1                |               |              |                |
| Iexachlorobenzene                                          | 1.06          | 0.34               | mg/Kg wet              | 1.67           |                  | 63.5         | 40-140           | 1.84          | 30           |                |
| Iexachlorobutadiene                                        | 0.707         | 0.34               | mg/Kg wet              | 1.67           |                  | 42.4         | 40-140           | 10.1          | 30           |                |
| <b>Iexachlorocyclopentadiene</b>                           | 0.476         | 0.34               | mg/Kg wet              | 1.67           |                  | 28.6 *       | 40-140           | 12.3          | 30           | L-04, V-05     |
| Iexachloroethane                                           | 0.652         | 0.34               | mg/Kg wet              | 1.67           |                  | 39.1 *       | 40-140           | 12.0          | 30           | L-07           |
| ndeno(1,2,3-cd)pyrene                                      | 1.11          | 0.17               | mg/Kg wet              | 1.67           |                  | 66.4         | 40-140           | 0.660         | 30           |                |
| sophorone                                                  | 0.782         | 0.34               | mg/Kg wet              | 1.67           |                  | 46.9         | 40-140           | 7.70          | 30           |                |
| -Methylnaphthalene                                         | 0.763         | 0.17               | mg/Kg wet              | 1.67           |                  | 45.8         | 40-140           | 5.81          | 30           |                |
| -Methylnaphthalene                                         | 0.925         | 0.17               | mg/Kg wet              | 1.67           |                  | 55.5         | 40-140           | 8.56          | 30           |                |
| -Methylphenol                                              | 0.827         | 0.34               | mg/Kg wet              | 1.67           |                  | 49.6         | 30-130           | 5.68          | 30           |                |
| /4-Methylphenol                                            | 0.831         | 0.34               | mg/Kg wet              | 1.67           |                  | 49.9         | 30-130           | 6.63          | 30           |                |
| Japhthalene                                                | 0.811         | 0.17               | mg/Kg wet              | 1.67           |                  | 48.6         | 40-140           | 10.6          | 30           |                |
| -Nitroaniline                                              | 0.978         | 0.34               | mg/Kg wet              | 1.67           |                  | 58.7         | 40-140           | 1.22          | 30           |                |
| -Nitroaniline                                              | 1.04          | 0.34               | mg/Kg wet              | 1.67           |                  | 62.6         | 30-140           | 3.58          | 30           |                |
| -Nitroaniline                                              | 1.12          | 0.34               | mg/Kg wet              | 1.67           |                  | 67.5         | 40-140           | 1.73          | 30           |                |
| litrobenzene                                               | 0.705         | 0.34               | mg/Kg wet              | 1.67           |                  | 42.3         | 40-140           | 10.4          | 30           |                |
| -Nitrophenol                                               | 0.870         | 0.34               | mg/Kg wet              | 1.67           |                  | 52.2         | 30-130           | 11.6          | 30           |                |
| Nitrophenol                                                | 0.887         | 0.66               | mg/Kg wet              | 1.67           |                  | 53.2         | 30-130           | 0.972         | 50           |                |
| -Nitrosodimethylamine                                      | 0.748         | 0.34               | mg/Kg wet              | 1.67           |                  | 44.9         | 40-140           | 10.6          | 30           |                |
| -Nitrosodiphenylamine/Diphenylamine                        | 1.06          | 0.34               | mg/Kg wet              | 1.67           |                  | 63.8         | 40-140           | 0.157         | 30           |                |
| -Nitrosodi-n-propylamine                                   | 0.723         | 0.34               | mg/Kg wet              | 1.67           |                  | 43.4         | 40-140           | 8.48          | 30           |                |
| entachloronitrobenzene                                     | 1.04          | 0.34               | mg/Kg wet              | 1.67           |                  | 62.2         | 40-140           | 1.50          | 30           |                |
| entachlorophenol                                           | 0.654         | 0.34               | mg/Kg wet              | 1.67           |                  | 39.3         | 30-130           | 0.711         | 30           | V-05           |
| nenanthrene                                                | 0.985         | 0.17               | mg/Kg wet              | 1.67           |                  | 59.1         | 40-140           | 1.61          | 30           |                |
| nenol                                                      | 0.815         | 0.34               | mg/Kg wet              | 1.67           |                  | 48.9         | 30-130           | 10.2          | 30           |                |
| /rene                                                      | 0.982         | 0.17               | mg/Kg wet              | 1.67           |                  | 58.9         | 40-140           | 0.0339        | 30           | T 04           |
| v <b>ridine</b><br>2,4,5-Tetrachlorobenzene                | 0.420         | 0.34               | mg/Kg wet              | 1.67           |                  | 25.2 *       | 30-140           | 8.43          | 30           | L-04           |
| 2,4-Trichlorobenzene                                       | 0.837         | 0.34<br>0.34       | mg/Kg wet<br>mg/Kg wet | 1.67           |                  | 50.2         | 40-140           | 7.77          | 30           |                |
| 4,5-Trichlorophenol                                        | 0.760         | 0.34               | mg/Kg wet              | 1.67           |                  | 45.6         | 40-140           | 11.5          | 30           |                |
| 4,6-Trichlorophenol                                        | 1.02<br>0.946 | 0.34               | mg/Kg wet              | 1.67<br>1.67   |                  | 60.9<br>56.7 | 30-130<br>30-130 | 0.131<br>1.78 | 30<br>30     |                |
| <u> </u>                                                   |               | 0.54               |                        |                |                  |              |                  | 1.76          | 30           |                |
| arrogate: 2-Fluorophenol                                   | 3.41          |                    | mg/Kg wet              | 6.67           |                  | 51.1         | 30-130           |               |              |                |
| irrogate: Phenol-d6                                        | 3.20          |                    | mg/Kg wet              | 6.67           |                  | 48.0         | 30-130           |               |              |                |
| rrogate: Nitrobenzene-d5<br>rrogate: 2-Fluorobiphenyl      | 1.53<br>1.94  |                    | mg/Kg wet              | 3.33<br>3.33   |                  | 45.9<br>58.2 | 30-130<br>30-130 |               |              |                |
| rrogate: 2-Fluorobipnenyi<br>rrogate: 2,4,6-Tribromophenol | 1.94<br>4.93  |                    | mg/Kg wet<br>mg/Kg wet | 5.53<br>6.67   |                  | 58.2<br>74.0 | 30-130           |               |              |                |
| rrogate: p-Terphenyl-d14                                   | 2.25          |                    | mg/Kg wet              | 3.33           |                  | 67.5         | 30-130           |               |              |                |
| atrix Spike (B293200-MS1)                                  |               | rce: 21J1472       |                        |                | 0/25/21 Analy    |              |                  |               |              |                |
| enaphthene                                                 | 1.04          | 0.19               | mg/Kg dry              | 1.90           | ND               | 54.6         | 40-140           |               |              |                |
| enaphthylene                                               | 1.04          | 0.19               | mg/Kg dry              | 1.90           | ND<br>ND         | 61.4         | 40-140           |               |              |                |
| eetophenone                                                | 1.06          | 0.39               | mg/Kg dry              | 1.90           | ND<br>ND         | 55.9         | 40-140           |               |              |                |
| niline                                                     | 0.171         | 0.39               | mg/Kg dry              | 1.90           | ND<br>ND         | 9.00 *       | 40-140           |               |              | MS-09, R-06, J |
| nthracene                                                  | 1.10          | 0.19               | mg/Kg dry              | 1.90           | ND<br>ND         | 58.1         | 40-140           |               |              | , 00, 0        |
| enzidine                                                   | 0.00494       | 0.75               | mg/Kg dry              | 1.90           | ND               | 0.260 *      | 40-140           |               |              | MS-09, V-05, J |
| enzo(a)anthracene                                          | 1.11          | 0.19               | mg/Kg dry              | 1.90           | 0.0741           | 54.4         | 40-140           |               |              | , ,,           |
| nzo(a)pyrene                                               | 0.969         | 0.19               | mg/Kg dry              | 1.90           | ND               | 51.0         | 40-140           |               |              |                |
| enzo(b)fluoranthene                                        | 1.06          | 0.19               | mg/Kg dry              | 1.90           | 0.125            | 49.4         | 40-140           |               |              |                |
| enzo(g,h,i)perylene                                        | 0.860         | 0.19               | mg/Kg dry              | 1.90           | 0.123<br>ND      | 45.3         | 40-140           |               |              |                |
| enzo(k)fluoranthene                                        | 1.07          | 0.19               | mg/Kg dry              | 1.90           | ND               | 56.5         | 40-140           |               |              |                |
| enzoic Acid                                                | 0.913         | 1.1                | mg/Kg dry              | 1.90           | ND               | 48.1         | 40-140           |               |              | J              |
| s(2-chloroethoxy)methane                                   | 0.982         | 0.39               | mg/Kg dry              | 1.90           | ND               | 51.7         | 40-140           |               |              | •              |
|                                                            | 0.762         |                    | J -0 J                 | 1.70           | 110              | J            | .0 110           |               |              |                |



Pentachloronitrobenzene

Pentachlorophenol

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                     | Result       | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD  | RPD<br>Limit | Notes          |
|-------------------------------------------------------------|--------------|--------------------|------------------------|----------------|------------------|--------------|------------------|------|--------------|----------------|
|                                                             | Result       | Lillit             | Onits                  | Level          | Result           | 70KEC        | Lillits          | KI D | Lillit       | Notes          |
| Batch B293200 - SW-846 3546                                 |              | 2171452            | 02                     | Drono J. 1/    | 0/25/21          | and: 10/07/  | 21               |      |              |                |
| Matrix Spike (B293200-MS1) Bis(2-chloroisopropyl)ether      |              | ce: 21J1472-       | mg/Kg dry              |                | 0/25/21 Analyz   |              |                  |      |              |                |
| Bis(2-Ethylhexyl)phthalate                                  | 1.19         | 0.39               | mg/Kg dry              | 1.90           | ND               | 62.8<br>71.0 | 40-140<br>40-140 |      |              |                |
| 4-Bromophenylphenylether                                    | 1.35         | 0.39               | mg/Kg dry              | 1.90<br>1.90   | ND               | 59.5         | 40-140           |      |              |                |
| Butylbenzylphthalate                                        | 1.13<br>1.28 | 0.39               | mg/Kg dry              | 1.90           | ND<br>ND         | 67.5         | 40-140           |      |              |                |
| Carbazole                                                   | 1.10         | 0.19               | mg/Kg dry              | 1.90           | ND<br>ND         | 58.0         | 40-140           |      |              |                |
| 4-Chloroaniline                                             | 0.299        | 0.75               | mg/Kg dry              | 1.90           | ND<br>ND         | 15.7 *       |                  |      |              | MS-09, V-34, J |
| 4-Chloro-3-methylphenol                                     | 1.02         | 0.75               | mg/Kg dry              | 1.90           | ND<br>ND         | 53.9         | 30-130           |      |              | 0,, 1 3 1,0    |
| 2-Chloronaphthalene                                         | 0.994        | 0.39               | mg/Kg dry              | 1.90           | ND               | 52.3         | 40-140           |      |              |                |
| 2-Chlorophenol                                              | 0.994        | 0.39               | mg/Kg dry              | 1.90           | ND               | 52.3         | 30-130           |      |              |                |
| 4-Chlorophenylphenylether                                   | 1.10         | 0.39               | mg/Kg dry              | 1.90           | ND               | 57.7         | 40-140           |      |              |                |
| Chrysene                                                    | 1.20         | 0.19               | mg/Kg dry              | 1.90           | 0.160            | 55.0         | 40-140           |      |              |                |
| Dibenz(a,h)anthracene                                       | 0.958        | 0.19               | mg/Kg dry              | 1.90           | ND               | 50.5         | 40-140           |      |              |                |
| Dibenzofuran                                                | 1.53         | 0.39               | mg/Kg dry              | 1.90           | 0.272            | 66.5         | 40-140           |      |              |                |
| Di-n-butylphthalate                                         | 1.10         | 0.39               | mg/Kg dry              | 1.90           | ND               | 57.7         | 40-140           |      |              |                |
| 1,2-Dichlorobenzene                                         | 0.941        | 0.39               | mg/Kg dry              | 1.90           | ND               | 49.5         | 40-140           |      |              |                |
| 1,3-Dichlorobenzene                                         | 0.897        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.2         | 40-140           |      |              |                |
| 1,4-Dichlorobenzene                                         | 0.902        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.5         | 40-140           |      |              |                |
| 3,3-Dichlorobenzidine                                       | 0.00684      | 0.19               | mg/Kg dry              | 1.90           | ND               | 0.360 *      | 40-140           |      |              | MS-09, J       |
| 2,4-Dichlorophenol                                          | 1.01         | 0.39               | mg/Kg dry              | 1.90           | ND               | 53.0         | 30-130           |      |              |                |
| Diethylphthalate                                            | 1.12         | 0.39               | mg/Kg dry              | 1.90           | ND               | 58.9         | 40-140           |      |              |                |
| 2,4-Dimethylphenol                                          | 0.566        | 0.39               | mg/Kg dry              | 1.90           | ND               | 29.8 *       | 30-130           |      |              | MS-09          |
| Dimethylphthalate                                           | 1.12         | 0.39               | mg/Kg dry              | 1.90           | ND               | 59.1         | 40-140           |      |              |                |
| 4,6-Dinitro-2-methylphenol                                  | 0.896        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.2         | 30-130           |      |              |                |
| 2,4-Dinitrophenol                                           | 0.610        | 0.75               | mg/Kg dry              | 1.90           | ND               | 32.1         | 30-130           |      |              | V-04, J        |
| 2,4-Dinitrotoluene                                          | 1.29         | 0.39               | mg/Kg dry              | 1.90           | ND               | 68.0         | 40-140           |      |              |                |
| 2,6-Dinitrotoluene                                          | 1.31         | 0.39               | mg/Kg dry              | 1.90           | ND               | 68.9         | 40-140           |      |              |                |
| Di-n-octylphthalate                                         | 1.17         | 0.39               | mg/Kg dry              | 1.90           | ND               | 61.7         | 40-140           |      |              |                |
| 1,2-Diphenylhydrazine/Azobenzene                            | 0.985        | 0.39               | mg/Kg dry              | 1.90           | ND               | 51.9         | 40-140           |      |              | V-05           |
| Fluoranthene                                                | 1.16         | 0.19               | mg/Kg dry              | 1.90           | 0.117            | 54.8         | 40-140           |      |              |                |
| Fluorene                                                    | 1.15         | 0.19               | mg/Kg dry              | 1.90           | ND               | 60.5         | 40-140           |      |              |                |
| Hexachlorobenzene                                           | 1.13         | 0.39               | mg/Kg dry              | 1.90           | ND               | 59.5         | 40-140           |      |              |                |
| Hexachlorobutadiene                                         | 0.907        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.8         | 40-140           |      |              |                |
| Hexachlorocyclopentadiene                                   | 0.120        | 0.39               | mg/Kg dry              | 1.90           | ND               | 6.34 *       | 30-130           |      |              | MS-09, V-05, J |
| Hexachloroethane                                            | 0.864        | 0.39               | mg/Kg dry              | 1.90           | ND               | 45.5         | 40-140           |      |              |                |
| Indeno(1,2,3-cd)pyrene                                      | 0.892        | 0.19               | mg/Kg dry              | 1.90           | ND               | 47.0         | 40-140           |      |              |                |
| Isophorone                                                  | 0.994        | 0.39               | mg/Kg dry              | 1.90           | ND               | 52.4         | 40-140           |      |              |                |
| 1-Methylnaphthalene                                         | 1.98         | 0.19               | mg/Kg dry              | 1.90           | 0.739            | 65.3         | 40-140           |      |              |                |
| 2-Methylnaphthalene                                         | 2.85         | 0.19               | mg/Kg dry              | 1.90           | 1.17             | 88.3         | 40-140           |      |              |                |
| 2-Methylphenol                                              | 0.904        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.6         | 30-130           |      |              |                |
| 3/4-Methylphenol                                            | 0.969        | 0.39               | mg/Kg dry              | 1.90           | ND               | 51.0         | 30-130           |      |              |                |
| Naphthalene                                                 | 1.96         | 0.19               | mg/Kg dry              | 1.90           | 0.676            | 67.5         | 40-140           |      |              |                |
| 2-Nitroaniline                                              | 1.09         | 0.39               | mg/Kg dry              | 1.90           | ND               | 57.4         | 40-140           |      |              | 140.00         |
| 3-Nitroaniline                                              | 0.526        | 0.39               | mg/Kg dry              | 1.90           | ND               | 27.7 *       | 40-140           |      |              | MS-23          |
| 4-Nitroaniline                                              | 0.659        | 0.39               | mg/Kg dry              | 1.90           | ND               | 34.7 *       | 40-140           |      |              | MS-22          |
| Nitrophenol                                                 | 0.896        | 0.39               | mg/Kg dry              | 1.90           | ND               | 47.2         | 40-140           |      |              |                |
| 2-Nitrophenol 4-Nitrophenol                                 | 1.10         | 0.39               | mg/Kg dry              | 1.90           | ND               | 58.1         | 30-130           |      |              |                |
| N-Nitrosodimethylamine                                      | 1.00         | 0.75<br>0.39       | mg/Kg dry<br>mg/Kg dry | 1.90           | ND               | 52.9<br>47.0 | 30-130<br>40-140 |      |              |                |
| N-Nitrosodimetnylamine N-Nitrosodiphenylamine/Diphenylamine | 0.892        | 0.39               |                        | 1.90           | ND               | 47.0<br>62.2 | 40-140           |      |              |                |
| N-Nitrosodi-n-propylamine                                   | 1.18         | 0.39               | mg/Kg dry<br>mg/Kg dry | 1.90           | ND               | 62.2         | 40-140<br>40-140 |      |              |                |
| D. ( 11 )                                                   | 0.935        | 0.39               | mg/Kg ury              | 1.90           | ND               | 49.3         | 40-140           |      |              |                |

 $0.39 \quad \text{ mg/Kg dry}$ 

0.39 mg/Kg dry

1.90

1.90

ND 61.9

ND 22.9 \*

40-140

30-130

1.18

0.434



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

|                                 |        | Reporting     |           | Spike        | Source         |             | %REC   |      | RPD   |              |
|---------------------------------|--------|---------------|-----------|--------------|----------------|-------------|--------|------|-------|--------------|
| Analyte                         | Result | Limit         | Units     | Level        | Result         | %REC        | Limits | RPD  | Limit | Notes        |
| Batch B293200 - SW-846 3546     |        |               |           |              |                |             |        |      |       |              |
| Matrix Spike (B293200-MS1)      | Sou    | rce: 21J1472  | -03       | Prepared: 10 | 0/25/21 Analyz | zed: 10/27/ | 21     |      |       |              |
| Phenanthrene                    | 1.87   | 0.19          | mg/Kg dry | 1.90         | 0.570          | 68.4        | 40-140 |      |       |              |
| Phenol                          | 0.970  | 0.39          | mg/Kg dry | 1.90         | ND             | 51.1        | 30-130 |      |       |              |
| Pyrene                          | 1.43   | 0.19          | mg/Kg dry | 1.90         | 0.138          | 68.3        | 40-140 |      |       |              |
| Pyridine                        | 0.439  | 0.39          | mg/Kg dry | 1.90         | ND             | 23.1        | 40-140 |      |       | MS-09        |
| 1,2,4,5-Tetrachlorobenzene      | 1.05   | 0.39          | mg/Kg dry | 1.90         | ND             | 55.3        | 40-140 |      |       |              |
| 1,2,4-Trichlorobenzene          | 0.965  | 0.39          | mg/Kg dry | 1.90         | ND             | 50.8        | 40-140 |      |       |              |
| 2,4,5-Trichlorophenol           | 1.15   | 0.39          | mg/Kg dry | 1.90         | ND             | 60.3        | 30-130 |      |       |              |
| 2,4,6-Trichlorophenol           | 1.05   | 0.39          | mg/Kg dry | 1.90         | ND             | 55.3        | 30-130 |      |       |              |
| Surrogate: 2-Fluorophenol       | 3.84   |               | mg/Kg dry | 7.60         |                | 50.5        | 30-130 |      |       |              |
| Surrogate: Phenol-d6            | 3.87   |               | mg/Kg dry | 7.60         |                | 51.0        | 30-130 |      |       |              |
| Surrogate: Nitrobenzene-d5      | 1.91   |               | mg/Kg dry | 3.80         |                | 50.3        | 30-130 |      |       |              |
| Surrogate: 2-Fluorobiphenyl     | 2.41   |               | mg/Kg dry | 3.80         |                | 63.4        | 30-130 |      |       |              |
| Surrogate: 2,4,6-Tribromophenol | 4.27   |               | mg/Kg dry | 7.60         |                | 56.2        | 30-130 |      |       |              |
| Surrogate: p-Terphenyl-d14      | 2.92   |               | mg/Kg dry | 3.80         |                | 76.8        | 30-130 |      |       |              |
| Matrix Spike Dup (B293200-MSD1) | Sou    | rce: 21J1472- | -03       | Prepared: 10 | 0/25/21 Analyz | zed: 10/27/ | 21     |      |       |              |
| Acenaphthene                    | 1.13   | 0.19          | mg/Kg dry | 1.90         | ND             | 59.5        | 40-140 | 8.59 | 30    |              |
| Acenaphthylene                  | 1.26   | 0.19          | mg/Kg dry | 1.90         | ND             | 66.6        | 40-140 | 8.16 | 30    |              |
| Acetophenone                    | 1.11   | 0.39          | mg/Kg dry | 1.90         | ND             | 58.6        | 40-140 | 4.72 | 30    |              |
| Aniline                         | 0.114  | 0.39          | mg/Kg dry | 1.90         | ND             | 6.00        | 40-140 | 40.0 | * 30  | MS-09, R-06, |
| Anthracene                      | 1.21   | 0.19          | mg/Kg dry | 1.90         | ND             | 64.0        | 40-140 | 9.53 | 30    |              |
| Benzidine                       | 0.0125 | 0.75          | mg/Kg dry | 1.90         | ND             | 0.660       | 40-140 |      | 30    | MS-09, V-05, |
| Benzo(a)anthracene              | 1.21   | 0.19          | mg/Kg dry | 1.90         | 0.0741         | 59.8        | 40-140 | 8.88 | 30    |              |
| Benzo(a)pyrene                  | 1.03   | 0.19          | mg/Kg dry | 1.90         | ND             | 54.1        | 40-140 | 5.82 | 30    |              |
| Benzo(b)fluoranthene            | 1.14   | 0.19          | mg/Kg dry | 1.90         | 0.125          | 53.4        | 40-140 | 6.79 | 30    |              |
| Benzo(g,h,i)perylene            | 0.881  | 0.19          | mg/Kg dry | 1.90         | ND             | 46.4        | 40-140 | 2.40 | 30    |              |
| Benzo(k)fluoranthene            | 1.13   | 0.19          | mg/Kg dry | 1.90         | ND             | 59.7        | 40-140 | 5.58 | 30    |              |
| Benzoic Acid                    | 0.825  | 1.1           | mg/Kg dry | 1.90         | ND             | 43.5        | 40-140 | 10.1 | 30    | J            |
| Bis(2-chloroethoxy)methane      | 1.09   | 0.39          | mg/Kg dry | 1.90         | ND             | 57.1        | 40-140 | 9.96 | 30    |              |
| Bis(2-chloroethyl)ether         | 1.04   | 0.39          | mg/Kg dry | 1.90         | ND             | 55.0        | 40-140 | 10.4 | 30    |              |
| Bis(2-chloroisopropyl)ether     | 1.30   | 0.39          | mg/Kg dry | 1.90         | ND             | 68.4        | 40-140 | 8.60 | 30    |              |
| Bis(2-Ethylhexyl)phthalate      | 1.46   | 0.39          | mg/Kg dry | 1.90         | ND             | 76.7        | 40-140 | 7.77 | 30    |              |
| 1-Bromophenylphenylether        | 1.25   | 0.39          | mg/Kg dry | 1.90         | ND             | 65.9        | 40-140 | 10.1 | 30    |              |
| Butylbenzylphthalate            | 1.42   | 0.39          | mg/Kg dry | 1.90         | ND             | 74.7        | 40-140 | 10.2 | 30    |              |
| Carbazole                       | 1.20   | 0.19          | mg/Kg dry | 1.90         | ND             | 63.1        | 40-140 | 8.36 | 30    |              |
| 4-Chloroaniline                 | 0.337  | 0.75          | mg/Kg dry | 1.90         | ND             | 17.8        | 40-140 | 12.1 | 30    | MS-09, V-34, |
| 4-Chloro-3-methylphenol         | 1.09   | 0.75          | mg/Kg dry | 1.90         | ND             | 57.4        | 30-130 | 6.18 | 30    |              |
| 2-Chloronaphthalene             | 1.07   | 0.39          | mg/Kg dry | 1.90         | ND             | 56.3        | 40-140 | 7.36 | 30    |              |
| 2-Chlorophenol                  | 1.06   | 0.39          | mg/Kg dry | 1.90         | ND             | 56.0        | 30-130 | 6.69 | 30    |              |
| 1-Chlorophenylphenylether       | 1.20   | 0.39          | mg/Kg dry | 1.90         | ND             | 63.2        | 40-140 | 9.10 | 30    |              |
| Chrysene                        | 1.30   | 0.19          | mg/Kg dry | 1.90         | 0.160          | 59.9        | 40-140 | 7.50 | 30    |              |
| Dibenz(a,h)anthracene           | 1.12   | 0.19          | mg/Kg dry | 1.90         | ND             | 58.8        | 40-140 | 15.3 | 30    |              |
| Dibenzofuran                    | 1.59   | 0.39          | mg/Kg dry | 1.90         | 0.272          | 69.5        | 40-140 | 3.72 | 30    |              |
| Di-n-butylphthalate             | 1.21   | 0.39          | mg/Kg dry | 1.90         | ND             | 63.7        | 40-140 | 9.88 | 30    |              |
| 1,2-Dichlorobenzene             | 1.02   | 0.39          | mg/Kg dry | 1.90         | ND             | 53.8        | 40-140 | 8.21 | 30    |              |
| 1,3-Dichlorobenzene             | 0.973  | 0.39          | mg/Kg dry | 1.90         | ND             | 51.3        | 40-140 | 8.16 | 30    |              |
| 1,4-Dichlorobenzene             | 0.996  | 0.39          | mg/Kg dry | 1.90         | ND             | 52.5        | 40-140 | 9.92 | 30    |              |
| 3,3-Dichlorobenzidine           | 0.0653 | 0.19          | mg/Kg dry | 1.90         | ND             | 3.44        | 40-140 |      | 30    | MS-09, J     |
| 2,4-Dichlorophenol              | 1.08   | 0.39          | mg/Kg dry | 1.90         | ND             | 56.7        | 30-130 | 6.85 | 30    |              |
| Diethylphthalate                | 1.21   | 0.39          | mg/Kg dry | 1.90         | ND             | 63.7        | 40-140 | 7.76 | 30    |              |
| 2,4-Dimethylphenol              | 0.536  | 0.39          | mg/Kg dry | 1.90         | ND             | 28.2        | 30-130 | 5.51 | 30    | MS-09        |
|                                 |        |               |           |              |                |             |        |      |       |              |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result | Limit       | Units     | Level        | Result        | %REC        | Limits | RPD   | Limit | Notes          |
|--------------------------------------|--------|-------------|-----------|--------------|---------------|-------------|--------|-------|-------|----------------|
| Batch B293200 - SW-846 3546          |        |             |           |              |               |             |        |       |       |                |
| Matrix Spike Dup (B293200-MSD1)      | Sour   | ce: 21J1472 | -03       | Prepared: 10 | 0/25/21 Analy | zed: 10/27/ | 21     |       |       |                |
| 4,6-Dinitro-2-methylphenol           | 1.00   | 0.39        | mg/Kg dry | 1.90         | ND            | 52.8        | 30-130 | 11.3  | 30    |                |
| 2,4-Dinitrophenol                    | 0.703  | 0.75        | mg/Kg dry | 1.90         | ND            | 37.0        | 30-130 | 14.2  | 30    | V-04, J        |
| 2,4-Dinitrotoluene                   | 1.37   | 0.39        | mg/Kg dry | 1.90         | ND            | 72.2        | 40-140 | 6.08  | 30    |                |
| 2,6-Dinitrotoluene                   | 1.42   | 0.39        | mg/Kg dry | 1.90         | ND            | 74.9        | 40-140 | 8.35  | 30    |                |
| Di-n-octylphthalate                  | 1.22   | 0.39        | mg/Kg dry | 1.90         | ND            | 64.3        | 40-140 | 4.06  | 30    |                |
| 1,2-Diphenylhydrazine/Azobenzene     | 1.10   | 0.39        | mg/Kg dry | 1.90         | ND            | 57.9        | 40-140 | 11.0  | 30    | V-05           |
| Fluoranthene                         | 1.28   | 0.19        | mg/Kg dry | 1.90         | 0.117         | 61.2        | 40-140 | 9.92  | 30    |                |
| Fluorene                             | 1.24   | 0.19        | mg/Kg dry | 1.90         | ND            | 65.2        | 40-140 | 7.45  | 30    |                |
| Hexachlorobenzene                    | 1.26   | 0.39        | mg/Kg dry | 1.90         | ND            | 66.3        | 40-140 | 10.8  | 30    |                |
| Hexachlorobutadiene                  | 1.00   | 0.39        | mg/Kg dry | 1.90         | ND            | 52.9        | 40-140 | 10.2  | 30    |                |
| Hexachlorocyclopentadiene            | 0.126  | 0.39        | mg/Kg dry | 1.90         | ND            | 6.62 *      | 30-130 |       | 30    | MS-09, V-05, J |
| Hexachloroethane                     | 0.929  | 0.39        | mg/Kg dry | 1.90         | ND            | 48.9        | 40-140 | 7.24  | 30    |                |
| Indeno(1,2,3-cd)pyrene               | 0.924  | 0.19        | mg/Kg dry | 1.90         | ND            | 48.7        | 40-140 | 3.60  | 30    |                |
| Isophorone                           | 1.09   | 0.39        | mg/Kg dry | 1.90         | ND            | 57.7        | 40-140 | 9.63  | 30    |                |
| 1-Methylnaphthalene                  | 1.94   | 0.19        | mg/Kg dry | 1.90         | 0.739         | 63.5        | 40-140 | 1.72  | 30    |                |
| 2-Methylnaphthalene                  | 2.73   | 0.19        | mg/Kg dry | 1.90         | 1.17          | 82.2        | 40-140 | 4.11  | 30    |                |
| 2-Methylphenol                       | 0.943  | 0.39        | mg/Kg dry | 1.90         | ND            | 49.6        | 30-130 | 4.20  | 30    |                |
| 3/4-Methylphenol                     | 1.01   | 0.39        | mg/Kg dry | 1.90         | ND            | 53.1        | 30-130 | 4.03  | 30    |                |
| Naphthalene                          | 1.96   | 0.19        | mg/Kg dry | 1.90         | 0.676         | 67.3        | 40-140 | 0.175 | 30    |                |
| 2-Nitroaniline                       | 1.20   | 0.39        | mg/Kg dry | 1.90         | ND            | 63.0        | 40-140 | 9.30  | 30    |                |
| 3-Nitroaniline                       | 0.800  | 0.39        | mg/Kg dry | 1.90         | ND            | 42.1        | 40-140 | 41.4  | * 30  | R-06           |
| 4-Nitroaniline                       | 0.888  | 0.39        | mg/Kg dry | 1.90         | ND            | 46.8        | 40-140 | 29.6  | 30    |                |
| Nitrobenzene                         | 1.00   | 0.39        | mg/Kg dry | 1.90         | ND            | 52.9        | 40-140 | 11.4  | 30    |                |
| 2-Nitrophenol                        | 1.22   | 0.39        | mg/Kg dry | 1.90         | ND            | 64.2        | 30-130 | 10.1  | 30    |                |
| 4-Nitrophenol                        | 1.05   | 0.75        | mg/Kg dry | 1.90         | ND            | 55.2        | 30-130 | 4.22  | 30    |                |
| N-Nitrosodimethylamine               | 1.00   | 0.39        | mg/Kg dry | 1.90         | ND            | 52.9        | 40-140 | 11.9  | 30    |                |
| N-Nitrosodiphenylamine/Diphenylamine | 1.26   | 0.39        | mg/Kg dry | 1.90         | ND            | 66.1        | 40-140 | 6.05  | 30    |                |
| N-Nitrosodi-n-propylamine            | 1.01   | 0.39        | mg/Kg dry | 1.90         | ND            | 53.1        | 40-140 | 7.47  | 30    |                |
| Pentachloronitrobenzene              | 1.32   | 0.39        | mg/Kg dry | 1.90         | ND            | 69.6        | 40-140 | 11.7  | 30    |                |
| Pentachlorophenol                    | 0.471  | 0.39        | mg/Kg dry | 1.90         | ND            | 24.8 *      | 30-130 | 8.22  | 30    | MS-09, V-05    |
| Phenanthrene                         | 1.92   | 0.19        | mg/Kg dry | 1.90         | 0.570         | 71.1        | 40-140 | 2.65  | 30    |                |
| Phenol                               | 1.07   | 0.39        | mg/Kg dry | 1.90         | ND            | 56.1        | 30-130 | 9.44  | 30    |                |
| Pyrene                               | 1.56   | 0.19        | mg/Kg dry | 1.90         | 0.138         | 74.8        | 40-140 | 8.32  | 30    |                |
| Pyridine                             | 0.477  | 0.39        | mg/Kg dry | 1.90         | ND            | 25.1 *      |        | 8.13  | 30    | MS-09          |
| 1,2,4,5-Tetrachlorobenzene           | 1.19   | 0.39        | mg/Kg dry | 1.90         | ND            | 62.4        | 40-140 | 12.2  | 30    |                |
| 1,2,4-Trichlorobenzene               | 1.08   | 0.39        |           | 1.90         | ND            | 56.7        | 40-140 | 10.9  | 30    |                |
| 2,4,5-Trichlorophenol                | 1.25   | 0.39        | mg/Kg dry | 1.90         | ND            | 65.7        | 30-130 | 8.54  | 30    |                |
| 2,4,6-Trichlorophenol                | 1.13   | 0.39        | mg/Kg dry | 1.90         | ND            | 59.3        | 30-130 | 6.95  | 30    |                |
| Surrogate: 2-Fluorophenol            | 4.21   |             | mg/Kg dry | 7.60         |               | 55.4        | 30-130 |       |       |                |
| Surrogate: Phenol-d6                 | 4.18   |             | mg/Kg dry | 7.60         |               | 55.0        | 30-130 |       |       |                |
| Surrogate: Nitrobenzene-d5           | 2.19   |             | mg/Kg dry | 3.80         |               | 57.8        | 30-130 |       |       |                |
| Surrogate: 2-Fluorobiphenyl          | 2.70   |             | mg/Kg dry | 3.80         |               | 71.0        | 30-130 |       |       |                |
| Surrogate: 2,4,6-Tribromophenol      | 4.44   |             | mg/Kg dry | 7.60         |               | 58.5        | 30-130 |       |       |                |
| Surrogate: p-Terphenyl-d14           | 3.25   |             | mg/Kg dry | 3.80         |               | 85.5        | 30-130 |       |       |                |
|                                      |        |             |           |              |               |             |        |       |       |                |

Notes



Analyte

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

# Semivolatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

| Analyte                         | Result | Limit | Units             | Level        | Result       | %REC          | Limits | RPD | Limit | Notes      |
|---------------------------------|--------|-------|-------------------|--------------|--------------|---------------|--------|-----|-------|------------|
| Batch B293321 - SW-846 3510C    |        |       |                   |              |              |               |        |     |       |            |
| Blank (B293321-BLK1)            |        |       |                   | Prepared: 10 | 0/27/21 Anal | yzed: 10/28/2 | 21     |     |       |            |
| Acenaphthene                    | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Acenaphthylene                  | ND     | 5.0   | $\mu g \! / \! L$ |              |              |               |        |     |       |            |
| Acetophenone                    | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Aniline                         | ND     | 5.0   | $\mu g\!/\!L$     |              |              |               |        |     |       |            |
| Anthracene                      | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Benzidine                       | ND     | 20    | μg/L              |              |              |               |        |     |       | R-05, V-04 |
| Benzo(a)anthracene              | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Benzo(a)pyrene                  | ND     | 5.0   | $\mu g/L$         |              |              |               |        |     |       |            |
| Benzo(b)fluoranthene            | ND     | 5.0   | $\mu g/L$         |              |              |               |        |     |       |            |
| Benzo(g,h,i)perylene            | ND     | 5.0   | $\mu g/L$         |              |              |               |        |     |       |            |
| Benzo(k)fluoranthene            | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Benzoic Acid                    | ND     | 10    | $\mu g/L$         |              |              |               |        |     |       |            |
| Bis(2-chloroethoxy)methane      | ND     | 10    | $\mu g/L$         |              |              |               |        |     |       |            |
| Bis(2-chloroethyl)ether         | ND     | 10    | $\mu g/L$         |              |              |               |        |     |       |            |
| Bis(2-chloroisopropyl)ether     | ND     | 10    | $\mu g/L$         |              |              |               |        |     |       | V-05       |
| Bis(2-Ethylhexyl)phthalate      | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| 1-Bromophenylphenylether        | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Butylbenzylphthalate            | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Carbazole                       | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| -Chloroaniline                  | ND     | 10    | μg/L              |              |              |               |        |     |       | V-34       |
| -Chloro-3-methylphenol          | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| -Chloronaphthalene              | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| -Chlorophenol                   | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| -Chlorophenylphenylether        | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Chrysene                        | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Dibenz(a,h)anthracene           | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Dibenzofuran                    | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Di-n-butylphthalate             | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| ,2-Dichlorobenzene              | ND     | 5.0   | μg/L              |              |              |               |        |     |       | L-04       |
| ,3-Dichlorobenzene              | ND     | 5.0   | μg/L              |              |              |               |        |     |       | L-04       |
| ,4-Dichlorobenzene              | ND     | 5.0   | μg/L              |              |              |               |        |     |       | L-04       |
| ,3-Dichlorobenzidine            | ND     | 10    | μg/L              |              |              |               |        |     |       | V-34       |
| 2,4-Dichlorophenol              | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Diethylphthalate                | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| 2,4-Dimethylphenol              | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Dimethylphthalate               | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| 4,6-Dinitro-2-methylphenol      | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| 2,4-Dinitrophenol               | ND     | 10    | μg/L              |              |              |               |        |     |       | V-04       |
| 2,4-Dinitrotoluene              | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| 2,6-Dinitrotoluene              | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Di-n-octylphthalate             | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| ,2-Diphenylhydrazine/Azobenzene | ND     | 10    | μg/L              |              |              |               |        |     |       | V-05       |
| Fluoranthene                    | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Fluorene                        | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| Hexachlorobenzene               | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Hexachlorobutadiene             | ND     | 10    | μg/L              |              |              |               |        |     |       | L-04       |
| Hexachlorocyclopentadiene       | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| Hexachloroethane                | ND     | 10    | μg/L              |              |              |               |        |     |       | L-04       |
| ndeno(1,2,3-cd)pyrene           | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| sophorone                       | ND     | 10    | μg/L              |              |              |               |        |     |       |            |
| I-Methylnaphthalene             | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |
| 2-Methylnaphthalene             | ND     | 5.0   | μg/L              |              |              |               |        |     |       |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

# Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | Limit | Notes          |
|--------------------------------------|--------|--------------------|-------------------|----------------|------------------|---------------|----------------|-----|-------|----------------|
| Batch B293321 - SW-846 3510C         |        |                    |                   |                |                  |               |                |     |       |                |
| Blank (B293321-BLK1)                 |        |                    |                   | Prepared: 10   | )/27/21 Analy    | yzed: 10/28/2 | 21             |     |       |                |
| 2-Methylphenol                       | ND     | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |       |                |
| 3/4-Methylphenol                     | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| Naphthalene                          | ND     | 5.0                | $\mu g/L$         |                |                  |               |                |     |       |                |
| -Nitroaniline                        | ND     | 10                 | μg/L              |                |                  |               |                |     |       |                |
| -Nitroaniline                        | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| -Nitroaniline                        | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| Nitrobenzene                         | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| 2-Nitrophenol                        | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| 1-Nitrophenol                        | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| N-Nitrosodimethylamine               | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| N-Nitrosodiphenylamine/Diphenylamine | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| N-Nitrosodi-n-propylamine            | ND     | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |       |                |
| Pentachloronitrobenzene              | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| Pentachlorophenol                    | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| Phenanthrene                         | ND     | 5.0                | $\mu g/L$         |                |                  |               |                |     |       |                |
| Phenol                               | ND     | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |       |                |
| Pyrene                               | ND     | 5.0                | μg/L              |                |                  |               |                |     |       |                |
| Pyridine                             | ND     | 5.0                | $\mu g/L$         |                |                  |               |                |     |       |                |
| ,2,4,5-Tetrachlorobenzene            | ND     | 10                 | μg/L              |                |                  |               |                |     |       |                |
| ,2,4-Trichlorobenzene                | ND     | 5.0                | $\mu g/L$         |                |                  |               |                |     |       |                |
| 2,4,5-Trichlorophenol                | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| 2,4,6-Trichlorophenol                | ND     | 10                 | $\mu g/L$         |                |                  |               |                |     |       |                |
| Surrogate: 2-Fluorophenol            | 108    |                    | μg/L              | 200            |                  | 54.1          | 15-110         |     |       |                |
| Surrogate: Phenol-d6                 | 79.9   |                    | μg/L              | 200            |                  | 40.0          | 15-110         |     |       |                |
| Surrogate: Nitrobenzene-d5           | 64.0   |                    | μg/L              | 100            |                  | 64.0          | 30-130         |     |       |                |
| Surrogate: 2-Fluorobiphenyl          | 64.5   |                    | μg/L              | 100            |                  | 64.5          | 30-130         |     |       |                |
| Surrogate: 2,4,6-Tribromophenol      | 185    |                    | μg/L              | 200            |                  | 92.7          | 15-110         |     |       |                |
| Surrogate: p-Terphenyl-d14           | 117    |                    | $\mu g/L$         | 100            |                  | 117           | 30-130         |     |       |                |
| LCS (B293321-BS1)                    |        |                    |                   | Prepared: 10   | 0/27/21 Analy    | yzed: 10/28/2 | 21             |     |       |                |
| Acenaphthene                         | 32.7   | 5.0                | μg/L              | 50.0           |                  | 65.3          | 40-140         |     |       |                |
| Acenaphthylene                       | 33.4   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 66.9          | 40-140         |     |       |                |
| Acetophenone                         | 33.9   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 67.8          | 40-140         |     |       |                |
| Aniline                              | 35.8   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 71.6          | 40-140         |     |       |                |
| Anthracene                           | 35.6   | 5.0                | $\mu g \! / \! L$ | 50.0           |                  | 71.2          | 40-140         |     |       |                |
| Benzidine                            | 16.1   | 20                 | μg/L              | 50.0           |                  | 32.1 *        | 40-140         |     |       | L-07A, V-04, J |
| Benzo(a)anthracene                   | 34.1   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 68.2          | 40-140         |     |       |                |
| Benzo(a)pyrene                       | 37.4   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 74.7          | 40-140         |     |       |                |
| Benzo(b)fluoranthene                 | 34.1   | 5.0                | μg/L              | 50.0           |                  | 68.3          | 40-140         |     |       |                |
| Benzo(g,h,i)perylene                 | 37.6   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 75.3          | 40-140         |     |       |                |
| Benzo(k)fluoranthene                 | 37.6   | 5.0                | $\mu \text{g/L}$  | 50.0           |                  | 75.2          | 40-140         |     |       |                |
| Benzoic Acid                         | 17.7   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 35.4          | 10-130         |     |       |                |
| Bis(2-chloroethoxy)methane           | 34.7   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 69.4          | 40-140         |     |       |                |
| Bis(2-chloroethyl)ether              | 33.8   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 67.6          | 40-140         |     |       |                |
| Bis(2-chloroisopropyl)ether          | 35.6   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 71.3          | 40-140         |     |       | V-05           |
| Bis(2-Ethylhexyl)phthalate           | 36.9   | 10                 | $\mu \text{g/L}$  | 50.0           |                  | 73.8          | 40-140         |     |       |                |
| 1-Bromophenylphenylether             | 32.8   | 10                 | $\mu g/L$         | 50.0           |                  | 65.7          | 40-140         |     |       |                |
| Butylbenzylphthalate                 | 35.4   | 10                 | μg/L              | 50.0           |                  | 70.7          | 40-140         |     |       |                |
| Carbazole                            | 33.9   | 10                 | $\mu g/L$         | 50.0           |                  | 67.8          | 40-140         |     |       |                |
| l-Chloroaniline                      | 33.6   | 10                 | $\mu g/L$         | 50.0           |                  | 67.2          | 40-140         |     |       | V-34           |
| -Chloro-3-methylphenol               | 35.0   | 10                 | μg/L              | 50.0           |                  | 70.0          | 30-130         |     |       |                |
|                                      |        |                    |                   |                |                  |               |                |     |       |                |



#### QUALITY CONTROL

Spike

Source

%REC

RPD

#### Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                                      | Result       | Limit    | Units             | Level        | Result      | %REC          | Limits           | RPD | Limit | Notes |
|----------------------------------------------|--------------|----------|-------------------|--------------|-------------|---------------|------------------|-----|-------|-------|
| Batch B293321 - SW-846 3510C                 |              |          |                   |              |             |               |                  |     |       |       |
| .CS (B293321-BS1)                            |              |          |                   | Prepared: 10 | /27/21 Anal | yzed: 10/28/2 | 1                |     |       |       |
| -Chlorophenol                                | 31.7         | 10       | μg/L              | 50.0         |             | 63.5          | 30-130           |     |       |       |
| -Chlorophenylphenylether                     | 34.4         | 10       | $\mu \text{g/L}$  | 50.0         |             | 68.7          | 40-140           |     |       |       |
| Chrysene                                     | 35.5         | 5.0      | $\mu g\!/\!L$     | 50.0         |             | 71.0          | 40-140           |     |       |       |
| Dibenz(a,h)anthracene                        | 38.0         | 5.0      | $\mu g \! / \! L$ | 50.0         |             | 75.9          | 40-140           |     |       |       |
| Dibenzofuran                                 | 35.4         | 5.0      | $\mu g \! / \! L$ | 50.0         |             | 70.8          | 40-140           |     |       |       |
| Di-n-butylphthalate                          | 34.3         | 10       | $\mu \text{g/L}$  | 50.0         |             | 68.5          | 40-140           |     |       |       |
| ,2-Dichlorobenzene                           | 18.4         | 5.0      | $\mu \text{g/L}$  | 50.0         |             | 36.9 *        | 40-140           |     |       | L-04  |
| ,3-Dichlorobenzene                           | 16.4         | 5.0      | $\mu \text{g/L}$  | 50.0         |             | 32.9 *        | 40-140           |     |       | L-04  |
| ,4-Dichlorobenzene                           | 17.0         | 5.0      | $\mu \text{g/L}$  | 50.0         |             | 34.0 *        | 40-140           |     |       | L-04  |
| ,3-Dichlorobenzidine                         | 32.9         | 10       | $\mu \text{g/L}$  | 50.0         |             | 65.9          | 40-140           |     |       | V-34  |
| ,4-Dichlorophenol                            | 34.0         | 10       | $\mu \text{g/L}$  | 50.0         |             | 68.0          | 30-130           |     |       |       |
| Diethylphthalate                             | 34.6         | 10       | $\mu g/L$         | 50.0         |             | 69.2          | 40-140           |     |       |       |
| ,4-Dimethylphenol                            | 32.6         | 10       | $\mu g/L$         | 50.0         |             | 65.3          | 30-130           |     |       |       |
| Dimethylphthalate                            | 34.9         | 10       | $\mu g/L$         | 50.0         |             | 69.8          | 40-140           |     |       |       |
| ,6-Dinitro-2-methylphenol                    | 33.5         | 10       | $\mu g/L$         | 50.0         |             | 67.1          | 30-130           |     |       |       |
| ,4-Dinitrophenol                             | 34.4         | 10       | $\mu g/L$         | 50.0         |             | 68.8          | 30-130           |     |       | V-04  |
| ,4-Dinitrotoluene                            | 36.1         | 10       | $\mu g/L$         | 50.0         |             | 72.2          | 40-140           |     |       |       |
| ,6-Dinitrotoluene                            | 39.0         | 10       | $\mu g/L$         | 50.0         |             | 78.0          | 40-140           |     |       |       |
| Pi-n-octylphthalate                          | 33.1         | 10       | $\mu g/L$         | 50.0         |             | 66.2          | 40-140           |     |       |       |
| ,2-Diphenylhydrazine/Azobenzene              | 34.8         | 10       | $\mu g/L$         | 50.0         |             | 69.7          | 40-140           |     |       | V-05  |
| luoranthene                                  | 34.8         | 5.0      | μg/L              | 50.0         |             | 69.7          | 40-140           |     |       |       |
| luorene                                      | 34.6         | 5.0      | μg/L              | 50.0         |             | 69.2          | 40-140           |     |       |       |
| Iexachlorobenzene                            | 35.8         | 10       | μg/L              | 50.0         |             | 71.5          | 40-140           |     |       |       |
| [exachlorobutadiene                          | 18.3         | 10       | μg/L              | 50.0         |             | 36.6 *        | 40-140           |     |       | L-04  |
| Iexachlorocyclopentadiene                    | 23.4         | 10       | μg/L              | 50.0         |             | 46.8          | 30-140           |     |       |       |
| lexachloroethane                             | 15.2         | 10       | μg/L              | 50.0         |             | 30.4 *        | 40-140           |     |       | L-04  |
| ndeno(1,2,3-cd)pyrene                        | 37.5         | 5.0      | μg/L              | 50.0         |             | 75.0          | 40-140           |     |       |       |
| sophorone                                    | 37.8         | 10       | μg/L              | 50.0         |             | 75.6          | 40-140           |     |       |       |
| -Methylnaphthalene                           | 27.2         | 5.0      | μg/L              | 50.0         |             | 54.5          | 40-140           |     |       |       |
| -Methylnaphthalene                           | 31.9         | 5.0      | μg/L              | 50.0         |             | 63.8          | 40-140           |     |       |       |
| -Methylphenol                                | 33.1         | 10       | μg/L              | 50.0         |             | 66.2          | 30-130           |     |       |       |
| /4-Methylphenol                              | 31.3         | 10       | μg/L              | 50.0         |             | 62.6          | 30-130           |     |       |       |
| Japhthalene                                  | 26.4         | 5.0      | μg/L              | 50.0         |             | 52.7          | 40-140           |     |       |       |
| -Nitroaniline                                | 43.9         | 10       | μg/L              | 50.0         |             | 87.8          | 40-140           |     |       |       |
| -Nitroaniline                                | 37.7         | 10       | μg/L              | 50.0         |             | 75.5          | 40-140           |     |       |       |
| -Nitroaniline                                | 37.6         | 10       | μg/L              | 50.0         |             | 75.3          | 40-140           |     |       |       |
| Nitrobenzene                                 | 33.8         | 10       | μg/L              | 50.0         |             | 67.6          | 40-140           |     |       |       |
| -Nitrophenol                                 | 34.4         | 10       | μg/L              | 50.0         |             | 68.9          | 30-130           |     |       |       |
| -Nitrophenol                                 | 21.2         | 10       | μg/L              | 50.0         |             | 42.3          | 10-130           |     |       |       |
| I-Nitrosodimethylamine                       | 23.4         | 10       | μg/L              | 50.0         |             | 46.9          | 40-140           |     |       |       |
| I-Nitrosodiphenylamine/Diphenylamine         | 36.6         | 10       | μg/L              | 50.0         |             | 73.3          | 40-140           |     |       |       |
| I-Nitrosodi-n-propylamine                    | 35.7         | 10       | μg/L              | 50.0         |             | 71.4          | 40-140           |     |       |       |
| entachloronitrobenzene                       | 35.2         | 10       | μg/L              | 50.0         |             | 70.5          | 40-140           |     |       |       |
| entachlorophenol                             | 31.7         | 10       | μg/L              | 50.0         |             | 63.5          | 30-130           |     |       |       |
| henanthrene                                  | 34.8         | 5.0      | μg/L              | 50.0         |             | 69.6          | 40-140           |     |       |       |
| henol                                        | 17.1         | 10       | μg/L              | 50.0         |             | 34.2          | 20-130           |     |       |       |
| yrene                                        | 35.1         | 5.0      | μg/L              | 50.0         |             | 70.3          | 40-140           |     |       |       |
| yridine                                      | 11.4         | 5.0      | μg/L              | 50.0         |             | 22.8          | 10-140           |     |       |       |
| ,2,4,5-Tetrachlorobenzene                    | 29.7         | 10       | μg/L              | 50.0         |             | 59.5          | 40-140           |     |       |       |
| ,2,4-Trichlorobenzene                        | 21.6         | 5.0      | μg/L              | 50.0         |             | 43.1          | 40-140           |     |       |       |
| ,4,5-Trichlorophenol<br>,4,6-Trichlorophenol | 37.2<br>35.7 | 10<br>10 | μg/L<br>μg/L      | 50.0<br>50.0 |             | 74.4<br>71.5  | 30-130<br>30-130 |     |       |       |



#### QUALITY CONTROL

#### Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|---------------------------------|--------|--------------------|------------------|----------------|------------------|--------------|----------------|-------|--------------|------------|---|
| Batch B293321 - SW-846 3510C    |        |                    |                  |                |                  |              |                |       |              |            | _ |
| LCS (B293321-BS1)               |        |                    |                  | Prepared: 10   | 0/27/21 Anal     | yzed: 10/28/ | 21             |       |              |            | _ |
| Surrogate: 2-Fluorophenol       | 102    |                    | $\mu g/L$        | 200            |                  | 50.8         | 15-110         |       |              |            |   |
| Surrogate: Phenol-d6            | 72.9   |                    | $\mu g/L$        | 200            |                  | 36.4         | 15-110         |       |              |            |   |
| Surrogate: Nitrobenzene-d5      | 62.3   |                    | μg/L             | 100            |                  | 62.3         | 30-130         |       |              |            |   |
| Surrogate: 2-Fluorobiphenyl     | 64.4   |                    | μg/L             | 100            |                  | 64.4         | 30-130         |       |              |            |   |
| Surrogate: 2,4,6-Tribromophenol | 173    |                    | μg/L             | 200            |                  | 86.3         | 15-110         |       |              |            |   |
| Surrogate: p-Terphenyl-d14      | 92.5   |                    | μg/L             | 100            |                  | 92.5         | 30-130         |       |              |            |   |
| LCS Dup (B293321-BSD1)          |        |                    |                  | Prepared: 10   | 0/27/21 Anal     | yzed: 10/28/ | 21             |       |              |            | _ |
| Acenaphthene                    | 30.8   | 5.0                | μg/L             | 50.0           |                  | 61.7         | 40-140         | 5.76  | 20           |            |   |
| Acenaphthylene                  | 30.9   | 5.0                | μg/L             | 50.0           |                  | 61.8         | 40-140         | 7.90  | 20           |            |   |
| Acetophenone                    | 31.7   | 10                 | μg/L             | 50.0           |                  | 63.4         | 40-140         | 6.83  | 20           |            |   |
| Aniline                         | 39.5   | 5.0                | μg/L             | 50.0           |                  | 79.1         | 40-140         | 9.88  | 50           |            |   |
| Anthracene                      | 34.8   | 5.0                | μg/L             | 50.0           |                  | 69.6         | 40-140         | 2.27  | 20           |            |   |
| Benzidine                       | 45.5   | 20                 | μg/L             | 50.0           |                  | 91.0         | 40-140         | 95.6  | * 20         | R-05, V-04 |   |
| Benzo(a)anthracene              | 33.6   | 5.0                | μg/L             | 50.0           |                  | 67.3         | 40-140         | 1.45  | 20           |            |   |
| Benzo(a)pyrene                  | 37.1   | 5.0                | μg/L             | 50.0           |                  | 74.2         | 40-140         | 0.671 | 20           |            |   |
| Benzo(b)fluoranthene            | 34.2   | 5.0                | μg/L             | 50.0           |                  | 68.5         | 40-140         | 0.322 | 20           |            |   |
| Benzo(g,h,i)perylene            | 36.6   | 5.0                | $\mu g/L$        | 50.0           |                  | 73.3         | 40-140         | 2.75  | 20           |            |   |
| Benzo(k)fluoranthene            | 37.2   | 5.0                | μg/L             | 50.0           |                  | 74.4         | 40-140         | 1.18  | 20           |            |   |
| enzoic Acid                     | 15.7   | 10                 | $\mu g/L$        | 50.0           |                  | 31.5         | 10-130         | 11.8  | 50           |            | i |
| is(2-chloroethoxy)methane       | 32.6   | 10                 | μg/L             | 50.0           |                  | 65.3         | 40-140         | 6.21  | 20           |            |   |
| is(2-chloroethyl)ether          | 32.0   | 10                 | μg/L             | 50.0           |                  | 63.9         | 40-140         | 5.69  | 20           |            |   |
| is(2-chloroisopropyl)ether      | 33.3   | 10                 | $\mu g/L$        | 50.0           |                  | 66.7         | 40-140         | 6.67  | 20           | V-05       |   |
| is(2-Ethylhexyl)phthalate       | 36.5   | 10                 | μg/L             | 50.0           |                  | 73.0         | 40-140         | 1.20  | 20           |            |   |
| -Bromophenylphenylether         | 32.5   | 10                 | $\mu \text{g}/L$ | 50.0           |                  | 64.9         | 40-140         | 1.19  | 20           |            |   |
| utylbenzylphthalate             | 35.6   | 10                 | $\mu g/L$        | 50.0           |                  | 71.1         | 40-140         | 0.564 | 20           |            |   |
| arbazole                        | 33.7   | 10                 | $\mu g/L$        | 50.0           |                  | 67.4         | 40-140         | 0.562 | 20           |            |   |
| -Chloroaniline                  | 36.4   | 10                 | $\mu g/L$        | 50.0           |                  | 72.9         | 40-140         | 8.08  | 20           | V-34       |   |
| -Chloro-3-methylphenol          | 34.6   | 10                 | $\mu g/L$        | 50.0           |                  | 69.2         | 30-130         | 1.21  | 20           |            |   |
| -Chloronaphthalene              | 25.8   | 10                 | μg/L             | 50.0           |                  | 51.5         | 40-140         | 8.51  | 20           |            |   |
| -Chlorophenol                   | 30.4   | 10                 | $\mu g/L$        | 50.0           |                  | 60.8         | 30-130         | 4.35  | 20           |            |   |
| -Chlorophenylphenylether        | 32.5   | 10                 | μg/L             | 50.0           |                  | 64.9         | 40-140         | 5.66  | 20           |            |   |
| hrysene                         | 35.0   | 5.0                | $\mu g/L$        | 50.0           |                  | 70.0         | 40-140         | 1.39  | 20           |            |   |
| ibenz(a,h)anthracene            | 37.4   | 5.0                | $\mu g/L$        | 50.0           |                  | 74.9         | 40-140         | 1.35  | 20           |            |   |
| ibenzofuran                     | 33.2   | 5.0                | μg/L             | 50.0           |                  | 66.3         | 40-140         | 6.56  | 20           |            |   |
| i-n-butylphthalate              | 34.0   | 10                 | $\mu g/L$        | 50.0           |                  | 68.1         | 40-140         | 0.644 | 20           |            |   |
| 2-Dichlorobenzene               | 17.9   | 5.0                | $\mu \text{g/L}$ | 50.0           |                  | 35.8 *       | 40-140         | 2.91  | 20           | L-04       |   |
| 3-Dichlorobenzene               | 16.4   | 5.0                | μg/L             | 50.0           |                  | 32.8 *       | 40-140         | 0.305 | 20           | L-04       |   |
| 4-Dichlorobenzene               | 16.9   | 5.0                | $\mu g/L$        | 50.0           |                  | 33.8 *       | 40-140         | 0.531 | 20           | L-04       |   |
| 3-Dichlorobenzidine             | 33.4   | 10                 | $\mu g/L$        | 50.0           |                  | 66.7         | 40-140         | 1.33  | 20           | V-34       |   |
| 4-Dichlorophenol                | 32.4   | 10                 | μg/L             | 50.0           |                  | 64.8         | 30-130         | 4.79  | 20           |            |   |
| ethylphthalate                  | 34.4   | 10                 | μg/L             | 50.0           |                  | 68.8         | 40-140         | 0.579 | 20           |            |   |
| 4-Dimethylphenol                | 31.8   | 10                 | μg/L             | 50.0           |                  | 63.6         | 30-130         | 2.64  | 20           |            |   |
| methylphthalate                 | 34.3   | 10                 | $\mu \text{g}/L$ | 50.0           |                  | 68.7         | 40-140         | 1.67  | 50           |            |   |
| 6-Dinitro-2-methylphenol        | 34.5   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 69.0         | 30-130         | 2.79  | 50           |            |   |
| 4-Dinitrophenol                 | 37.6   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 75.3         | 30-130         | 9.05  | 50           | V-04       |   |
| 4-Dinitrotoluene                | 35.5   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 70.9         | 40-140         | 1.76  | 20           |            |   |
| 6-Dinitrotoluene                | 37.7   | 10                 | $\mu \text{g}/L$ | 50.0           |                  | 75.4         | 40-140         | 3.34  | 20           |            |   |
| i-n-octylphthalate              | 33.2   | 10                 | $\mu \text{g}/L$ | 50.0           |                  | 66.4         | 40-140         | 0.392 | 20           |            |   |
| 2-Diphenylhydrazine/Azobenzene  | 33.8   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 67.6         | 40-140         | 3.06  | 20           | V-05       |   |
| luoranthene                     | 34.7   | 5.0                | $\mu \text{g/L}$ | 50.0           |                  | 69.5         | 40-140         | 0.259 | 20           |            |   |
| luorene                         | 32.6   | 5.0                | $\mu g/L$        | 50.0           |                  | 65.3         | 40-140         | 5.92  | 20           |            |   |



#### QUALITY CONTROL

#### Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |     |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|-----|
| Batch B293321 - SW-846 3510C         |        |                    |           |                |                  |               |                |       |              |       | _   |
| LCS Dup (B293321-BSD1)               |        |                    |           | Prepared: 10   | )/27/21 Anal     | yzed: 10/28/2 | :1             |       |              |       | _   |
| Hexachlorobenzene                    | 34.8   | 10                 | μg/L      | 50.0           |                  | 69.5          | 40-140         | 2.81  | 20           |       |     |
| Hexachlorobutadiene                  | 17.3   | 10                 | $\mu g/L$ | 50.0           |                  | 34.6 *        | 40-140         | 5.51  | 20           | L-04  |     |
| Hexachlorocyclopentadiene            | 20.3   | 10                 | $\mu g/L$ | 50.0           |                  | 40.5          | 30-140         | 14.4  | 50           |       | † ‡ |
| Hexachloroethane                     | 15.4   | 10                 | μg/L      | 50.0           |                  | 30.7 *        | 40-140         | 1.11  | 50           | L-04  | ‡   |
| Indeno(1,2,3-cd)pyrene               | 36.6   | 5.0                | μg/L      | 50.0           |                  | 73.2          | 40-140         | 2.40  | 50           |       | ‡   |
| Isophorone                           | 36.2   | 10                 | μg/L      | 50.0           |                  | 72.3          | 40-140         | 4.41  | 20           |       |     |
| 1-Methylnaphthalene                  | 24.4   | 5.0                | μg/L      | 50.0           |                  | 48.7          | 40-140         | 11.2  | 20           |       |     |
| 2-Methylnaphthalene                  | 28.3   | 5.0                | $\mu g/L$ | 50.0           |                  | 56.5          | 40-140         | 12.1  | 20           |       |     |
| 2-Methylphenol                       | 32.6   | 10                 | μg/L      | 50.0           |                  | 65.2          | 30-130         | 1.58  | 20           |       |     |
| 3/4-Methylphenol                     | 31.0   | 10                 | $\mu g/L$ | 50.0           |                  | 62.0          | 30-130         | 1.06  | 20           |       |     |
| Naphthalene                          | 24.3   | 5.0                | μg/L      | 50.0           |                  | 48.6          | 40-140         | 8.05  | 20           |       |     |
| 2-Nitroaniline                       | 43.0   | 10                 | μg/L      | 50.0           |                  | 86.1          | 40-140         | 2.00  | 20           |       |     |
| 3-Nitroaniline                       | 39.4   | 10                 | μg/L      | 50.0           |                  | 78.7          | 40-140         | 4.23  | 20           |       |     |
| 4-Nitroaniline                       | 38.5   | 10                 | μg/L      | 50.0           |                  | 77.0          | 40-140         | 2.26  | 20           |       |     |
| Nitrobenzene                         | 31.9   | 10                 | μg/L      | 50.0           |                  | 63.8          | 40-140         | 5.79  | 20           |       |     |
| 2-Nitrophenol                        | 32.4   | 10                 | μg/L      | 50.0           |                  | 64.9          | 30-130         | 5.98  | 20           |       |     |
| 4-Nitrophenol                        | 21.7   | 10                 | μg/L      | 50.0           |                  | 43.4          | 10-130         | 2.47  | 50           |       | † ‡ |
| N-Nitrosodimethylamine               | 24.2   | 10                 | μg/L      | 50.0           |                  | 48.4          | 40-140         | 3.19  | 20           |       |     |
| N-Nitrosodiphenylamine/Diphenylamine | 35.3   | 10                 | μg/L      | 50.0           |                  | 70.7          | 40-140         | 3.61  | 20           |       |     |
| N-Nitrosodi-n-propylamine            | 33.4   | 10                 | μg/L      | 50.0           |                  | 66.8          | 40-140         | 6.63  | 20           |       |     |
| Pentachloronitrobenzene              | 34.8   | 10                 | $\mu g/L$ | 50.0           |                  | 69.6          | 40-140         | 1.26  | 20           |       |     |
| Pentachlorophenol                    | 32.8   | 10                 | μg/L      | 50.0           |                  | 65.6          | 30-130         | 3.26  | 50           |       | 1   |
| Phenanthrene                         | 34.1   | 5.0                | μg/L      | 50.0           |                  | 68.1          | 40-140         | 2.21  | 20           |       |     |
| Phenol                               | 17.0   | 10                 | μg/L      | 50.0           |                  | 34.0          | 20-130         | 0.528 | 20           |       | †   |
| Pyrene                               | 34.2   | 5.0                | μg/L      | 50.0           |                  | 68.3          | 40-140         | 2.86  | 20           |       |     |
| Pyridine                             | 15.8   | 5.0                | μg/L      | 50.0           |                  | 31.5          | 10-140         | 32.0  | 50           |       | † ‡ |
| 1,2,4,5-Tetrachlorobenzene           | 26.6   | 10                 | μg/L      | 50.0           |                  | 53.2          | 40-140         | 11.2  | 20           |       |     |
| 1,2,4-Trichlorobenzene               | 20.1   | 5.0                | μg/L      | 50.0           |                  | 40.2          | 40-140         | 6.86  | 20           |       |     |
| 2,4,5-Trichlorophenol                | 36.1   | 10                 | $\mu g/L$ | 50.0           |                  | 72.1          | 30-130         | 3.08  | 20           |       |     |
| 2,4,6-Trichlorophenol                | 34.4   | 10                 | $\mu g/L$ | 50.0           |                  | 68.9          | 30-130         | 3.68  | 50           |       | 1   |
| Surrogate: 2-Fluorophenol            | 99.2   |                    | μg/L      | 200            |                  | 49.6          | 15-110         |       |              |       |     |
| Surrogate: Phenol-d6                 | 70.8   |                    | $\mu g/L$ | 200            |                  | 35.4          | 15-110         |       |              |       |     |
| Surrogate: Nitrobenzene-d5           | 57.6   |                    | $\mu g/L$ | 100            |                  | 57.6          | 30-130         |       |              |       |     |
| Surrogate: 2-Fluorobiphenyl          | 59.0   |                    | $\mu g/L$ | 100            |                  | 59.0          | 30-130         |       |              |       |     |
| Surrogate: 2,4,6-Tribromophenol      | 165    |                    | $\mu g/L$ | 200            |                  | 82.5          | 15-110         |       |              |       |     |
| Surrogate: p-Terphenyl-d14           | 89.5   |                    | μg/L      | 100            |                  | 89.5          | 30-130         |       |              |       |     |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

#### Polychlorinated Biphenyls By GC/ECD - Quality Control

| Perpared: 10/25/21   Analyzed: 10/27/21   Analyzed: 10/27/21   Analyzed: 10/27/21   Anactor-1016   CC   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|------|--------------|-------|
| Areclor-1016 ND 0.20 mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Batch B293133 - SW-846 3546          |        |                    |           |                |                  |               |                |      |              |       |
| Arcolor 1221 ND 0.20 mgKg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blank (B293133-BLK1)                 |        |                    |           | Prepared: 10   | 0/25/21 Anal     | yzed: 10/27/2 | 21             |      |              |       |
| Arcolor-1221 [C] ND 0.20 mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aroclor-1016                         | ND     | 0.20               | mg/Kg wet |                |                  |               |                |      |              |       |
| Arcolor-1221 [2C] ND 0.20 mg/Kg wet Arcolor-1232 ND 0.20 mg/Kg wet Arcolor-1232 ND 0.20 mg/Kg wet Arcolor-1232 (2C) ND 0.20 mg/Kg wet Arcolor-1242 ND 0.20 mg/Kg wet Arcolor-1242 ND 0.20 mg/Kg wet Arcolor-1248 [2C] ND 0.20 mg/Kg wet Arcolor-1248 [2C] ND 0.20 mg/Kg wet Arcolor-1248 ND 0.20 mg/Kg wet Arcolor-1249 [2C] ND 0.20 mg/Kg wet Arcolor-1269 [2C] ND 0.20 mg/Kg wet Arcolor-1260 [2C] ND 0.20 mg/Kg wet ND 0.20 mg/Kg we | Aroclor-1016 [2C]                    | ND     | 0.20               | mg/Kg wet |                |                  |               |                |      |              |       |
| Arcolor-1232 [2C] ND 0.20 mg/Kg wet Arcolor-1242 [2C] ND 0.20 mg/Kg wet Arcolor-1243 [2C] ND 0.20 mg/Kg wet Arcolor-1244 [2C] ND 0.20 mg/Kg wet Arcolor-1244 [2C] ND 0.20 mg/Kg wet Arcolor-1254 (2C] ND 0.20 mg/Kg wet Arcolor-1254 (2C] ND 0.20 mg/Kg wet Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 0.25 0.30-150 [2C] ND 0.20 0.20 0.25 0.30-150 [2C] ND 0.20 mg/Kg wet 0.200 0.20 0.25 0.30-150 [2C] ND 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2                                                                                          | Aroclor-1221                         | ND     | 0.20               | mg/Kg wet |                |                  |               |                |      |              |       |
| Arcolor-1242 (27) ND 0.20 mg/Kg wet Arcolor-1242 (7) ND 0.20 mg/Kg wet Arcolor-1243 (7) ND 0.20 mg/Kg wet Arcolor-1248 (7) ND 0.20 mg/Kg wet Arcolor-1254 (7) ND 0.20 mg/Kg wet Arcolor-1260 (7) ND 0.20 mg/Kg wet Nordor-1260 (7) | Aroclor-1221 [2C]                    | ND     | 0.20               | mg/Kg wet |                |                  |               |                |      |              |       |
| Arcolor-1242 [ZC] ND 0.20 mg/Kg wet Arcolor-1242 [ZC] ND 0.20 mg/Kg wet Arcolor-1248 [RC] ND 0.20 mg/Kg wet Arcolor-1248 [RC] ND 0.20 mg/Kg wet Arcolor-1248 [RC] ND 0.20 mg/Kg wet Arcolor-1254 [RC] ND 0.20 mg/Kg wet Arcolor-1260 ND 0.20 mg/Kg wet Arcolor-1262 ND 0.20 mg/Kg wet Arcolor-1268 ND 0.20 mg/Kg wet ND 0.20 mg/K | Aroclor-1232                         | ND     | 0.20               |           |                |                  |               |                |      |              |       |
| Arcolor-1242 [2C] ND 0.20 mg/Kg wet Arcolor-1248 ND 0.20 mg/Kg wet Arcolor-1248 ND 0.20 mg/Kg wet Arcolor-1246 ND 0.20 mg/Kg wet Arcolor-1254 [2C] ND 0.20 mg/Kg wet Arcolor-1254 [2C] ND 0.20 mg/Kg wet Arcolor-1254 [2C] ND 0.20 mg/Kg wet Arcolor-1260 (2C) ND 0.20 mg/Kg wet Arcolor-1262 (2C) ND 0.20 mg/Kg wet Arcolor-1262 (2C) ND 0.20 mg/Kg wet Arcolor-1268 (2C) ND 0.20 mg/Kg wet Northwest Northwest Arcolor-1268 (2C) ND 0.20 mg/Kg wet Northwest Nor | Aroclor-1232 [2C]                    | ND     | 0.20               |           |                |                  |               |                |      |              |       |
| Arcolor-1248   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1242                         | ND     |                    |           |                |                  |               |                |      |              |       |
| Arcolor-1248 [2C] ND 0.20 mg/K g.wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | ND     |                    |           |                |                  |               |                |      |              |       |
| Arcolor-1254 [ACC) ND 0.20 mg/Kg wet Arcolor-1264 [ACC) ND 0.20 mg/Kg wet Arcolor-1260 (ND 0.20 mg/Kg wet Arcolor-1260 (ND 0.20 mg/Kg wet Arcolor-1260 (RD ND 0.20 mg/Kg wet Arcolor-1260 (RD ND 0.20 mg/Kg wet Arcolor-1262 (RD ND 0.20 mg/Kg wet Arcolor-1268 (RD ND 0.20 mg/Kg wet 0.200 97.4 30-150 (RD ND 0.20 Mg/Kg wet 0.200 97.4 40-140 (RD ND 0.20 Mg/Kg wet 0.200 (RD ND 0.20 Mg/Kg wet 0.200 97.4 40-140 (RD ND 0.20 Mg/Kg wet 0.200 (RD ND 0.20  | Aroclor-1248                         | ND     |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1254 [2C] ND 0.20 mg/Kg wet Aroclor-1260 ND 0.20 mg/Kg wet Aroclor-1260 ND 0.20 mg/Kg wet Aroclor-1260 ND 0.20 mg/Kg wet Aroclor-1262 ND 0.20 mg/Kg wet Aroclor-1268 ND 0.20 mg/Kg wet Aroclor-1268 ND 0.20 mg/Kg wet Aroclor-1268 ND 0.20 mg/Kg wet Aroclor-1269 ND 0.20 mg/Kg wet Aroclor-1269 ND 0.20 mg/Kg wet Aroclor-1269 ND 0.20 mg/Kg wet ND 0.20 Mg/Kg w |                                      | ND     |                    |           |                |                  |               |                |      |              |       |
| Arcolor-1260   ND   0.20   mg/Kg wet   February 1260   ND   0.20   mg/Kg wet   0.200   97.4   30-150   ND   0.20   Mg/Kg wet   February 1260   ND   0.20   mg/Kg wet   0.200   97.4   30-150   ND   0.20   Mg/Kg wet   0.200   97.2   40-140   8.79   30   30   ND   ND   0.20 | Aroclor-1254                         |        |                    |           |                |                  |               |                |      |              |       |
| Arcolor-1260 [2C] ND 0.20 mg/Kg wet Arcolor-1262 [2C] ND 0.20 mg/Kg wet Arcolor-1262 [2C] ND 0.20 mg/Kg wet Arcolor-1268 [2C] ND 0.20 mg/Kg wet 0.200 9.74 30-150 Surrogate: Decachlorobiphenyl [2C] 0.165 mg/Kg wet 0.200 9.5 30-150 Surrogate: Tetrachloro-m-xylene 0.189 mg/Kg wet 0.200 9.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 9.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 9.6 40 40-140 Arcolor-1016 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 40-140 Arcolor-1260 [2C] ND 0.20 mg/Kg wet 0.200 9.6 30-150 Surrogate: Tetrachloro-m-xylene 0.174 mg/Kg wet 0.200 9.6 30-150 Surrogate: Tetrachloro-m-xylene 0.175 mg/Kg wet 0.200 9.6 8.7 30-150 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.6 8.7 30-150 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.8 8.7 30-150 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.8 8.7 30-150 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.8 8.7 30-150 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 8.79 30 JD 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.3 40-140 8.79 30 JD 30 Surrogate: Tetrachloro-m-xylene 0.176 mg/Kg wet 0.200 9.2 40 |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Arcolor-1262   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1262 [2C] ND 0.20 mg/Kg wet Aroclor-1268 [2C] ND 0.20 mg/Kg wet 0.200 97.4 30-150 Surrogate: Decachlorobiphenyl [2C] 0.165 mg/Kg wet 0.200 98.2 30-150 Surrogate: Decachlorobiphenyl [2C] 0.173 mg/Kg wet 0.200 94.6 30-150 Surrogate: Tetrachloro-m-xylene 0.189 mg/Kg wet 0.200 94.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 94.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 94.6 40-140 Aroclor-1016 ND 0.20 mg/Kg wet 0.200 94.6 40-140 Aroclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 94.5 40-140 JAroclor-1260 1.17 0.20 mg/Kg wet 0.200 84.5 40-140 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 94.6 30-150 Surrogate: Decachlorobiphenyl [2C] ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 88.7 30-150 Surrogate: Decachlorobiphenyl [2C] 0.154 mg/Kg wet 0.200 76.9 30-150 Surrogate: Tetrachloro-m-xylene 0.177 mg/Kg wet 0.200 76.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 76.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 76.9 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 92.2 40-140 30 JAroclor-1016 ND 0.20 mg/Kg wet 0.200 92.2 40-140 30 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 JAroclor-1260 ND 0.20 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.171 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.17 |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1268   ND   0.20   mg/Kg wet   Aroclor-1268 [2C]   ND   0.20   mg/Kg wet   Surrogate: Decachlorobiphenyl   0.195   mg/Kg wet   0.200   97.4   30-150   Surrogate: Decachlorobiphenyl   2C]   0.165   mg/Kg wet   0.200   94.6   30-150   Surrogate: Tetrachloro-m-xylene   0.189   mg/Kg wet   0.200   94.6   30-150   Surrogate: Tetrachloro-m-xylene   2C]   0.173   mg/Kg wet   0.200   86.7   30-150    LCS (B293133-BS1)   Prepared: 10/25/21   Analyzed: 10/27/21    Aroclor-1016   ND   0.20   mg/Kg wet   0.200   4   40-140   Aroclor-1260   2C]   ND   0.20   mg/Kg wet   0.200   4   40-140   Aroclor-1260   2C]   ND   0.20   mg/Kg wet   0.200   84.5   40-140   Aroclor-1260   2C]   ND   0.20   mg/Kg wet   0.200   84.5   40-140    Surrogate: Decachlorobiphenyl   2C]   0.154   mg/Kg wet   0.200   90.6   30-150   Surrogate: Decachlorobiphenyl   2C]   0.154   mg/Kg wet   0.200   76.9   30-150   Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150   Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150    LCS Dup (B293133-BSD1)   Prepared: 10/25/21   Analyzed: 10/27/21    Aroclor-1260   0.19   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1260   0.19   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   ND   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   ND   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   ND   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   ND   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   ND   0.20   mg/Kg we |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1268 [2C] ND 0.20 mg/Kg wet 0.200 97.4 30-150 Surrogate: Decachlorobiphenyl [2C] 0.165 mg/Kg wet 0.200 82.5 30-150 Surrogate: Tetrachloro-m-xylene 0.189 mg/Kg wet 0.200 86.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 86.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 86.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 86.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.173 mg/Kg wet 0.200 4.6 40-140 Surrogate: Tetrachloro-m-xylene [2C] ND 0.20 mg/Kg wet 0.200 4.0 40-140 Surrogate: Tetrachloro-m-xylene [2C] ND 0.20 mg/Kg wet 0.200 4.0 40-140 Surrogate: Decachlorobiphenyl [2C] ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAcclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAcclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 84.5 40-140 JAcclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 86.7 30-150 Surrogate: Decachlorobiphenyl [2C] 0.154 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 89.3 40-140 30 JAcclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 99.2 40-140 8.79 30 JAcclor-1260 0.18 0.20 mg/Kg wet 0.200 99.2 40-140 8.79 30 JAcclor-1260 0.18 0.20 mg/Kg wet 0.200 99.2 40-140 8.79 30 JAcclor-1260 ND 0.20 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene [2C] ND 0.20 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 85. |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Surrogate: Decachlorobiphenyl   0.195   mg/Kg wet   0.200   97.4   30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Surrogate: Decachlorobiphenyl [2C]   0.165   mg/Kg wet   0.200   82.5   30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |        | 0.20               |           | 0.200          |                  | 07.4          | 20.150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene   0.189   mg/Kg wet   0.200   94.6   30-150     Surrogate: Tetrachloro-m-xylene [2C]   0.173   mg/Kg wet   0.200   86.7   30-150     Surrogate: Tetrachloro-m-xylene [2C]   0.173   mg/Kg wet   0.200   86.7   30-150     Surrogate: Tetrachloro-m-xylene [2C]   0.173   mg/Kg wet   0.200   * 40-140     Aroclor-1016   ND   0.20   mg/Kg wet   0.200   * 40-140     Aroclor-1016   CC]   ND   0.20   mg/Kg wet   0.200   84.5   40-140     Aroclor-1260   CC]   ND   0.20   mg/Kg wet   0.200   84.5   40-140     Aroclor-1260   ND   0.20   mg/Kg wet   0.200   84.5   40-140     Surrogate: Decachlorobiphenyl   0.181   mg/Kg wet   0.200   76.9   30-150     Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150     Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150     Surrogate: Tetrachloro-m-xylene   0.163   mg/Kg wet   0.200   88.7   30-150     Surrogate: Tetrachloro-m-xylene   0.163   mg/Kg wet   0.200   81.3   30-150     LCS Dup (B293133-BSD1)   Prepared: 10/25/21   Analyzed: 10/27/21     Aroclor-1016   0.19   0.20   mg/Kg wet   0.200   93.3   40-140   30   J     Aroclor-1016   CC]   ND   0.20   mg/Kg wet   0.200   93.3   40-140   30   J     Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   30   J     Aroclor-1260   CC]   ND   0.20   mg/Kg wet   0.200   92.2   40-140   30   J     Aroclor-1260   CC   ND   0.20   mg/Kg wet   0.200   92.2   40-140   30   J     Aroclor-1260   ND   0.20   mg/Kg wet   0.200   85.6   30-150     Surrogate: Decachlorobiphenyl   CC   0.171   mg/Kg wet   0.200   85.6   30-150     Surrogate: Decachlorobiphenyl   CC   0.171   mg/Kg wet   0.200   85.6   30-150     Surrogate: Decachlorobiphenyl   CC   0.171   mg/Kg wet   0.200   85.6   30-150     Surrogate: Decachlorobiphenyl   CC   0.171   mg/Kg wet   0.200   89.2   30-150                                                                                                                                                                                                        |                                      |        |                    |           |                |                  |               |                |      |              |       |
| No.    |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Prepared: 10/25/21   Analyzed: 10/27/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - ·                                  |        |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1016   ND   0.20   mg/Kg wet   0.200   * 40-140   Aroclor-1016   2C   ND   0.20   mg/Kg wet   0.200   * 40-140   Aroclor-1260   Aroclor-1260   0.17   0.20   mg/Kg wet   0.200   84.5   40-140   J   Aroclor-1260   2C   ND   0.20   mg/Kg wet   0.200   90.6   30-150   Surrogate: Decachlorobiphenyl   0.181   mg/Kg wet   0.200   90.6   30-150   Surrogate: Decachlorobiphenyl   2C   0.154   mg/Kg wet   0.200   88.7   30-150   Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150   Surrogate: Tetrachloro-m-xylene   2C   0.163   mg/Kg wet   0.200   81.3   30-150   Surrogate: Tetrachloro-m-xylene   2C   0.163   mg/Kg wet   0.200   81.3   30-150   Surrogate: Tetrachloro-m-xylene   0.19   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1016   2C   ND   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1016   2C   ND   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   2C   ND   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   2C   ND   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   2C   ND   0.20   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   0.201   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   0.201   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   0.171   mg/Kg wet   0.200   99.2   30-150   Surrogate: Tetrachloro-m-xylene   0.198   mg/Kg wet   0.200   99.2   30-150   Surrogate: Tetrachloro-m-xyl   | Burrogate. Tetraemoro-m-xyrene [20]  | 0.175  |                    | mg/Kg wet | 0.200          |                  | 00.7          | 30-130         |      |              |       |
| Aroclor-1016 [2C]   ND   0.20   mg/Kg wet   0.200   * 40-140   J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LCS (B293133-BS1)                    |        |                    |           | Prepared: 10   | 0/25/21 Anal     | yzed: 10/27/2 | 21             |      |              |       |
| Aroclor-1260 0,17 0.20 mg/Kg wet 0.200 84.5 40-140 J Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 * * 40-140 J Surrogate: Decachlorobiphenyl 0.181 mg/Kg wet 0.200 90.6 30-150 Surrogate: Decachlorobiphenyl [2C] 0.154 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 93.3 40-140 30 J Aroclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 93.3 40-140 30 J Aroclor-1260 0.18 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 85.6 30-150 Surrogate: Decachlorobiphenyl [2C] 0.171 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | ND     |                    |           |                |                  | *             |                |      |              |       |
| Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 * 40-140  Surrogate: Decachlorobiphenyl 0.181 mg/Kg wet 0.200 90.6 30-150  Surrogate: Decachlorobiphenyl [2C] 0.154 mg/Kg wet 0.200 76.9 30-150  Surrogate: Tetrachloro-m-xylene 0.177 mg/Kg wet 0.200 88.7 30-150  Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150  LCS Dup (B293133-BSD1) Prepared: 10/25/21 Analyzed: 10/27/21  Aroclor-1016 0.19 0.20 mg/Kg wet 0.200 93.3 40-140 30 J  Aroclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 93.3 40-140 30 J  Aroclor-1260 0.18 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J  Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J  Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J  Surrogate: Decachlorobiphenyl 0.201 mg/Kg wet 0.200 85.6 30-150  Surrogate: Decachlorobiphenyl [2C] 0.171 mg/Kg wet 0.200 85.6 30-150  Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |        |                    |           |                |                  |               |                |      |              |       |
| Surrogate: Decachlorobiphenyl   0.181   mg/Kg wet   0.200   90.6   30-150   Surrogate: Decachlorobiphenyl [2C]   0.154   mg/Kg wet   0.200   76.9   30-150   Surrogate: Tetrachloro-m-xylene   0.177   mg/Kg wet   0.200   88.7   30-150   Surrogate: Tetrachloro-m-xylene   2C]   0.163   mg/Kg wet   0.200   81.3   30-150   Surrogate: Tetrachloro-m-xylene   2C]   0.163   mg/Kg wet   0.200   81.3   30-150   Surrogate: Tetrachloro-m-xylene   2C]   ND   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1016   2C]   ND   0.20   mg/Kg wet   0.200   93.3   40-140   30   J   Aroclor-1260   0.18   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   2C]   ND   0.20   mg/Kg wet   0.200   92.2   40-140   8.79   30   J   Aroclor-1260   2C]   ND   0.20   mg/Kg wet   0.200   92.2   40-140   30   Surrogate: Decachlorobiphenyl   0.201   mg/Kg wet   0.200   85.6   30-150   Surrogate: Decachlorobiphenyl   2C]   0.171   mg/Kg wet   0.200   85.6   30-150   Surrogate: Tetrachloro-m-xylene   0.198   mg/Kg wet   0.200   99.2   30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |        |                    |           |                |                  |               |                |      |              | J     |
| Surrogate: Decachlorobiphenyl [2C] 0.154 mg/Kg wet 0.200 76.9 30-150 Surrogate: Tetrachloro-m-xylene 0.177 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 93.3 40-140 30 J Aroclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 93.3 40-140 30 J Aroclor-1260 ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J Surrogate: Decachlorobiphenyl 0.201 mg/Kg wet 0.200 * 40-140 30 Surrogate: Decachlorobiphenyl 0.201 mg/Kg wet 0.200 85.6 30-150 Surrogate: Decachlorobiphenyl [2C] 0.171 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aroclor-1260 [2C]                    |        | 0.20               | mg/Kg wet | 0.200          |                  | *             | 40-140         |      |              |       |
| Surrogate: Tetrachloro-m-xylene 0.177 mg/Kg wet 0.200 88.7 30-150 Surrogate: Tetrachloro-m-xylene [2C] 0.163 mg/Kg wet 0.200 81.3 30-150  LCS Dup (B293133-BSD1) Prepared: 10/25/21 Analyzed: 10/27/21  Aroclor-1016 0.19 0.20 mg/Kg wet 0.200 93.3 40-140 30 J  Aroclor-1016 [2C] ND 0.20 mg/Kg wet 0.200 * 40-140 30 J  Aroclor-1260 0.18 0.20 mg/Kg wet 0.200 92.2 40-140 8.79 30 J  Aroclor-1260 [2C] ND 0.20 mg/Kg wet 0.200 * 40-140 30 J  Surrogate: Decachlorobiphenyl 0.201 mg/Kg wet 0.200 * 40-140 30 Surrogate: Decachlorobiphenyl 0.201 mg/Kg wet 0.200 * 40-140 30 Surrogate: Decachlorobiphenyl [2C] 0.171 mg/Kg wet 0.200 85.6 30-150 Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surrogate: Decachlorobiphenyl        |        |                    |           |                |                  |               |                |      |              |       |
| No.    | Surrogate: Decachlorobiphenyl [2C]   |        |                    |           |                |                  |               |                |      |              |       |
| Prepared: 10/25/21   Analyzed: 10/27/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - · ·                                |        |                    |           |                |                  |               |                |      |              |       |
| Aroclor-1016         0.19         0.20 mg/Kg wet 0.200         93.3 40-140         30 J           Aroclor-1016 [2C]         ND         0.20 mg/Kg wet 0.200         * 40-140 8.79 30 J           Aroclor-1260         0.18         0.20 mg/Kg wet 0.200         92.2 40-140 8.79 30 J           Aroclor-1260 [2C]         ND         0.20 mg/Kg wet 0.200         * 40-140 30           Surrogate: Decachlorobiphenyl         0.201 mg/Kg wet 0.200         101 30-150 30-150           Surrogate: Decachlorobiphenyl [2C]         0.171 mg/Kg wet 0.200         85.6 30-150           Surrogate: Tetrachloro-m-xylene         0.198 mg/Kg wet 0.200         99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate: Tetrachloro-m-xylene [2C] | 0.163  |                    | mg/Kg wet | 0.200          |                  | 81.3          | 30-150         |      |              |       |
| Aroclor-1016 [2C]         ND         0.20 mg/Kg wet         0.200         * 40-140         30           Aroclor-1260         0.18         0.20 mg/Kg wet         0.200         92.2 40-140         8.79 30         J           Aroclor-1260 [2C]         ND         0.20 mg/Kg wet         0.200         * 40-140         30           Surrogate: Decachlorobiphenyl         0.201         mg/Kg wet         0.200         101         30-150           Surrogate: Decachlorobiphenyl [2C]         0.171         mg/Kg wet         0.200         85.6 30-150           Surrogate: Tetrachloro-m-xylene         0.198         mg/Kg wet         0.200         99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCS Dup (B293133-BSD1)               |        |                    |           | Prepared: 10   | 0/25/21 Anal     | yzed: 10/27/2 | 21             |      |              |       |
| Aroclor-1260         0.18         0.20 mg/Kg wet 0.200         92.2 40-140 8.79 30 J           Aroclor-1260 [2C]         ND         0.20 mg/Kg wet 0.200         * 40-140 30           Surrogate: Decachlorobiphenyl         0.201 mg/Kg wet 0.200         101 30-150           Surrogate: Decachlorobiphenyl [2C]         0.171 mg/Kg wet 0.200 85.6 30-150           Surrogate: Tetrachloro-m-xylene         0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aroclor-1016                         | 0.19   |                    |           |                |                  | 93.3          | 40-140         |      | 30           | J     |
| Aroclor-1260 [2C]         ND         0.20 mg/Kg wet         0.200         * 40-140         30           Surrogate: Decachlorobiphenyl         0.201         mg/Kg wet         0.200         101         30-150           Surrogate: Decachlorobiphenyl [2C]         0.171         mg/Kg wet         0.200         85.6         30-150           Surrogate: Tetrachloro-m-xylene         0.198         mg/Kg wet         0.200         99.2         30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aroclor-1016 [2C]                    | ND     |                    |           |                |                  | *             |                |      | 30           |       |
| Surrogate: Decachlorobiphenyl         0.201         mg/Kg wet         0.200         101         30-150           Surrogate: Decachlorobiphenyl [2C]         0.171         mg/Kg wet         0.200         85.6         30-150           Surrogate: Tetrachloro-m-xylene         0.198         mg/Kg wet         0.200         99.2         30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1260                         | 0.18   |                    |           |                |                  | 92.2          |                | 8.79 |              | J     |
| Surrogate: Decachlorobiphenyl [2C]         0.171         mg/Kg wet         0.200         85.6         30-150           Surrogate: Tetrachloro-m-xylene         0.198         mg/Kg wet         0.200         99.2         30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aroclor-1260 [2C]                    | ND     | 0.20               | mg/Kg wet | 0.200          |                  | *             | 40-140         |      | 30           |       |
| Surrogate: Tetrachloro-m-xylene 0.198 mg/Kg wet 0.200 99.2 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: Decachlorobiphenyl        | 0.201  |                    | mg/Kg wet | 0.200          |                  | 101           | 30-150         |      |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: Decachlorobiphenyl [2C]   |        |                    | mg/Kg wet | 0.200          |                  |               |                |      |              |       |
| Surrogate: Tetrachloro-m-xylene [2C] 0.180 mg/Kg wet 0.200 89.8 30-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surrogate: Tetrachloro-m-xylene      |        |                    |           |                |                  |               |                |      |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: Tetrachloro-m-xylene [2C] | 0.180  |                    | mg/Kg wet | 0.200          |                  | 89.8          | 30-150         |      |              |       |



#### QUALITY CONTROL

#### Polychlorinated Biphenyls By GC/ECD - Quality Control

|                                                                                                                                                                                                                                                                                                                                                                           |                                          | Reporting                                                                                    |                                                              | Spike        | Source         |              | %REC             |     | RPD   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|----------------|--------------|------------------|-----|-------|-------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                   | Result                                   | Limit                                                                                        | Units                                                        | Level        | Result         | %REC         | Limits           | RPD | Limit | Notes |
| atch B293133 - SW-846 3546                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                              |                                                              |              |                |              |                  |     |       |       |
| Aatrix Spike (B293133-MS1)                                                                                                                                                                                                                                                                                                                                                | Sour                                     | ce: 21J1472                                                                                  | -02                                                          | Prepared: 10 | )/25/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Aroclor-1016                                                                                                                                                                                                                                                                                                                                                              | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     |       |       |
| roclor-1016 [2C]                                                                                                                                                                                                                                                                                                                                                          | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     |       |       |
| roclor-1260                                                                                                                                                                                                                                                                                                                                                               | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     |       |       |
| Aroclor-1260 [2C]                                                                                                                                                                                                                                                                                                                                                         | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     |       |       |
| urrogate: Decachlorobiphenyl                                                                                                                                                                                                                                                                                                                                              | 0.189                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 83.8         | 30-150           |     |       |       |
| surrogate: Decachlorobiphenyl [2C]                                                                                                                                                                                                                                                                                                                                        | 0.174                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 77.2         | 30-150           |     |       |       |
| urrogate: Tetrachloro-m-xylene                                                                                                                                                                                                                                                                                                                                            | 0.173                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 76.5         | 30-150           |     |       |       |
| urrogate: Tetrachloro-m-xylene [2C]                                                                                                                                                                                                                                                                                                                                       | 0.160                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 70.7         | 30-150           |     |       |       |
| Iatrix Spike Dup (B293133-MSD1)                                                                                                                                                                                                                                                                                                                                           | Sour                                     | ce: 21J1472                                                                                  | -02                                                          | Prepared: 10 | 0/25/21 Analyz | ed: 10/27    | /21              |     |       |       |
| roclor-1016                                                                                                                                                                                                                                                                                                                                                               | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     | 30    |       |
| Aroclor-1016 [2C]                                                                                                                                                                                                                                                                                                                                                         | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     | 30    |       |
| Aroclor-1260                                                                                                                                                                                                                                                                                                                                                              | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     | 30    |       |
| Aroclor-1260 [2C]                                                                                                                                                                                                                                                                                                                                                         | ND                                       | 0.90                                                                                         | mg/Kg dry                                                    | 0.226        | ND             |              | * 40-140         |     | 30    |       |
| urrogate: Decachlorobiphenyl                                                                                                                                                                                                                                                                                                                                              | 0.191                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 84.4         | 30-150           |     |       |       |
| surrogate: Decachlorobiphenyl [2C]                                                                                                                                                                                                                                                                                                                                        | 0.181                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 80.1         | 30-150           |     |       |       |
| surrogate: Tetrachloro-m-xylene                                                                                                                                                                                                                                                                                                                                           | 0.172                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 76.1         | 30-150           |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                           | 0.160                                    |                                                                                              | mg/Kg dry                                                    | 0.226        |                | 70.7         | 30-150           |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                    |                                                                                              |                                                              |              |                |              |                  |     |       |       |
| Blank (B293271-BLK1)                                                                                                                                                                                                                                                                                                                                                      |                                          | 0.20                                                                                         | Д                                                            | Prepared: 10 | )/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271-BLK1) Aroclor-1016                                                                                                                                                                                                                                                                                                                                         | ND                                       | 0.20                                                                                         | μg/L                                                         | Prepared: 10 | )/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Satch B293271 - SW-846 3510C  Slank (B293271-BLK1)  Aroclor-1016  Aroclor-1016 [2C]                                                                                                                                                                                                                                                                                       | ND<br>ND                                 | 0.20                                                                                         | μg/L                                                         | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1016 [2C]  Aroclor-1221                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND                           | 0.20<br>0.20                                                                                 | μg/L<br>μg/L                                                 | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]                                                                                                                                                                                                                                                                        | ND<br>ND<br>ND                           | 0.20<br>0.20<br>0.20                                                                         | μg/L<br>μg/L<br>μg/L                                         | Prepared: 10 | )/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232                                                                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND                     | 0.20<br>0.20<br>0.20<br>0.20                                                                 | μg/L<br>μg/L<br>μg/L<br>μg/L                                 | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]                                                                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND<br>ND               | 0.20<br>0.20<br>0.20<br>0.20<br>0.20                                                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242                                                                                                                                                                                                                         | ND ND ND ND ND ND ND ND ND               | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                                 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                 | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242 [2C]                                                                                                                                                                                                      | ND            | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                                 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Arcolor-1016  Arcolor-1221  Arcolor-1221 [2C]  Arcolor-1232  Arcolor-1232 [2C]  Arcolor-1242  Arcolor-1242 [2C]  Arcolor-1248                                                                                                                                                                                        | ND      | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Arcolor-1016  Arcolor-1221  Arcolor-1221 [2C]  Arcolor-1232  Arcolor-1232 [2C]  Arcolor-1242  Arcolor-1242 [2C]  Arcolor-1248  Arcolor-1248 [2C]                                                                                                                                                                     | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                 | µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1242  Aroclor-1242 [2C]  Aroclor-1248  Aroclor-1248 [2C]  Aroclor-1254                                                                                                                                                                          | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242 [2C]  Aroclor-1248  Aroclor-1248 [2C]  Aroclor-1254  Aroclor-1254 [2C]                                                                                                                                    | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016 [2C]  Aroclor-1221 [2C]  Aroclor-1232 [2C]  Aroclor-1242 [2C]  Aroclor-1248 [2C]  Aroclor-1254 [2C]  Aroclor-1254 [2C]  Aroclor-1254 [2C]  Aroclor-1254 [2C]  Aroclor-1260                                                                                                                              | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242 [2C]  Aroclor-1248  Aroclor-1248 [2C]                                                                                                                                                                     | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016 [2C]  Aroclor-1221 [2C]  Aroclor-1232 [2C]  Aroclor-1242 [2C]  Aroclor-1248 [2C]  Aroclor-1254 [2C]  Aroclor-1254 [2C]  Aroclor-1260 [2C]                                                                                                                                                               | ND N | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                 | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242 [2C]  Aroclor-1248  Aroclor-1248 [2C]  Aroclor-1254  Aroclor-1254  Aroclor-1260  Aroclor-1260 [2C]  Aroclor-1260                                                                                          | ND N | 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20                                                      | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242  Aroclor-1248  Aroclor-1254  Aroclor-1254  Aroclor-1260  Aroclor-1260 [2C]  Aroclor-1262  Aroclor-1262  Aroclor-1262                                                                                      | ND N | 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20                                                      | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | Prepared: 10 | 0/26/21 Analyz | ed: 10/27    | /21              |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1201  Aroclor-1221  Aroclor-1232  Aroclor-1232  Aroclor-1242  Aroclor-1242  Aroclor-1248  Aroclor-1254  Aroclor-1254  Aroclor-1260  Aroclor-1260  Aroclor-1262  Aroclor-1262  Aroclor-1268  Aroclor-1268  Aroclor-1268  Aroclor-1268  Aroclor-1268  Aroclor-1268  Aroclor-1268                 | ND N | 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20                                                      | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      |              | 0/26/21 Analyz |              |                  |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242  Aroclor-1248  Aroclor-1254  Aroclor-1254  Aroclor-1254  Aroclor-1260  Aroclor-1260  Aroclor-1260  Aroclor-1262  Aroclor-1262  Aroclor-1262  Aroclor-1268                                                 | ND N | 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20                                                      | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | 2.00<br>2.00 | 0/26/21 Analyz | 90.0<br>75.6 | 30-150<br>30-150 |     |       |       |
| Blank (B293271 - SW-846 3510C  Blank (B293271-BLK1)  Aroclor-1016  Aroclor-1221  Aroclor-1221 [2C]  Aroclor-1232  Aroclor-1232 [2C]  Aroclor-1242  Aroclor-1242 [2C]  Aroclor-1248  Aroclor-1254  Aroclor-1254  Aroclor-1260  Aroclor-1260  Aroclor-1262  Aroclor-1262  Aroclor-1268  Aroclor-1268  Aroclor-1268 [2C]  Aroclor-1268 [2C]  Aroclor-1268  Aroclor-1268 [2C] | ND N | 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20                                                      | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      | 2.00         | 0/26/21 Analyz | 90.0         | 30-150           |     |       |       |



#### QUALITY CONTROL

#### Polychlorinated Biphenyls By GC/ECD - Quality Control

|                                      |        | Reporting |                  | Spike        | Source       |               | %REC   |      | RPD   |       |
|--------------------------------------|--------|-----------|------------------|--------------|--------------|---------------|--------|------|-------|-------|
| Analyte                              | Result | Limit     | Units            | Level        | Result       | %REC          | Limits | RPD  | Limit | Notes |
| Batch B293271 - SW-846 3510C         |        |           |                  |              |              |               |        |      |       |       |
| LCS (B293271-BS1)                    |        |           |                  | Prepared: 10 | 0/26/21 Anal | yzed: 10/27/2 | 21     |      |       |       |
| Aroclor-1016                         | 0.46   | 0.20      | μg/L             | 0.500        |              | 91.4          | 40-140 |      |       |       |
| Aroclor-1016 [2C]                    | 0.39   | 0.20      | $\mu \text{g/L}$ | 0.500        |              | 78.1          | 40-140 |      |       |       |
| Aroclor-1260                         | 0.41   | 0.20      | $\mu \text{g/L}$ | 0.500        |              | 81.7          | 40-140 |      |       |       |
| Aroclor-1260 [2C]                    | 0.35   | 0.20      | $\mu g/L$        | 0.500        |              | 69.6          | 40-140 |      |       |       |
| Surrogate: Decachlorobiphenyl        | 1.04   |           | μg/L             | 2.00         |              | 51.8          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.874  |           | $\mu g/L$        | 2.00         |              | 43.7          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 1.53   |           | $\mu g/L$        | 2.00         |              | 76.5          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.40   |           | $\mu g/L$        | 2.00         |              | 70.0          | 30-150 |      |       |       |
| LCS Dup (B293271-BSD1)               |        |           |                  | Prepared: 10 | 0/26/21 Anal | yzed: 10/27/2 | 21     |      |       |       |
| Aroclor-1016                         | 0.43   | 0.20      | μg/L             | 0.500        |              | 85.2          | 40-140 | 7.07 | 20    |       |
| Aroclor-1016 [2C]                    | 0.36   | 0.20      | $\mu \text{g/L}$ | 0.500        |              | 72.1          | 40-140 | 7.95 | 20    |       |
| Aroclor-1260                         | 0.38   | 0.20      | $\mu g/L$        | 0.500        |              | 75.7          | 40-140 | 7.56 | 20    |       |
| Aroclor-1260 [2C]                    | 0.32   | 0.20      | $\mu g/L$        | 0.500        |              | 63.8          | 40-140 | 8.65 | 20    |       |
| Surrogate: Decachlorobiphenyl        | 0.860  |           | μg/L             | 2.00         |              | 43.0          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.715  |           | $\mu g/L$        | 2.00         |              | 35.8          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 1.38   |           | $\mu g/L$        | 2.00         |              | 69.0          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.25   |           | $\mu g/L$        | 2.00         |              | 62.4          | 30-150 |      |       |       |



#### QUALITY CONTROL

#### Petroleum Hydrocarbons Analyses - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD    | RPD<br>Limit | Notes  |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|--------|--------------|--------|
| · ·                                 | Result | Limit              | Cints     | Level          | Result           | 70KEC        | Limits         | - Ki D | Emmt         | 110103 |
| Batch B293116 - SW-846 3510C        |        |                    |           |                |                  |              |                |        |              |        |
| Blank (B293116-BLK1)                |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/26/ | 21             |        |              |        |
| Diesel Range Organics               | ND     | 0.20               | mg/L      |                |                  |              |                |        |              |        |
| Surrogate: 2-Fluorobiphenyl         | 0.0591 |                    | mg/L      | 0.100          |                  | 59.1         | 40-140         |        |              |        |
| LCS (B293116-BS1)                   |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/26/ | 21             |        |              |        |
| Diesel Range Organics               | 0.631  | 0.20               | mg/L      | 1.00           |                  | 63.1         | 40-140         |        |              |        |
| Surrogate: 2-Fluorobiphenyl         | 0.0707 |                    | mg/L      | 0.100          |                  | 70.7         | 40-140         |        |              |        |
| LCS Dup (B293116-BSD1)              |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/26/ | 21             |        |              |        |
| Diesel Range Organics               | 0.660  | 0.20               | mg/L      | 1.00           |                  | 66.0         | 40-140         | 4.50   | 30           |        |
| Surrogate: 2-Fluorobiphenyl         | 0.0694 |                    | mg/L      | 0.100          |                  | 69.4         | 40-140         |        |              |        |
| Batch B293199 - SW-846 3546         |        |                    |           |                |                  |              |                |        |              |        |
| Blank (B293199-BLK1)                |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/27/ | 21             |        |              |        |
| Diesel Range Organics               | ND     | 8.3                | mg/Kg wet |                |                  |              |                |        |              |        |
| Surrogate: 2-Fluorobiphenyl         | 2.38   |                    | mg/Kg wet | 3.33           |                  | 71.5         | 40-140         |        |              |        |
| LCS (B293199-BS1)                   |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/27/ | 21             |        |              |        |
| Diesel Range Organics               | 26.2   | 8.3                | mg/Kg wet | 33.3           |                  | 78.5         | 40-140         |        |              |        |
| Surrogate: 2-Fluorobiphenyl         | 2.77   |                    | mg/Kg wet | 3.33           |                  | 83.0         | 40-140         |        |              |        |
| LCS Dup (B293199-BSD1)              |        |                    |           | Prepared: 10   | 0/25/21 Analy    | yzed: 10/27/ | 21             |        |              |        |
| Diesel Range Organics               | 25.3   | 8.3                | mg/Kg wet | 33.3           |                  | 75.8         | 40-140         | 3.46   | 30           |        |
| Surrogate: 2-Fluorobiphenyl         | 2.75   |                    | mg/Kg wet | 3.33           |                  | 82.4         | 40-140         |        |              |        |
| Matrix Spike (B293199-MS1)          | Sou    | rce: 21J1472       | -01       | Prepared: 10   | 0/25/21 Analy    | yzed: 10/29/ | 21             |        |              |        |
| Diesel Range Organics               | 1270   | 62                 | mg/Kg dry | 50.0           | 1030             | 482 *        | 40-140         |        |              | MS-19  |
| Surrogate: 2-Fluorobiphenyl         | 3.77   |                    | mg/Kg dry | 5.00           |                  | 75.4         | 40-140         |        |              |        |
| Matrix Spike Dup (B293199-MSD1)     | Sou    | rce: 21J1472       | -01       | Prepared: 10   | 0/25/21 Analy    | yzed: 10/29/ | 21             |        |              |        |
| Diesel Range Organics               | 989    | 62                 | mg/Kg dry | 50.0           | 1030             | -89.9 *      | 40-140         | 25.3   | 30           | MS-19  |
| Surrogate: 2-Fluorobiphenyl         | 2.96   |                    | mg/Kg dry | 5.00           |                  | 59.1         | 40-140         |        |              |        |
| Batch B293367 - SW-846 5030B        |        |                    |           |                |                  |              |                |        |              |        |
| Blank (B293367-BLK1)                |        |                    |           | Prepared &     | Analyzed: 10     | /27/21       |                |        |              |        |
| Gasoline Range Organics (GRO)       | ND     | 1.0                | mg/Kg wet |                |                  |              |                |        |              |        |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.5   |                    | μg/L      | 15.0           |                  | 96.5         | 70-130         |        |              |        |
| LCS (B293367-BS1)                   |        |                    |           | Prepared &     | Analyzed: 10     | /27/21       |                |        |              |        |
| Gasoline Range Organics (GRO)       | 24.1   | 1.0                | mg/Kg wet | 25.0           |                  | 96.4         | 80-120         |        |              |        |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.5   |                    | μg/L      | 15.0           |                  | 96.8         | 70-130         |        |              |        |



#### QUALITY CONTROL

#### Petroleum Hydrocarbons Analyses - Quality Control

|                                     |        | Reporting    |           | Spike        | Source         |             | %REC   |      | RPD   |       |
|-------------------------------------|--------|--------------|-----------|--------------|----------------|-------------|--------|------|-------|-------|
| Analyte                             | Result | Limit        | Units     | Level        | Result         | %REC        | Limits | RPD  | Limit | Notes |
| Batch B293367 - SW-846 5030B        |        |              |           |              |                |             |        |      |       |       |
| LCS Dup (B293367-BSD1)              |        |              |           | Prepared &   | Analyzed: 10/2 | 27/21       |        |      |       |       |
| Gasoline Range Organics (GRO)       | 25.0   | 1.0          | mg/Kg wet | 25.0         |                | 100         | 80-120 | 3.59 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.8   |              | μg/L      | 15.0         |                | 98.7        | 70-130 |      |       |       |
| Matrix Spike (B293367-MS1)          | Sour   | ce: 21J1472- | -03       | Prepared: 10 | 0/27/21 Analy  | zed: 10/28/ | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 34.5   | 0.89         | mg/Kg dry | 22.3         | 8.87           | 115         | 80-120 |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 13.8   |              | μg/L      | 15.0         |                | 91.9        | 70-130 |      |       |       |
| Matrix Spike Dup (B293367-MSD1)     | Sour   | ce: 21J1472- | -03       | Prepared: 10 | 0/27/21 Analy  | zed: 10/28/ | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 34.9   | 0.89         | mg/Kg dry | 22.3         | 8.87           | 117         | 80-120 | 1.09 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.2   |              | μg/L      | 15.0         |                | 94.8        | 70-130 |      |       |       |



#### QUALITY CONTROL

|                              |        | Reporting |                   | Spike        | Source       |              | %REC       |         | RPD   |       |
|------------------------------|--------|-----------|-------------------|--------------|--------------|--------------|------------|---------|-------|-------|
| Analyte                      | Result | Limit     | Units             | Level        | Result       | %REC         | Limits     | RPD     | Limit | Notes |
| Batch B293091 - SW-846 3005A |        |           |                   |              |              |              |            |         |       |       |
| Blank (B293091-BLK1)         |        |           |                   | Prepared: 10 | /23/21 Analy | zed: 10/24/2 | <u>!</u> 1 |         |       |       |
| Antimony                     | ND     | 1.0       | μg/L              |              |              |              |            |         |       |       |
| Arsenic                      | ND     | 0.80      | $\mu g/L$         |              |              |              |            |         |       |       |
| Barium                       | ND     | 10        | $\mu g/L$         |              |              |              |            |         |       |       |
| Beryllium                    | ND     | 0.40      | $\mu \text{g/L}$  |              |              |              |            |         |       |       |
| Cadmium                      | ND     | 0.20      | $\mu g/L$         |              |              |              |            |         |       |       |
| Chromium                     | ND     | 1.0       | $\mu g/L$         |              |              |              |            |         |       |       |
| Cobalt                       | ND     | 1.0       | $\mu g/L$         |              |              |              |            |         |       |       |
| Copper                       | ND     | 1.0       | $\mu \text{g/L}$  |              |              |              |            |         |       |       |
| Lead                         | ND     | 0.50      | $\mu \text{g/L}$  |              |              |              |            |         |       |       |
| Manganese                    | ND     | 1.0       | $\mu g/L$         |              |              |              |            |         |       |       |
| Nickel                       | ND     | 5.0       | $\mu g/L$         |              |              |              |            |         |       |       |
| Selenium                     | ND     | 5.0       | μg/L              |              |              |              |            |         |       |       |
| Silver                       | ND     | 0.20      | μg/L              |              |              |              |            |         |       |       |
| Thallium                     | ND     | 0.20      | μg/L              |              |              |              |            |         |       |       |
| Vanadium                     | ND     | 5.0       | μg/L              |              |              |              |            |         |       |       |
| Zinc                         | ND     | 10        | $\mu g/L$         |              |              |              |            |         |       |       |
| LCS (B293091-BS1)            |        |           |                   | Prepared: 10 | /23/21 Analy | zed: 10/24/2 | .1         |         |       |       |
| Antimony                     | 554    | 10        | μg/L              | 500          |              | 111          | 80-120     |         |       |       |
| Arsenic                      | 519    | 8.0       | $\mu g/L$         | 500          |              | 104          | 80-120     |         |       |       |
| Barium                       | 520    | 100       | $\mu \text{g/L}$  | 500          |              | 104          | 80-120     |         |       |       |
| Beryllium                    | 530    | 4.0       | $\mu \text{g/L}$  | 500          |              | 106          | 80-120     |         |       |       |
| Cadmium                      | 526    | 2.0       | $\mu g/L$         | 500          |              | 105          | 80-120     |         |       |       |
| Chromium                     | 553    | 10        | $\mu g/L$         | 500          |              | 111          | 80-120     |         |       |       |
| Cobalt                       | 498    | 10        | $\mu g/L$         | 500          |              | 99.5         | 80-120     |         |       |       |
| Copper                       | 997    | 10        | $\mu \text{g/L}$  | 1000         |              | 99.7         | 80-120     |         |       |       |
| Lead                         | 514    | 5.0       | $\mu g/L$         | 500          |              | 103          | 80-120     |         |       |       |
| Manganese                    | 507    | 10        | μg/L              | 500          |              | 101          | 80-120     |         |       |       |
| Nickel                       | 524    | 50        | $\mu g/L$         | 500          |              | 105          | 80-120     |         |       |       |
| Selenium                     | 504    | 50        | μg/L              | 500          |              | 101          | 80-120     |         |       |       |
| Silver                       | 496    | 2.0       | μg/L              | 500          |              | 99.1         | 80-120     |         |       |       |
| Thallium                     | 512    | 2.0       | μg/L              | 500          |              | 102          | 80-120     |         |       |       |
| Vanadium                     | 500    | 50        | μg/L              | 500          |              | 100          | 80-120     |         |       |       |
| Zinc                         | 1010   | 100       | μg/L              | 1000         |              | 101          | 80-120     |         |       |       |
| LCS Dup (B293091-BSD1)       |        |           |                   | Prepared: 10 | /23/21 Analy | zed: 10/24/2 | .1         |         |       |       |
| Antimony                     | 549    | 10        | $\mu \text{g/L}$  | 500          |              | 110          | 80-120     | 0.987   | 20    |       |
| Arsenic                      | 518    | 8.0       | $\mu g \! / \! L$ | 500          |              | 104          | 80-120     | 0.179   | 20    |       |
| Barium                       | 517    | 100       | $\mu \text{g/L}$  | 500          |              | 103          | 80-120     | 0.552   | 20    |       |
| Beryllium                    | 526    | 4.0       | $\mu \text{g/L}$  | 500          |              | 105          | 80-120     | 0.908   | 20    |       |
| Cadmium                      | 519    | 2.0       | μg/L              | 500          |              | 104          | 80-120     | 1.34    | 20    |       |
| Chromium                     | 507    | 10        | μg/L              | 500          |              | 101          | 80-120     | 8.57    | 20    |       |
| Cobalt                       | 487    | 10        | μg/L              | 500          |              | 97.4         | 80-120     | 2.18    | 20    |       |
| Copper                       | 975    | 10        | μg/L              | 1000         |              | 97.5         | 80-120     | 2.24    | 20    |       |
| Lead                         | 507    | 5.0       | μg/L              | 500          |              | 101          | 80-120     | 1.27    | 20    |       |
| Manganese                    | 497    | 10        | μg/L              | 500          |              | 99.5         | 80-120     | 2.00    | 20    |       |
| Nickel                       | 508    | 50        | μg/L              | 500          |              | 102          | 80-120     | 3.11    | 20    |       |
| Selenium                     | 501    | 50        | μg/L              | 500          |              | 100          | 80-120     | 0.576   | 20    |       |
| Silver                       | 496    | 2.0       | μg/L              | 500          |              | 99.1         | 80-120     | 0.00228 | 20    |       |
| Thallium                     | 508    | 2.0       | μg/L              | 500          |              | 102          | 80-120     | 0.784   | 20    |       |
| Vanadium                     | 498    | 50        | μg/L              | 500          |              | 99.6         | 80-120     | 0.537   | 20    |       |
| Zinc                         | 992    | 100       | μg/L              | 1000         |              | 99.2         | 80-120     | 1.68    | 20    |       |



#### QUALITY CONTROL

|                                                                                           |                                          | Reporting                                                                           |                                                                                                                                             | Spike        | Source       |              | %REC   |      | RPD   |       |
|-------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------|------|-------|-------|
| Analyte                                                                                   | Result                                   | Limit                                                                               | Units                                                                                                                                       | Level        | Result       | %REC         | Limits | RPD  | Limit | Notes |
| Batch B293093 - SW-846 3005A                                                              |                                          |                                                                                     |                                                                                                                                             |              |              |              |        |      |       |       |
| Blank (B293093-BLK1)                                                                      |                                          |                                                                                     |                                                                                                                                             | Prepared: 10 | /23/21 Analy | zed: 10/27/2 | 21     |      |       |       |
| Aluminum                                                                                  | ND                                       | 0.050                                                                               | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| Calcium                                                                                   | ND                                       | 0.50                                                                                | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| ron                                                                                       | ND                                       | 0.050                                                                               | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| Magnesium                                                                                 | ND                                       | 0.050                                                                               | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| otassium                                                                                  | ND                                       | 2.0                                                                                 | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| odium                                                                                     | ND                                       | 2.0                                                                                 | mg/L                                                                                                                                        |              |              |              |        |      |       |       |
| CS (B293093-BS1)                                                                          |                                          |                                                                                     |                                                                                                                                             | Prepared: 10 | /23/21 Analy | zed: 10/27/2 | 21     |      |       |       |
| lluminum                                                                                  | 0.501                                    | 0.050                                                                               | mg/L                                                                                                                                        | 0.500        |              | 100          | 80-120 |      |       |       |
| alcium                                                                                    | 4.08                                     | 0.50                                                                                | mg/L                                                                                                                                        | 4.00         |              | 102          | 80-120 |      |       |       |
| ron                                                                                       | 4.10                                     | 0.050                                                                               | mg/L                                                                                                                                        | 4.00         |              | 103          | 80-120 |      |       |       |
| <b>l</b> agnesium                                                                         | 3.93                                     | 0.050                                                                               | mg/L                                                                                                                                        | 4.00         |              | 98.3         | 80-120 |      |       |       |
| otassium                                                                                  | 3.91                                     | 2.0                                                                                 | mg/L                                                                                                                                        | 4.00         |              | 97.9         | 80-120 |      |       |       |
| odium                                                                                     | 3.96                                     | 2.0                                                                                 | mg/L                                                                                                                                        | 4.00         |              | 99.0         | 80-120 |      |       |       |
| CS Dup (B293093-BSD1)                                                                     |                                          |                                                                                     |                                                                                                                                             | Prepared: 10 | /23/21 Analy | zed: 10/27/2 | 21     |      |       |       |
| luminum                                                                                   | 0.537                                    | 0.050                                                                               | mg/L                                                                                                                                        | 0.500        |              | 107          | 80-120 | 6.89 | 20    |       |
| alcium                                                                                    | 4.27                                     | 0.50                                                                                | mg/L                                                                                                                                        | 4.00         |              | 107          | 80-120 | 4.36 | 20    |       |
| on                                                                                        | 4.29                                     | 0.050                                                                               | mg/L                                                                                                                                        | 4.00         |              | 107          | 80-120 | 4.56 | 20    |       |
| lagnesium                                                                                 | 4.12                                     | 0.050                                                                               | mg/L                                                                                                                                        | 4.00         |              | 103          | 80-120 | 4.82 | 20    |       |
| otassium                                                                                  | 4.18                                     | 2.0                                                                                 | mg/L                                                                                                                                        | 4.00         |              | 104          | 80-120 | 6.53 | 20    |       |
| odium                                                                                     | 4.08                                     | 2.0                                                                                 | mg/L                                                                                                                                        | 4.00         |              | 102          | 80-120 | 3.00 | 20    |       |
| Batch B293193 - SW-846 3050B                                                              |                                          |                                                                                     |                                                                                                                                             |              |              |              |        |      |       |       |
| Blank (B293193-BLK1)                                                                      |                                          |                                                                                     |                                                                                                                                             | Prepared: 10 | /25/21 Analy | zed: 10/26/2 | 21     |      |       |       |
| lluminum                                                                                  | ND                                       | 17                                                                                  | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| antimony                                                                                  | ND                                       | 1.7                                                                                 | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| rsenic                                                                                    | ND                                       | 3.3                                                                                 | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| arium                                                                                     | ND                                       | 1.7                                                                                 | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| eryllium                                                                                  | ND                                       | 0.17                                                                                | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| admium                                                                                    |                                          |                                                                                     |                                                                                                                                             |              |              |              |        |      |       |       |
|                                                                                           | ND                                       | 0.33                                                                                | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| alcium                                                                                    |                                          | 0.33<br>17                                                                          | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
|                                                                                           | ND                                       |                                                                                     |                                                                                                                                             |              |              |              |        |      |       |       |
| hromium                                                                                   |                                          | 17                                                                                  | mg/Kg wet                                                                                                                                   |              |              |              |        |      |       |       |
| hromium<br>obalt                                                                          | ND<br>ND                                 | 17<br>0.67                                                                          | mg/Kg wet<br>mg/Kg wet                                                                                                                      |              |              |              |        |      |       |       |
| hromium<br>obalt<br>opper                                                                 | ND<br>ND<br>ND<br>ND                     | 17<br>0.67<br>1.7                                                                   | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                            |              |              |              |        |      |       |       |
| hromium<br>obalt<br>opper<br>on                                                           | ND<br>ND<br>ND<br>ND                     | 17<br>0.67<br>1.7<br>0.67                                                           | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                               |              |              |              |        |      |       |       |
| hromium<br>obalt<br>opper<br>on<br>ead                                                    | ND<br>ND<br>ND<br>ND<br>ND               | 17<br>0.67<br>1.7<br>0.67                                                           | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                  |              |              |              |        |      |       |       |
| hromium<br>obalt<br>opper<br>on<br>ead<br>agnesium                                        | ND<br>ND<br>ND<br>ND<br>ND<br>ND         | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50                                             | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                     |              |              |              |        |      |       |       |
| hromium<br>obalt<br>opper<br>opn<br>ead<br>eagnesium<br>langanese                         | ND ND ND ND ND ND ND ND ND               | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17                                       | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                        |              |              |              |        |      |       |       |
| hromium  obalt  opper  on  ead  (agnesium  langanese  ickel                               | ND         | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33                               | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                           |              |              |              |        |      |       |       |
| hromium obalt opper on ead lagnesium langanese ickel otassium                             | ND N | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33<br>0.67                       | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet              |              |              |              |        |      |       |       |
| hromium obalt opper on ead flagnesium flanganese ickel otassium elenium                   | ND N | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33<br>0.67<br>170<br>3.3         | mg/Kg wet<br>mg/Kg wet |              |              |              |        |      |       |       |
| hromium obalt opper on ead lagnesium langanese ickel otassium elenium                     | ND N | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33<br>0.67<br>170<br>3.3<br>0.33 | mg/Kg wet |              |              |              |        |      |       |       |
| alcium hromium obalt opper on ead fagnesium fanganese fickel otassium elenium ilver odium | ND N | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33<br>0.67<br>170<br>3.3<br>0.33 | mg/Kg wet |              |              |              |        |      |       |       |
| hromium obalt opper on ead lagnesium langanese ickel otassium elenium                     | ND N | 17<br>0.67<br>1.7<br>0.67<br>17<br>0.50<br>17<br>0.33<br>0.67<br>170<br>3.3<br>0.33 | mg/Kg wet |              |              |              |        |      |       |       |



#### QUALITY CONTROL

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| eatch B293193 - SW-846 3050B |        |                    |           |                |                  |             |                |       |              |       |
| CS (B293193-BS1)             |        |                    |           | Prepared: 10   | )/25/21 Analy    | zed: 10/26/ | 21             |       |              |       |
| luminum                      | 7130   | 48                 | mg/Kg wet | 8020           |                  | 89.0        | 48.1-151.7     |       |              |       |
| ntimony                      | 107    | 4.8                | mg/Kg wet | 132            |                  | 80.7        | 1.9-200.7      |       |              |       |
| rsenic                       | 155    | 9.7                | mg/Kg wet | 168            |                  | 92.2        | 82.9-117.6     |       |              |       |
| arium                        | 182    | 4.8                | mg/Kg wet | 181            |                  | 101         | 82.5-117.5     |       |              |       |
| eryllium                     | 113    | 0.48               | mg/Kg wet | 115            |                  | 98.2        | 83.4-116.4     |       |              |       |
| admium                       | 86.2   | 0.97               | mg/Kg wet | 88.5           |                  | 97.4        | 82.8-117.3     |       |              |       |
| alcium                       | 4520   | 48                 | mg/Kg wet | 4750           |                  | 95.2        | 81.7-118.1     |       |              |       |
| hromium                      | 96.1   | 1.9                | mg/Kg wet | 99.8           |                  | 96.2        | 82.1-117.8     |       |              |       |
| balt                         | 82.6   | 4.8                | mg/Kg wet | 83.8           |                  | 98.5        | 83.5-116.5     |       |              |       |
| opper                        | 149    | 1.9                | mg/Kg wet | 147            |                  | 101         | 83.9-116.1     |       |              |       |
| on                           | 13200  | 48                 | mg/Kg wet | 13900          |                  | 95.1        | 60-139.7       |       |              |       |
| ead                          | 136    | 1.5                | mg/Kg wet | 138            |                  | 97.9        | 82.9-117.1     |       |              |       |
| agnesium                     | 2210   | 48                 | mg/Kg wet | 2320           |                  | 95.3        | 76.2-123.8     |       |              |       |
| anganese                     | 627    | 0.97               | mg/Kg wet | 640            |                  | 98.0        | 81.8-118.2     |       |              |       |
| ckel                         | 64.9   | 1.9                | mg/Kg wet | 67.5           |                  | 96.1        | 82.1-117.7     |       |              |       |
| otassium                     | 2030   | 480                | mg/Kg wet | 2030           |                  | 100         | 69.8-129.8     |       |              |       |
| elenium                      | 168    | 9.7                | mg/Kg wet | 180            |                  | 93.3        | 79.7-120.3     |       |              |       |
| lver                         | 49.0   | 0.97               | mg/Kg wet | 49.5           |                  | 99.0        | 80.2-120       |       |              |       |
| dium                         | 122    | 480                | mg/Kg wet | 134            |                  | 90.9        | 71.6-127.9     |       |              | J     |
| allium                       | 102    | 4.8                | mg/Kg wet | 86.7           |                  | 118         | 81.1-118.6     |       |              |       |
| nadium                       | 149    | 1.9                | mg/Kg wet | 151            |                  | 98.4        | 79.1-120.9     |       |              |       |
| nc                           | 223    | 1.9                | mg/Kg wet | 225            |                  | 98.8        | 80.7-118.9     |       |              |       |
| CS Dup (B293193-BSD1)        |        |                    |           | Prepared: 10   | )/25/21 Analy    | zed: 10/26/ | 21             |       |              |       |
| luminum                      | 7070   | 49                 | mg/Kg wet | 8110           |                  | 87.2        | 48.1-151.7     | 0.863 | 30           |       |
| ntimony                      | 103    | 4.9                | mg/Kg wet | 134            |                  | 77.2        | 1.9-200.7      | 3.36  | 30           |       |
| rsenic                       | 149    | 9.8                | mg/Kg wet | 170            |                  | 87.8        | 82.9-117.6     | 3.69  | 30           |       |
| nrium                        | 175    | 4.9                | mg/Kg wet | 183            |                  | 95.4        | 82.5-117.5     | 4.31  | 20           |       |
| eryllium                     | 110    | 0.49               | mg/Kg wet | 116            |                  | 94.6        | 83.4-116.4     | 2.58  | 30           |       |
| ndmium                       | 82.7   | 0.98               | mg/Kg wet | 89.5           |                  | 92.4        | 82.8-117.3     | 4.10  | 20           |       |
| alcium                       | 4540   | 49                 | mg/Kg wet | 4810           |                  | 94.4        | 81.7-118.1     | 0.370 | 30           |       |
| hromium                      | 92.9   | 2.0                | mg/Kg wet | 101            |                  | 91.9        | 82.1-117.8     | 3.39  | 30           |       |
| obalt                        | 79.9   | 4.9                | mg/Kg wet | 84.8           |                  | 94.2        | 83.5-116.5     | 3.29  | 20           |       |
| opper                        | 144    | 2.0                | mg/Kg wet | 149            |                  | 96.7        | 83.9-116.1     | 3.01  | 30           |       |
| on                           | 12500  | 49                 | mg/Kg wet | 14100          |                  | 88.8        | 60-139.7       | 5.62  | 30           |       |
| ead                          | 130    | 1.5                | mg/Kg wet | 140            |                  | 92.7        | 82.9-117.1     | 4.31  | 30           |       |
| agnesium                     | 2190   | 49                 | mg/Kg wet | 2350           |                  | 93.3        | 76.2-123.8     | 0.971 | 30           |       |
| anganese                     | 615    | 0.98               | mg/Kg wet | 648            |                  | 94.9        | 81.8-118.2     | 2.06  | 30           |       |
| ckel                         | 64.3   | 2.0                | mg/Kg wet | 68.3           |                  | 94.2        | 82.1-117.7     | 0.831 | 30           |       |
| tassium                      | 2000   | 490                | mg/Kg wet | 2050           |                  | 97.7        | 69.8-129.8     | 1.10  | 30           |       |
| lenium                       | 161    | 9.8                | mg/Kg wet | 182            |                  | 88.7        | 79.7-120.3     | 3.86  | 30           |       |
| lver                         | 47.4   | 0.98               | mg/Kg wet | 50.1           |                  | 94.6        | 80.2-120       | 3.44  | 30           |       |
| odium                        | 122    | 490                | mg/Kg wet | 136            |                  | 89.4        | 71.6-127.9     | 0.427 | 30           | J     |
| hallium                      |        | 4.9                | mg/Kg wet | 87.7           |                  | 113         | 81.1-118.6     | 2.56  | 30           | J     |
| ınadium                      | 99.5   | 2.0                | mg/Kg wet | 153            |                  |             | 79.1-120.9     |       | 30           |       |
| JIMAI MIII                   | 145    | 2.0                | mg/Kg wet | 228            |                  | 94.6        | /7.1-120.9     | 2.84  | 30           |       |



#### QUALITY CONTROL

|                                    | Prepared: 10/25/21   Analyzed: 10/26/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NI 4          |           |              |              |            |        |      |       |       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------------|--------------|------------|--------|------|-------|-------|
| Analyte                            | Kesult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit         | Units     | Level        | Kesult       | %REC       | Limits | KPD  | Limit | Notes |
| Batch B293193 - SW-846 3050B       | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |              |              |            |        |      |       |       |
| Reference (B293193-SRM1) MRL CHECK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 10 | /25/21 Analy | zed: 10/26 | /21    |      |       |       |
| Lead                               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J             |           |              |              |            |        |      |       |       |
| Batch B293196 - SW-846 7470A Prep  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |              |              |            |        |      |       |       |
| Blank (B293196-BLK1)               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |           |              |              |            |        |      |       |       |
| Mercury                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00010       | mg/L      |              |              |            |        |      |       |       |
| LCS (B293196-BS1)                  | 1) Prepared: 10/25/21 Analyzed: 10/26/21  ND 0.00010 mg/L  Prepared: 10/25/21 Analyzed: 10/26/21  0.00442 0.00010 mg/L 0.00402 110 80-120  Prepared: 10/25/21 Analyzed: 10/26/21  0.00437 0.00010 mg/L 0.00402 109 80-120 1.17 20  UP1) Source: 21J1472-04 Prepared: 10/25/21 Analyzed: 10/26/21  ND 0.00010 mg/L 0.00402 ND 112 75-125  6-MS1) Source: 21J1472-04 Prepared: 10/25/21 Analyzed: 10/26/21  0.00450 0.00010 mg/L 0.00402 ND 112 75-125  446 7471  1) Prepared: 10/26/21 Analyzed: 10/28/21 |               |           |              |              |            |        |      |       |       |
| Mercury                            | 0.00442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00010       | mg/L      | 0.00402      |              | 110        | 80-120 |      |       |       |
| LCS Dup (B293196-BSD1)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 10 | /25/21 Analy | zed: 10/26 | /21    |      |       |       |
| Mercury                            | 0.00437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00010       | mg/L      | 0.00402      |              | 109        | 80-120 | 1.17 | 20    |       |
| Duplicate (B293196-DUP1)           | Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rce: 21J1472- | -04       | Prepared: 10 | /25/21 Analy | zed: 10/26 | /21    |      |       |       |
| Mercury                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00010       | mg/L      |              | ND           |            |        | NC   | 20    |       |
| Matrix Spike (B293196-MS1)         | Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rce: 21J1472- | -04       | Prepared: 10 | /25/21 Analy | zed: 10/26 | /21    |      |       |       |
| Mercury                            | 0.00450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00010       | mg/L      | 0.00402      | ND           | 112        | 75-125 |      |       |       |
| Batch B293278 - SW-846 7471        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |              |              |            |        |      |       |       |
| Blank (B293278-BLK1)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 10 | /26/21 Analy | zed: 10/28 | /21    |      |       |       |
| Mercury                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.025         | mg/Kg wet | -F           |              |            |        |      |       |       |
| LCS (B293278-BS1)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 10 | /26/21 Analy | zed: 10/28 | /21    |      |       |       |
| Mercury                            | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75          | mg/Kg wet | •            |              |            |        |      |       |       |
| LCS Dup (B293278-BSD1)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 10 | /26/21 Analy | zed: 10/28 | /21    |      |       |       |
| Mercury                            | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75          | mg/Kg wet |              |              |            |        | 9.60 | 20    | L-07  |
| Batch B296454 - SW-846 3050B       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |              |              |            |        |      |       |       |
| Blank (B296454-BLK1)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 12 | /09/21 Analy | zed: 12/10 | /21    |      |       |       |
| Thallium                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7           | mg/Kg wet |              |              |            |        |      |       |       |
| LCS (B296454-BS1)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 12 | /09/21 Analy | zed: 12/10 | /21    |      |       |       |
| Thallium                           | 87.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6           | mg/Kg wet |              |              |            |        |      |       |       |
| LCS Dup (B296454-BSD1)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           | Prepared: 12 | /09/21 Analy | zed: 12/10 | /21    |      |       |       |
| * ( ) /                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |           |              | ,            |            |        |      |       |       |



#### QUALITY CONTROL

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Batch B298295 - SW-846 3050B |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B298295-BLK1)         |        |                    |           | Prepared: 01   | /04/22 Anal      | yzed: 01/06/ | 22             |      |              |       |
| Thallium                     | ND     | 1.7                | mg/Kg wet |                |                  |              |                |      |              |       |
| LCS (B298295-BS1)            |        |                    |           | Prepared: 01   | /04/22 Anal      | yzed: 01/06/ | 22             |      |              |       |
| Thallium                     | 93.9   | 4.7                | mg/Kg wet | 87.7           |                  | 107          | 81.1-118.6     |      |              |       |
| LCS Dup (B298295-BSD1)       |        |                    |           | Prepared: 01   | /04/22 Anal      | yzed: 01/06/ | 22             |      |              |       |
| Thallium                     | 92.1   | 4.8                | mg/Kg wet | 87.7           |                  | 105          | 81.1-118.6     | 1.92 | 30           |       |



#### QUALITY CONTROL

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|---------|----------------|-------|--------------|-------|
| Batch B293120 - SW-846 9010C |        | <u> </u>           |           |                |                  |         |                |       |              |       |
| Blank (B293120-BLK1)         |        |                    |           | Prepared &     | Analyzed: 10     | 0/25/21 |                |       |              |       |
| Cyanide                      | ND     | 0.50               | mg/Kg wet |                |                  |         |                |       |              |       |
| LCS (B293120-BS1)            |        |                    |           | Prepared &     | Analyzed: 10     | 0/25/21 |                |       |              |       |
| Cyanide                      | 77     | 2.5                | mg/Kg wet | 69.9           |                  | 110     | 80-120         |       |              |       |
| LCS Dup (B293120-BSD1)       |        |                    |           | Prepared &     | Analyzed: 10     | 0/25/21 |                |       |              |       |
| Cyanide                      | 78     | 2.5                | mg/Kg wet | 70.0           |                  | 112     | 80-120         | 2.17  | 20           |       |
| Batch B293214 - SW-846 9045C |        |                    |           |                |                  |         |                |       |              |       |
| LCS (B293214-BS1)            |        |                    |           | Prepared &     | Analyzed: 10     | 0/25/21 |                |       |              |       |
| pH                           | 6.04   |                    | pH Units  | 6.00           |                  | 101     | 90-110         |       |              |       |
| Batch B293335 - SW-846 9010C |        |                    |           |                |                  |         |                |       |              |       |
| Blank (B293335-BLK1)         |        |                    |           | Prepared &     | Analyzed: 10     | 0/27/21 |                |       |              |       |
| Cyanide                      | ND     | 0.010              | mg/L      |                |                  |         |                |       |              |       |
| LCS (B293335-BS1)            |        |                    |           | Prepared &     | Analyzed: 10     | 0/27/21 |                |       |              |       |
| Cyanide                      | 0.76   | 0.020              | mg/L      | 0.724          |                  | 106     | 80-120         |       |              |       |
| LCS Dup (B293335-BSD1)       |        |                    |           | Prepared &     | Analyzed: 10     | 0/27/21 |                |       |              |       |
| Cyanide                      | 0.76   | 0.020              | mg/L      | 0.724          |                  | 105     | 80-120         | 0.556 | 20           |       |
| Batch B293536 - SW-846 9010C |        |                    |           |                |                  |         |                |       |              |       |
| Blank (B293536-BLK1)         |        |                    |           | Prepared &     | Analyzed: 10     | 0/29/21 |                |       |              |       |
| Cyanide                      | ND     | 0.43               | mg/Kg wet |                |                  |         |                |       |              |       |
| LCS (B293536-BS1)            |        |                    |           | Prepared &     | Analyzed: 10     | 0/29/21 |                |       |              |       |
| Cyanide                      | 82     | 2.5                | mg/Kg wet | 69.5           |                  | 118     | 80-120         |       |              |       |
| LCS Dup (B293536-BSD1)       |        |                    |           | Prepared &     | Analyzed: 10     | 0/29/21 |                |       |              |       |
| Cyanide                      | 79     | 2.4                | mg/Kg wet | 68.6           |                  | 115     | 80-120         | 3.77  | 20           |       |
| MRL Check (B293536-MRL1)     |        |                    |           | Prepared &     | Analyzed: 10     | 0/29/21 |                |       |              |       |
| Cyanide                      | 0.611  | 0.50               | mg/Kg wet | 0.500          |                  | 122     | 0-200          |       |              |       |
| MRL Check (B293536-MRL2)     |        |                    |           | Prepared &     | Analyzed: 10     | 0/29/21 |                |       |              |       |
| Cyanide                      | 0.502  | 0.50               | mg/Kg wet | 0.500          |                  | 100     | 0-200          |       |              |       |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS |  |  |
|-----|--|--|

SW-846 8082A

| Lab Sample ID:     | B293271-BS1 |      | Date(s) Analyzed:  | 10/27/2021 | 10/27/20 | 21   |
|--------------------|-------------|------|--------------------|------------|----------|------|
| Instrument ID (1): | ECD4        | _    | Instrument ID (2): | ECD4       |          |      |
| GC Column (1):     | ID:         | (mm) | GC Column (2):     |            | ID:      | (mm) |

| ANALYTE      | COL RT RT WINDOW |       | NDOW  | CONCENTRATION | %RPD            |          |
|--------------|------------------|-------|-------|---------------|-----------------|----------|
| 7110/12112   | 002              | 111   | FROM  | TO            | OONOLIVITUUTION | 70111 15 |
| Aroclor-1016 | 1                | 0.000 | 0.000 | 0.000         | 0.46            |          |
|              | 2                | 0.000 | 0.000 | 0.000         | 0.39            | 16.5     |
| Aroclor-1260 | 1                | 0.000 | 0.000 | 0.000         | 0.41            |          |
|              | 2                | 0.000 | 0.000 | 0.000         | 0.35            | 15.8     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS Dup |  |
|---------|--|

SW-846 8082A

| Lab Sample ID:     | B293271-BSD1 |      | Date(s) Analyzed:  | 10/27/2021 | 10/27 | /2021 |
|--------------------|--------------|------|--------------------|------------|-------|-------|
| Instrument ID (1): | ECD4         | _    | Instrument ID (2): | ECD4       |       |       |
| GC Column (1):     | ID:          | (mm) | GC Column (2):     |            | ID:   | (mm   |

| ANALYTE      | COL | RT    | RT WI | NDOW  | CONCENTRATION  | %RPD     |
|--------------|-----|-------|-------|-------|----------------|----------|
| 7.10.112     | 002 | 111   | FROM  | TO    | CONCENTIVITION | 70111 13 |
| Aroclor-1016 | 1   | 0.000 | 0.000 | 0.000 | 0.43           |          |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.36           | 17.7     |
| Aroclor-1260 | 1   | 0.000 | 0.000 | 0.000 | 0.38           |          |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.32           | 17.1     |



#### FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                                                      |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                                                           |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                                                          |
| ND    | Not Detected                                                                                                                                                                                                                                                  |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                         |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                                   |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                                                     |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                                        |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                         |
| DL-03 | Elevated reporting limit due to matrix interference.                                                                                                                                                                                                          |
| H-03  | Sample received after recommended holding time was exceeded.                                                                                                                                                                                                  |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                           |
| L-04  | Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.                                                                  |
| L-07  | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.                                      |
| L-07A | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but<br>the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for<br>this compound. |
| MS-09 | Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.                             |
| MS-19 | Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.                                                                     |
| MS-22 | Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.                                                                                     |
| MS-23 | Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound.    |
| R-05  | Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.                                                                                                             |
| R-06  | Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.                                                                                                               |
| RL-11 | Elevated reporting limit due to high concentration of target compounds.                                                                                                                                                                                       |
| V-04  | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                                                                     |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                                                |
| V-06  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                                                                               |
| V-20  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                                                      |
| V-34  | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                                                     |
| V-35  | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.                                                                                                    |
|       |                                                                                                                                                                                                                                                               |



# CERTIFICATIONS

# Certified Analyses included in this Report

Zinc

| Analyte               | Certifications         |
|-----------------------|------------------------|
| SW-846 6010D in Soil  |                        |
| Aluminum              | CT,NH,NY,ME,VA,NC      |
| Antimony              | CT,NH,NY,ME,VA,NC      |
| Arsenic               | CT,NH,NY,ME,VA,NC      |
| Barium                | CT,NH,NY,ME,VA,NC      |
| Beryllium             | CT,NH,NY,ME,VA,NC      |
| Cadmium               | CT,NH,NY,ME,VA,NC      |
| Calcium               | CT,NH,NY,ME,VA,NC      |
| Chromium              | CT,NH,NY,ME,VA,NC      |
| Cobalt                | CT,NH,NY,ME,VA,NC      |
| Copper                | CT,NH,NY,ME,VA,NC      |
| Iron                  | CT,NH,NY,ME,VA,NC      |
| Lead                  | CT,NH,NY,AIHA,ME,VA,NC |
| Magnesium             | CT,NH,NY,ME,VA,NC      |
| Manganese             | CT,NH,NY,ME,VA,NC      |
| Nickel                | CT,NH,NY,ME,VA,NC      |
| Potassium             | CT,NH,NY,ME,VA,NC      |
| Selenium              | CT,NH,NY,ME,VA,NC      |
| Silver                | CT,NH,NY,ME,VA,NC      |
| Sodium                | CT,NH,NY,ME,VA,NC      |
| Thallium              | CT,NH,NY,ME,VA,NC      |
| Vanadium              | CT,NH,NY,ME,VA,NC      |
| Zinc                  | CT,NH,NY,ME,VA,NC      |
| SW-846 6010D in Water |                        |
| Aluminum              | CT,NH,NY,ME,VA,NC      |
| Calcium               | CT,NH,NY,ME,VA,NC      |
| Iron                  | CT,NH,NY,ME,VA,NC      |
| Magnesium             | CT,NH,NY,ME,VA,NC      |
| Potassium             | CT,NH,NY,ME,VA,NC      |
| Sodium                | CT,NH,NY,ME,VA,NC      |
| SW-846 6020B in Water |                        |
| Antimony              | CT,NH,NY,ME,VA,NC      |
| Arsenic               | CT,NH,NY,ME,VA,NC      |
| Barium                | CT,NH,NY,ME,VA,NC      |
| Beryllium             | CT,NH,NY,ME,VA,NC      |
| Cadmium               | CT,NH,NY,RI,ME,VA,NC   |
| Chromium              | CT,NH,NY,ME,VA,NC      |
| Cobalt                | CT,NH,NY,ME,VA,NC      |
| Copper                | CT,NH,NY,ME,VA,NC      |
| Lead                  | CT,NH,NY,ME,VA,NC      |
| Manganese             | CT,NH,NY,ME,VA,NC      |
| Nickel                | CT,NH,NY,ME,VA,NC      |
| Selenium              | CT,NH,NY,ME,VA,NC      |
| Silver                | CT,NH,NY,ME,VA,NC      |
| Thallium              | CT,NH,NY,ME,VA,NC      |
| Vanadium              | CT,NH,NY,ME,VA,NC      |

CT,NH,NY,ME,VA,NC



# CERTIFICATIONS

# Certified Analyses included in this Report

Aroclor-1268

| Certified Analyses included in this Report  Analyte | Certifications          |
|-----------------------------------------------------|-------------------------|
| SW-846 7470A in Water                               |                         |
| Mercury                                             | CT,NH,NY,NC,ME,VA       |
| SW-846 7471B in Soil                                | C13(1113) 1 13(1C3) 121 |
|                                                     | CTARLANGA ME VA         |
| Mercury                                             | CT,NH,NY,NC,ME,VA       |
| SW-846 8015C in Soil                                |                         |
| Gasoline Range Organics (GRO)                       | NY,VA,NH,NC             |
| Diesel Range Organics                               | NY,VA,NH,NC             |
| SW-846 8015C in Water                               |                         |
| Diesel Range Organics                               | NY,VA,NH,NC             |
| SW-846 8082A in Soil                                |                         |
| Aroclor-1016                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1016 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1221                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1221 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1232                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1232 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1242                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1242 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1248                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1248 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1254                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1254 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1260                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1260 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1262                                        | NH,NY,NC,ME,VA,PA       |
| Aroclor-1262 [2C]                                   | NH,NY,NC,ME,VA,PA       |
| Aroclor-1268                                        | NH,NY,NC,ME,VA,PA       |
| Aroclor-1268 [2C]                                   | NH,NY,NC,ME,VA,PA       |
| SW-846 8082A in Water                               |                         |
| Aroclor-1016                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1016 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1221                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1221 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1232                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1232 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1242                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1242 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1248                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1248 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1254                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1254 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1260                                        | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1260 [2C]                                   | CT,NH,NY,NC,ME,VA,PA    |
| Aroclor-1262                                        | NH,NY,NC,ME,VA,PA       |
| Aroclor-1262 [2C]                                   | NH,NY,NC,ME,VA,PA       |
|                                                     |                         |

NH,NY,NC,ME,VA,PA



# CERTIFICATIONS

| Analyte                            | Certifications    |
|------------------------------------|-------------------|
| SW-846 8082A in Water              |                   |
| Aroclor-1268 [2C]                  | NH,NY,NC,ME,VA,PA |
| SW-846 8260D in Soil               |                   |
| Acetone                            | CT,NH,NY,ME,VA    |
| Acetone                            | CT,NH,NY,ME,VA    |
| Acrylonitrile                      | CT,NH,NY,ME,VA    |
| Acrylonitrile                      | CT,NH,NY,ME,VA    |
| Benzene                            | CT,NH,NY,ME,VA    |
| Benzene                            | CT,NH,NY,ME,VA    |
| Bromobenzene                       | NH,NY,ME,VA       |
| Bromobenzene                       | NH,NY,ME,VA       |
| Bromochloromethane                 | NH,NY,ME,VA       |
| Bromochloromethane                 | NH,NY,ME,VA       |
| Bromodichloromethane               | CT,NH,NY,ME,VA    |
| Bromodichloromethane               | CT,NH,NY,ME,VA    |
| Bromoform                          | CT,NH,NY,ME,VA    |
| Bromoform                          | CT,NH,NY,ME,VA    |
| Bromomethane                       | CT,NH,NY,ME,VA    |
| Bromomethane                       | CT,NH,NY,ME,VA    |
| 2-Butanone (MEK)                   | CT,NH,NY,ME,VA    |
| 2-Butanone (MEK)                   | CT,NH,NY,ME,VA    |
| tert-Butyl Alcohol (TBA)           | NY,ME             |
| n-Butylbenzene                     | CT,NH,NY,ME,VA    |
| n-Butylbenzene                     | CT,NH,NY,ME,VA    |
| sec-Butylbenzene                   | CT,NH,NY,ME,VA    |
| sec-Butylbenzene                   | CT,NH,NY,ME,VA    |
| tert-Butylbenzene                  | CT,NH,NY,ME,VA    |
| tert-Butylbenzene                  | CT,NH,NY,ME,VA    |
| Carbon Disulfide                   | CT,NH,NY,ME,VA    |
| Carbon Disulfide                   | CT,NH,NY,ME,VA    |
| Carbon Tetrachloride               | CT,NH,NY,ME,VA    |
| Carbon Tetrachloride               | CT,NH,NY,ME,VA    |
| Chlorobenzene                      | CT,NH,NY,ME,VA    |
| Chlorobenzene                      | CT,NH,NY,ME,VA    |
| Chlorodibromomethane               | CT,NH,NY,ME,VA    |
| Chlorodibromomethane               | CT,NH,NY,ME,VA    |
| Chloroethane                       | CT,NH,NY,ME,VA    |
| Chloroethane                       | CT,NH,NY,ME,VA    |
| Chloroform                         | CT,NH,NY,ME,VA    |
| Chloroform                         | CT,NH,NY,ME,VA    |
| Chloromethane                      | CT,NH,NY,ME,VA    |
| Chloromethane                      | CT,NH,NY,ME,VA    |
| 2-Chlorotoluene                    | CT,NH,NY,ME,VA    |
| 2-Chlorotoluene                    | CT,NH,NY,ME,VA    |
| 4-Chlorotoluene                    | CT,NH,NY,ME,VA    |
| 4-Chlorotoluene                    | CT,NH,NY,ME,VA    |
| 1,2-Dibromo-3-chloropropane (DBCP) | NY,ME             |



# CERTIFICATIONS

| Analyte                                    | Certifications                   |
|--------------------------------------------|----------------------------------|
| SW-846 8260D in Soil                       |                                  |
| 1,2-Dibromo-3-chloropropane (DBCP)         | NY                               |
| 1,2-Dibromoethane (EDB)                    | NH,NY                            |
| 1,2-Dibromoethane (EDB)                    | NH,NY                            |
| Dibromomethane                             | NH,NY,ME,VA                      |
| Dibromomethane                             | NH,NY,ME,VA                      |
| 1,2-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| 1,2-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| 1,3-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| 1,3-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| 1,4-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| 1,4-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| trans-1,4-Dichloro-2-butene                | NY,ME                            |
| Dichlorodifluoromethane (Freon 12)         | NH,NY,ME,VA                      |
| Dichlorodifluoromethane (Freon 12)         | NY,ME,VA                         |
| 1,1-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,1-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,2-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,2-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,1-Dichloroethylene                       | CT,NH,NY,ME,VA                   |
| 1,1-Dichloroethylene                       | CT,NH,NY,ME,VA                   |
| cis-1,2-Dichloroethylene                   | CT,NH,NY,ME,VA                   |
| cis-1,2-Dichloroethylene                   | CT,NH,NY,ME,VA                   |
| trans-1,2-Dichloroethylene                 | CT,NH,NY,ME,VA                   |
| trans-1,2-Dichloroethylene                 | CT,NH,NY,ME,VA                   |
| 1,2-Dichloropropane                        | CT,NH,NY,ME,VA                   |
| 1,2-Dichloropropane                        | CT,NH,NY,ME,VA                   |
| 1,3-Dichloropropane                        | NH,NY,ME,VA                      |
| 1,3-Dichloropropane                        | NH,NY,ME,VA                      |
| 2,2-Dichloropropane                        | NH,NY,ME,VA                      |
| 2,2-Dichloropropane                        | NH,NY,ME,VA                      |
| 1,1-Dichloropropene                        | NH,NY,ME,VA                      |
| 1,1-Dichloropropene                        | NH,NY,ME,VA                      |
| cis-1,3-Dichloropropene                    | CT,NH,NY,ME,VA                   |
| cis-1,3-Dichloropropene                    | CT,NH,NY,ME,VA                   |
| trans-1,3-Dichloropropene                  | CT,NH,NY,ME,VA                   |
| trans-1,3-Dichloropropene                  | CT,NH,NY,ME,VA                   |
| Diethyl Ether                              | ME<br>NYA CE                     |
| 1,4-Dioxane                                | NY,ME                            |
| Ethylbenzene                               | CT,NH,NY,ME,VA                   |
| Ethylbenzene                               | CT,NH,NY,ME,VA                   |
| Hexachlorobutadiene                        | NH,NY,ME,VA                      |
| Hexachlorobutadiene                        | NH,NY,ME,VA                      |
| 2-Hexanone (MBK)                           | CT,NH,NY,ME,VA                   |
| 2-Hexanone (MBK) Isopropylbenzene (Cumene) | CT,NH,NY,ME,VA<br>CT,NH,NY,ME,VA |
| Isopropylbenzene (Cumene)                  | CT,NH,NY,ME,VA<br>CT,NH,NY,ME,VA |
| p-Isopropyltoluene (p-Cymene)              | CT,NH,NY,ME,VA<br>NH,NY          |
| p-150propyrioridene (p-Cynnene)            | 1111,111                         |



# CERTIFICATIONS

# Certified Analyses included in this Report

o-Xylene

| Analyte                           | Certifications |  |
|-----------------------------------|----------------|--|
| SW-846 8260D in Soil              |                |  |
| p-Isopropyltoluene (p-Cymene)     | NH,NY          |  |
| Methyl Acetate                    | NY,ME          |  |
| Methyl tert-Butyl Ether (MTBE)    | NY,VA          |  |
| Methyl tert-Butyl Ether (MTBE)    | NY,ME,VA       |  |
| Methyl Cyclohexane                | NY             |  |
| Methylene Chloride                | CT,NH,NY,ME,VA |  |
| Methylene Chloride                | CT,NH,NY,ME,VA |  |
| 4-Methyl-2-pentanone (MIBK)       | CT,NH,NY,ME,VA |  |
| 4-Methyl-2-pentanone (MIBK)       | CT,NH,NY,VA    |  |
| Naphthalene                       | NH,NY,ME,VA    |  |
| Naphthalene                       | NH,NY,ME,VA    |  |
| n-Propylbenzene                   | NH,NY,ME       |  |
| n-Propylbenzene                   | NH,NY          |  |
| Styrene                           | CT,NH,NY,ME,VA |  |
| Styrene                           | CT,NH,NY,ME,VA |  |
| 1,1,1,2-Tetrachloroethane         | CT,NH,NY,ME,VA |  |
| 1,1,1,2-Tetrachloroethane         | CT,NH,NY,ME,VA |  |
| 1,1,2,2-Tetrachloroethane         | CT,NH,NY,ME,VA |  |
| 1,1,2,2-Tetrachloroethane         | CT,NH,NY,ME,VA |  |
| Tetrachloroethylene               | CT,NH,NY,ME,VA |  |
| Tetrachloroethylene               | CT,NH,NY,ME,VA |  |
| Toluene                           | CT,NH,NY,ME,VA |  |
| Toluene                           | CT,NH,NY,ME,VA |  |
| 1,2,3-Trichlorobenzene            | NY,ME          |  |
| 1,2,4-Trichlorobenzene            | NH,NY,ME,VA    |  |
| 1,2,4-Trichlorobenzene            | NH,NY,ME,VA    |  |
| 1,3,5-Trichlorobenzene            | ME             |  |
| 1,1,1-Trichloroethane             | CT,NH,NY,ME,VA |  |
| 1,1,1-Trichloroethane             | CT,NH,NY,ME,VA |  |
| 1,1,2-Trichloroethane             | CT,NH,NY,ME,VA |  |
| 1,1,2-Trichloroethane             | CT,NH,NY,ME,VA |  |
| Trichloroethylene                 | CT,NH,NY,ME,VA |  |
| Trichloroethylene                 | CT,NH,NY,ME,VA |  |
| Trichlorofluoromethane (Freon 11) | CT,NH,NY,ME,VA |  |
| Trichlorofluoromethane (Freon 11) | CT,NH,NY,VA    |  |
| 1,2,3-Trichloropropane            | NH,NY,ME,VA    |  |
| 1,2,3-Trichloropropane            | NH,NY,ME,VA    |  |
| 1,2,4-Trimethylbenzene            | CT,NH,NY,ME,VA |  |
| 1,2,4-Trimethylbenzene            | CT,NH,NY,ME,VA |  |
| 1,3,5-Trimethylbenzene            | CT,NH,NY,ME,VA |  |
| 1,3,5-Trimethylbenzene            | CT,NH,NY,ME,VA |  |
| Vinyl Chloride                    | CT,NH,NY,ME,VA |  |
| Vinyl Chloride                    | CT,NH,NY,ME,VA |  |
| m+p Xylene                        | CT,NH,NY,ME,VA |  |
| m+p Xylene                        | CT,NH,NY,ME,VA |  |
| o-Xylene                          | CT,NH,NY,ME,VA |  |
| ** 1                              |                |  |

CT,NH,NY,ME,VA



# CERTIFICATIONS

Certifications

# Certified Analyses included in this Report

Analyte

| Allalyte                           | Certifications |
|------------------------------------|----------------|
| SW-846 8260D in Water              |                |
| Acetone                            | CT,ME,NH,VA,NY |
| Acrylonitrile                      | CT,ME,NH,VA,NY |
| tert-Amyl Methyl Ether (TAME)      | ME,NH,VA,NY    |
| Benzene                            | CT,ME,NH,VA,NY |
| Bromobenzene                       | ME,NY          |
| Bromochloromethane                 | ME,NH,VA,NY    |
| Bromodichloromethane               | CT,ME,NH,VA,NY |
| Bromoform                          | CT,ME,NH,VA,NY |
| Bromomethane                       | CT,ME,NH,VA,NY |
| 2-Butanone (MEK)                   | CT,ME,NH,VA,NY |
| tert-Butyl Alcohol (TBA)           | ME,NH,VA,NY    |
| n-Butylbenzene                     | ME,VA,NY       |
| sec-Butylbenzene                   | ME,VA,NY       |
| tert-Butylbenzene                  | ME,VA,NY       |
| tert-Butyl Ethyl Ether (TBEE)      | ME,NH,VA,NY    |
| Carbon Disulfide                   | CT,ME,NH,VA,NY |
| Carbon Tetrachloride               | CT,ME,NH,VA,NY |
| Chlorobenzene                      | CT,ME,NH,VA,NY |
| Chlorodibromomethane               | CT,ME,NH,VA,NY |
| Chloroethane                       | CT,ME,NH,VA,NY |
| Chloroform                         | CT,ME,NH,VA,NY |
| Chloromethane                      | CT,ME,NH,VA,NY |
| 2-Chlorotoluene                    | ME,NH,VA,NY    |
| 4-Chlorotoluene                    | ME,NH,VA,NY    |
| 1,2-Dibromo-3-chloropropane (DBCP) | ME,NY          |
| 1,2-Dibromoethane (EDB)            | ME,NY          |
| Dibromomethane                     | ME,NH,VA,NY    |
| 1,2-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,3-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,4-Dichlorobenzene                | CT,ME,NH,VA,NY |
| trans-1,4-Dichloro-2-butene        | ME,NH,VA,NY    |
| Dichlorodifluoromethane (Freon 12) | ME,NH,VA,NY    |
| 1,1-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,2-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,1-Dichloroethylene               | CT,ME,NH,VA,NY |
| cis-1,2-Dichloroethylene           | ME,NY          |
| trans-1,2-Dichloroethylene         | CT,ME,NH,VA,NY |
| 1,2-Dichloropropane                | CT,ME,NH,VA,NY |
| 1,3-Dichloropropane                | ME,VA,NY       |
| 2,2-Dichloropropane                | ME,NH,VA,NY    |
| 1,1-Dichloropropene                | ME,NH,VA,NY    |
| cis-1,3-Dichloropropene            | CT,ME,NH,VA,NY |
| trans-1,3-Dichloropropene          | CT,ME,NH,VA,NY |
| Diethyl Ether                      | ME,NY          |
| Diisopropyl Ether (DIPE)           | ME,NH,VA,NY    |
| 1,4-Dioxane                        | ME,NY          |
| Ethylbenzene                       | CT,ME,NH,VA,NY |
|                                    |                |



# CERTIFICATIONS

# Certified Analyses included in this Report

Bis(2-chloroisopropyl)ether

| Analyte                                           | Certifications    |
|---------------------------------------------------|-------------------|
| SW-846 8260D in Water                             |                   |
| Hexachlorobutadiene                               | CT,ME,NH,VA,NY    |
| 2-Hexanone (MBK)                                  | CT,ME,NH,VA,NY    |
| Isopropylbenzene (Cumene)                         | ME,VA,NY          |
| p-Isopropyltoluene (p-Cymene)                     | CT,ME,NH,VA,NY    |
| Methyl Acetate                                    | ME,NY             |
| Methyl tert-Butyl Ether (MTBE)                    | CT,ME,NH,VA,NY    |
| Methyl Cyclohexane                                | NY                |
| Methylene Chloride                                | CT,ME,NH,VA,NY    |
| 4-Methyl-2-pentanone (MIBK)                       | CT,ME,NH,VA,NY    |
| Naphthalene                                       | ME,NH,VA,NY       |
| n-Propylbenzene                                   | CT,ME,NH,VA,NY    |
| Styrene                                           | CT,ME,NH,VA,NY    |
| 1,1,1,2-Tetrachloroethane                         | CT,ME,NH,VA,NY    |
| 1,1,2,2-Tetrachloroethane                         | CT,ME,NH,VA,NY    |
| Tetrachloroethylene                               | CT,ME,NH,VA,NY    |
| Toluene                                           | CT,ME,NH,VA,NY    |
| 1,2,3-Trichlorobenzene                            | ME,NH,VA,NY       |
| 1,2,4-Trichlorobenzene                            | CT,ME,NH,VA,NY    |
| 1,3,5-Trichlorobenzene                            | ME                |
| 1,1,1-Trichloroethane                             | CT,ME,NH,VA,NY    |
| 1,1,2-Trichloroethane                             | CT,ME,NH,VA,NY    |
| Trichloroethylene                                 | CT,ME,NH,VA,NY    |
| Trichlorofluoromethane (Freon 11)                 | CT,ME,NH,VA,NY    |
| 1,2,3-Trichloropropane                            | ME,NH,VA,NY       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | VA,NY             |
| 1,2,4-Trimethylbenzene                            | ME,VA,NY          |
| 1,3,5-Trimethylbenzene                            | ME,VA,NY          |
| Vinyl Chloride                                    | CT,ME,NH,VA,NY    |
| m+p Xylene                                        | CT,ME,NH,VA,NY    |
| o-Xylene                                          | CT,ME,NH,VA,NY    |
| SW-846 8270E in Soil                              |                   |
| Acenaphthene                                      | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                                    | CT,NY,NH,ME,NC,VA |
| Acetophenone                                      | NY,NH,ME,NC,VA    |
| Aniline                                           | NY,NH,ME,NC,VA    |
| Anthracene                                        | CT,NY,NH,ME,NC,VA |
| Benzidine                                         | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene                                | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                                    | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene                              | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene                              | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene                              | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                                      | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane                        | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether                           | CT,NY,NH,ME,NC,VA |

CT,NY,NH,ME,NC,VA



# CERTIFICATIONS

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Soil             |                   |
| Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |
| Hexachloroethane                 | CT,NY,NH,ME,NC,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NH,ME,NC,VA |
| Isophorone                       | CT,NY,NH,ME,NC,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NH,ME,NC,VA |
| 2-Methylphenol                   | CT,NY,NH,ME,NC,VA |
| 3/4-Methylphenol                 | CT,NY,NH,ME,NC,VA |
| Naphthalene                      | CT,NY,NH,ME,NC,VA |
| 2-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| 3-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| 4-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| Nitrobenzene                     | CT,NY,NH,ME,NC,VA |
| 2-Nitrophenol                    | CT,NY,NH,ME,NC,VA |
| 4-Nitrophenol                    | CT,NY,NH,ME,NC,VA |
| N-Nitrosodimethylamine           | CT,NY,NH,ME,NC,VA |
|                                  |                   |



# CERTIFICATIONS

| N-National-openys-lamina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyte                     | Certifications    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|--|
| Pentachlironitoroleurone         NY.NC           Pentachitorophanol         CTNYNILME.NC.VA           Phenol         CTNYNILME.NC.VA           Pyenne         CTNYNILME.NC.VA           Pyenne         CTNYNILME.NC.VA           Pyenne         CTNYNILME.NC.VA           1.2.4.5-Teichoroberomen         NY.NC           1.2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         CTNYNILME.NC.VA           2.4.5-Teichoroberomen         NC           SW-446-870E in Water         C           Acemphylomen         CTNYN.C.ME.NILVA           Acemphylomen         CTNYN.C.ME.NILVA           Acemphylomen         CTNYN.C.ME.NILVA           Acemphylomen         CTNYN.C.ME.NILVA           Benovalian         CTNYN.C.ME.NILVA           Benovalian         CTNYN.C.ME.NILVA           Benovalian         CTNYN.C.ME.NILVA           Benovalian         CTNYN.C.ME.NILVA           Benovalian         CTNYN.C.ME.NILVA           Benovalian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW-846 8270E in Soil        |                   |  |
| Penanthrompieror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-Nitrosodi-n-propylamine   | CT,NY,NH,ME,NC,VA |  |
| Phenal CTNYNIMENCYA           Prenal CTNYNIMENCYA           Pryme         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           1.2.4-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.5-Filorophonol         NC           8W-14-WEZ         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Anditacene         CTNYNOMENINA           Benzofolanthracene         CTNYNOMENINA           Benzofolyprice         CTNYNOMENINA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pentachloronitrobenzene     | NY,NC             |  |
| Phenal CTNYNIMENCYA           Prenal CTNYNIMENCYA           Pryme         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           Pyrida         CTNYNIMENCYA           1.2.4-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.4.5-Firchiorobenzee         CTNYNIMENCYA           2.5-Filorophonol         NC           8W-14-WEZ         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Accesuphtinylexe         CTNYNOMENINA           Anditacene         CTNYNOMENINA           Benzofolanthracene         CTNYNOMENINA           Benzofolyprice         CTNYNOMENINA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pentachlorophenol           | CT,NY,NH,ME,NC,VA |  |
| Phonol         CTAYNHAMENCYA           Syrone         CTAYNHAMENCYA           12.4.5 Trachalorobeazee         NYAC           12.4.5 Trachalorobeazee         CTAYNHAMENCYA           2.4.5 Trachalorophenol         CTAYNHAMENCYA           2.4.5 Trachalorophenol         CTAYNHAMENCYA           2.4.5 Trachalorophenol         CTAYNHAMENCYA           2.4.6 Trachalorophenol         CTAYNCMENHAWA           Accouphthone         CTAYNCMENHAWA           Accouphthone         CTAYNCMENHAWA           Accouphtholore         CTAYNCMENHAWA           Accouphtholore         CTAYNCMENHAWA           Andinacea         CTAYNCMENHAWA           Benoridine         CTAYNCMENHAWA           Benoridine         CTAYNCMENHAWA           Benoridiphoromene         CTAYNCMENHAWA           Benoridiphoromene <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                   |  |
| Pyridine         CTAYNILMILNE, VA           1.2.4.5-Trichlorobenzene         CTAYNILMILNE, VA           2.4.5-Trichlorophezol         CTAYNILMILNE, VA           Aceraphthylere         CTAYNICMILNILVA           Aceraphthylere         CTAYNICMILNILVA           Aceraphthylere         CTAYNICMILNILVA           Analline         CTAYNICMILNILVA           Analline         CTAYNICMILNILVA           Berovidine         CTAYNICMILNILVA           Berovidine         CTAYNICMILNILVA           Berovidinemene         CTAYNICMILNILVA           Berovidipilorambene         CTAYNICMILNILVA           Berovidipilorambene         CTAYNICMILNILVA           Berovidipilorambene         CTAYNICMILNILVA           Berovidipilorambene         CTAYNICMILNILVA           Bisic2-alhoroshoy)methane         CTAYNICMILNILVA           Bisic2-alhoroshoy)methane         CTAYNICMILNILVA           Bisic2-alhoroshoyphylcher         CTAYNICMILNILVA           Bis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phenol                      |                   |  |
| 1.2.4-Fichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pyrene                      | CT,NY,NH,ME,NC,VA |  |
| 1.2.4-Trichlorophenol CTNYNHMENC,VA 2.4.5-Trichlorophenol CTNYNHMENC,VA 2.4.6-Trichlorophenol CTNYNHMENC,VA 2.Flaorophenol NC  SW-44.6-Trichlorophenol NC  SW-44.6-Trichlorophenol NC  SW-44.6-Trichlorophenol NC  SW-44.6-Trichlorophenol NC  SW-44.6-Trichlorophenol NC  Acenaphthene CTNYNC,MENIL,VA  Acenaphthene CTNYNC,MENIL,VA  Acenaphthene CTNYNC,MENIL,VA  Acenaphthene CTNYNC,MENIL,VA  Aninine CTNYNC,MENIL,VA  Benordian CTNYNC,MENIL,VA  Bis (2-daloroethoxy)methane CTNYNC,MENIL,VA  Christophenol CTNYNC,MENIL,VA  CHRISTOR CTNYNC,MENIL,VA | Pyridine                    | CT,NY,NH,ME,NC,VA |  |
| 2.4,5-Trichlorophenol         CTNYNHMENC,VA           2.4,6-Trichlorophenol         CTNYNHMENC,VA           SW-468-8270E in Water         CTNYNCMENII,VA           Accraphtubene         CTNYNCMENII,VA           Accraphtubene         CTNYNCMENII,VA           Accraphtubene         NYNC           Aniline         CTNYNCME,VA           Aniline         CTNYNCME,VA           Anuline         CTNYNCAME,NIVA           Benzodeline         CTNYNCAME,NIVA           Benzodeline         CTNYNCAME,NIVA           Benzodeline         CTNYNCAME,NIVA           Benzodelineratene         CTNYNCAME,NIVA           Benzodelineratene         CTNYNCAME,NIVA           Benzodelineratene         CTNYNCAME,NIVA           Benzodelineratene         CTNYNCAME,NIVA           Benzole Acid         NYNCAME,NIVA           Bisig-abiorochtycheratene         CTNYNCAME,NIVA           Bisig-abiorochtycheratene         CTNYNCAME,NIVA           Bisig-abiorochtycheratene         CTNYNCAME,NIVA           Bisig-abiorochtychycheratene         CTNYNCAME,NIVA           Bisig-abiorochtychycheratene         CTNYNCAME,NIVA           Bisig-abiorochtychycheratene         CTNYNCAME,NIVA           Chlorophenylphenylether         CTNYNCAME,NIVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,4,5-Tetrachlorobenzene  | NY,NC             |  |
| 2,4-Furciplerophenol         NC           2,Fluorophenol         NC           8,8-46,8276 In Water           Accomphbere         CENYNCMENHIVA           Accomphbylene         CTNYNCMENH, VA           Accomphbylene         NXNC           Aniline         CTNYNCME, VA           Aniline         CTNYNCME, VA           Anilinea         CTNYNCME, VIA           Anilinea         CTNYNCME, VIA           Benzolajunthacee         CTNYNCME, VIIA           Benzolajunthacee         CTNYNCME, VIIIA           Benzolajunthacee         CTNYNCME, VIIIA           Bisi2-aliorocoby upethace         CTNYNCME, VIIIA           Bisi2-aliorocoby upethace         CTNYNCME, VIIIA           Bisi2-aliorocopy upethace         CTNYNCME, VIIIA           Bisi2-aliorocopy upethace         CTNYNCME, VIIIA           Bisi2-aliorocopy upethace         CTNYNCME, VIIIA           4-Bromopherolpherolpherol         CTNYNCME, VIIIA           4-Bromopherolpherolpherol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,4-Trichlorobenzene      | CT,NY,NH,ME,NC,VA |  |
| 2-Fluorophenol         NC           SW-846 27WE in Water           Accenaphthene         CTNY.NC.ME.NH.VA           Accenaphthylene         CTNY.NC.ME,NH, VA           Accephenone         NY.NC           Anline         CTNY.NC.ME,NH.VA           Anthracene         CTNY.NC.ME,NH.VA           Benzofa)andracene         CTNY.NC.ME.NH.VA           Benzofa)pyrene         CTNY.NC.ME.NH.VA           Benzofa)broambene         CTNY.NC.ME.NH.VA           Benzofa, Diporylene         CTNY.NC.ME.NH.VA           Benzofa, Diporylene         CTNY.NC.ME.NH.VA           Benzofa, Acid         NYN.C.ME.NH.VA           Benzofa, Diporylene         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphene         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphene         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphene         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphenylphenylete         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphenylphenylete         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphenylphenylete         CTNY.NC.ME.NH.VA           BisiQ-abhoroethylphenylphenylete         CTNY.NC.ME.NH.VA           4-Chloroaphthalate         CTNY.NC.ME.NH.VA           4-Chloroaphthalate         CTNY.NC.ME.NH.VA           4-Chloroaphth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,4,5-Trichlorophenol       | CT,NY,NH,ME,NC,VA |  |
| SW-846-8270E in Water           Acenaphthene         CT.NY.NC.ME.NH.VA           Acetaphthylene         CT.NY.NC.ME.NH.VA           Acetaphthone         NY.NC           Aniline         CT.NY.NC.ME.NH.VA           Aniline         CT.NY.NC.ME.NH.VA           Benzola janthracene         CT.NY.NC.ME.NH.VA           Bisid-activacy janthraliae         CT.NY.NC.ME.NH.VA           Bisid-activacy janthraliae         CT.NY.NC.ME.NH.VA           Bisid-activacy janthraliae         CT.NY.NC.ME.NH.VA           Buylbenzylphanylethene         CT.NY.NC.ME.NH.VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,4,6-Trichlorophenol       | CT,NY,NH,ME,NC,VA |  |
| Acenaphthene         CTNYNCME.NII.VA           Acetaphthylene         CTNYNCME.NII.VA           Acetaphthylene         NYNC           Aniline         CTNYN.CME.NII.VA           Aniline         CTNYN.CME.NII.VA           Benzoilane         CTNYN.CME.NII.VA           Benzoilanthracene         CTNYN.CME.NII.VA           Benzoilaphtracene         CTNYN.CME.NII.VA           Bisiz-Acid         NYN.CME.NII.VA           Bisiz-Acid         NYN.CME.NII.VA           Bisiz-Acid         CTNYN.CME.NII.VA           Bisiz-Acidioroschypithere         CTNYN.CME.NII.VA           Bisiz-Acidioroschypithere         CTNYN.CME.NII.VA           Bisiz-Acidioroschypithere         CTNYN.CME.NII.VA           Bisiz-Acidioroschypithere         CTNYN.CME.NII.VA           Bisiz-Acidioroschypithere         CTNYN.CME.NII.VA           A-Chloroschypithere         CTNYN.CME.NII.VA           C-Chloroschypithere         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Fluorophenol              | NC                |  |
| Acetophthylene         CTNY,NCME,NH,VA           Acetophenone         NYAC           Aniline         CTNY,NCME,VA           Anthracene         CTNY,NCME,NH,VA           Benzolajmiracene         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocityphithilalate         CTNY,NCME,NH,VA           Burjbenzylphthalate         CTNY,NC,ME,NH,VA           Burjbenzylphthalate         CTNY,NC,ME,NH,VA           4-Chlorosaliine         CTNY,NC,ME,NH,VA           4-Chlorosaphthalene         CTNY,NC,ME,NH,VA           2-Chlorophenylphenylether         CTNY,NC,ME,NH,VA           Chrysone         CTNY,NC,ME,NH,VA           Dibenz/(an.) burbarcan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SW-846 8270E in Water       |                   |  |
| Acetophthylene         CTNY,NCME,NH,VA           Acetophenone         NYAC           Aniline         CTNY,NCME,VA           Anthracene         CTNY,NCME,NH,VA           Benzolajmiracene         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocity)gether         CTNY,NCME,NH,VA           Bisiz-Calborocityphithilalate         CTNY,NCME,NH,VA           Burjbenzylphthalate         CTNY,NC,ME,NH,VA           Burjbenzylphthalate         CTNY,NC,ME,NH,VA           4-Chlorosaliine         CTNY,NC,ME,NH,VA           4-Chlorosaphthalene         CTNY,NC,ME,NH,VA           2-Chlorophenylphenylether         CTNY,NC,ME,NH,VA           Chrysone         CTNY,NC,ME,NH,VA           Dibenz/(an.) burbarcan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene                | CT,NY,NC,ME,NH,VA |  |
| Aniline         CT,NY,NC,ME,VA           Anthracene         CT,NY,NC,ME,NH,VA           Benzo(a)anthracene         CT,NY,NC,ME,NH,VA           Benzo(a)pryene         CT,NY,NC,ME,NH,VA           Benzo(a)pryene         CT,NY,NC,ME,NH,VA           Benzo(b)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(b)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyd)ether         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyd)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorospropyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorosphylphenylether         CT,NY,NC,ME,NH,VA           Buylbenzylphthalate         CT,NY,NC,ME,NH,VA           Buylbenzylphthalate         CT,NY,NC,ME,NH,VA           4-Chloro-3-methylphenol         CT,NY,NC,ME,NH,VA           2-Chlorosphenol         CT,NY,NC,ME,NH,VA           4-Chlorosphenylphenylether         CT,NY,NC,ME,NH,VA           Dibenz(a, b) anthracene         CT,NY,NC,ME,NH,VA           Dibenz(a, b) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acenaphthylene              |                   |  |
| Aniline         CT,NY,NC,ME,VA           Anthracene         CT,NY,NC,ME,NH,VA           Benzo(a)anthracene         CT,NY,NC,ME,NH,VA           Benzo(a)pryene         CT,NY,NC,ME,NH,VA           Benzo(a)pryene         CT,NY,NC,ME,NH,VA           Benzo(b)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(b)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c)fluoranthene         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyd)ether         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyd)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorospropyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorosphylphenylether         CT,NY,NC,ME,NH,VA           Buylbenzylphthalate         CT,NY,NC,ME,NH,VA           Buylbenzylphthalate         CT,NY,NC,ME,NH,VA           4-Chloro-3-methylphenol         CT,NY,NC,ME,NH,VA           2-Chlorosphenol         CT,NY,NC,ME,NH,VA           4-Chlorosphenylphenylether         CT,NY,NC,ME,NH,VA           Dibenz(a, b) anthracene         CT,NY,NC,ME,NH,VA           Dibenz(a, b) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * *                         |                   |  |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aniline                     | CT,NY,NC,ME,VA    |  |
| Benzo(a)nytracene         CT.NY.NC.ME.NH.VA           Benzo(b)fluoranthene         CT.NY.NC.ME.NH.VA           Benzo(g.h.i)perylene         CT.NY.NC.ME.NH.VA           Benzo(g.h.i)perylene         CT.NY.NC.ME.NH.VA           Benzo(ac)d         NYNC.ME.NH.VA           Bis(2-chloroethoxy)methane         CT.NY.NC.ME.NH.VA           Bis(2-chloroethoxy)methane         CT.NY.NC.ME.NH.VA           Bis(2-chlorosopropy)lether         CT.NY.NC.ME.NH.VA           Bis(2-chlorosopropy)lether         CT.NY.NC.ME.NH.VA           Bis(2-thlythexyl)phthalate         CT.NY.NC.ME.NH.VA           4-Bromophenylphenylether         CT.NY.NC.ME.NH.VA           4-Bromophenylphenylether         CT.NY.NC.ME.NH.VA           Carbazole         NC           4-Chloro-3-methylphenol         CT.NY.NC.ME.NH.VA           4-Chlorophenylphenylether         CT.NY.NC.ME.NH.VA           2-Chlorophenol         CT.NY.NC.ME.NH.VA           4-Chlorophenylphenylether         CT.NY.NC.ME.NH.VA           Chrysne         CT.NY.NC.ME.NH.VA           Dibenz(a,b)anthracene         CT.NY.NC.ME.NH.VA           Dibenz(a,b)anthracene         CT.NY.NC.ME.NH.VA           Dibenz(a,b)anthracene         CT.NY.NC.ME.NH.VA           Dibenz(a,b)anthracene         CT.NY.NC.ME.NH.VA           Di-but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anthracene                  | CT,NY,NC,ME,NH,VA |  |
| Benzo(a)pyrene         CT,NY,NC,ME,NH,VA           Benzo(g,h.j)perylene         CT,NY,NC,ME,NH,VA           Benzo(g,h.j)perylene         CT,NY,NC,ME,NH,VA           Benzoic Acid         NY,NC,ME,NH,VA           Bis(2-chloroethoxy)methane         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorospyp)pther         CT,NY,NC,ME,NH,VA           Bis(2-chlorospyp)ptheler         CT,NY,NC,ME,NH,VA           Bis(2-chlorosphropyl)pthylether         CT,NY,NC,ME,NH,VA           Bis(2-chlorosphropyl)pthylether         CT,NY,NC,ME,NH,VA           Bis(2-chlorosphropyl)pthylether         CT,NY,NC,ME,NH,VA           4-Bromophenylphenylether         CT,NY,NC,ME,NH,VA           4-Chlorosaniline         CT,NY,NC,ME,NH,VA           4-Chloros-methylphenol         CT,NY,NC,ME,NH,VA           4-Chlorophenylphenylether         CT,NY,NC,ME,NH,VA           2-Chlorophenylphenylether         CT,NY,NC,ME,NH,VA           Chrysene         CT,NY,NC,ME,NH,VA           Dibenz(a,h)anthracene         CT,NY,NC,ME,NH,VA           Dibenz(a,b)anthracene         CT,NY,NC,ME,NH,VA           Dibenz(a,b)anthracene         CT,NY,NC,ME,NH,VA           Dibenz(a,b)anthracene         CT,NY,NC,ME,NH,VA           Di-b-buylphthalate         CT,NY,NC,ME,NH,VA <td>Benzidine</td> <td>CT,NY,NC,ME,NH,VA</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzidine                   | CT,NY,NC,ME,NH,VA |  |
| Benzo(p,h)perylene         CT,NY,NC,ME,NH,VA           Benzo(k)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(k)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c) Acid         NY,NC,ME,NH,VA           Bis(2-chloroethy) methane         CT,NY,NC,ME,NH,VA           Bis(2-chloroethy) jether         CT,NY,NC,ME,NH,VA           Bis(2-chloroethy) jether         CT,NY,NC,ME,NH,VA           Bis(2-bity) hexyl jphthalate         CT,NY,NC,ME,NH,VA           4-Bromophenyl phenylether         CT,NY,NC,ME,NH,VA           4-Bromophenyl phenyl phenylether         CT,NY,NC,ME,NH,VA           4-Chloro-3-methyl phenol         CT,NY,NC,ME,NH,VA           4-Chloro-3-methyl phenol         CT,NY,NC,ME,NH,VA           2-Chlorophenol         CT,NY,NC,ME,NH,VA           4-Chlorophenyl phenylether         CT,NY,NC,ME,NH,VA           4-Chlorophenyl phenylether         CT,NY,NC,ME,NH,VA           Chrysene         CT,NY,NC,ME,NH,VA           Dibenz(a,h) anthracene         CT,NY,NC,ME,NH,VA           Dibenz(bithalate         CT,NY,NC,ME,NH,VA           1,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,4-Dichlorobenzene         CT,NY,NC,ME,NH,VA           3,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(a)anthracene          | CT,NY,NC,ME,NH,VA |  |
| Benzo(g,h.i)perylene         CT,NY,NC,ME,NH,VA           Benzo(k)fluoranthene         CT,NY,NC,ME,NH,VA           Benzo(c) Acid         NY,NC,ME,NH,VA           Bis(2-chloroethoxy)methane         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-chlorospropyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-Ethylbexyl)phthalate         CT,NY,NC,ME,NH,VA           4-Bromophenylphenylether         CT,NY,NC,ME,NH,VA           Butylbenzylphthalate         CT,NY,NC,ME,NH,VA           4-Chloro-a-methylphenol         CT,NY,NC,ME,NH,VA           4-Chloro-3-methylphenol         CT,NY,NC,ME,NH,VA           2-Chlorophenylphenol         CT,NY,NC,ME,NH,VA           2-Chlorophenol         CT,NY,NC,ME,NH,VA           4-Chlorophenylphenylether         CT,NY,NC,ME,NH,VA           Chrysene         CT,NY,NC,ME,NH,VA           Dibenz(a,b)anthracene         CT,NY,NC,ME,NH,VA           Dibenzofuran         CT,NY,NC,ME,NH,VA           Di-n-buylphthalate         CT,NY,NC,ME,NH,VA           1,2-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA           3,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo(a)pyrene              | CT,NY,NC,ME,NH,VA |  |
| Benzo(k)fluoranthene         CT,NY,NC,ME,NH,VA           Bis(2-chloroethoxy)methane         CT,NY,NC,ME,NH,VA           Bis(2-chlorosethyr)jether         CT,NY,NC,ME,NH,VA           Bis(2-chlorosopropyl)gether         CT,NY,NC,ME,NH,VA           Bis(2-Ethylhexyl)phthalate         CT,NY,NC,ME,NH,VA           4-Bromophenylphenylether         CT,NY,NC,ME,NH,VA           Buylbenzylphthalate         CT,NY,NC,ME,NH,VA           4-Chloro-3-methylphenol         NC           4-Chloro-3-methylphenol         CT,NY,NC,ME,NH,VA           2-Chlorophenol         CT,NY,NC,ME,NH,VA           2-Chlorophenol         CT,NY,NC,ME,NH,VA           4-Chlorophenylphenylether         CT,NY,NC,ME,NH,VA           Chrysene         CT,NY,NC,ME,NH,VA           Dibenz(ran)         CT,NY,NC,ME,NH,VA           Dibenzofuran         CT,NY,NC,ME,NH,VA           1,2-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,2-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA           3,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(b)fluoranthene        | CT,NY,NC,ME,NH,VA |  |
| Benzoic Acid         NY,NC,ME,NH,VA           Bis(2-chloroethoxy)methane         CT,NY,NC,ME,NH,VA           Bis(2-chloroethyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-chloroisopropyl)ether         CT,NY,NC,ME,NH,VA           Bis(2-Ethylhexyl)phthalate         CT,NY,NC,ME,NH,VA           4-Bromophenylphenylether         CT,NY,NC,ME,NH,VA           Butylbenzylphthalate         CT,NY,NC,ME,NH,VA           4-Chloroaniline         CT,NY,NC,ME,NH,VA           4-Chloro-3-methylphenol         CT,NY,NC,ME,NH,VA           2-Chlorophenol         CT,NY,NC,ME,NH,VA           4-Chlorophenol         CT,NY,NC,ME,NH,VA           4-Chlorophenylphenylether         CT,NY,NC,ME,NH,VA           Chrysne         CT,NY,NC,ME,NH,VA           Dibenzofuran         CT,NY,NC,ME,NH,VA           Dibenzofuran         CT,NY,NC,ME,NH,VA           1,2-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA           1,4-Dichlorobenzene         CT,NY,NC,ME,NH,VA           3,3-Dichlorobenzene         CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(g,h,i)perylene        | CT,NY,NC,ME,NH,VA |  |
| Bis(2-chloroethox))methane  CT,NY,NC,ME,NH,VA  Bis(2-chloroisopropyl)ether  CT,NY,NC,ME,NH,VA  Bis(2-Ethylhexyl)phthalate  CT,NY,NC,ME,NH,VA  Bis(2-Ethylhexyl)phthalate  CT,NY,NC,ME,NH,VA  4-Bromophenylphenylether  CT,NY,NC,ME,NH,VA  Butylbenzylphthalate  CT,NY,NC,ME,NH,VA  Carbazole  NC  4-Chloroaniline  CT,NY,NC,ME,NH,VA  4-Chloro-3-methylphenol  CT,NY,NC,ME,NH,VA  2-Chlorophenol  CT,NY,NC,ME,NH,VA  2-Chlorophenol  CT,NY,NC,ME,NH,VA  C-Chlorophenol  CT,NY,NC,ME,NH,VA  Chrysene  CT,NY,NC,ME,NH,VA  Dibenzofuran  CT,NY,NC,ME,NH,VA  Dibenzofuran  CT,NY,NC,ME,NH,VA  Di-n-butylphthalate  CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene  CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzo(k)fluoranthene        | CT,NY,NC,ME,NH,VA |  |
| Bis(2-chloroethyl)ether CT,NY,NC,ME,NH,VA Bis(2-chloroisopropyl)ether CT,NY,NC,ME,NH,VA Bis(2-Ethylhexyl)phthalate CT,NY,NC,ME,NH,VA 4-Bromophenylphenylether CT,NY,NC,ME,NH,VA Butylbenzylphthalate CT,NY,NC,ME,NH,VA Carbazole NC 4-Chloroaniline CT,NY,NC,ME,NH,VA 4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenzduran CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzoic Acid                | NY,NC,ME,NH,VA    |  |
| Bis(2-chloroisopropyl)ether  Bis(2-Ethylhexyl)phthalate  CT,NY,NC,ME,NH,VA  4-Bromophenylphenylether  CT,NY,NC,ME,NH,VA  Butylbenzylphthalate  CT,NY,NC,ME,NH,VA  Carbazole  NC  4-Chloroaniline  CT,NY,NC,ME,NH,VA  4-Chloro-3-methylphenol  CT,NY,NC,ME,NH,VA  2-Chloronaphthalene  CT,NY,NC,ME,NH,VA  2-Chlorophenol  CT,NY,NC,ME,NH,VA  4-Chlorophenylphenylether  CT,NY,NC,ME,NH,VA  Chrysene  CT,NY,NC,ME,NH,VA  Dibenz(a,h)anthracene  CT,NY,NC,ME,NH,VA  Di-n-butylphthalate  CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene  CT,NY,NC,ME,NH,VA  3,3-Dichlorobenzene  CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroethoxy)methane  | CT,NY,NC,ME,NH,VA |  |
| Bis(2-Ethylhexyl)phthalate CT,NY,NC,ME,NH,VA  4-Bromophenylphenylether CT,NY,NC,ME,NH,VA  Butylbenzylphthalate CT,NY,NC,ME,NH,VA  Carbazole NC  4-Chloroaniline CT,NY,NC,ME,NH,VA  4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA  2-Chloronaphthalene CT,NY,NC,ME,NH,VA  2-Chlorophenol CT,NY,NC,ME,NH,VA  4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA  Chrysene CT,NY,NC,ME,NH,VA  Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA  Dibenzofuran CT,NY,NC,ME,NH,VA  Di-n-butylphthalate CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,5-Dichlorobenzene CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroethyl)ether     | CT,NY,NC,ME,NH,VA |  |
| 4-Bromophenylphenylether CT,NY,NC,ME,NH,VA Butylbenzylphthalate CT,NY,NC,ME,NH,VA Carbazole NC  4-Chloroaniline CT,NY,NC,ME,NH,VA 4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA 2-Chloronaphthalene CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroisopropyl)ether | CT,NY,NC,ME,NH,VA |  |
| Butylbenzylphthalate CT,NY,NC,ME,NH,VA Carbazole NC  4-Chloroaniline CT,NY,NC,ME,NH,VA  4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA  2-Chloronaphthalene CT,NY,NC,ME,NH,VA  2-Chlorophenol CT,NY,NC,ME,NH,VA  4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA  Chrysene CT,NY,NC,ME,NH,VA  Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA  Dibenzofuran CT,NY,NC,ME,NH,VA  Di-n-butylphthalate CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bis(2-Ethylhexyl)phthalate  | CT,NY,NC,ME,NH,VA |  |
| Carbazole NC  4-Chloroaniline CT,NY,NC,ME,NH,VA  4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA  2-Chloronaphthalene CT,NY,NC,ME,NH,VA  2-Chlorophenol CT,NY,NC,ME,NH,VA  4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA  Chrysene CT,NY,NC,ME,NH,VA  Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA  Dibenzofuran CT,NY,NC,ME,NH,VA  Di-n-butylphthalate CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Bromophenylphenylether    | CT,NY,NC,ME,NH,VA |  |
| 4-Chloroaniline CT,NY,NC,ME,NH,VA 4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA 2-Chloronaphthalene CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Butylbenzylphthalate        | CT,NY,NC,ME,NH,VA |  |
| 4-Chloro-3-methylphenol CT,NY,NC,ME,NH,VA 2-Chloronaphthalene CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,5-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbazole                   | NC                |  |
| 2-Chlorophenol CT,NY,NC,ME,NH,VA 2-Chlorophenol CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Chloroaniline             | CT,NY,NC,ME,NH,VA |  |
| 2-Chlorophenol CT,NY,NC,ME,NH,VA 4-Chlorophenylphenylether CT,NY,NC,ME,NH,VA Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Chloro-3-methylphenol     | CT,NY,NC,ME,NH,VA |  |
| 4-Chlorophenylphenylether  CT,NY,NC,ME,NH,VA  Chrysene  CT,NY,NC,ME,NH,VA  Dibenz(a,h)anthracene  CT,NY,NC,ME,NH,VA  Dibenzofuran  CT,NY,NC,ME,NH,VA  Di-n-butylphthalate  CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene  CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene  CT,NY,NC,ME,NH,VA  CT,NY,NC,ME,NH,VA  CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Chloronaphthalene         | CT,NY,NC,ME,NH,VA |  |
| Chrysene CT,NY,NC,ME,NH,VA Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Chlorophenol              | CT,NY,NC,ME,NH,VA |  |
| Dibenz(a,h)anthracene CT,NY,NC,ME,NH,VA Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chlorophenylphenylether   | CT,NY,NC,ME,NH,VA |  |
| Dibenzofuran CT,NY,NC,ME,NH,VA Di-n-butylphthalate CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chrysene                    | CT,NY,NC,ME,NH,VA |  |
| Di-n-butylphthalate CT,NY,NC,ME,NH,VA  1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA  1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA  3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dibenz(a,h)anthracene       | CT,NY,NC,ME,NH,VA |  |
| 1,2-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibenzofuran                | CT,NY,NC,ME,NH,VA |  |
| 1,3-Dichlorobenzene CT,NY,NC,ME,NH,VA 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Di-n-butylphthalate         | CT,NY,NC,ME,NH,VA |  |
| 1,4-Dichlorobenzene CT,NY,NC,ME,NH,VA 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |  |
| 3,3-Dichlorobenzidine CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,3-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,4-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |  |
| 2,4-Dichlorophenol CT,NY,NC,ME,NH,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,3-Dichlorobenzidine       | CT,NY,NC,ME,NH,VA |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4-Dichlorophenol          | CT,NY,NC,ME,NH,VA |  |



# CERTIFICATIONS

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Water            |                   |
| Diethylphthalate                 | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol               | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate                | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol                | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |
| Fluorene                         | NY,NC,ME,NH,VA    |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |
| Isophorone                       | CT,NY,NC,ME,NH,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |
| Pentachloronitrobenzene          | NC                |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |
| Phenanthrene                     | CT,NY,NC,ME,NH,VA |
| Phenol                           | CT,NY,NC,ME,NH,VA |
| Pyrene                           | CT,NY,NC,ME,NH,VA |
| Pyridine                         | CT,NY,NC,ME,NH,VA |
| 1,2,4,5-Tetrachlorobenzene       | NY,NC             |
| 1,2,4-Trichlorobenzene           | CT,NY,NC,ME,NH,VA |
| 2,4,5-Trichlorophenol            | CT,NY,NC,ME,NH,VA |
| 2,4,6-Trichlorophenol            | CT,NY,NC,ME,NH,VA |
| 2-Fluorophenol                   | NC                |
| SW-846 9014 in Soil              |                   |
| Cyanide                          | NY,CT,NC,ME,NH,VA |
| SW-846 9014 in Water             |                   |
| Cyanide                          | NY,CT,NH,NC,ME,VA |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2024  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00373      | 12/30/2022 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2022 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2022 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

| Τ | able | ٥f  | Contents |
|---|------|-----|----------|
| ı | abic | OI. | Contents |

not be held accountable.

Page 99 of 101

Glassware in freezer? Y / N Prepackaged Cooler? Y/N responsible for missing samples Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pac Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Analytical values your partnership on each project and will try to assist with missing information, but wi Glassware in the fridge? ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers \*Pace Analytical is not <sup>2</sup> Preservation Codes: I = Iced Total Number Of X = Sodium Hydroxide A = Air S = Soil SL = Sludge SOL = Solid O = Other (please B = Sodium Bisulfate Courier Use Only 0 = Other (please define) S = Sülfuric Acid <sup>2</sup> Preservation Code N = Nitric Acid BACTERIA M = Methanol PLASTIC VIALS GLASS ENCORE T = Sodium Thiosulfate define) H ≈ HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate MELAC and AIMA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC רץ מתושב X Code column above: Hd У × X 7 7 7 7 7 X W Z9W ANALYSIS REQUESTED TAL Metals X V SADCS 5874 X × TPH-020 × 7PH- 080 CT RCP Required 049-H9T Ž × MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required **1000 s** × 39 Spruce Street East Longmeadow, MA 01028 ENCORE X BACTERIA Field Filtered Field Filtered PCB ONLY Lab to Filter Lab to Filter PLASTIC School MBTA Sostertag Gramball wanon SOXHLET GLASS Q 3 ţ SOXHLET CHAIN OF CUSTODY RECORD VIALS J 7 J 0 0 0 0 Matrix Conc Code Code 3 De Date Po ξ ε Municipality Brownfield 0-E6 D-TB # diswd Ramboll EDD 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB N/A 10-21-21/1315 EB= Equipment Blank P P S Φ TB= Trip Black PFAS 10-Day (std) ...... | VA DEQ Government Ending Date/Time Email To: 10-21.11 0925 -ax To #: 10.21.21 0925 10.21.21 0825 10-21-21 OPYS 10.24.21 0850 ormat: Other: Federal 1-Day Client Comments: '-Day City Project Entity Beginning Date/Time Address: 4350 N Fairfax Dr. Ste 300, Arlington VA Access COC's and Support Requests Date/Time: 1525 Date/Time: 10/21/21 15:15 15/21/15.25 Project Location: 1400 N Royal St, Alexandra VA 0-22-2 1700 Date/Time: 1AP-5B227-0-1-21621 Invoice Recipient: Sostertag (2) ramboll .com Sampled By: Sarah Ostertas 1928-58224-0-1-211021 HRP-58225-0-1-211021 Client Sample ID / Description Phone: 413-525-2332 HRP-EB03-211621 #20-TBO6-211021 (u/2) C Date/Time: SCR Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: HAPPROS Rampli Churchas Project Manager: Gres Grac Pace Analytical " 703 516 2383 fifed by: (signature) Pace Quote Name/Number Received by: (signature) Pace Work Order# od by: Jeignal Project Number: ab Comments

Doc # 381 Rev 5\_07/13/2021

http://www.pacelabs.com

RNICH



#### TRACK ANOTHER SHIPMENT

774998231363

ADD NICKNAME





Delivered

THIS IS 1 OF 2 PIECES



#### **DELIVERED**

Signed for by: C.AVENTOR

GET STATUS UPDATES

**OBTAIN PROOF OF DELIVERY** 

FROM

Mechanicsville, VA US

TO

EAST LONGMEADOW, MA US

# 2 Piece Shipment

| TRACKING ID           | STATUS    | SHIP<br>DATE | DELIVERY<br>Date | HANDLING PIECE<br>UNITS | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|-----------------------|-----------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 774998231179 (master) | Delivered | 10/22/21     | 10/23/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 774998231363          | Delivered | 10/22/21     | 10/23/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

# Travel History

TIME ZONE

Local Scan Time

Saturday, October 23, 2021

9:15 AM EAST LONGMEADOW, MA Delivered 8:19 AM On FedEx vehicle for delivery WINDSOR LOCKS, CT 8:15 AM WINDSOR LOCKS, CT At local FedEx facility 6:**4**9 AM EAST GRANBY, CT At destination sort facility

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

| Login S       |             | ceipt Checklist - (<br>nent will be broug |            |              |                                        |              |               | ny False    |              |
|---------------|-------------|-------------------------------------------|------------|--------------|----------------------------------------|--------------|---------------|-------------|--------------|
| Client        | Ramboll     |                                           | ,          |              |                                        |              |               |             |              |
| Receive       | 1 5         | Nave                                      |            | Date         | 10/23                                  |              | Time          | 915         |              |
| How were the  | -           | In Cooler                                 | -          | No Cooler    |                                        | On Ice       | 1             | No Ice      |              |
| receiv        | •           | Direct from Samp                          | lina       | •            |                                        | Ambient      |               | Melted Ice  |              |
|               |             | Direct from Camp                          | -          | 7            |                                        | Actual Tem   | p- 43/5       | •           |              |
| Were samp     |             |                                           | By Gun #   |              |                                        |              |               | 3           | •            |
| Temperatur    |             |                                           | By Blank # |              |                                        | Actual Tem   | Lawrence      |             | •            |
|               | Custody Se  |                                           | <u> </u>   | _            | •                                      | s Tampered   |               | <del></del> | -            |
|               | COC Relin   | =                                         | T          |              | S Chain Agr                            | ree With Sai | mples?        |             | -            |
|               |             | eaking/loose caps                         | on any sam |              | <u> </u>                               |              | t Para Para O | - A         |              |
| Is COC in inl | -           |                                           |            |              | nples recei                            |              | olding time?  |             | _            |
| Did COC ir    |             | Client                                    |            | Analysis     |                                        | -            | er Name       |             | <del>.</del> |
| pertinent Inf |             | Project                                   | T          | . ID's       | T                                      | Collection   | Dates/Times   |             | -            |
| •             |             | out and legible?                          | <u> </u>   | •            | 1.4.11                                 |              |               |             |              |
| Are there Lat |             | ,                                         | <u>e</u>   | <del>.</del> |                                        | s notified?  |               |             | -            |
| Are there Ru  |             |                                           | <u> </u>   | _            | =                                      | s notified?  |               |             | -            |
| Are there Sh  |             |                                           | <u> </u>   | •            | Who was                                | s notified?  |               |             | -            |
| ls there enou | -           |                                           | T          | *            |                                        | 6            |               |             |              |
|               | -           | ere applicable?                           | <u> </u>   | -            | MS/MSD?                                |              |               |             |              |
| Proper Media  |             |                                           | T          |              |                                        | samples red  | quired?       |             | -            |
| Were trip bla |             |                                           |            | • <u>.</u>   | On COC?                                |              | <u> </u>      | ph 27       |              |
| Do all sample | es have the | proper pH?                                |            | Acid         | .ph -2                                 |              | Base          | P 7         | -            |
| Vials         | #           | Containers:                               | #          |              |                                        | #            |               |             | #            |
| Unp-          |             | 1 Liter Amb.                              | 6          | 1 Liter      | Plastic                                |              |               | Amb.        |              |
| HCL-          | <u>,</u>    | 500 mL Amb.                               |            | 500 mL       | Plastic                                |              |               | յβ⁄Clear    | 6            |
| Meoh-         | 6           | 250 mL Amb.                               |            | 250 mL       | Plastic                                | 1            |               | nb/Clear    |              |
| Bisulfate-    | G           | Flashpoint                                |            | Col./Ba      | ······································ |              |               | nb/Clear    |              |
| DI-           |             | Other Glass                               |            | Other I      |                                        |              |               | core        |              |
| Thiosulfate-  |             | SOC Kit                                   |            | Plasti       |                                        |              | Frozen:       |             |              |
| Sulfuric-     |             | Perchlorate                               |            | Zipl         | ock                                    |              |               |             |              |
|               |             |                                           |            | Unused I     | Vedia                                  |              |               |             |              |
| Vials         | #           | Containers:                               | #          |              |                                        | #            |               |             | #            |
| Unp-          |             | 1 Liter Amb.                              |            | 1 Liter      | Plastic                                |              | <u> </u>      | Amb.        |              |
| HCL-          |             | 500 mL Amb.                               |            | 500 mL       |                                        |              |               | nb/Clear    |              |
| Meoh-         |             | 250 mL Amb.                               |            | 250 mL       |                                        |              |               | nb/Clear    |              |
| Bisulfate-    |             | Col./Bacteria                             |            |              | point                                  | ····         |               | nb/Clear    |              |
| DI-           |             | Other Plastic                             |            | Other        | ·                                      |              | 4-04-00/07    | core        | L            |
| Thiosulfate-  |             | SOC Kit                                   |            | Plasti       |                                        |              | Frozen:       |             |              |
| Sulfuric-     |             | Perchlorate                               |            | Zipl         | ock                                    |              | <u> </u>      |             |              |
| Comments:     |             |                                           |            |              |                                        |              |               |             |              |
| A ph          | part b      | Lo <sup>(</sup> Ch.                       |            |              |                                        |              |               |             |              |
|               |             |                                           |            |              |                                        |              |               |             |              |



December 3, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21J1070

Enclosed are results of analyses for samples as received by the laboratory on October 19, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# **Table of Contents**

| Sample Summary | 4  |
|----------------|----|
| Case Narrative | 7  |
| Sample Results | 10 |
| 21J1070-01     | 10 |
| 21J1070-02     | 13 |
| 21J1070-03     | 15 |
| 21J1070-04     | 17 |
| 21J1070-05     | 19 |
| 21J1070-06     | 21 |
| 21J1070-07     | 23 |
| 21J1070-08     | 25 |
| 21J1070-09     | 27 |
| 21J1070-10     | 29 |
| 21J1070-11     | 31 |
| 21J1070-12     | 33 |
| 21J1070-13     | 35 |
| 21J1070-14     | 37 |
| 21J1070-15     | 39 |
| 21J1070-16     | 41 |
| 21J1070-17     | 43 |
| 21J1070-18     | 45 |
| 21J1070-19     | 50 |
| 21J1070-20     | 55 |
| 21J1070-21     | 60 |
| 21J1070-22     | 62 |

# Table of Contents (continued)

| 2111070-23                                                           | 64 |
|----------------------------------------------------------------------|----|
| Sample Preparation Information                                       | 66 |
| QC Data                                                              | 70 |
| Volatile Organic Compounds by GC/MS                                  | 70 |
| B292812                                                              | 70 |
| B293011                                                              | 74 |
| Petroleum Hydrocarbons Analyses                                      | 80 |
| B292781                                                              | 80 |
| B292856                                                              | 80 |
| B292858                                                              | 80 |
| Metals Analyses (Total)                                              | 81 |
| B292806                                                              | 81 |
| B292839                                                              | 81 |
| B292879                                                              | 82 |
| B292880                                                              | 83 |
| B292933                                                              | 84 |
| B292987                                                              | 85 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 87 |
| B292770                                                              | 87 |
| B292801                                                              | 87 |
| B292917                                                              | 87 |
| B292922                                                              | 87 |
| Flag/Qualifier Summary                                               | 89 |
| Certifications                                                       | 90 |
| Chain of Custody/Sample Receipt                                      | 96 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 12/3/2021

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1070

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-TB03-211015        | 21J1070-01 | Water  |                    | -            |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8260D |         |
| HRP-SB213-0-1-211015   | 21J1070-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB213-5-7-211015   | 21J1070-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB213-16-18-211015 | 21J1070-04 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB212-0-2-211015   | 21J1070-05 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-DUP04-0-2-211015   | 21J1070-06 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB212-5-7-211015   | 21J1070-07 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB212-15-17-211015 | 21J1070-08 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 12/3/2021

PROJECT NUMBER:

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1070

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB211-0-1-211015   | 21J1070-09 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB211-5-7-211015   | 21J1070-10 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB209-0-1-211013   | 21J1070-11 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB209-5-7-211013   | 21J1070-12 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB209-15-17-211013 | 21J1070-13 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-EB03-211013        | 21J1070-14 | Water  |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 6020B |         |
|                        |            |        |                    | SW-846 7470A |         |
|                        |            |        |                    | SW-846 9014  |         |
| HRP-SB208-0-1-211014   | 21J1070-15 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB208-5-7-211014   | 21J1070-16 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
|                        |            |        |                    |              |         |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 12/3/2021

PROJECT NUMBER: [none]

## ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1070

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB208-18-20-211014 | 21J1070-17 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB214-0-2-211014   | 21J1070-18 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB214-5-7-211014   | 21J1070-19 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB214-14-16-211014 | 21J1070-20 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB211-15-17-211015 | 21J1070-21 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-EB04-211015        | 21J1070-22 | Water  |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 6020B |         |
|                        |            |        |                    | SW-846 7470A |         |
|                        |            |        |                    | SW-846 9014  |         |
| HRP-TB04-211015        | 21J1070-23 | Water  |                    | SW-846 8260D |         |
|                        |            |        |                    |              |         |



## CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 12/2/2021- Samples -02 through -13 and -15 through -21 IDs revised



### SW-846 6010D

### **Qualifications:**

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Selenium

21J1070-08[HRP-SB212-15-17-211015], 21J1070-09[HRP-SB211-0-1-211015], 21J1070-10[HRP-SB211-5-7-211015]

Thallium

21J1070-08[HRP-SB212-15-17-211015], 21J1070-09[HRP-SB211-0-1-211015], 21J1070-10[HRP-SB211-5-7-211015]

SW-846 7471B

## Qualifications:

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting

# $\begin{array}{c} limit\ (RL). \\ \textbf{Analyte \& Samples(s) Qualified:} \end{array}$

Mercury

21J1070-02[HRP-SB213-0-1-211015], B292806-DUP1

SW-846 8260D

### **Qualifications:**

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

## 1,2,3-Trimethylbenzene

B293011-BS1, B293011-BSD1

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

### 1,2,3-Trichlorobenzene

21J1070-01[HRP-TB03-211015], 21J1070-23[HRP-TB04-211015], B293011-BLK1, B293011-BS1, B293011-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

## Analyte & Samples(s) Qualified:

## 1,2,3-Trichlorobenzene

21J1070-01[HRP-TB03-211015], 21J1070-23[HRP-TB04-211015], B293011-BLK1, B293011-BS1, B293011-BSD1, S064541-CCV1

## 1.2.4-Trichlorobenzene

21J1070-01[HRP-TB03-211015], 21J1070-23[HRP-TB04-211015], B293011-BLK1, B293011-BS1, B293011-BSD1, S064541-CCV1

### Dichlorodifluoromethane (Freon 12

21J1070-18[HRP-SB214-0-2-211014], 21J1070-19[HRP-SB214-5-7-211014], 21J1070-20[HRP-SB214-14-16-211014], B292812-BLK1, B292812-BS1, B292812-BSD1, S064471-CCV1

### Naphthalene

21J1070-01[HRP-TB03-211015], 21J1070-23[HRP-TB04-211015], B293011-BLK1, B293011-BS1, B293011-BSD1, S064541-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

## 1,2,3-Trimethylbenzene

B293011-BS1, B293011-BSD1, S064541-CCV1

## Chloroethane

B293011-BS1, B293011-BSD1, S064541-CCV1

### Chloromethane

B293011-BS1, B293011-BSD1, S064541-CCV1



### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

# estimated. Analyte & Samples(s) Qualified:

### Bromomethane

21J1070-18[HRP-SB214-0-2-211014], 21J1070-19[HRP-SB214-5-7-211014], 21J1070-20[HRP-SB214-14-16-211014], B292812-BLK1, B292812-BS1, B292812-BSD1, B292812-BS064471-CCV1

### V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

### 2-Hexanone (MBK)

B292812-BS1, B292812-BSD1, S064471-CCV1

### Acetone

B292812-BS1, B292812-BSD1, S064471-CCV1

### SW-846 9045C

## Qualifications:

### H-03

Sample received after recommended holding time was exceeded.

## Analyte & Samples(s) Qualified:

21J1070-02[HRP-SB213-0-1-211015], 21J1070-03[HRP-SB213-5-7-211015], 21J1070-04[HRP-SB213-16-18-211015], 21J1070-05[HRP-SB212-0-2-211015], 21J1070-05[HRP-SB213-0-1-211015], 21J1070-05[HRP-SB215], 21J1070-05[HRP-SB215], 21J1070-05[HRP-SB215], 21J1070-05[HRP-SB215], 21J1070-05[H21J1070-06[HRP-DUP04-0-2-211015], 21J1070-07[HRP-SB212-5-7-211015], 21J1070-08[HRP-SB212-15-17-211015], 21J1070-09[HRP-SB211-0-1-211015], 21J1070-10[HRP-SB211-5-7-211015], 21J1070-11[HRP-SB209-0-1-211013], 21J1070-12[HRP-SB209-5-7-211013], 21J1070-13[HRP-SB209-15-17-211013], 21J1070-15-17-211013], 21J1070-15-17-211013, 21J1070-15-17-211013, 21J1070-17-211013, 21J1070-17-211013, 21J1070-17-211013, 21J1070-17-21 21J1070-15[HRP-SB208-0-1-211014], 21J1070-16[HRP-SB208-5-7-211014], 21J1070-17[HRP-SB208-18-20-211014], 21J1070-18[HRP-SB214-0-2-211014], 21J1070-19[HRP-SB214-5-7-211014], 21J1070-20[HRP-SB214-14-16-211014], 21J1070-21[HRP-SB211-15-17-211015]

### SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard.

Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kaitlyn A. Feliciano Project Manager



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-TB03-211015** Sampled: 10/15/2021 07:20

Sample ID: 21J1070-01
Sample Matrix: Water

# Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L      | 1        |           | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-TB03-211015** Sampled: 10/15/2021 07:20

Sample ID: 21J1070-01
Sample Matrix: Water

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL               | DL    | Units            | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------------------|-------|------------------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50             | 0.15  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,4-Dioxane                                       | ND      | 50               | 22    | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Ethylbenzene                                      | ND      | 1.0              | 0.090 | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60             | 0.41  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10               | 1.4   | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0              | 0.10  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0              | 0.090 | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Methyl Acetate                                    | ND      | 1.0              | 0.39  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0              | 0.17  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0              | 0.33  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Methylene Chloride                                | ND      | 5.0              | 0.30  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10               | 1.6   | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Naphthalene                                       | ND      | 2.0              | 0.15  | $\mu g/L$        | 1        | V-05       | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| n-Propylbenzene                                   | ND      | 1.0              | 0.080 | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Styrene                                           | ND      | 1.0              | 0.080 | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0              | 0.14  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50             | 0.090 | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Tetrachloroethylene                               | ND      | 1.0              | 0.20  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Tetrahydrofuran                                   | ND      | 10               | 0.58  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Toluene                                           | ND      | 1.0              | 0.11  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0              | 0.14  | $\mu g/L$        | 1        | L-04, V-05 | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0              | 0.16  | $\mu g/L$        | 1        | V-05       | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0              | 0.18  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0              | 0.17  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0              | 0.15  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Trichloroethylene                                 | ND      | 1.0              | 0.18  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0              | 0.19  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0              | 0.31  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0              | 0.24  | μg/L             | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0              | 0.10  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0              | 0.10  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Vinyl Chloride                                    | ND      | 2.0              | 0.20  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| m+p Xylene                                        | ND      | 2.0              | 0.18  | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| o-Xylene                                          | ND      | 1.0              | 0.090 | $\mu g/L$        | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:22        | MFF     |
| Surrogatos                                        |         | 9/. <b>D</b> oor |       | Dogovory I imite |          | Flog/Ougl  |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 109        | 70-130          |           | 10/21/21 12:22 |
| Toluene-d8            | 109        | 70-130          |           | 10/21/21 12:22 |
| 4-Bromofluorobenzene  | 105        | 70-130          |           | 10/21/21 12:22 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-TB03-211015 Sampled: 10/15/2021 07:20

Sample ID: 21J1070-01
Sample Matrix: Water

## Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 10/20/21         | 10/21/21 4:08         | KMB     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 3        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 109    |        | 70-130          |          | _         |              |                  | 10/21/21 4:08         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB213-0-1-211015** Sampled: 10/15/2021 09:56

Sample ID: 21J1070-02
Sample Matrix: Soil

| Metal | le Ar | alvse | s (Tota | 'n |
|-------|-------|-------|---------|----|

|           |         |       |       | Mictals Amary | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|---------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |               |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units         | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 11000   | 19    | 6.9   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Antimony  | 1.4     | 1.9   | 0.77  | mg/Kg dry     | 1           | J         | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Arsenic   | 5.8     | 3.8   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/22/21 19:50 | QNW     |
| Barium    | 40      | 1.9   | 0.72  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Beryllium | 0.60    | 0.19  | 0.072 | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Cadmium   | 0.28    | 0.38  | 0.19  | mg/Kg dry     | 1           | J         | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Calcium   | 620     | 19    | 7.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Chromium  | 17      | 0.76  | 0.43  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Cobalt    | 7.5     | 1.9   | 0.70  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Copper    | 14      | 0.76  | 0.36  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Iron      | 22000   | 380   | 150   | mg/Kg dry     | 20          |           | SW-846 6010D | 10/21/21 | 10/24/21 20:42 | QNW     |
| Lead      | 9.5     | 0.57  | 0.28  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Magnesium | 1500    | 19    | 6.7   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Manganese | 89      | 0.38  | 0.15  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Mercury   | 0.027   | 0.032 | 0.011 | mg/Kg dry     | 1           | R-04, J   | SW-846 7471B | 10/20/21 | 10/21/21 14:09 | DRL     |
| Nickel    | 10      | 0.76  | 0.39  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Potassium | 770     | 190   | 72    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Sodium    | ND      | 190   | 74    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Thallium  | ND      | 1.9   | 0.91  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Vanadium  | 31      | 0.76  | 0.38  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
| Zinc      | 35      | 0.76  | 0.49  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:59 | QNW     |
|           |         |       |       |               |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB213-0-1-211015** Sampled: 10/15/2021 09:56

Sample ID: 21J1070-02
Sample Matrix: Soil

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 85.2    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:10 | AL2     |
| Cyanide    |         | ND      | 0.54 | 0.38 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17.6°C |         | 5.6     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB213-5-7-211015 Sampled: 10/15/2021 10:05

Sample ID: 21J1070-03
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 13000   | 19    | 6.9   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Antimony  | 1.5     | 1.9   | 0.76  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Arsenic   | 4.2     | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/22/21 19:57 | QNW     |
| Barium    | 89      | 1.9   | 0.72  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Beryllium | 0.99    | 0.19  | 0.072 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Cadmium   | 0.31    | 0.38  | 0.19  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Calcium   | 200     | 19    | 7.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Chromium  | 18      | 0.76  | 0.43  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Cobalt    | 9.8     | 1.9   | 0.70  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Copper    | 24      | 0.76  | 0.36  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Iron      | 28000   | 380   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/21/21 | 10/24/21 20:49 | QNW     |
| Lead      | 12      | 0.57  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Magnesium | 2100    | 19    | 6.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Manganese | 81      | 0.38  | 0.15  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Mercury   | ND      | 0.031 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:25 | DRL     |
| Nickel    | 14      | 0.76  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Potassium | 780     | 190   | 71    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Selenium  | ND      | 3.8   | 1.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Sodium    | 110     | 190   | 74    | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Thallium  | ND      | 1.9   | 0.91  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Vanadium  | 29      | 0.76  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
| Zinc      | 41      | 0.76  | 0.48  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:06 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB213-5-7-211015 Sampled: 10/15/2021 10:05

Sample ID: 21J1070-03
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 83.0    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:10 | AL2     |
| Cyanide  |         | ND      | 0.44 | 0.31 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @18.  | 4°C     | 4.4     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB213-16-18-211015** Sampled: 10/15/2021 10:10

Sample ID: 21J1070-04
Sample Matrix: Soil

| Metals | Anal | VICAC I | (Total) |
|--------|------|---------|---------|

|           |         |       |        | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|--------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 2600    | 17    | 6.2    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Antimony  | 1.2     | 1.7   | 0.69   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Arsenic   | 6.0     | 3.4   | 1.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/22/21 20:03 | QNW     |
| Barium    | 18      | 1.7   | 0.65   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Beryllium | 0.27    | 0.17  | 0.065  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Cadmium   | 0.28    | 0.34  | 0.17   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Calcium   | 140     | 17    | 6.7    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Chromium  | 7.4     | 0.68  | 0.39   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Cobalt    | 4.9     | 1.7   | 0.63   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Copper    | 6.9     | 0.68  | 0.33   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Iron      | 20000   | 340   | 140    | mg/Kg dry    | 20           |           | SW-846 6010D | 10/21/21 | 10/24/21 20:56 | QNW     |
| Lead      | 1.7     | 0.51  | 0.25   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Magnesium | 560     | 17    | 6.0    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Manganese | 76      | 0.34  | 0.13   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Mercury   | ND      | 0.027 | 0.0093 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:27 | DRL     |
| Nickel    | 6.4     | 0.68  | 0.35   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Potassium | 340     | 170   | 64     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Selenium  | ND      | 3.4   | 1.2    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Silver    | ND      | 0.34  | 0.16   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Sodium    | ND      | 170   | 67     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Thallium  | ND      | 1.7   | 0.82   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Vanadium  | 8.7     | 0.68  | 0.34   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
| Zinc      | 15      | 0.68  | 0.44   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:13 | QNW     |
|           |         |       |        |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB213-16-18-211015** Sampled: 10/15/2021 10:10

Sample ID: 21J1070-04
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | 3       | 93.1    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:10 | AL2     |
| Cyanide  |         | ND      | 0.41 | 0.29 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @19   | .7°C    | 5.8     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB212-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21J1070-05
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 9500    | 18    | 6.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Antimony  | 1.5     | 1.8   | 0.75  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Arsenic   | 4.7     | 3.7   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/22/21 20:22 | QNW     |
| Barium    | 57      | 1.8   | 0.70  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Beryllium | 0.77    | 0.18  | 0.070 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Cadmium   | 0.32    | 0.37  | 0.19  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Calcium   | 3200    | 18    | 7.2   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Chromium  | 17      | 0.74  | 0.42  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Cobalt    | 11      | 1.8   | 0.68  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Copper    | 17      | 0.74  | 0.35  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Iron      | 23000   | 370   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:16 | QNW     |
| Lead      | 11      | 0.55  | 0.27  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Magnesium | 1300    | 18    | 6.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Manganese | 200     | 0.37  | 0.14  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Mercury   | 0.037   | 0.032 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:29 | DRL     |
| Nickel    | 12      | 0.74  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Potassium | 780     | 180   | 70    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Selenium  | ND      | 3.7   | 1.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Silver    | ND      | 0.37  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Sodium    | 100     | 180   | 72    | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Thallium  | ND      | 1.8   | 0.89  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Vanadium  | 27      | 0.74  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
| Zinc      | 33      | 0.74  | 0.47  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:19 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB212-0-2-211015** Sampled: 10/15/2021 11:25

Sample ID: 21J1070-05
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 89.4    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:10 | AL2     |
| Cyanide  |         | ND      | 0.47 | 0.33 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @17.9 | o°C     | 4.9     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-DUP04-0-2-211015** Sampled: 10/15/2021 11:25

Sample ID: 21J1070-06
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8300    | 19    | 6.9   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Antimony  | 1.5     | 1.9   | 0.77  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Arsenic   | 5.5     | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/22/21 20:28 | QNW     |
| Barium    | 86      | 1.9   | 0.72  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Beryllium | 0.81    | 0.19  | 0.072 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Cadmium   | 0.39    | 0.38  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Calcium   | 3400    | 19    | 7.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Chromium  | 14      | 0.76  | 0.43  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Cobalt    | 13      | 1.9   | 0.70  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Copper    | 18      | 0.76  | 0.36  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Iron      | 24000   | 380   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/21/21 | 10/24/21 21:24 | QNW     |
| Lead      | 14      | 0.57  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Magnesium | 1100    | 19    | 6.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Manganese | 170     | 0.38  | 0.15  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Mercury   | 0.041   | 0.030 | 0.010 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:30 | DRL     |
| Nickel    | 13      | 0.76  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Potassium | 790     | 190   | 72    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Sodium    | 120     | 190   | 74    | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Thallium  | ND      | 1.9   | 0.91  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Vanadium  | 24      | 0.76  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
| Zinc      | 40      | 0.76  | 0.49  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/21/21 | 10/24/21 22:38 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-DUP04-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21J1070-06
Sample Matrix: Soil

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 87.0    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:10 | AL2     |
| Cyanide    |         | ND      | 0.49 | 0.35 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @18.1°C |         | 6.3     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB212-5-7-211015** Sampled: 10/15/2021 11:35

Sample ID: 21J1070-07
Sample Matrix: Soil

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 14000   | 20    | 7.2   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Antimony  | 1.7     | 2.0   | 0.79  | mg/Kg dry    | 1           | J         | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Arsenic   | 9.5     | 3.9   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/22/21 20:35 | QNW     |
| Barium    | 42      | 2.0   | 0.75  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Beryllium | 0.94    | 0.20  | 0.075 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Cadmium   | 0.40    | 0.39  | 0.20  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Calcium   | 440     | 20    | 7.7   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Chromium  | 20      | 0.79  | 0.45  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Cobalt    | 7.3     | 2.0   | 0.72  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Copper    | 23      | 0.79  | 0.38  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Iron      | 36000   | 390   | 160   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/21/21 | 10/24/21 21:31 | QNW     |
| Lead      | 11      | 0.59  | 0.29  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Magnesium | 1200    | 20    | 6.9   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Manganese | 98      | 0.39  | 0.15  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Mercury   | 0.047   | 0.030 | 0.010 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/20/21 | 10/21/21 12:32 | DRL     |
| Nickel    | 12      | 0.79  | 0.40  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Potassium | 890     | 200   | 74    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Selenium  | ND      | 3.9   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Silver    | ND      | 0.39  | 0.18  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Sodium    | ND      | 200   | 77    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Thallium  | ND      | 2.0   | 0.94  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Vanadium  | 36      | 0.79  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
| Zinc      | 53      | 0.79  | 0.50  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/21/21 | 10/24/21 22:45 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB212-5-7-211015** Sampled: 10/15/2021 11:35

Sample ID: 21J1070-07
Sample Matrix: Soil

|            |       |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|-------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Ana        | alyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |       | 84.0    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide    |       | ND      | 0.57 | 0.40 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17.8°C |       | 5.0     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB212-15-17-211015** Sampled: 10/15/2021 11:40

Sample ID: 21J1070-08
Sample Matrix: Soil

|           |         |       |        | Metals Allary | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|--------|---------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |               |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units         | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 3300    | 18    | 6.4    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Antimony  | ND      | 1.8   | 0.71   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Arsenic   | 3.6     | 3.5   | 1.3    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Barium    | 28      | 1.8   | 0.67   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Beryllium | 0.47    | 0.18  | 0.067  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Cadmium   | ND      | 0.35  | 0.18   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Calcium   | 160     | 18    | 6.9    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Chromium  | 31      | 0.71  | 0.40   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Cobalt    | 5.5     | 1.8   | 0.65   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Copper    | 7.8     | 0.71  | 0.34   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Iron      | 13000   | 18    | 7.1    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Lead      | 7.5     | 0.53  | 0.26   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Magnesium | 470     | 18    | 6.2    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Manganese | 65      | 0.35  | 0.14   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Mercury   | 0.018   | 0.027 | 0.0093 | mg/Kg dry     | 1            | J         | SW-846 7471B | 10/20/21 | 10/21/21 12:34 | DRL     |
| Nickel    | 7.9     | 0.71  | 0.36   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Potassium | 290     | 180   | 66     | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Selenium  | ND      | 3.5   | 1.3    | mg/Kg dry     | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Silver    | ND      | 0.35  | 0.16   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Sodium    | ND      | 180   | 69     | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Thallium  | ND      | 1.8   | 0.85   | mg/Kg dry     | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Vanadium  | 20      | 0.71  | 0.35   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
| Zinc      | 15      | 0.71  | 0.45   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:38 | MJH     |
|           |         |       |        |               |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB212-15-17-211015** Sampled: 10/15/2021 11:40

Sample ID: 21J1070-08
Sample Matrix: Soil

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 94.3    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide    |         | ND      | 0.47 | 0.33 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17.3°C | 2       | 9.4     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-0-1-211015** Sampled: 10/15/2021 12:40

Sample ID: 21J1070-09
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 7700    | 18    | 6.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | МЈН     |
| Antimony  | ND      | 1.8   | 0.74  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Arsenic   | 6.5     | 3.6   | 1.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Barium    | 64      | 1.8   | 0.69  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Beryllium | 0.67    | 0.18  | 0.069 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Cadmium   | ND      | 0.36  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Calcium   | 640     | 18    | 7.1   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Chromium  | 14      | 0.73  | 0.41  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Cobalt    | 11      | 1.8   | 0.67  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Copper    | 15      | 0.73  | 0.35  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Iron      | 25000   | 360   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 0:25  | ICP     |
| Lead      | 18      | 0.55  | 0.27  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Magnesium | 910     | 18    | 6.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Manganese | 210     | 0.36  | 0.14  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Mercury   | 0.043   | 0.030 | 0.010 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:36 | DRL     |
| Nickel    | 12      | 0.73  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Potassium | 660     | 180   | 69    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Selenium  | ND      | 3.6   | 1.3   | mg/Kg dry    | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Silver    | ND      | 0.36  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Sodium    | ND      | 180   | 71    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Thallium  | ND      | 1.8   | 0.87  | mg/Kg dry    | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Vanadium  | 24      | 0.73  | 0.36  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
| Zinc      | 37      | 0.73  | 0.47  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:45 | MJH     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-0-1-211015** Sampled: 10/15/2021 12:40

Sample ID: 21J1070-09
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | ;       | 89.7    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide  |         | ND      | 0.46 | 0.33 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17   | .6°C    | 4.7     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-5-7-211015** Sampled: 10/15/2021 12:45

Sample ID: 21J1070-10
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8600    | 19    | 7.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Antimony  | ND      | 1.9   | 0.77  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Arsenic   | 7.5     | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Barium    | 68      | 1.9   | 0.73  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Beryllium | 0.75    | 0.19  | 0.072 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Cadmium   | ND      | 0.38  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Calcium   | 1700    | 19    | 7.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Chromium  | 15      | 0.76  | 0.43  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Cobalt    | 12      | 1.9   | 0.70  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Copper    | 23      | 0.76  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Iron      | 32000   | 380   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 0:32  | ICP     |
| Lead      | 22      | 0.57  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Magnesium | 1000    | 19    | 6.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Manganese | 190     | 3.8   | 1.5   | mg/Kg dry    | 10           |           | SW-846 6010D | 10/20/21 | 10/26/21 14:10 | MJH     |
| Mercury   | 0.048   | 0.032 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:42 | DRL     |
| Nickel    | 17      | 0.76  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Potassium | 750     | 190   | 72    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Sodium    | 740     | 190   | 74    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry    | 1            | V-20      | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Vanadium  | 27      | 0.76  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
| Zine      | 59      | 0.76  | 0.49  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 11:52 | MJH     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-5-7-211015** Sampled: 10/15/2021 12:45

Sample ID: 21J1070-10
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | ;       | 84.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide  |         | ND      | 0.42 | 0.30 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17   | .3°C    | 5.0     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB209-0-1-211013** Sampled: 10/13/2021 13:40

Sample ID: 21J1070-11
Sample Matrix: Soil

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 13000   | 19    | 7.0   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Antimony  | ND      | 1.9   | 0.77  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Arsenic   | 4.1     | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Barium    | 75      | 1.9   | 0.73  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Beryllium | 0.81    | 0.19  | 0.073 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Cadmium   | ND      | 0.38  | 0.19  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Calcium   | 1200    | 19    | 7.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Chromium  | 23      | 0.76  | 0.43  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Cobalt    | 15      | 1.9   | 0.70  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Copper    | 18      | 0.76  | 0.37  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Iron      | 38000   | 380   | 150   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/20/21 | 10/25/21 0:40  | ICP     |
| Lead      | 19      | 0.57  | 0.28  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Magnesium | 2700    | 19    | 6.7   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Manganese | 600     | 0.38  | 0.15  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Mercury   | 0.040   | 0.031 | 0.010 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/20/21 | 10/21/21 12:44 | DRL     |
| Nickel    | 13      | 0.76  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Potassium | 910     | 190   | 72    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 2:28  | QNW     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 2:28  | QNW     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Sodium    | 110     | 190   | 74    | mg/Kg dry    | 1           | J         | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 2:28  | QNW     |
| Vanadium  | 40      | 0.76  | 0.38  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
| Zinc      | 51      | 0.76  | 0.49  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 14:57 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB209-0-1-211013** Sampled: 10/13/2021 13:40

Sample ID: 21J1070-11
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide  |         | ND      | 0.56 | 0.39 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @16.  | 1°C     | 8.5     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB209-5-7-211013 Sampled: 10/13/2021 13:47

Sample ID: 21J1070-12
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (10tai) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 13000   | 20    | 7.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Antimony  | ND      | 2.0   | 0.81  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Arsenic   | 4.5     | 4.0   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Barium    | 46      | 2.0   | 0.76  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Beryllium | 0.66    | 0.20  | 0.076 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Cadmium   | ND      | 0.40  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Calcium   | 950     | 20    | 7.8   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Chromium  | 17      | 0.80  | 0.46  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Cobalt    | 5.5     | 2.0   | 0.74  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Copper    | 16      | 0.80  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Iron      | 32000   | 400   | 160   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 0:47  | ICP     |
| Lead      | 11      | 0.60  | 0.29  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Magnesium | 1500    | 20    | 7.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Manganese | 53      | 0.40  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Mercury   | 0.079   | 0.032 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:46 | DRL     |
| Nickel    | 16      | 0.80  | 0.41  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Potassium | 1000    | 200   | 75    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 2:34  | QNW     |
| Selenium  | ND      | 4.0   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 2:34  | QNW     |
| Silver    | ND      | 0.40  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Sodium    | 870     | 200   | 78    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Thallium  | ND      | 2.0   | 0.96  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 2:34  | QNW     |
| Vanadium  | 31      | 0.80  | 0.40  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
| Zinc      | 41      | 0.80  | 0.51  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:03 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB209-5-7-211013** Sampled: 10/13/2021 13:47

Sample ID: 21J1070-12
Sample Matrix: Soil

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
| A          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 82.0    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:11 | AL2     |
| Cyanide    |         | 1.4     | 0.58 | 0.41 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17.1°C |         | 8.6     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB209-15-17-211013 Sampled: 10/13/2021 13:55

Sample ID: 21J1070-13
Sample Matrix: Soil

|           |         |       |       | Metals Analy | ses (10tal) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8900    | 19    | 7.0   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Arsenic   | 6.3     | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Barium    | 30      | 1.9   | 0.73  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Beryllium | 0.68    | 0.19  | 0.073 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Cadmium   | ND      | 0.38  | 0.20  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Calcium   | 500     | 19    | 7.5   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Chromium  | 19      | 0.77  | 0.44  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Cobalt    | 5.5     | 1.9   | 0.71  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Copper    | 14      | 0.77  | 0.37  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Iron      | 28000   | 380   | 150   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/20/21 | 10/25/21 0:55  | ICP     |
| Lead      | 9.3     | 0.58  | 0.28  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Magnesium | 890     | 19    | 6.7   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Manganese | 67      | 0.38  | 0.15  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Mercury   | ND      | 0.030 | 0.010 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/20/21 | 10/21/21 12:48 | DRL     |
| Nickel    | 11      | 0.77  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Potassium | 670     | 190   | 72    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 2:53  | QNW     |
| Silver    | ND      | 0.38  | 0.18  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Sodium    | 990     | 190   | 75    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 2:53  | QNW     |
| Vanadium  | 24      | 0.77  | 0.38  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
| Zinc      | 35      | 0.77  | 0.49  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:10 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB209-15-17-211013 Sampled: 10/13/2021 13:55

Sample ID: 21J1070-13
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.3    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:12 | AL2     |
| Cyanide  |         | ND      | 0.53 | 0.37 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17°C | ;       | 8.8     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-EB03-211013** Sampled: 10/13/2021 16:45

Sample ID: 21J1070-14
Sample Matrix: Water

|           |         |         |          | Metals Ana | lyses (Total) |           |              |          |                |         |
|-----------|---------|---------|----------|------------|---------------|-----------|--------------|----------|----------------|---------|
|           |         |         |          |            |               |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL      | DL       | Units      | Dilution      | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Antimony  | 0.21    | 1.0     | 0.20     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Barium    | 31      | 10      | 1.2      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Cadmium   | ND      | 0.20    | 0.027    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Calcium   | 7.8     | 0.50    | 0.11     | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Cobalt    | ND      | 1.0     | 0.14     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Copper    | 0.36    | 1.0     | 0.27     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Magnesium | 1.7     | 0.050   | 0.023    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Manganese | 8.8     | 1.0     | 0.24     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L       | 1             |           | SW-846 7470A | 10/22/21 | 10/23/21 11:09 | DRL     |
| Nickel    | 1.9     | 5.0     | 0.52     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Potassium | 1.6     | 2.0     | 0.40     | mg/L       | 1             | J         | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Sodium    | 3.5     | 2.0     | 0.56     | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:47 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
| Zinc      | 150     | 10      | 3.4      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/22/21 10:05 | QNW     |
|           |         |         |          |            |               |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-EB03-211013** Sampled: 10/13/2021 16:45

Sample ID: 21J1070-14
Sample Matrix: Water

|         |         |         |       |        |       |          |           |             | Date     | Date/Time      |         |
|---------|---------|---------|-------|--------|-------|----------|-----------|-------------|----------|----------------|---------|
|         | Analyte | Results | RL    | DL     | Units | Dilution | Flag/Qual | Method      | Prepared | Analyzed       | Analyst |
| Cyanide |         | ND      | 0.010 | 0.0073 | mg/L  | 1        |           | SW-846 9014 | 10/21/21 | 10/22/21 15:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB208-0-1-211014 Sampled: 10/14/2021 09:12

Sample ID: 21J1070-15
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 11000   | 21    | 7.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Antimony  | ND      | 2.1   | 0.85  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Arsenic   | 4.2     | 4.2   | 1.5   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Barium    | 53      | 2.1   | 0.80  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Beryllium | 0.77    | 0.21  | 0.080 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Cadmium   | ND      | 0.42  | 0.21  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Calcium   | 800     | 21    | 8.2   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Chromium  | 17      | 0.84  | 0.48  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Cobalt    | 15      | 2.1   | 0.77  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Copper    | 14      | 0.84  | 0.40  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Iron      | 35000   | 420   | 170   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 1:02  | ICP     |
| Lead      | 12      | 0.63  | 0.31  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Magnesium | 1100    | 21    | 7.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Manganese | 140     | 0.42  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Mercury   | 0.034   | 0.036 | 0.012 | mg/Kg dry    | 1            | J         | SW-846 7471B | 10/20/21 | 10/21/21 12:49 | DRL     |
| Nickel    | 16      | 0.84  | 0.43  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Potassium | 800     | 210   | 79    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Selenium  | ND      | 4.2   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:00  | QNW     |
| Silver    | ND      | 0.42  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Sodium    | ND      | 210   | 82    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Thallium  | ND      | 2.1   | 1.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:00  | QNW     |
| Vanadium  | 32      | 0.84  | 0.42  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
| Zinc      | 50      | 0.84  | 0.54  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:16 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB208-0-1-211014** Sampled: 10/14/2021 09:12

Sample ID: 21J1070-15
Sample Matrix: Soil

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 77.7    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:12 | AL2     |
| Cyanide    |         | ND      | 0.48 | 0.34 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @16.8°С |         | 8.7     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB208-5-7-211014** Sampled: 10/14/2021 09:20

Sample ID: 21J1070-16
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (10tal) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 10000   | 21    | 7.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Antimony  | ND      | 2.1   | 0.84  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Arsenic   | 5.8     | 4.2   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Barium    | 38      | 2.1   | 0.80  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Beryllium | 0.62    | 0.21  | 0.079 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Cadmium   | ND      | 0.42  | 0.21  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Calcium   | 450     | 21    | 8.1   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Chromium  | 17      | 0.84  | 0.48  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Cobalt    | 6.4     | 2.1   | 0.77  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Copper    | 15      | 0.84  | 0.40  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Iron      | 33000   | 420   | 170   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 1:10  | ICP     |
| Lead      | 11      | 0.63  | 0.30  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Magnesium | 1000    | 21    | 7.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Manganese | 100     | 0.42  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Mercury   | ND      | 0.034 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:51 | DRL     |
| Nickel    | 12      | 0.84  | 0.43  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Potassium | 750     | 210   | 79    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Selenium  | ND      | 4.2   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:07  | QNW     |
| Silver    | ND      | 0.42  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Sodium    | ND      | 210   | 81    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Thallium  | ND      | 2.1   | 1.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:07  | QNW     |
| Vanadium  | 26      | 0.84  | 0.42  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
| Zinc      | 33      | 0.84  | 0.53  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 15:23 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB208-5-7-211014** Sampled: 10/14/2021 09:20

Sample ID: 21J1070-16
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | ;       | 76.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:12 | AL2     |
| Cyanide  |         | ND      | 0.47 | 0.33 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @16   | .6°C    | 5.5     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB208-18-20-211014** Sampled: 10/14/2021 09:30

Sample ID: 21J1070-17
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | mictals ranal | yses (Total) |           |              |                  |                       |         |
|-----------|---------|-------|-------|---------------|--------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL    | DL    | Units         | Dilution     | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 4500    | 20    | 7.3   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Antimony  | ND      | 2.0   | 0.81  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Arsenic   | 4.5     | 4.0   | 1.5   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Barium    | 32      | 2.0   | 0.76  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Beryllium | 0.58    | 0.20  | 0.076 | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Cadmium   | ND      | 0.40  | 0.20  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Calcium   | 270     | 20    | 7.8   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Chromium  | 15      | 0.80  | 0.46  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Cobalt    | 9.5     | 2.0   | 0.74  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Copper    | 12      | 0.80  | 0.38  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Iron      | 26000   | 400   | 160   | mg/Kg dry     | 20           |           | SW-846 6010D | 10/20/21         | 10/25/21 1:30         | ICP     |
| Lead      | 5.5     | 0.60  | 0.29  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Magnesium | 880     | 20    | 7.0   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Manganese | 110     | 0.40  | 0.16  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Mercury   | ND      | 0.032 | 0.011 | mg/Kg dry     | 1            |           | SW-846 7471B | 10/20/21         | 10/21/21 12:53        | DRL     |
| Nickel    | 12      | 0.80  | 0.41  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Potassium | 370     | 200   | 76    | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Selenium  | ND      | 4.0   | 1.4   | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/25/21 3:13         | QNW     |
| Silver    | ND      | 0.40  | 0.18  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Sodium    | 78      | 200   | 78    | mg/Kg dry     | 1            | J         | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Thallium  | ND      | 2.0   | 0.96  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/25/21 3:13         | QNW     |
| Vanadium  | 28      | 0.80  | 0.40  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
| Zinc      | 24      | 0.80  | 0.51  | mg/Kg dry     | 1            |           | SW-846 6010D | 10/20/21         | 10/22/21 15:41        | QNW     |
|           |         |       |       |               |              |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB208-18-20-211014 Sampled: 10/14/2021 09:30

Sample ID: 21J1070-17
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 81.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:12 | AL2     |
| Cyanide  |         | ND      | 0.48 | 0.34 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @17°C |         | 5.5     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-0-2-211014** Sampled: 10/14/2021 13:58

Sample ID: 21J1070-18
Sample Matrix: Soil

#### Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL     | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|--------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.11   | 0.037   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Acrylonitrile                      | ND      | 0.0068 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.0011 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Benzene                            | ND      | 0.0023 | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Bromobenzene                       | ND      | 0.0023 | 0.00038 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Bromochloromethane                 | ND      | 0.0023 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Bromodichloromethane               | ND      | 0.0023 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Bromoform                          | ND      | 0.0023 | 0.00069 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Bromomethane                       | ND      | 0.011  | 0.0042  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.045  | 0.014   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.11   | 0.055   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| n-Butylbenzene                     | ND      | 0.0023 | 0.00058 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0023 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0045 | 0.00096 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.0011 | 0.00059 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Carbon Disulfide                   | ND      | 0.011  | 0.0081  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0023 | 0.00088 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Chlorobenzene                      | ND      | 0.0023 | 0.00061 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Chlorodibromomethane               | ND      | 0.0011 | 0.00058 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Chloroethane                       | ND      | 0.023  | 0.0040  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Chloroform                         | ND      | 0.0045 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Chloromethane                      | ND      | 0.011  | 0.0037  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0023 | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0023 | 0.00040 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0023 | 0.00076 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.0011 | 0.00071 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Dibromomethane                     | ND      | 0.0023 | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0023 | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0023 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0023 | 0.00058 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0045 | 0.00064 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.023  | 0.0013  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0023 | 0.00057 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0023 | 0.00070 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0045 | 0.0014  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0023 | 0.00060 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.0023 | 0.00064 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0023 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.0011 | 0.00055 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0023 | 0.00087 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0023 | 0.00089 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.0011 | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.0011 | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Diethyl Ether                      | ND      | 0.023  | 0.0025  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
|                                    |         |        |         |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-0-2-211014 Sampled: 10/14/2021 13:58

Sample ID: 21J1070-18
Sample Matrix: Soil

#### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.0011 | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.11   | 0.025   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Ethylbenzene                                      | ND      | 0.0023 | 0.00051 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0023 | 0.00081 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.023  | 0.0066  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0023 | 0.00081 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0023 | 0.00052 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Methyl Acetate                                    | ND      | 0.0023 | 0.0015  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0045 | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0023 | 0.00083 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Methylene Chloride                                | ND      | 0.023  | 0.00064 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.023  | 0.0050  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Naphthalene                                       | ND      | 0.0045 | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0023 | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Styrene                                           | ND      | 0.0023 | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0023 | 0.00063 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.0011 | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0023 | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.011  | 0.0029  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Toluene                                           | ND      | 0.0023 | 0.00064 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0023 | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0023 | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0023 | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0023 | 0.00077 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0023 | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Trichloroethylene                                 | ND      | 0.0023 | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.011  | 0.0041  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0023 | 0.0011  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.011  | 0.0031  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0023 | 0.00073 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0023 | 0.00050 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Vinyl Chloride                                    | ND      | 0.011  | 0.0034  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| m+p Xylene                                        | ND      | 0.0045 | 0.00086 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| o-Xylene                                          | ND      | 0.0023 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 7:44         | MFF     |
| Surrogates                                        |         | % Reco | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 104        | 70-130          |           | 10/20/21 7:44 |
| Toluene-d8            | 96.2       | 70-130          |           | 10/20/21 7:44 |
| 4-Bromofluorobenzene  | 98.8       | 70-130          |           | 10/20/21 7:44 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-0-2-211014** Sampled: 10/14/2021 13:58

Sample ID: 21J1070-18
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 1.2    | 1.2  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/20/21         | 10/21/21 4:46         | KMB     |
| Diesel Range Organics         | 41      | 9.5    | 4.4  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/19/21         | 10/22/21 21:14        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 86.8   |      | 70-130          |          |           |              |                  | 10/21/21 4:46         |         |
| 2-Fluorobiphenyl              |         | 60.6   |      | 40-140          |          |           |              |                  | 10/22/21 21:14        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-0-2-211014** Sampled: 10/14/2021 13:58

Sample ID: 21J1070-18
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | Mictals Allaly | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|----------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |                |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units          | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8300    | 19    | 6.8   | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Antimony  | ND      | 1.9   | 0.76  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Arsenic   | 6.0     | 3.7   | 1.4   | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Barium    | 130     | 1.9   | 0.71  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Beryllium | 0.65    | 0.19  | 0.071 | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Cadmium   | 0.31    | 0.37  | 0.19  | mg/Kg dry      | 1           | J         | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Calcium   | 2700    | 19    | 7.3   | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Chromium  | 16      | 0.75  | 0.43  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Cobalt    | 9.6     | 1.9   | 0.69  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Copper    | 40      | 0.75  | 0.36  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Iron      | 25000   | 370   | 150   | mg/Kg dry      | 20          |           | SW-846 6010D | 10/20/21 | 10/25/21 1:38  | ICP     |
| Lead      | 180     | 0.56  | 0.27  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Magnesium | 1000    | 19    | 6.6   | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Manganese | 400     | 0.37  | 0.15  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Mercury   | 0.26    | 0.030 | 0.010 | mg/Kg dry      | 1           |           | SW-846 7471B | 10/20/21 | 10/21/21 12:55 | DRL     |
| Nickel    | 9.2     | 0.75  | 0.38  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Potassium | 1000    | 1900  | 710   | mg/Kg dry      | 10          | J         | SW-846 6010D | 10/20/21 | 10/26/21 14:15 | MJH     |
| Selenium  | ND      | 3.7   | 1.3   | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 14:09 | QNW     |
| Silver    | ND      | 0.37  | 0.17  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Sodium    | 92      | 190   | 73    | mg/Kg dry      | 1           | J         | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Thallium  | ND      | 37    | 18    | mg/Kg dry      | 20          |           | SW-846 6010D | 10/20/21 | 10/25/21 1:38  | ICP     |
| Vanadium  | 25      | 0.75  | 0.37  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
| Zinc      | 150     | 0.75  | 0.48  | mg/Kg dry      | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:48 | QNW     |
|           |         |       |       |                |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-0-2-211014** Sampled: 10/14/2021 13:58

Sample ID: 21J1070-18
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 87.8    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/22/21 13:57 | GLH     |
| Cyanide  |         | ND      | 0.54 | 0.38 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @18°C |         | 5.8     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21J1070-19
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|---------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.099   | 0.032   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Acrylonitrile                      | ND      | 0.0059  | 0.00097 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00099 | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Benzene                            | ND      | 0.0020  | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Bromobenzene                       | ND      | 0.0020  | 0.00033 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Bromochloromethane                 | ND      | 0.0020  | 0.00094 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Bromodichloromethane               | ND      | 0.0020  | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Bromoform                          | ND      | 0.0020  | 0.00060 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Bromomethane                       | ND      | 0.0099  | 0.0036  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.040   | 0.012   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.099   | 0.048   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| n-Butylbenzene                     | ND      | 0.0020  | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0020  | 0.00096 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0040  | 0.00084 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00099 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Carbon Disulfide                   | ND      | 0.0099  | 0.0071  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0020  | 0.00077 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Chlorobenzene                      | ND      | 0.0020  | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Chlorodibromomethane               | ND      | 0.00099 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Chloroethane                       | ND      | 0.020   | 0.0035  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Chloroform                         | ND      | 0.0040  | 0.00099 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Chloromethane                      | ND      | 0.0099  | 0.0032  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0020  | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0020  | 0.00035 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0020  | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00099 | 0.00062 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Dibromomethane                     | ND      | 0.0020  | 0.00072 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0020  | 0.00040 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0020  | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0020  | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0040  | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.020   | 0.0011  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0020  | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0020  | 0.00061 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0040  | 0.0012  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0020  | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| rans-1,2-Dichloroethylene          | ND      | 0.0020  | 0.00055 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0020  | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.00099 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0020  | 0.00076 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0020  | 0.00078 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00099 | 0.00039 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00099 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
|                                    |         |         |         |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21J1070-19
Sample Matrix: Soil

1,2-Dichloroethane-d4

Toluene-d8 4-Bromofluorobenzene

#### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00099 | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.099   | 0.022   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Ethylbenzene                                      | ND      | 0.0020  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0020  | 0.00071 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.020   | 0.0057  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0020  | 0.00071 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0020  | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Methyl Acetate                                    | ND      | 0.0020  | 0.0013  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0040  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0020  | 0.00072 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Methylene Chloride                                | ND      | 0.020   | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.020   | 0.0044  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Naphthalene                                       | ND      | 0.0040  | 0.00051 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0020  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Styrene                                           | ND      | 0.0020  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0020  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00099 | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0020  | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0099  | 0.0025  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Toluene                                           | ND      | 0.0020  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0020  | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0020  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0020  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0020  | 0.00068 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0020  | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Trichloroethylene                                 | ND      | 0.0020  | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0099  | 0.0036  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0020  | 0.00095 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0099  | 0.0027  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0020  | 0.00064 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0020  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Vinyl Chloride                                    | ND      | 0.0099  | 0.0030  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| m+p Xylene                                        | ND      | 0.0040  | 0.00075 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| o-Xylene                                          | ND      | 0.0020  | 0.00041 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:09         | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

101

100

99.4

70-130

70-130

70-130

10/20/21 8:09

10/20/21 8:09

10/20/21 8:09



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-5-7-211014** Sampled: 10/14/2021 14:10

Sample ID: 21J1070-19
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 1.3    | 1.3  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/20/21         | 10/21/21 5:27         | KMB     |
| Diesel Range Organics         | ND      | 10     | 4.8  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/19/21         | 10/22/21 19:12        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 91.0   |      | 70-130          |          |           |              |                  | 10/21/21 5:27         |         |
| 2-Fluorobiphenyl              |         | 55.1   |      | 40-140          |          |           |              |                  | 10/22/21 19:12        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21J1070-19
Sample Matrix: Soil

Metals Analyses (Total)

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 9600    | 20    | 7.3   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Antimony  | ND      | 2.0   | 0.80  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Arsenic   | 5.6     | 4.0   | 1.5   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Barium    | 43      | 2.0   | 0.76  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Beryllium | 0.60    | 0.20  | 0.076 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Cadmium   | ND      | 0.40  | 0.20  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Calcium   | 530     | 20    | 7.8   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Chromium  | 15      | 0.80  | 0.45  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Cobalt    | 6.2     | 2.0   | 0.73  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Copper    | 15      | 0.80  | 0.38  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Iron      | 26000   | 200   | 80    | mg/Kg dry    | 10          |           | SW-846 6010D | 10/20/21 | 10/26/21 14:20 | МЈН     |
| Lead      | 12      | 0.60  | 0.29  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Magnesium | 940     | 20    | 7.0   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Manganese | 170     | 0.40  | 0.16  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Mercury   | 0.060   | 0.031 | 0.011 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/20/21 | 10/21/21 12:56 | DRL     |
| Nickel    | 13      | 0.80  | 0.41  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Potassium | 680     | 200   | 75    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Selenium  | ND      | 4.0   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 3:26  | QNW     |
| Silver    | ND      | 0.40  | 0.18  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Sodium    | ND      | 200   | 78    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Thallium  | ND      | 2.0   | 0.95  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/25/21 3:26  | QNW     |
| Vanadium  | 27      | 0.80  | 0.40  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
| Zinc      | 36      | 0.80  | 0.51  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/20/21 | 10/22/21 15:55 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21J1070-19
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 79.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:12 | AL2     |
| Cyanide    |         | ND      | 0.60 | 0.42 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| рН @18.9°С |         | 6.1     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-14-16-211014 Sampled: 10/14/2021 14:35

Sample ID: 21J1070-20
Sample Matrix: Soil

#### Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|---------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.085   | 0.027   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Acrylonitrile                      | ND      | 0.0051  | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00085 | 0.00039 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Benzene                            | ND      | 0.0017  | 0.00040 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Bromobenzene                       | ND      | 0.0017  | 0.00029 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Bromochloromethane                 | ND      | 0.0017  | 0.00081 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Bromodichloromethane               | ND      | 0.0017  | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Bromoform                          | ND      | 0.0017  | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Bromomethane                       | ND      | 0.0085  | 0.0031  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.034   | 0.010   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.085   | 0.041   | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| n-Butylbenzene                     | ND      | 0.0017  | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0017  | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0034  | 0.00072 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00085 | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Carbon Disulfide                   | ND      | 0.0085  | 0.0061  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0017  | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Chlorobenzene                      | ND      | 0.0017  | 0.00046 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Chlorodibromomethane               | ND      | 0.00085 | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Chloroethane                       | ND      | 0.017   | 0.0030  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Chloroform                         | ND      | 0.0034  | 0.00085 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Chloromethane                      | ND      | 0.0085  | 0.0028  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| -Chlorotoluene                     | ND      | 0.0017  | 0.00039 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| l-Chlorotoluene                    | ND      | 0.0017  | 0.00030 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,2-Dibromo-3-chloropropane (DBCP)  | ND      | 0.0017  | 0.00057 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00085 | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Dibromomethane                     | ND      | 0.0017  | 0.00062 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0017  | 0.00034 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,3-Dichlorobenzene                 | ND      | 0.0017  | 0.00036 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,4-Dichlorobenzene                 | ND      | 0.0017  | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| rans-1,4-Dichloro-2-butene         | ND      | 0.0034  | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.017   | 0.00099 | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,1-Dichloroethane                  | ND      | 0.0017  | 0.00043 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,2-Dichloroethane                  | ND      | 0.0017  | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0034  | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0017  | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| rans-1,2-Dichloroethylene          | ND      | 0.0017  | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0017  | 0.00040 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,3-Dichloropropane                 | ND      | 0.00085 | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0017  | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| ,1-Dichloropropene                 | ND      | 0.0017  | 0.00067 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00085 | 0.00033 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00085 | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Diethyl Ether                      | ND      | 0.017   | 0.0019  | mg/Kg dry | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-14-16-211014 Sampled: 10/14/2021 14:35

Sample ID: 21J1070-20
Sample Matrix: Soil

#### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00085 | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.085   | 0.019   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Ethylbenzene                                      | ND      | 0.0017  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0017  | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.017   | 0.0050  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0017  | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0017  | 0.00039 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Methyl Acetate                                    | ND      | 0.0017  | 0.0012  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0034  | 0.00032 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Methylene Chloride                                | ND      | 0.017   | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.017   | 0.0038  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Naphthalene                                       | ND      | 0.0034  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0017  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Styrene                                           | ND      | 0.0017  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00085 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0085  | 0.0022  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Toluene                                           | ND      | 0.0017  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0017  | 0.00041 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0017  | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Trichloroethylene                                 | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0085  | 0.0031  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0017  | 0.00082 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0085  | 0.0023  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0017  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0017  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Vinyl Chloride                                    | ND      | 0.0085  | 0.0026  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| m+p Xylene                                        | ND      | 0.0034  | 0.00065 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| o-Xylene                                          | ND      | 0.0017  | 0.00035 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/20/21         | 10/20/21 8:34         | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 102        | 70-130          |           | 10/20/21 8:34 |
| Toluene-d8            | 99.4       | 70-130          |           | 10/20/21 8:34 |
| 4-Bromofluorobenzene  | 104        | 70-130          |           | 10/20/21 8:34 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-14-16-211014** Sampled: 10/14/2021 14:35

Sample ID: 21J1070-20
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

|                               | D 1/    | DI     | DI   | ¥1. *4          | D'1 4'   | FI (O 1   | M (1 )       | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.74   | 0.73 | mg/Kg dry       | 1        |           | SW-846 8015C | 10/20/21 | 10/21/21 6:04  | KMB     |
| Diesel Range Organics         | ND      | 8.6    | 4.0  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/19/21 | 10/22/21 19:32 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 1-Chloro-3-fluorobenzene      |         | 87.8   |      | 70-130          |          |           |              |          | 10/21/21 6:04  |         |
| 2-Fluorobiphenyl              |         | 69.7   |      | 40-140          |          |           |              |          | 10/22/21 19:32 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

Field Sample #: HRP-SB214-14-16-211014 Sampled: 10/14/2021 14:35

Sample ID: 21J1070-20
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | Metals Analy | yses (10tai) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 2200    | 17    | 6.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Antimony  | ND      | 1.7   | 0.70  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Arsenic   | 2.4     | 3.4   | 1.3   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Barium    | 11      | 1.7   | 0.66  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Beryllium | 0.14    | 0.17  | 0.066 | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Cadmium   | ND      | 0.34  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Calcium   | 64      | 17    | 6.7   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Chromium  | 3.3     | 0.69  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Cobalt    | 2.9     | 1.7   | 0.64  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Copper    | 2.9     | 0.69  | 0.33  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Iron      | 12000   | 340   | 140   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 1:52  | ICP     |
| Lead      | 1.9     | 0.52  | 0.25  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Magnesium | 180     | 17    | 6.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Manganese | 56      | 0.34  | 0.13  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Mercury   | ND      | 0.030 | 0.010 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/20/21 | 10/21/21 12:58 | DRL     |
| Nickel    | 3.2     | 0.69  | 0.35  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Potassium | 210     | 170   | 65    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Selenium  | ND      | 3.4   | 1.2   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:33  | QNW     |
| Silver    | ND      | 0.34  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Sodium    | ND      | 170   | 67    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Thallium  | ND      | 1.7   | 0.83  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:33  | QNW     |
| Vanadium  | 5.2     | 0.69  | 0.34  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
| Zinc      | 7.7     | 0.69  | 0.44  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:43 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB214-14-16-211014** Sampled: 10/14/2021 14:35

Sample ID: 21J1070-20
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 96.6    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/21/21 11:13 | AL2     |
| Cyanide  |         | ND      | 0.48 | 0.34 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @17.  | Э°С     | 5.0     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-15-17-211015** Sampled: 10/15/2021 12:50

Sample ID: 21J1070-21
Sample Matrix: Soil

Metals Analyses (Total)

|           |         |       |        | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|--------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 3900    | 17    | 6.4    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Antimony  | ND      | 1.7   | 0.70   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Arsenic   | 5.6     | 3.5   | 1.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Barium    | 24      | 1.7   | 0.66   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Beryllium | 0.53    | 0.17  | 0.066  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Cadmium   | ND      | 0.35  | 0.18   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Calcium   | 390     | 17    | 6.8    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Chromium  | 12      | 0.70  | 0.40   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Cobalt    | 7.7     | 1.7   | 0.64   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Copper    | 8.3     | 0.70  | 0.33   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Iron      | 29000   | 350   | 140    | mg/Kg dry    | 20           |           | SW-846 6010D | 10/20/21 | 10/25/21 1:59  | ICP     |
| Lead      | 5.1     | 0.52  | 0.25   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Magnesium | 690     | 17    | 6.1    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Manganese | 140     | 0.35  | 0.14   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Mercury   | 0.014   | 0.029 | 0.0098 | mg/Kg dry    | 1            | J         | SW-846 7471B | 10/20/21 | 10/21/21 13:05 | DRL     |
| Nickel    | 11      | 0.70  | 0.35   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Potassium | 410     | 170   | 66     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Selenium  | ND      | 3.5   | 1.2    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:40  | QNW     |
| Silver    | ND      | 0.35  | 0.16   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Sodium    | 880     | 170   | 68     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Thallium  | ND      | 1.7   | 0.84   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/25/21 3:40  | QNW     |
| Vanadium  | 17      | 0.70  | 0.35   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
| Zinc      | 21      | 0.70  | 0.45   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/20/21 | 10/22/21 16:49 | QNW     |
|           |         |       |        |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-SB211-15-17-211015** Sampled: 10/15/2021 12:50

Sample ID: 21J1070-21
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |        |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|--------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Ana        | lyte R | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |        | 91.3    |      |      | % Wt      | 1        |           | SM 2540G     | 10/20/21 | 10/22/21 13:58 | GLH     |
| Cyanide    |        | ND      | 0.53 | 0.37 | mg/Kg dry | 1        |           | SW-846 9014  | 10/21/21 | 10/22/21 15:40 | DJM     |
| рН @18.5°C |        | 9.0     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/19/21 | 10/19/21 23:00 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-EB04-211015** Sampled: 10/15/2021 14:05

Sample ID: 21J1070-22
Sample Matrix: Water

#### Metals Analyses (Total)

|           |         |         |          | Metals Ana | iyses (Totai) |           |              |          |                |         |
|-----------|---------|---------|----------|------------|---------------|-----------|--------------|----------|----------------|---------|
|           |         |         |          |            |               |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL      | DL       | Units      | Dilution      | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Barium    | 48      | 10      | 1.2      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Cadmium   | ND      | 0.20    | 0.027    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Calcium   | 7.8     | 0.50    | 0.11     | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Cobalt    | 0.16    | 1.0     | 0.14     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Copper    | 0.35    | 1.0     | 0.27     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Magnesium | 1.7     | 0.050   | 0.023    | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Manganese | 8.5     | 1.0     | 0.24     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L       | 1             |           | SW-846 7470A | 10/22/21 | 10/23/21 11:11 | DRL     |
| Nickel    | 2.4     | 5.0     | 0.52     | $\mu g/L$  | 1             | J         | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Potassium | 1.6     | 2.0     | 0.40     | mg/L       | 1             | J         | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Sodium    | 3.5     | 2.0     | 0.56     | mg/L       | 1             |           | SW-846 6010D | 10/20/21 | 10/24/21 18:53 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
| Zinc      | 140     | 10      | 3.4      | $\mu g/L$  | 1             |           | SW-846 6020B | 10/20/21 | 10/21/21 15:41 | QNW     |
|           |         |         |          |            |               |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-EB04-211015** Sampled: 10/15/2021 14:05

Sample ID: 21J1070-22
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |       |        |       |          |           |             | Date     | Date/Time      |         |
|---------|---------|---------|-------|--------|-------|----------|-----------|-------------|----------|----------------|---------|
|         | Analyte | Results | RL    | DL     | Units | Dilution | Flag/Qual | Method      | Prepared | Analyzed       | Analyst |
| Cyanide |         | ND      | 0.010 | 0.0073 | mg/L  | 1        |           | SW-846 9014 | 10/21/21 | 10/22/21 15:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-TB04-211015** Sampled: 10/15/2021 14:10

Sample ID: 21J1070-23
Sample Matrix: Water

#### Volatile Organic Compounds by GC/MS

|                                    |         |      |       |              |          |           |              | Date     | Date/Time      |         |
|------------------------------------|---------|------|-------|--------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                            | Results | RL   | DL    | Units        | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Acetone                            | ND      | 50   | 2.4   | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,2-Dichloroethane                 |         |      |       |              |          |           |              |          | 10/21/21 12:46 |         |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.32  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 |                | MFF     |
| •                                  | ND      | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L         | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | $\mu g/L$    | 1        |           | SW-846 8260D | 10/21/21 | 10/21/21 12:46 | MFF     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J1070

Date Received: 10/19/2021

**Field Sample #: HRP-TB04-211015** Sampled: 10/15/2021 14:10

Sample ID: 21J1070-23
Sample Matrix: Water

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL       | DL    | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|----------|-------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50     | 0.15  | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,4-Dioxane                                       | ND      | 50       | 22    | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Ethylbenzene                                      | ND      | 1.0      | 0.090 | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60     | 0.41  | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10       | 1.4   | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0      | 0.10  | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0      | 0.090 | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Methyl Acetate                                    | ND      | 1.0      | 0.39  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0      | 0.17  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0      | 0.33  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Methylene Chloride                                | ND      | 5.0      | 0.30  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10       | 1.6   | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Naphthalene                                       | ND      | 2.0      | 0.15  | $\mu g/L$       | 1        | V-05       | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| n-Propylbenzene                                   | ND      | 1.0      | 0.080 | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Styrene                                           | ND      | 1.0      | 0.080 | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0      | 0.14  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50     | 0.090 | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Tetrachloroethylene                               | ND      | 1.0      | 0.20  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Tetrahydrofuran                                   | ND      | 10       | 0.58  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Toluene                                           | ND      | 1.0      | 0.11  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0      | 0.14  | $\mu g/L$       | 1        | L-04, V-05 | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0      | 0.16  | $\mu g/L$       | 1        | V-05       | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0      | 0.18  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0      | 0.17  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0      | 0.15  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Trichloroethylene                                 | ND      | 1.0      | 0.18  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0      | 0.19  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0      | 0.31  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0      | 0.24  | μg/L            | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0      | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0      | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Vinyl Chloride                                    | ND      | 2.0      | 0.20  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| m+p Xylene                                        | ND      | 2.0      | 0.18  | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| o-Xylene                                          | ND      | 1.0      | 0.090 | $\mu g/L$       | 1        |            | SW-846 8260D | 10/21/21         | 10/21/21 12:46        | MFF     |
| Surrogatos                                        |         | 9/. Dogg |       | Dogovory Limits |          | Flog/Ougl  |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 112        | 70-130          |           | 10/21/21 12:46 |
| Toluene-d8            | 111        | 70-130          |           | 10/21/21 12:46 |
| 4-Bromofluorobenzene  | 107        | 70-130          |           | 10/21/21 12:46 |



#### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21J1070-02 [HRP-SB213-0-1-211015]   | B292869 | 10/20/21 |
| 21J1070-03 [HRP-SB213-5-7-211015]   | B292869 | 10/20/21 |
| 21J1070-04 [HRP-SB213-16-18-211015] | B292869 | 10/20/21 |
| 21J1070-05 [HRP-SB212-0-2-211015]   | B292869 | 10/20/21 |
| 21J1070-06 [HRP-DUP04-0-2-211015]   | B292869 | 10/20/21 |
| 21J1070-07 [HRP-SB212-5-7-211015]   | B292869 | 10/20/21 |
| 21J1070-08 [HRP-SB212-15-17-211015] | B292869 | 10/20/21 |
| 21J1070-09 [HRP-SB211-0-1-211015]   | B292869 | 10/20/21 |
| 21J1070-10 [HRP-SB211-5-7-211015]   | B292869 | 10/20/21 |
| 21J1070-11 [HRP-SB209-0-1-211013]   | B292869 | 10/20/21 |
| 21J1070-12 [HRP-SB209-5-7-211013]   | B292869 | 10/20/21 |
| 21J1070-13 [HRP-SB209-15-17-211013] | B292869 | 10/20/21 |
| 21J1070-15 [HRP-SB208-0-1-211014]   | B292869 | 10/20/21 |
| 21J1070-16 [HRP-SB208-5-7-211014]   | B292869 | 10/20/21 |
| 21J1070-17 [HRP-SB208-18-20-211014] | B292869 | 10/20/21 |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292869 | 10/20/21 |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292869 | 10/20/21 |

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292891 | 10/20/21 |
| 21J1070-21 [HRP-SB211-15-17-211015] | B292891 | 10/20/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J1070-08 [HRP-SB212-15-17-211015] | B292839 | 1.50        | 50.0       | 10/20/21 |
| 21J1070-09 [HRP-SB211-0-1-211015]   | B292839 | 1.53        | 50.0       | 10/20/21 |
| 21J1070-10 [HRP-SB211-5-7-211015]   | B292839 | 1.54        | 50.0       | 10/20/21 |
| 21J1070-11 [HRP-SB209-0-1-211013]   | B292839 | 1.52        | 50.0       | 10/20/21 |
| 21J1070-12 [HRP-SB209-5-7-211013]   | B292839 | 1.52        | 50.0       | 10/20/21 |
| 21J1070-13 [HRP-SB209-15-17-211013] | B292839 | 1.54        | 50.0       | 10/20/21 |
| 21J1070-15 [HRP-SB208-0-1-211014]   | B292839 | 1.54        | 50.0       | 10/20/21 |
| 21J1070-16 [HRP-SB208-5-7-211014]   | B292839 | 1.56        | 50.0       | 10/20/21 |
| 21J1070-17 [HRP-SB208-18-20-211014] | B292839 | 1.52        | 50.0       | 10/20/21 |
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292839 | 1.52        | 50.0       | 10/20/21 |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292839 | 1.57        | 50.0       | 10/20/21 |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292839 | 1.50        | 50.0       | 10/20/21 |
| 21J1070-21 [HRP-SB211-15-17-211015] | B292839 | 1.57        | 50.0       | 10/20/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J1070-02 [HRP-SB213-0-1-211015]   | B292933 | 1.55        | 50.0       | 10/21/21 |  |
| 21J1070-03 [HRP-SB213-5-7-211015]   | B292933 | 1.60        | 50.0       | 10/21/21 |  |
| 21J1070-04 [HRP-SB213-16-18-211015] | B292933 | 1.57        | 50.0       | 10/21/21 |  |
| 21J1070-05 [HRP-SB212-0-2-211015]   | B292933 | 1.52        | 50.0       | 10/21/21 |  |
| 21J1070-06 [HRP-DUP04-0-2-211015]   | B292933 | 1.51        | 50.0       | 10/21/21 |  |
| 21J1070-07 [HRP-SB212-5-7-211015]   | B292933 | 1.51        | 50.0       | 10/21/21 |  |



#### **Sample Extraction Data**

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-14 [HRP-EB03-211013] | B292880 | 50.0         | 50.0       | 10/20/21 |
| 21J1070-22 [HRP-EB04-211015] | B292880 | 50.0         | 50.0       | 10/20/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-14 [HRP-EB03-211013] | B292879 | 50.0         | 50.0       | 10/20/21 |
| 21J1070-22 [HRP-EB04-211015] | B292879 | 50.0         | 50.0       | 10/20/21 |

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-14 [HRP-EB03-211013] | B292987 | 10.0         | 10.0       | 10/22/21 |
| 21J1070-22 [HRP-EB04-211015] | B292987 | 10.0         | 10.0       | 10/22/21 |

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J1070-02 [HRP-SB213-0-1-211015]   | B292806 | 0.542       | 50.0       | 10/20/21 |  |
| 21J1070-03 [HRP-SB213-5-7-211015]   | B292806 | 0.576       | 50.0       | 10/20/21 |  |
| 21J1070-04 [HRP-SB213-16-18-211015] | B292806 | 0.592       | 50.0       | 10/20/21 |  |
| 21J1070-05 [HRP-SB212-0-2-211015]   | B292806 | 0.531       | 50.0       | 10/20/21 |  |
| 21J1070-06 [HRP-DUP04-0-2-211015]   | B292806 | 0.566       | 50.0       | 10/20/21 |  |
| 21J1070-07 [HRP-SB212-5-7-211015]   | B292806 | 0.602       | 50.0       | 10/20/21 |  |
| 21J1070-08 [HRP-SB212-15-17-211015] | B292806 | 0.583       | 50.0       | 10/20/21 |  |
| 21J1070-09 [HRP-SB211-0-1-211015]   | B292806 | 0.564       | 50.0       | 10/20/21 |  |
| 21J1070-10 [HRP-SB211-5-7-211015]   | B292806 | 0.557       | 50.0       | 10/20/21 |  |
| 21J1070-11 [HRP-SB209-0-1-211013]   | B292806 | 0.570       | 50.0       | 10/20/21 |  |
| 21J1070-12 [HRP-SB209-5-7-211013]   | B292806 | 0.566       | 50.0       | 10/20/21 |  |
| 21J1070-13 [HRP-SB209-15-17-211013] | B292806 | 0.585       | 50.0       | 10/20/21 |  |
| 21J1070-15 [HRP-SB208-0-1-211014]   | B292806 | 0.531       | 50.0       | 10/20/21 |  |
| 21J1070-16 [HRP-SB208-5-7-211014]   | B292806 | 0.581       | 50.0       | 10/20/21 |  |
| 21J1070-17 [HRP-SB208-18-20-211014] | B292806 | 0.564       | 50.0       | 10/20/21 |  |
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292806 | 0.568       | 50.0       | 10/20/21 |  |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292806 | 0.604       | 50.0       | 10/20/21 |  |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292806 | 0.522       | 50.0       | 10/20/21 |  |
| 21J1070-21 [HRP-SB211-15-17-211015] | B292806 | 0.569       | 50.0       | 10/20/21 |  |

Prep Method: SW-846 3546 Analytical Method: SW-846 8015C

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292781 | 30.0        | 1.00       | 10/19/21 |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292781 | 30.0        | 1.00       | 10/19/21 |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292781 | 30.0        | 1.00       | 10/19/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]             | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------------------|---------|--------------|------------|----------|
| 21J1070-18 [HRP-SB214-0-2-211014] | B292858 | 5.27         | 5.64       | 10/20/21 |



#### **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]               | Batch   | Initial [mL] | Final [mL] | Date     |   |
|-------------------------------------|---------|--------------|------------|----------|---|
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292858 | 6.04         | 6.21       | 10/20/21 | _ |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292858 | 7.36         | 5.25       | 10/20/21 |   |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-01 [HRP-TB03-211015] | B292856 | 5            | 5.00       | 10/20/21 |

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292812 | 5.01        | 10.0       | 10/20/21 |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292812 | 6.31        | 10.0       | 10/20/21 |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292812 | 6.06        | 10.0       | 10/20/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-01 [HRP-TB03-211015] | B293011 | 5            | 5.00       | 10/21/21 |
| 21J1070-23 [HRP-TB04-211015] | B293011 | 5            | 5.00       | 10/21/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J1070-02 [HRP-SB213-0-1-211015]   | B292770 | 1.09        | 50.0       | 10/19/21 |  |
| 21J1070-03 [HRP-SB213-5-7-211015]   | B292770 | 1.37        | 50.0       | 10/19/21 |  |
| 21J1070-04 [HRP-SB213-16-18-211015] | B292770 | 1.29        | 50.0       | 10/19/21 |  |
| 21J1070-05 [HRP-SB212-0-2-211015]   | B292770 | 1.18        | 50.0       | 10/19/21 |  |
| 21J1070-06 [HRP-DUP04-0-2-211015]   | B292770 | 1.16        | 50.0       | 10/19/21 |  |
| 21J1070-07 [HRP-SB212-5-7-211015]   | B292770 | 1.04        | 50.0       | 10/19/21 |  |
| 21J1070-08 [HRP-SB212-15-17-211015] | B292770 | 1.13        | 50.0       | 10/19/21 |  |
| 21J1070-09 [HRP-SB211-0-1-211015]   | B292770 | 1.20        | 50.0       | 10/19/21 |  |
| 21J1070-10 [HRP-SB211-5-7-211015]   | B292770 | 1.39        | 50.0       | 10/19/21 |  |
| 21J1070-11 [HRP-SB209-0-1-211013]   | B292770 | 1.04        | 50.0       | 10/19/21 |  |
| 21J1070-12 [HRP-SB209-5-7-211013]   | B292770 | 1.05        | 50.0       | 10/19/21 |  |
| 21J1070-13 [HRP-SB209-15-17-211013] | B292770 | 1.13        | 50.0       | 10/19/21 |  |
| 21J1070-15 [HRP-SB208-0-1-211014]   | B292770 | 1.33        | 50.0       | 10/19/21 |  |
| 21J1070-16 [HRP-SB208-5-7-211014]   | B292770 | 1.38        | 50.0       | 10/19/21 |  |
| 21J1070-17 [HRP-SB208-18-20-211014] | B292770 | 1.27        | 50.0       | 10/19/21 |  |
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292770 | 1.05        | 50.0       | 10/19/21 |  |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292770 | 1.04        | 50.0       | 10/19/21 |  |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292770 | 1.08        | 50.0       | 10/19/21 |  |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J1070-21 [HRP-SB211-15-17-211015] | B292922 | 1.04        | 50.0       | 10/21/21 |



#### **Sample Extraction Data**

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J1070-14 [HRP-EB03-211013] | B292917 | 50.0         | 50.0       | 10/21/21 |
| 21J1070-22 [HRP-EB04-211015] | B292917 | 50.0         | 50.0       | 10/21/21 |

#### SW-846 9045C

| Lab Number [Field ID]               | Batch   | Initial [g] | Date     |
|-------------------------------------|---------|-------------|----------|
| 21J1070-02 [HRP-SB213-0-1-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-03 [HRP-SB213-5-7-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-04 [HRP-SB213-16-18-211015] | B292801 | 20.0        | 10/19/21 |
| 21J1070-05 [HRP-SB212-0-2-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-06 [HRP-DUP04-0-2-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-07 [HRP-SB212-5-7-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-08 [HRP-SB212-15-17-211015] | B292801 | 20.0        | 10/19/21 |
| 21J1070-09 [HRP-SB211-0-1-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-10 [HRP-SB211-5-7-211015]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-11 [HRP-SB209-0-1-211013]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-12 [HRP-SB209-5-7-211013]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-13 [HRP-SB209-15-17-211013] | B292801 | 20.0        | 10/19/21 |
| 21J1070-15 [HRP-SB208-0-1-211014]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-16 [HRP-SB208-5-7-211014]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-17 [HRP-SB208-18-20-211014] | B292801 | 20.0        | 10/19/21 |
| 21J1070-18 [HRP-SB214-0-2-211014]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-19 [HRP-SB214-5-7-211014]   | B292801 | 20.0        | 10/19/21 |
| 21J1070-20 [HRP-SB214-14-16-211014] | B292801 | 20.0        | 10/19/21 |
| 21J1070-21 [HRP-SB211-15-17-211015] | B292801 | 20.0        | 10/19/21 |



Methyl Acetate

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| voiathe Organic Compounds by GC/MS - Quanty Control |          |                 |                        |            |              |        |        |     |       |       |
|-----------------------------------------------------|----------|-----------------|------------------------|------------|--------------|--------|--------|-----|-------|-------|
|                                                     |          | Reporting       |                        | Spike      | Source       | 0.45   | %REC   |     | RPD   |       |
| Analyte                                             | Result   | Limit           | Units                  | Level      | Result       | %REC   | Limits | RPD | Limit | Notes |
| Batch B292812 - SW-846 5035                         |          |                 |                        |            |              |        |        |     |       |       |
| Blank (B292812-BLK1)                                |          |                 |                        | Prepared & | Analyzed: 10 | /20/21 |        |     |       |       |
| Acetone                                             | ND       | 0.10            | mg/Kg wet              |            |              |        |        |     |       |       |
| Acrylonitrile                                       | ND       | 0.0060          | mg/Kg wet              |            |              |        |        |     |       |       |
| ert-Amyl Methyl Ether (TAME)                        | ND       | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| Benzene                                             | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Bromobenzene                                        | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Bromochloromethane                                  | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Bromodichloromethane                                | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Bromoform                                           | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Bromomethane                                        | ND       | 0.010           | mg/Kg wet              |            |              |        |        |     |       | V-34  |
| -Butanone (MEK)                                     | ND       | 0.040           | mg/Kg wet              |            |              |        |        |     |       |       |
| ert-Butyl Alcohol (TBA)                             | ND       | 0.10            | mg/Kg wet              |            |              |        |        |     |       |       |
| n-Butylbenzene                                      | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ec-Butylbenzene                                     | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ert-Butylbenzene                                    | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ert-Butyl Ethyl Ether (TBEE)                        | ND       | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| Carbon Disulfide                                    | ND       | 0.010           | mg/Kg wet              |            |              |        |        |     |       |       |
| Carbon Tetrachloride<br>Chlorobenzene               | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Enforogenzene<br>Chlorodibromomethane               | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Chloroethane                                        | ND       | 0.0010<br>0.020 | mg/Kg wet              |            |              |        |        |     |       |       |
| Chloroform                                          | ND       |                 | mg/Kg wet              |            |              |        |        |     |       |       |
| Chloromethane                                       | ND       | 0.0040<br>0.010 | mg/Kg wet<br>mg/Kg wet |            |              |        |        |     |       |       |
| -Chlorotoluene                                      | ND       | 0.010           |                        |            |              |        |        |     |       |       |
| -Chlorotoluene                                      | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,2-Dibromo-3-chloropropane (DBCP)                   | ND       | 0.0020          | mg/Kg wet<br>mg/Kg wet |            |              |        |        |     |       |       |
| ,2-Dibromoethane (EDB)                              | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Dibromomethane                                      | ND       | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,2-Dichlorobenzene                                  | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,3-Dichlorobenzene                                  | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,4-Dichlorobenzene                                  | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| rans-1,4-Dichloro-2-butene                          | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Dichlorodifluoromethane (Freon 12)                  | ND       | 0.020           | mg/Kg wet              |            |              |        |        |     |       | V-05  |
| ,1-Dichloroethane                                   | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       | V-03  |
| ,2-Dichloroethane                                   | ND       | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,1-Dichloroethylene                                 | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ris-1,2-Dichloroethylene                            | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| rans-1,2-Dichloroethylene                           | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,2-Dichloropropane                                  | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,3-Dichloropropane                                  | ND<br>ND | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| 2,2-Dichloropropane                                 | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,1-Dichloropropene                                  | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| is-1,3-Dichloropropene                              | ND<br>ND | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| rans-1,3-Dichloropropene                            | ND<br>ND | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| Diethyl Ether                                       | ND<br>ND | 0.020           | mg/Kg wet              |            |              |        |        |     |       |       |
| Disopropyl Ether (DIPE)                             | ND<br>ND | 0.0010          | mg/Kg wet              |            |              |        |        |     |       |       |
| ,4-Dioxane                                          | ND<br>ND | 0.10            | mg/Kg wet              |            |              |        |        |     |       |       |
| Ethylbenzene                                        | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| Hexachlorobutadiene                                 | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| 2-Hexanone (MBK)                                    | ND<br>ND | 0.020           | mg/Kg wet              |            |              |        |        |     |       |       |
| (sopropylbenzene (Cumene)                           | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
| p-Isopropyltoluene (p-Cymene)                       | ND<br>ND | 0.0020          | mg/Kg wet              |            |              |        |        |     |       |       |
|                                                     | ND       | 0.0020          |                        |            |              |        |        |     |       |       |

ND

 $0.0020 \quad mg/Kg \ wet$ 



# QUALITY CONTROL

| Analyte                                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Notes |   |
|----------------------------------------------|--------|--------------------|-----------|----------------|------------------|---------|----------------|-----|--------------|-------|---|
| Batch B292812 - SW-846 5035                  |        |                    |           |                |                  |         |                |     |              |       |   |
| Blank (B292812-BLK1)                         |        |                    |           | Prepared & A   | Analyzed: 10     | 0/20/21 |                |     |              |       |   |
| Methyl tert-Butyl Ether (MTBE)               | ND     | 0.0040             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Methyl Cyclohexane                           | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Methylene Chloride                           | ND     | 0.020              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 4-Methyl-2-pentanone (MIBK)                  | ND     | 0.020              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Naphthalene                                  | ND     | 0.0040             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| n-Propylbenzene                              | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Styrene                                      | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,1,1,2-Tetrachloroethane                    | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,1,2,2-Tetrachloroethane                    | ND     | 0.0010             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Tetrachloroethylene                          | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Tetrahydrofuran                              | ND     | 0.010              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Toluene                                      | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,2,3-Trichlorobenzene                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,2,4-Trichlorobenzene                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,3,5-Trichlorobenzene                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,1,1-Trichloroethane                        | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,1,2-Trichloroethane                        | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Trichloroethylene                            | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Trichlorofluoromethane (Freon 11)            | ND     | 0.010              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,2,3-Trichloropropane                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND     | 0.010              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 113)                                         |        |                    |           |                |                  |         |                |     |              |       |   |
| 1,2,4-Trimethylbenzene                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| 1,3,5-Trimethylbenzene                       | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Vinyl Chloride                               | ND     | 0.010              | mg/Kg wet |                |                  |         |                |     |              |       |   |
| m+p Xylene                                   | ND     | 0.0040             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| o-Xylene                                     | ND     | 0.0020             | mg/Kg wet |                |                  |         |                |     |              |       |   |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0501 |                    | mg/Kg wet | 0.0500         |                  | 100     | 70-130         |     |              |       |   |
| Surrogate: Toluene-d8                        | 0.0504 |                    | mg/Kg wet | 0.0500         |                  | 101     | 70-130         |     |              |       |   |
| Surrogate: 4-Bromofluorobenzene              | 0.0506 |                    | mg/Kg wet | 0.0500         |                  | 101     | 70-130         |     |              |       |   |
| LCS (B292812-BS1)                            |        |                    |           | Prepared & A   | Analyzed: 10     | 0/20/21 |                |     |              |       |   |
| Acetone                                      | 0.191  | 0.10               | mg/Kg wet | 0.200          |                  | 95.4    | 70-160         |     |              | V-36  | † |
| Acrylonitrile                                | 0.0221 | 0.0060             | mg/Kg wet | 0.0200         |                  | 111     | 70-130         |     |              |       |   |
| tert-Amyl Methyl Ether (TAME)                | 0.0178 | 0.0010             | mg/Kg wet | 0.0200         |                  | 89.1    | 70-130         |     |              |       |   |
| Benzene                                      | 0.0196 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.8    | 70-130         |     |              |       |   |
| Bromobenzene                                 | 0.0204 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102     | 70-130         |     |              |       |   |
| Bromochloromethane                           | 0.0207 | 0.0020             | mg/Kg wet | 0.0200         |                  | 103     | 70-130         |     |              |       |   |
| Bromodichloromethane                         | 0.0212 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106     | 70-130         |     |              |       |   |
| Bromoform                                    | 0.0221 | 0.0020             | mg/Kg wet | 0.0200         |                  | 111     | 70-130         |     |              |       |   |
| Bromomethane                                 | 0.0211 | 0.010              | mg/Kg wet | 0.0200         |                  | 106     | 40-130         |     |              | V-34  | † |
| 2-Butanone (MEK)                             | 0.200  | 0.040              | mg/Kg wet | 0.200          |                  | 100     | 70-160         |     |              |       | † |
| tert-Butyl Alcohol (TBA)                     | 0.177  | 0.10               | mg/Kg wet | 0.200          |                  | 88.7    | 40-130         |     |              |       | † |
| n-Butylbenzene                               | 0.0211 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105     | 70-130         |     |              |       |   |
| sec-Butylbenzene                             | 0.0204 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102     | 70-130         |     |              |       |   |
| tert-Butylbenzene                            | 0.0198 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.9    | 70-160         |     |              |       | † |
| tert-Butyl Ethyl Ether (TBEE)                | 0.0174 | 0.0010             | mg/Kg wet | 0.0200         |                  | 86.8    | 70-130         |     |              |       |   |
| Carbon Disulfide                             | 0.190  | 0.010              | mg/Kg wet | 0.200          |                  | 94.9    | 70-130         |     |              |       |   |
| Carbon Tetrachloride                         | 0.0203 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101     | 70-130         |     |              |       |   |
| Chlorobenzene                                | 0.0206 | 0.0020             | mg/Kg wet | 0.0200         |                  | 103     | 70-130         |     |              |       |   |
| Chlorodibromomethane                         | 0.0220 | 0.0010             | mg/Kg wet | 0.0200         |                  | 110     | 70-130         |     |              |       |   |
| Chloroethane                                 | 0.0214 | 0.020              | mg/Kg wet | 0.0200         |                  | 107     | 70-130         |     |              |       |   |
| Chloroform                                   | 0.0201 | 0.0040             | mg/Kg wet | 0.0200         |                  | 100     | 70-130         |     |              |       |   |



# QUALITY CONTROL

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes   |  |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-----|--------------|---------|--|
| Batch B292812 - SW-846 5035        |        |                    |           |                |                  |        |                |     |              |         |  |
| LCS (B292812-BS1)                  |        |                    |           | Prepared &     | Analyzed: 10     | /20/21 |                |     |              |         |  |
| Chloromethane                      | 0.0167 | 0.010              | mg/Kg wet | 0.0200         |                  | 83.3   | 70-130         |     |              |         |  |
| 2-Chlorotoluene                    | 0.0216 | 0.0020             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         |     |              |         |  |
| 4-Chlorotoluene                    | 0.0230 | 0.0020             | mg/Kg wet | 0.0200         |                  | 115    | 70-130         |     |              |         |  |
| 1,2-Dibromo-3-chloropropane (DBCP) | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.7   | 70-130         |     |              |         |  |
| 1,2-Dibromoethane (EDB)            | 0.0221 | 0.0010             | mg/Kg wet | 0.0200         |                  | 110    | 70-130         |     |              |         |  |
| Dibromomethane                     | 0.0218 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109    | 70-130         |     |              |         |  |
| 1,2-Dichlorobenzene                | 0.0215 | 0.0020             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         |     |              |         |  |
| 1,3-Dichlorobenzene                | 0.0209 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         |     |              |         |  |
| 1,4-Dichlorobenzene                | 0.0200 | 0.0020             | mg/Kg wet | 0.0200         |                  | 100    | 70-130         |     |              |         |  |
| trans-1,4-Dichloro-2-butene        | 0.0215 | 0.0040             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         |     |              |         |  |
| Dichlorodifluoromethane (Freon 12) | 0.0145 | 0.020              | mg/Kg wet | 0.0200         |                  | 72.4   | 40-160         |     |              | V-05, J |  |
| 1,1-Dichloroethane                 | 0.0195 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.4   | 70-130         |     |              |         |  |
| 1,2-Dichloroethane                 | 0.0210 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         |     |              |         |  |
| 1,1-Dichloroethylene               | 0.0193 | 0.0040             | mg/Kg wet | 0.0200         |                  | 96.6   | 70-130         |     |              |         |  |
| cis-1,2-Dichloroethylene           | 0.0208 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         |     |              |         |  |
| trans-1,2-Dichloroethylene         | 0.0200 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.8   | 70-130         |     |              |         |  |
| 1,2-Dichloropropane                | 0.0201 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         |     |              |         |  |
| 1,3-Dichloropropane                | 0.0225 | 0.0010             | mg/Kg wet | 0.0200         |                  | 113    | 70-130         |     |              |         |  |
| 2,2-Dichloropropane                | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.4   | 70-130         |     |              |         |  |
| 1,1-Dichloropropene                | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.5   | 70-130         |     |              |         |  |
| eis-1,3-Dichloropropene            | 0.0214 | 0.0010             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         |     |              |         |  |
| rans-1,3-Dichloropropene           | 0.0183 | 0.0010             | mg/Kg wet | 0.0200         |                  | 91.4   | 70-130         |     |              |         |  |
| Diethyl Ether                      | 0.0218 | 0.020              | mg/Kg wet | 0.0200         |                  | 109    | 70-130         |     |              |         |  |
| Diisopropyl Ether (DIPE)           | 0.0201 | 0.0010             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         |     |              |         |  |
| 1,4-Dioxane                        | 0.171  | 0.10               | mg/Kg wet | 0.200          |                  | 85.3   | 40-160         |     |              |         |  |
| Ethylbenzene                       | 0.0222 | 0.0020             | mg/Kg wet | 0.0200         |                  | 111    | 70-130         |     |              |         |  |
| Hexachlorobutadiene                | 0.0207 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-160         |     |              |         |  |
| 2-Hexanone (MBK)                   | 0.218  | 0.020              | mg/Kg wet | 0.200          |                  | 109    | 70-160         |     |              | V-36    |  |
| Isopropylbenzene (Cumene)          | 0.0220 | 0.0020             | mg/Kg wet | 0.0200         |                  | 110    | 70-130         |     |              |         |  |
| p-Isopropyltoluene (p-Cymene)      | 0.0214 | 0.0020             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         |     |              |         |  |
| Methyl Acetate                     | 0.0187 | 0.0020             | mg/Kg wet | 0.0200         |                  | 93.6   | 70-130         |     |              |         |  |
| Methyl tert-Butyl Ether (MTBE)     | 0.0208 | 0.0040             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         |     |              |         |  |
| Methyl Cyclohexane                 | 0.0209 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         |     |              |         |  |
| Methylene Chloride                 | 0.0193 | 0.020              | mg/Kg wet | 0.0200         |                  | 96.7   | 40-160         |     |              | J       |  |
| 4-Methyl-2-pentanone (MIBK)        | 0.219  | 0.020              | mg/Kg wet | 0.200          |                  | 109    | 70-160         |     |              |         |  |
| Naphthalene                        | 0.0207 | 0.0040             | mg/Kg wet | 0.0200         |                  | 103    | 40-130         |     |              |         |  |
| n-Propylbenzene                    | 0.0232 | 0.0020             | mg/Kg wet | 0.0200         |                  | 116    | 70-130         |     |              |         |  |
| Styrene                            | 0.0236 | 0.0020             | mg/Kg wet | 0.0200         |                  | 118    | 70-130         |     |              |         |  |
| 1,1,1,2-Tetrachloroethane          | 0.0217 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109    | 70-130         |     |              |         |  |
| 1,1,2,2-Tetrachloroethane          | 0.0224 | 0.0010             | mg/Kg wet | 0.0200         |                  | 112    | 70-130         |     |              |         |  |
| Tetrachloroethylene                | 0.0204 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102    | 70-130         |     |              |         |  |
| Tetrahydrofuran                    | 0.0187 | 0.010              | mg/Kg wet | 0.0200         |                  | 93.7   | 70-130         |     |              |         |  |
| Toluene                            | 0.0191 | 0.0020             | mg/Kg wet | 0.0200         |                  | 95.5   | 70-130         |     |              |         |  |
| 1,2,3-Trichlorobenzene             | 0.0219 | 0.0020             | mg/Kg wet | 0.0200         |                  | 110    | 70-130         |     |              |         |  |
| 1,2,4-Trichlorobenzene             | 0.0211 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106    | 70-130         |     |              |         |  |
| 1,3,5-Trichlorobenzene             | 0.0204 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102    | 70-130         |     |              |         |  |
| 1,1,1-Trichloroethane              | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.7   | 70-130         |     |              |         |  |
| 1,1,2-Trichloroethane              | 0.0217 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109    | 70-130         |     |              |         |  |
| Trichloroethylene                  | 0.0203 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         |     |              |         |  |
| Trichlorofluoromethane (Freon 11)  | 0.0215 | 0.010              | mg/Kg wet | 0.0200         |                  | 108    | 70-130         |     |              |         |  |
| 1,2,3-Trichloropropane             | 0.0193 | 0.0020             | mg/Kg wet | 0.0200         |                  | 96.7   | 70-130         |     |              |         |  |
|                                    |        |                    |           |                |                  |        |                |     |              |         |  |



# QUALITY CONTROL

| Analyte                                      | Result           | Reporting<br>Limit | Units     | Spike<br>Level   | Source<br>Result | %REC        | %REC<br>Limits   | RPD     | RPD<br>Limit | Notes   |   |
|----------------------------------------------|------------------|--------------------|-----------|------------------|------------------|-------------|------------------|---------|--------------|---------|---|
| Batch B292812 - SW-846 5035                  |                  |                    |           |                  |                  |             |                  |         |              |         |   |
| LCS (B292812-BS1)                            |                  |                    |           | Prepared & A     | Analyzed: 10     | /20/21      |                  |         |              |         |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 0.0205           | 0.010              | mg/Kg wet | 0.0200           |                  | 102         | 70-130           |         |              |         |   |
| 113)<br>1,2,4-Trimethylbenzene               | 0.0205           | 0.0020             | mg/Kg wet | 0.0200           |                  | 103         | 70-130           |         |              |         |   |
| 1,3,5-Trimethylbenzene                       | 0.0205           | 0.0020             | mg/Kg wet |                  |                  |             |                  |         |              |         |   |
| Vinyl Chloride                               | 0.0231           | 0.0020             | mg/Kg wet | 0.0200<br>0.0200 |                  | 116<br>97.5 | 70-130<br>40-130 |         |              |         | † |
| m+p Xylene                                   | 0.0195           | 0.0040             | mg/Kg wet | 0.0200           |                  | 114         | 70-130           |         |              |         | 1 |
| o-Xylene                                     | 0.0458<br>0.0230 | 0.0020             | mg/Kg wet | 0.0400           |                  | 114         | 70-130           |         |              |         |   |
| <u> </u>                                     |                  | 0.0020             |           |                  |                  |             |                  |         |              |         |   |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0490           |                    | mg/Kg wet | 0.0500           |                  | 98.0        | 70-130           |         |              |         |   |
| Surrogate: Toluene-d8                        | 0.0493           |                    | mg/Kg wet | 0.0500           |                  | 98.6        | 70-130           |         |              |         |   |
| Surrogate: 4-Bromofluorobenzene              | 0.0518           |                    | mg/Kg wet | 0.0500           |                  | 104         | 70-130           |         |              |         |   |
| LCS Dup (B292812-BSD1)                       |                  |                    |           | Prepared & A     | Analyzed: 10     | /20/21      |                  |         |              |         |   |
| Acetone                                      | 0.192            | 0.10               | mg/Kg wet | 0.200            |                  | 95.8        | 70-160           | 0.366   | 25           | V-36    | † |
| Acrylonitrile                                | 0.0221           | 0.0060             | mg/Kg wet | 0.0200           |                  | 111         | 70-130           | 0.0904  | 25           |         |   |
| tert-Amyl Methyl Ether (TAME)                | 0.0178           | 0.0010             | mg/Kg wet | 0.0200           |                  | 89.2        | 70-130           | 0.112   | 25           |         |   |
| Benzene                                      | 0.0190           | 0.0020             | mg/Kg wet | 0.0200           |                  | 94.8        | 70-130           | 3.12    | 25           |         |   |
| Bromobenzene                                 | 0.0193           | 0.0020             | mg/Kg wet | 0.0200           |                  | 96.3        | 70-130           | 5.65    | 25           |         |   |
| Bromochloromethane                           | 0.0201           | 0.0020             | mg/Kg wet | 0.0200           |                  | 101         | 70-130           | 2.65    | 25           |         |   |
| Bromodichloromethane                         | 0.0210           | 0.0020             | mg/Kg wet | 0.0200           |                  | 105         | 70-130           | 0.854   | 25           |         |   |
| Bromoform                                    | 0.0220           | 0.0020             | mg/Kg wet | 0.0200           |                  | 110         | 70-130           | 0.453   | 25           |         |   |
| Bromomethane                                 | 0.0196           | 0.010              | mg/Kg wet | 0.0200           |                  | 97.9        | 40-130           | 7.47    | 25           | V-34    | † |
| 2-Butanone (MEK)                             | 0.200            | 0.040              | mg/Kg wet | 0.200            |                  | 100         | 70-160           | 0.00998 | 25           |         | † |
| tert-Butyl Alcohol (TBA)                     | 0.182            | 0.10               | mg/Kg wet | 0.200            |                  | 90.8        | 40-130           | 2.33    | 25           |         | † |
| n-Butylbenzene                               | 0.0203           | 0.0020             | mg/Kg wet | 0.0200           |                  | 102         | 70-130           | 3.68    | 25           |         |   |
| sec-Butylbenzene                             | 0.0196           | 0.0020             | mg/Kg wet | 0.0200           |                  | 97.9        | 70-130           | 4.10    | 25           |         |   |
| ert-Butylbenzene                             | 0.0192           | 0.0020             | mg/Kg wet | 0.0200           |                  | 96.2        | 70-160           | 2.77    | 25           |         | † |
| tert-Butyl Ethyl Ether (TBEE)                | 0.0175           | 0.0010             | mg/Kg wet | 0.0200           |                  | 87.3        | 70-130           | 0.574   | 25           |         |   |
| Carbon Disulfide                             | 0.182            | 0.010              | mg/Kg wet | 0.200            |                  | 90.8        | 70-130           | 4.45    | 25           |         |   |
| Carbon Tetrachloride                         | 0.0195           | 0.0020             | mg/Kg wet | 0.0200           |                  | 97.4        | 70-130           | 3.93    | 25           |         |   |
| Chlorobenzene                                | 0.0201           | 0.0020             | mg/Kg wet | 0.0200           |                  | 100         | 70-130           | 2.65    | 25           |         |   |
| Chlorodibromomethane                         | 0.0223           | 0.0010             | mg/Kg wet | 0.0200           |                  | 111         | 70-130           | 0.993   | 25           |         |   |
| Chloroethane                                 | 0.0207           | 0.020              | mg/Kg wet | 0.0200           |                  | 103         | 70-130           | 3.71    | 25           |         |   |
| Chloroform                                   | 0.0194           | 0.0040             | mg/Kg wet | 0.0200           |                  | 97.1        | 70-130           | 3.44    | 25           |         |   |
| Chloromethane                                | 0.0160           | 0.010              | mg/Kg wet | 0.0200           |                  | 80.0        | 70-130           | 4.04    | 25           |         |   |
| 2-Chlorotoluene                              | 0.0213           | 0.0020             | mg/Kg wet | 0.0200           |                  | 106         | 70-130           | 1.59    | 25           |         |   |
| 4-Chlorotoluene                              | 0.0224           | 0.0020             | mg/Kg wet | 0.0200           |                  | 112         | 70-130           | 3.00    | 25           |         |   |
| 1,2-Dibromo-3-chloropropane (DBCP)           | 0.0192           | 0.0020             | mg/Kg wet | 0.0200           |                  | 96.1        | 70-130           | 2.67    | 25           |         |   |
| 1,2-Dibromoethane (EDB)                      | 0.0221           | 0.0010             | mg/Kg wet | 0.0200           |                  | 110         | 70-130           | 0.0905  | 25           |         |   |
| Dibromomethane                               | 0.0220           | 0.0020             | mg/Kg wet | 0.0200           |                  | 110         | 70-130           | 0.912   | 25           |         |   |
| 1,2-Dichlorobenzene                          | 0.0212           | 0.0020             | mg/Kg wet | 0.0200           |                  | 106         | 70-130           | 1.41    | 25           |         |   |
| 1,3-Dichlorobenzene                          | 0.0204           | 0.0020             | mg/Kg wet | 0.0200           |                  | 102         | 70-130           | 2.32    | 25           |         |   |
| 1,4-Dichlorobenzene                          | 0.0197           | 0.0020             | mg/Kg wet | 0.0200           |                  | 98.5        | 70-130           | 1.61    | 25           |         |   |
| trans-1,4-Dichloro-2-butene                  | 0.0213           | 0.0040             | mg/Kg wet | 0.0200           |                  | 106         | 70-130           | 1.22    | 25           | 1105 1  |   |
| Dichlorodifluoromethane (Freon 12)           | 0.0138           | 0.020              | mg/Kg wet | 0.0200           |                  | 69.0        | 40-160           | 4.81    | 25           | V-05, J | † |
| 1,1-Dichloroethane                           | 0.0189           | 0.0020             | mg/Kg wet | 0.0200           |                  | 94.3        | 70-130           | 3.23    | 25           |         |   |
| 1,2-Dichloroethane 1,1-Dichloroethylene      | 0.0209           | 0.0020             | mg/Kg wet | 0.0200           |                  | 105         | 70-130           | 0.572   | 25           |         |   |
| · ·                                          | 0.0185           | 0.0040             | mg/Kg wet | 0.0200           |                  | 92.6        | 70-130           | 4.23    | 25           |         |   |
| cis-1,2-Dichloroethylene                     | 0.0199           | 0.0020             | mg/Kg wet | 0.0200           |                  | 99.7        | 70-130           | 4.41    | 25           |         |   |
| trans-1,2-Dichloroethylene                   | 0.0191           | 0.0020             | mg/Kg wet | 0.0200           |                  | 95.7        | 70-130           | 4.19    | 25           |         |   |
| 1,2-Dichloropropane                          | 0.0204           | 0.0020             | mg/Kg wet | 0.0200           |                  | 102         | 70-130           | 1.18    | 25<br>25     |         |   |
| 1,3-Dichloropropane                          | 0.0226           | 0.0010<br>0.0020   | mg/Kg wet | 0.0200           |                  | 113         | 70-130           | 0.177   | 25           |         |   |
| 2,2-Dichloropropane                          | 0.0184           |                    | mg/Kg wet | 0.0200           |                  | 92.1        | 70-130           | 6.61    | 25           |         |   |
| 1,1-Dichloropropene                          | 0.0189           | 0.0020             | mg/Kg wet | 0.0200           |                  | 94.3        | 70-130           | 4.36    | 25           |         |   |
|                                              |                  |                    |           |                  |                  |             |                  |         |              |         |   |



# QUALITY CONTROL

‡

| Analyte                                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|----------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|-------|---|
| Batch B292812 - SW-846 5035                  |        |                    |           |                |                  |        |                |       |              |       |   |
| LCS Dup (B292812-BSD1)                       |        |                    |           | Prepared & A   | Analyzed: 10     | /20/21 |                |       |              |       |   |
| cis-1,3-Dichloropropene                      | 0.0215 | 0.0010             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         | 0.467 | 25           |       |   |
| trans-1,3-Dichloropropene                    | 0.0182 | 0.0010             | mg/Kg wet | 0.0200         |                  | 91.1   | 70-130         | 0.329 | 25           |       |   |
| Diethyl Ether                                | 0.0213 | 0.020              | mg/Kg wet | 0.0200         |                  | 107    | 70-130         | 2.41  | 25           |       |   |
| Diisopropyl Ether (DIPE)                     | 0.0200 | 0.0010             | mg/Kg wet | 0.0200         |                  | 99.9   | 70-130         | 0.698 | 25           |       |   |
| 1,4-Dioxane                                  | 0.185  | 0.10               | mg/Kg wet | 0.200          |                  | 92.4   | 40-160         | 8.00  | 50           |       | † |
| Ethylbenzene                                 | 0.0216 | 0.0020             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         | 3.02  | 25           |       |   |
| Hexachlorobutadiene                          | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.7   | 70-160         | 4.75  | 25           |       |   |
| 2-Hexanone (MBK)                             | 0.224  | 0.020              | mg/Kg wet | 0.200          |                  | 112    | 70-160         | 2.77  | 25           | V-36  | † |
| Isopropylbenzene (Cumene)                    | 0.0214 | 0.0020             | mg/Kg wet | 0.0200         |                  | 107    | 70-130         | 2.67  | 25           |       |   |
| p-Isopropyltoluene (p-Cymene)                | 0.0208 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         | 2.93  | 25           |       |   |
| Methyl Acetate                               | 0.0192 | 0.0020             | mg/Kg wet | 0.0200         |                  | 96.1   | 70-130         | 2.64  | 25           |       |   |
| Methyl tert-Butyl Ether (MTBE)               | 0.0206 | 0.0040             | mg/Kg wet | 0.0200         |                  | 103    | 70-130         | 1.16  | 25           |       |   |
| Methyl Cyclohexane                           | 0.0209 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         | 0.383 | 25           |       |   |
| Methylene Chloride                           | 0.0189 | 0.020              | mg/Kg wet | 0.0200         |                  | 94.7   | 40-160         | 2.09  | 25           | J     | † |
| 4-Methyl-2-pentanone (MIBK)                  | 0.222  | 0.020              | mg/Kg wet | 0.200          |                  | 111    | 70-160         | 1.66  | 25           |       | † |
| Naphthalene                                  | 0.0206 | 0.0040             | mg/Kg wet | 0.0200         |                  | 103    | 40-130         | 0.388 | 25           |       | i |
| n-Propylbenzene                              | 0.0226 | 0.0020             | mg/Kg wet | 0.0200         |                  | 113    | 70-130         | 2.53  | 25           |       |   |
| Styrene                                      | 0.0231 | 0.0020             | mg/Kg wet | 0.0200         |                  | 116    | 70-130         | 1.80  | 25           |       |   |
| 1,1,1,2-Tetrachloroethane                    | 0.0215 | 0.0020             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         | 0.925 | 25           |       |   |
| 1,1,2,2-Tetrachloroethane                    | 0.0223 | 0.0010             | mg/Kg wet | 0.0200         |                  | 111    | 70-130         | 0.538 | 25           |       |   |
| Tetrachloroethylene                          | 0.0202 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 0.986 | 25           |       |   |
| Tetrahydrofuran                              | 0.0191 | 0.010              | mg/Kg wet | 0.0200         |                  | 95.4   | 70-130         | 1.80  | 25           |       |   |
| Toluene                                      | 0.0191 | 0.0020             | mg/Kg wet | 0.0200         |                  | 95.4   | 70-130         | 0.105 | 25           |       |   |
| 1,2,3-Trichlorobenzene                       | 0.0216 | 0.0020             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         | 1.38  | 25           |       |   |
| 1,2,4-Trichlorobenzene                       | 0.0203 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 4.06  | 25           |       |   |
| 1,3,5-Trichlorobenzene                       | 0.0196 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.9   | 70-130         | 4.30  | 25           |       |   |
| 1,1,1-Trichloroethane                        | 0.0193 | 0.0020             | mg/Kg wet | 0.0200         |                  | 96.4   | 70-130         | 2.36  | 25           |       |   |
| 1,1,2-Trichloroethane                        | 0.0218 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109    | 70-130         | 0.368 | 25           |       |   |
| Trichloroethylene                            | 0.0218 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 0.693 | 25           |       |   |
| Trichlorofluoromethane (Freon 11)            | 0.0204 | 0.010              | mg/Kg wet | 0.0200         |                  | 102    | 70-130         | 5.54  | 25           |       |   |
| 1,2,3-Trichloropropane                       | 0.0190 | 0.0020             | mg/Kg wet | 0.0200         |                  | 94.8   | 70-130         | 1.98  | 25           |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 0.0190 | 0.010              | mg/Kg wet | 0.0200         |                  | 98.6   | 70-130         | 3.88  | 25           |       |   |
| 113)                                         | 0.0197 |                    | 88        | 0.0200         |                  | 70.0   | 70 150         | 5.00  | 23           |       |   |
| 1,2,4-Trimethylbenzene                       | 0.0199 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.3   | 70-130         | 3.27  | 25           |       |   |
| 1,3,5-Trimethylbenzene                       | 0.0224 | 0.0020             | mg/Kg wet | 0.0200         |                  | 112    | 70-130         | 3.08  | 25           |       |   |
| Vinyl Chloride                               | 0.0181 | 0.010              | mg/Kg wet | 0.0200         |                  | 90.4   | 40-130         | 7.56  | 25           |       | † |
| m+p Xylene                                   | 0.0449 | 0.0040             | mg/Kg wet | 0.0400         |                  | 112    | 70-130         | 1.85  | 25           |       |   |
| o-Xylene                                     | 0.0226 | 0.0020             | mg/Kg wet | 0.0200         |                  | 113    | 70-130         | 1.58  | 25           |       |   |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0490 |                    | mg/Kg wet | 0.0500         |                  | 97.9   | 70-130         |       |              |       | _ |
| Surrogate: Toluene-d8                        | 0.0501 |                    | mg/Kg wet | 0.0500         |                  | 100    | 70-130         |       |              |       |   |
| Surrogate: 4-Bromofluorobenzene              | 0.0522 |                    | mg/Kg wet | 0.0500         |                  | 104    | 70-130         |       |              |       |   |
| Batch B293011 - SW-846 5030B                 |        |                    |           |                |                  |        |                |       |              |       |   |
| Blank (B293011-BLK1)                         |        |                    |           | Prepared & A   | Analyzed: 10     | /21/21 |                |       |              |       |   |
| Acetone                                      | ND     | 50                 | μg/L      |                |                  |        |                |       |              |       | _ |
| Acrylonitrile                                | ND     | 5.0                | μg/L      |                |                  |        |                |       |              |       |   |
| tert-Amyl Methyl Ether (TAME)                | ND     | 0.50               | μg/L      |                |                  |        |                |       |              |       |   |
| Benzene                                      | ND     | 1.0                | μg/L      |                |                  |        |                |       |              |       |   |
| Bromobenzene                                 | ND     | 1.0                | μg/L      |                |                  |        |                |       |              |       |   |
| Bromochloromethane                           | ND     | 1.0                | μg/L      |                |                  |        |                |       |              |       |   |
| Bromodichloromethane                         | ND     | 0.50               | μg/L      |                |                  |        |                |       |              |       |   |
| Bromoform                                    | ND     | 1.0                | μg/L      |                |                  |        |                |       |              |       |   |



Styrene

1,1,1,2-Tetrachloroethane

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| Volatile Organic Compounds by GC/MS - Quality Control |          |           |                   |            |              |        |        |     |       |       |
|-------------------------------------------------------|----------|-----------|-------------------|------------|--------------|--------|--------|-----|-------|-------|
|                                                       |          | Reporting |                   | Spike      | Source       |        | %REC   |     | RPD   |       |
| Analyte                                               | Result   | Limit     | Units             | Level      | Result       | %REC   | Limits | RPD | Limit | Notes |
| Batch B293011 - SW-846 5030B                          |          |           |                   |            |              |        |        |     |       |       |
| Blank (B293011-BLK1)                                  |          |           |                   | Prepared & | Analyzed: 10 | /21/21 |        |     |       |       |
| Bromomethane                                          | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| 2-Butanone (MEK)                                      | ND       | 20        | μg/L              |            |              |        |        |     |       |       |
| tert-Butyl Alcohol (TBA)                              | ND       | 20        | μg/L              |            |              |        |        |     |       |       |
| n-Butylbenzene                                        | ND       | 1.0       | $\mu g \! / \! L$ |            |              |        |        |     |       |       |
| sec-Butylbenzene                                      | ND       | 1.0       | $\mu g/L$         |            |              |        |        |     |       |       |
| tert-Butylbenzene                                     | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| tert-Butyl Ethyl Ether (TBEE)                         | ND       | 0.50      | μg/L              |            |              |        |        |     |       |       |
| Carbon Disulfide                                      | ND       | 5.0       | μg/L              |            |              |        |        |     |       |       |
| Carbon Tetrachloride                                  | ND       | 5.0       | μg/L              |            |              |        |        |     |       |       |
| Chlorobenzene                                         | ND       | 1.0       | $\mu g/L$         |            |              |        |        |     |       |       |
| Chlorodibromomethane                                  | ND       | 0.50      | μg/L              |            |              |        |        |     |       |       |
| Chloroethane                                          | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| Chloroform                                            | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| Chloromethane                                         | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| 2-Chlorotoluene                                       | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 4-Chlorotoluene                                       | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,2-Dibromo-3-chloropropane (DBCP)                    | ND<br>ND | 5.0       | μg/L              |            |              |        |        |     |       |       |
| 1,2-Dibromoethane (EDB)                               |          | 0.50      | μg/L<br>μg/L      |            |              |        |        |     |       |       |
| Dibromomethane (LDB)                                  | ND       | 1.0       | μg/L<br>μg/L      |            |              |        |        |     |       |       |
| 1,2-Dichlorobenzene                                   | ND       | 1.0       |                   |            |              |        |        |     |       |       |
|                                                       | ND       |           | μg/L              |            |              |        |        |     |       |       |
| 1,3-Dichlorobenzene                                   | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,4-Dichlorobenzene                                   | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| trans-1,4-Dichloro-2-butene                           | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| Dichlorodifluoromethane (Freon 12)                    | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| 1,1-Dichloroethane                                    | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,2-Dichloroethane                                    | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,1-Dichloroethylene                                  | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| cis-1,2-Dichloroethylene                              | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| trans-1,2-Dichloroethylene                            | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,2-Dichloropropane                                   | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,3-Dichloropropane                                   | ND       | 0.50      | μg/L              |            |              |        |        |     |       |       |
| 2,2-Dichloropropane                                   | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| 1,1-Dichloropropene                                   | ND       | 2.0       | $\mu g/L$         |            |              |        |        |     |       |       |
| cis-1,3-Dichloropropene                               | ND       | 0.50      | $\mu g/L$         |            |              |        |        |     |       |       |
| trans-1,3-Dichloropropene                             | ND       | 0.50      | μg/L              |            |              |        |        |     |       |       |
| Diethyl Ether                                         | ND       | 2.0       | μg/L              |            |              |        |        |     |       |       |
| Diisopropyl Ether (DIPE)                              | ND       | 0.50      | μg/L              |            |              |        |        |     |       |       |
| 1,4-Dioxane                                           | ND       | 50        | $\mu g/L$         |            |              |        |        |     |       |       |
| Ethylbenzene                                          | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| Hexachlorobutadiene                                   | ND       | 0.60      | μg/L              |            |              |        |        |     |       |       |
| 2-Hexanone (MBK)                                      | ND       | 10        | μg/L              |            |              |        |        |     |       |       |
| Isopropylbenzene (Cumene)                             | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| p-Isopropyltoluene (p-Cymene)                         | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| Methyl Acetate                                        | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |
| Methyl tert-Butyl Ether (MTBE)                        | ND<br>ND | 1.0       | μg/L              |            |              |        |        |     |       |       |
| Methyl Cyclohexane                                    | ND<br>ND | 1.0       | μg/L<br>μg/L      |            |              |        |        |     |       |       |
| Methylene Chloride                                    |          | 5.0       | μg/L<br>μg/L      |            |              |        |        |     |       |       |
| 4-Methyl-2-pentanone (MIBK)                           | ND       | 10        |                   |            |              |        |        |     |       |       |
| Naphthalene                                           | ND       | 2.0       | μg/L<br>μg/I      |            |              |        |        |     |       | V-05  |
| -                                                     | ND       |           | μg/L<br>μg/I      |            |              |        |        |     |       | v-03  |
| n-Propylbenzene                                       | ND       | 1.0       | μg/L              |            |              |        |        |     |       |       |

1.0

1.0

ND

ND

 $\mu g/L$ 

 $\mu g \! / \! L$ 



# QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits   | RPD | RPD<br>Limit | Notes      |
|---------------------------------------------------|--------|--------------------|-------------------|----------------|------------------|------------|------------------|-----|--------------|------------|
| Batch B293011 - SW-846 5030B                      |        |                    |                   |                |                  |            |                  |     |              |            |
| Blank (B293011-BLK1)                              |        |                    |                   | Prepared &     | Analyzed: 10     | /21/21     |                  |     |              |            |
| 1,1,2,2-Tetrachloroethane                         | ND     | 0.50               | μg/L              |                |                  |            |                  |     |              |            |
| Tetrachloroethylene                               | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| Tetrahydrofuran                                   | ND     | 10                 | $\mu g/L$         |                |                  |            |                  |     |              |            |
| Toluene                                           | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,2,3-Trichlorobenzene                            | ND     | 5.0                | $\mu g/L$         |                |                  |            |                  |     |              | L-04, V-05 |
| 1,2,4-Trichlorobenzene                            | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              | V-05       |
| 1,3,5-Trichlorobenzene                            | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,1,1-Trichloroethane                             | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,1,2-Trichloroethane                             | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| Trichloroethylene                                 | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| Trichlorofluoromethane (Freon 11)                 | ND     | 2.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,2,3-Trichloropropane                            | ND     | 2.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND     | 1.0                | μg/L              |                |                  |            |                  |     |              |            |
| 1,2,3-Trimethylbenzene                            | ND     | 0.50               | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,2,4-Trimethylbenzene                            | ND     | 1.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| 1,3,5-Trimethylbenzene                            | ND     | 1.0                | μg/L              |                |                  |            |                  |     |              |            |
| Vinyl Chloride                                    | ND     | 2.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| m+p Xylene                                        | ND     | 2.0                | $\mu g/L$         |                |                  |            |                  |     |              |            |
| o-Xylene                                          | ND     | 1.0                | $\mu g \! / \! L$ |                |                  |            |                  |     |              |            |
| Surrogate: 1,2-Dichloroethane-d4                  | 27.5   |                    | μg/L              | 25.0           |                  | 110        | 70-130           |     |              |            |
| Surrogate: Toluene-d8                             | 27.7   |                    | μg/L              | 25.0           |                  | 111        | 70-130           |     |              |            |
| Surrogate: 4-Bromofluorobenzene                   | 26.4   |                    | μg/L              | 25.0           |                  | 106        | 70-130           |     |              |            |
| LCS (B293011-BS1)                                 |        |                    |                   | Prepared &     | Analyzed: 10     | /21/21     |                  |     |              |            |
| Acetone                                           | 96.9   | 50                 | μg/L              | 100            |                  | 96.9       | 70-160           |     |              |            |
| Acrylonitrile                                     | 8.19   | 5.0                | μg/L              | 10.0           |                  | 81.9       | 70-130           |     |              |            |
| tert-Amyl Methyl Ether (TAME)                     | 9.76   | 0.50               | μg/L              | 10.0           |                  | 97.6       | 70-130           |     |              |            |
| Benzene                                           | 10.5   | 1.0                | μg/L              | 10.0           |                  | 105        | 70-130           |     |              |            |
| Bromobenzene                                      | 9.82   | 1.0                | μg/L              | 10.0           |                  | 98.2       | 70-130           |     |              |            |
| Bromochloromethane                                | 10.9   | 1.0                | μg/L              | 10.0           |                  | 109        | 70-130           |     |              |            |
| Bromodichloromethane                              | 10.6   | 0.50               | μg/L              | 10.0           |                  | 106        | 70-130           |     |              |            |
| Bromoform                                         | 9.52   | 1.0                | μg/L              | 10.0           |                  | 95.2       | 70-130           |     |              |            |
| Bromomethane                                      | 11.6   | 2.0                | μg/L              | 10.0           |                  | 116        | 40-160           |     |              |            |
| 2-Butanone (MEK)                                  | 96.8   | 20                 | μg/L              | 100            |                  | 96.8       | 40-160           |     |              |            |
| tert-Butyl Alcohol (TBA)                          | 88.8   | 20                 | μg/L              | 100            |                  | 88.8       | 40-160           |     |              |            |
| n-Butylbenzene                                    | 9.24   | 1.0                | μg/L              | 10.0           |                  | 92.4       | 70-130           |     |              |            |
| sec-Butylbenzene                                  | 9.55   | 1.0                | μg/L              | 10.0           |                  | 95.5       | 70-130           |     |              |            |
| tert-Butylbenzene                                 | 9.77   | 1.0                | μg/L              | 10.0           |                  | 97.7       | 70-130           |     |              |            |
| tert-Butyl Ethyl Ether (TBEE)                     | 9.83   | 0.50               | μg/L              | 10.0           |                  | 98.3       | 70-130           |     |              |            |
| Carbon Disulfide                                  | 106    | 5.0                | μg/L              | 100            |                  | 106        | 70-130           |     |              |            |
| Carbon Tetrachloride                              | 10.0   | 5.0                | μg/L              | 10.0           |                  | 100        | 70-130           |     |              |            |
| Chlorobenzene                                     | 10.0   | 1.0                | μg/L              | 10.0           |                  | 103        | 70-130           |     |              |            |
| Chlorodibromomethane                              | 10.3   | 0.50               | μg/L              | 10.0           |                  | 104        | 70-130           |     |              |            |
| Chloroethane                                      | 13.0   | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 130        | 70-130           |     |              | V-20       |
| Chloroform                                        | 10.4   | 2.0                | μg/L              | 10.0           |                  | 104        | 70-130           |     |              | ·-20       |
| Chloromethane                                     | 10.4   | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 126        | 40-160           |     |              | V-20       |
| 2-Chlorotoluene                                   | 9.92   | 1.0                | μg/L<br>μg/L      | 10.0           |                  | 99.2       | 70-130           |     |              | v-20       |
| 4-Chlorotoluene                                   |        | 1.0                | μg/L<br>μg/L      | 10.0           |                  | 96.5       | 70-130           |     |              |            |
| 1,2-Dibromo-3-chloropropane (DBCP)                | 9.65   | 5.0                | μg/L<br>μg/L      | 10.0           |                  |            | 70-130           |     |              |            |
| 1,2-Dibromoethane (EDB)                           | 8.17   | 0.50               |                   |                |                  | 81.7       | 70-130<br>70-130 |     |              |            |
| 1,2-Dioronioculane (EDB)                          | 10.4   | 1.0                | μg/L<br>μg/L      | 10.0<br>10.0   |                  | 104<br>104 | 70-130<br>70-130 |     |              |            |
| Dibromomethane                                    | 10.4   |                    |                   |                |                  |            |                  |     |              |            |



# QUALITY CONTROL

| Analyte                                           | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit | Notes      |        |
|---------------------------------------------------|--------------|--------------------|--------------|----------------|------------------|--------------|------------------|-----|--------------|------------|--------|
| Batch B293011 - SW-846 5030B                      |              |                    |              |                |                  |              |                  |     |              |            |        |
| LCS (B293011-BS1)                                 |              |                    |              | Prepared &     | Analyzed: 10/    | 21/21        |                  |     |              |            |        |
| 1,3-Dichlorobenzene                               | 10.3         | 1.0                | $\mu g/L$    | 10.0           |                  | 103          | 70-130           |     |              |            |        |
| 1,4-Dichlorobenzene                               | 9.55         | 1.0                | μg/L         | 10.0           |                  | 95.5         | 70-130           |     |              |            |        |
| trans-1,4-Dichloro-2-butene                       | 9.86         | 2.0                | μg/L         | 10.0           |                  | 98.6         | 70-130           |     |              |            |        |
| Dichlorodifluoromethane (Freon 12)                | 11.1         | 2.0                | μg/L         | 10.0           |                  | 111          | 40-160           |     |              |            | i      |
| 1,1-Dichloroethane                                | 10.3         | 1.0                | μg/L         | 10.0           |                  | 103          | 70-130           |     |              |            |        |
| 1,2-Dichloroethane                                | 9.99         | 1.0                | μg/L         | 10.0           |                  | 99.9         | 70-130           |     |              |            |        |
| 1,1-Dichloroethylene                              | 10.3         | 1.0                | μg/L         | 10.0           |                  | 103          | 70-130           |     |              |            |        |
| cis-1,2-Dichloroethylene                          | 10.5         | 1.0                | μg/L         | 10.0           |                  | 105          | 70-130           |     |              |            |        |
| trans-1,2-Dichloroethylene                        | 9.99         | 1.0                | μg/L         | 10.0           |                  | 99.9         | 70-130           |     |              |            |        |
| 1,2-Dichloropropane                               | 10.5         | 1.0                | μg/L         | 10.0           |                  | 105          | 70-130           |     |              |            |        |
| 1,3-Dichloropropane                               | 10.0         | 0.50               | μg/L         | 10.0           |                  | 100          | 70-130           |     |              |            |        |
| 2,2-Dichloropropane                               | 10.2         | 1.0                | μg/L         | 10.0           |                  | 102          | 40-130           |     |              |            | †      |
| 1,1-Dichloropropene                               | 9.74         | 2.0                | μg/L         | 10.0           |                  | 97.4         | 70-130           |     |              |            |        |
| cis-1,3-Dichloropropene                           | 10.6         | 0.50               | μg/L         | 10.0           |                  | 106          | 70-130           |     |              |            |        |
| trans-1,3-Dichloropropene                         | 9.99         | 0.50               | μg/L         | 10.0           |                  | 99.9         | 70-130           |     |              |            |        |
| Diethyl Ether                                     | 10.2         | 2.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |            |        |
| Diisopropyl Ether (DIPE)                          | 10.1         | 0.50               | μg/L         | 10.0           |                  | 101          | 70-130           |     |              |            |        |
| 1,4-Dioxane                                       | 89.9         | 50                 | μg/L         | 100            |                  | 89.9         | 40-130           |     |              |            | Ť      |
| Ethylbenzene                                      | 9.81         | 1.0                | μg/L         | 10.0           |                  | 98.1         | 70-130           |     |              |            |        |
| Hexachlorobutadiene                               | 9.55         | 0.60               | μg/L         | 10.0           |                  | 95.5         | 70-130           |     |              |            |        |
| 2-Hexanone (MBK)                                  | 93.9         | 10                 | μg/L         | 100            |                  | 93.9         | 70-160           |     |              |            | †      |
| Isopropylbenzene (Cumene)                         | 10.0         | 1.0                | μg/L         | 10.0           |                  | 100          | 70-130           |     |              |            |        |
| p-Isopropyltoluene (p-Cymene)                     | 9.36         | 1.0                | μg/L         | 10.0           |                  | 93.6         | 70-130           |     |              |            |        |
| Methyl Acetate  Methyl text Pertyl Ethyr (MTPE)   | 10.2         | 1.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |            |        |
| Methyl tert-Butyl Ether (MTBE) Methyl Cyclohexane | 9.52         | 1.0<br>1.0         | μg/L         | 10.0           |                  | 95.2<br>88.5 | 70-130<br>70-130 |     |              |            |        |
| Methylene Chloride                                | 8.85         | 5.0                | μg/L<br>μg/L | 10.0           |                  |              | 70-130           |     |              |            |        |
| 4-Methyl-2-pentanone (MIBK)                       | 10.6         | 10                 | μg/L<br>μg/L | 10.0<br>100    |                  | 106<br>101   | 70-130<br>70-160 |     |              |            | +      |
| Naphthalene                                       | 101          | 2.0                | μg/L<br>μg/L | 10.0           |                  | 58.4         | 40-130           |     |              | V-05       | †<br>† |
| n-Propylbenzene                                   | 5.84         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 96.3         | 70-130           |     |              | V-03       | 1      |
| Styrene                                           | 9.63<br>10.4 | 1.0                | μg/L<br>μg/L | 10.0           |                  | 104          | 70-130           |     |              |            |        |
| 1,1,1,2-Tetrachloroethane                         | 10.4         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 104          | 70-130           |     |              |            |        |
| 1,1,2,2-Tetrachloroethane                         | 10.4         | 0.50               | μg/L<br>μg/L | 10.0           |                  | 102          | 70-130           |     |              |            |        |
| Tetrachloroethylene                               | 10.2         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 103          | 70-130           |     |              |            |        |
| Tetrahydrofuran                                   | 9.28         | 10                 | μg/L         | 10.0           |                  | 92.8         | 70-130           |     |              | J          |        |
| Toluene                                           | 10.6         | 1.0                | μg/L         | 10.0           |                  | 106          | 70-130           |     |              | J          |        |
| 1,2,3-Trichlorobenzene                            | 6.78         | 5.0                | μg/L         | 10.0           |                  | 67.8 *       | 70-130           |     |              | V-05, L-04 |        |
| 1,2,4-Trichlorobenzene                            | 7.32         | 1.0                | μg/L         | 10.0           |                  | 73.2         | 70-130           |     |              | V-05       |        |
| 1,3,5-Trichlorobenzene                            | 8.56         | 1.0                | μg/L         | 10.0           |                  | 85.6         | 70-130           |     |              |            |        |
| 1,1,1-Trichloroethane                             | 10.0         | 1.0                | μg/L         | 10.0           |                  | 100          | 70-130           |     |              |            |        |
| 1,1,2-Trichloroethane                             | 10.7         | 1.0                | μg/L         | 10.0           |                  | 107          | 70-130           |     |              |            |        |
| Trichloroethylene                                 | 10.2         | 1.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |            |        |
| Trichlorofluoromethane (Freon 11)                 | 10.2         | 2.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |            |        |
| 1,2,3-Trichloropropane                            | 9.42         | 2.0                | μg/L         | 10.0           |                  | 94.2         | 70-130           |     |              |            |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 9.30         | 1.0                | $\mu g/L$    | 10.0           |                  | 93.0         | 70-130           |     |              |            |        |
| 1,2,3-Trimethylbenzene                            | 13.6         | 0.50               | $\mu g/L$    | 10.0           |                  | 136 *        | 70-130           |     |              | L-02, V-20 |        |
| 1,2,4-Trimethylbenzene                            | 9.93         | 1.0                | $\mu g/L$    | 10.0           |                  | 99.3         | 70-130           |     |              |            |        |
| 1,3,5-Trimethylbenzene                            | 9.63         | 1.0                | $\mu g/L$    | 10.0           |                  | 96.3         | 70-130           |     |              |            |        |
| Vinyl Chloride                                    | 12.0         | 2.0                | $\mu g/L$    | 10.0           |                  | 120          | 40-160           |     |              |            | †      |
| m+p Xylene                                        | 20.0         | 2.0                | $\mu g/L$    | 20.0           |                  | 100          | 70-130           |     |              |            |        |
| o-Xylene                                          | 10.2         | 1.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |            |        |



# QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                            | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |  |
|------------------------------------|--------|--------------------|-------------------|----------------|------------------|---------|----------------|--------|--------------|-------|--|
| Satch B293011 - SW-846 5030B       |        |                    |                   |                |                  |         |                |        |              |       |  |
| CS (B293011-BS1)                   |        |                    |                   | Prepared & A   | Analyzed: 10     | 0/21/21 |                |        |              |       |  |
| Surrogate: 1,2-Dichloroethane-d4   | 28.3   |                    | μg/L              | 25.0           |                  | 113     | 70-130         |        |              |       |  |
| Surrogate: Toluene-d8              | 29.1   |                    | $\mu g/L$         | 25.0           |                  | 116     | 70-130         |        |              |       |  |
| urrogate: 4-Bromofluorobenzene     | 29.2   |                    | $\mu g/L$         | 25.0           |                  | 117     | 70-130         |        |              |       |  |
| .CS Dup (B293011-BSD1)             |        |                    |                   | Prepared & A   | Analyzed: 10     | 0/21/21 |                |        |              |       |  |
| acetone                            | 88.8   | 50                 | μg/L              | 100            |                  | 88.8    | 70-160         | 8.81   | 25           |       |  |
| Acrylonitrile                      | 8.10   | 5.0                | $\mu g/L$         | 10.0           |                  | 81.0    | 70-130         | 1.10   | 25           |       |  |
| ert-Amyl Methyl Ether (TAME)       | 9.73   | 0.50               | $\mu g/L$         | 10.0           |                  | 97.3    | 70-130         | 0.308  | 25           |       |  |
| enzene                             | 11.3   | 1.0                | $\mu g/L$         | 10.0           |                  | 113     | 70-130         | 7.71   | 25           |       |  |
| romobenzene                        | 9.74   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 97.4    | 70-130         | 0.818  | 25           |       |  |
| romochloromethane                  | 11.1   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 111     | 70-130         | 1.64   | 25           |       |  |
| romodichloromethane                | 10.6   | 0.50               | $\mu g/L$         | 10.0           |                  | 106     | 70-130         | 0.0946 | 25           |       |  |
| romoform                           | 9.47   | 1.0                | $\mu g/L$         | 10.0           |                  | 94.7    | 70-130         | 0.527  | 25           |       |  |
| romomethane                        | 11.2   | 2.0                | $\mu g/L$         | 10.0           |                  | 112     | 40-160         | 3.78   | 25           |       |  |
| -Butanone (MEK)                    | 89.2   | 20                 | $\mu g/L$         | 100            |                  | 89.2    | 40-160         | 8.25   | 25           |       |  |
| ert-Butyl Alcohol (TBA)            | 78.6   | 20                 | μg/L              | 100            |                  | 78.6    | 40-160         | 12.2   | 25           |       |  |
| Butylbenzene                       | 9.25   | 1.0                | μg/L              | 10.0           |                  | 92.5    | 70-130         | 0.108  | 25           |       |  |
| ec-Butylbenzene                    | 9.75   | 1.0                | μg/L              | 10.0           |                  | 97.5    | 70-130         | 2.07   | 25           |       |  |
| ert-Butylbenzene                   | 10.2   | 1.0                | μg/L              | 10.0           |                  | 102     | 70-130         | 4.80   | 25           |       |  |
| ert-Butyl Ethyl Ether (TBEE)       | 9.72   | 0.50               | μg/L              | 10.0           |                  | 97.2    | 70-130         | 1.13   | 25           |       |  |
| arbon Disulfide                    | 108    | 5.0                | μg/L              | 100            |                  | 108     | 70-130         | 2.50   | 25           |       |  |
| arbon Tetrachloride                | 10.2   | 5.0                | μg/L              | 10.0           |                  | 102     | 70-130         | 1.48   | 25           |       |  |
| hlorobenzene                       | 10.6   | 1.0                | μg/L              | 10.0           |                  | 106     | 70-130         | 2.87   | 25           |       |  |
| hlorodibromomethane                | 10.5   | 0.50               | μg/L              | 10.0           |                  | 105     | 70-130         | 0.954  | 25           |       |  |
| hloroethane                        | 12.2   | 2.0                | μg/L              | 10.0           |                  | 122     | 70-130         | 6.44   | 25           | V-20  |  |
| hloroform                          | 10.4   | 2.0                | μg/L              | 10.0           |                  | 104     | 70-130         | 0.0957 | 25           | V-20  |  |
| hloromethane                       |        | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 117     | 40-160         | 6.83   | 25           | V-20  |  |
| -Chlorotoluene                     | 11.7   | 1.0                |                   | 10.0           |                  | 99.7    |                |        |              | V-20  |  |
| -Chlorotoluene                     | 9.97   | 1.0                | μg/L<br>uα/I      |                |                  |         | 70-130         | 0.503  | 25           |       |  |
| ,2-Dibromo-3-chloropropane (DBCP)  | 10.1   | 5.0                | μg/L              | 10.0           |                  | 101     | 70-130         | 4.95   | 25           |       |  |
|                                    | 8.55   |                    | μg/L              | 10.0           |                  | 85.5    | 70-130         | 4.55   | 25           |       |  |
| ,2-Dibromoethane (EDB)             | 10.0   | 0.50               | μg/L              | 10.0           |                  | 100     | 70-130         | 3.14   | 25           |       |  |
| bibromomethane                     | 10.3   | 1.0                | μg/L              | 10.0           |                  | 103     | 70-130         | 0.484  | 25           |       |  |
| ,2-Dichlorobenzene                 | 10.4   | 1.0                | μg/L              | 10.0           |                  | 104     | 70-130         | 0.0966 | 25           |       |  |
| 3-Dichlorobenzene                  | 10.3   | 1.0                | μg/L              | 10.0           |                  | 103     | 70-130         | 0.0970 | 25           |       |  |
| 4-Dichlorobenzene                  | 9.74   | 1.0                | μg/L              | 10.0           |                  | 97.4    | 70-130         | 1.97   | 25           |       |  |
| rans-1,4-Dichloro-2-butene         | 8.72   | 2.0                | μg/L              | 10.0           |                  | 87.2    | 70-130         | 12.3   | 25           |       |  |
| Dichlorodifluoromethane (Freon 12) | 11.2   | 2.0                | μg/L              | 10.0           |                  | 112     | 40-160         | 1.34   | 25           |       |  |
| 1-Dichloroethane                   | 10.4   | 1.0                | μg/L              | 10.0           |                  | 104     | 70-130         | 1.26   | 25           |       |  |
| 2-Dichloroethane                   | 9.99   | 1.0                | μg/L              | 10.0           |                  | 99.9    | 70-130         | 0.00   | 25           |       |  |
| 1-Dichloroethylene                 | 10.9   | 1.0                | μg/L              | 10.0           |                  | 109     | 70-130         | 5.76   | 25           |       |  |
| is-1,2-Dichloroethylene            | 10.5   | 1.0                | μg/L              | 10.0           |                  | 105     | 70-130         | 0.00   | 25           |       |  |
| ans-1,2-Dichloroethylene           | 10.1   | 1.0                | μg/L              | 10.0           |                  | 101     | 70-130         | 0.897  | 25           |       |  |
| 2-Dichloropropane                  | 10.4   | 1.0                | $\mu g/L$         | 10.0           |                  | 104     | 70-130         | 0.575  | 25           |       |  |
| 3-Dichloropropane                  | 10.2   | 0.50               | $\mu g/L$         | 10.0           |                  | 102     | 70-130         | 1.49   | 25           |       |  |
| 2-Dichloropropane                  | 10.6   | 1.0                | $\mu g/L$         | 10.0           |                  | 106     | 40-130         | 3.76   | 25           |       |  |
| 1-Dichloropropene                  | 10.0   | 2.0                | $\mu g/L$         | 10.0           |                  | 100     | 70-130         | 2.93   | 25           |       |  |
| is-1,3-Dichloropropene             | 10.8   | 0.50               | $\mu g/L$         | 10.0           |                  | 108     | 70-130         | 1.59   | 25           |       |  |
| ans-1,3-Dichloropropene            | 9.90   | 0.50               | $\mu g/L$         | 10.0           |                  | 99.0    | 70-130         | 0.905  | 25           |       |  |
| Diethyl Ether                      | 9.80   | 2.0                | $\mu g/L$         | 10.0           |                  | 98.0    | 70-130         | 3.71   | 25           |       |  |
| Diisopropyl Ether (DIPE)           | 9.92   | 0.50               | $\mu g/L$         | 10.0           |                  | 99.2    | 70-130         | 1.40   | 25           |       |  |
| ,4-Dioxane                         | 88.1   | 50                 | μg/L              | 100            |                  | 88.1    | 40-130         | 2.02   | 50           |       |  |
| thylbenzene                        | 10.6   | 1.0                | μg/L              | 10.0           |                  | 106     | 70-130         | 8.21   | 25           |       |  |



# QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|---------------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|------------|---|
| Batch B293011 - SW-846 5030B                      |        |                    |           |                |                  |        |                |       |              |            |   |
| LCS Dup (B293011-BSD1)                            |        |                    |           | Prepared &     | Analyzed: 10     | /21/21 |                |       |              |            |   |
| Hexachlorobutadiene                               | 9.89   | 0.60               | μg/L      | 10.0           |                  | 98.9   | 70-130         | 3.50  | 25           |            |   |
| 2-Hexanone (MBK)                                  | 86.9   | 10                 | μg/L      | 100            |                  | 86.9   | 70-160         | 7.69  | 25           |            | † |
| Isopropylbenzene (Cumene)                         | 10.0   | 1.0                | $\mu g/L$ | 10.0           |                  | 100    | 70-130         | 0.199 | 25           |            |   |
| p-Isopropyltoluene (p-Cymene)                     | 9.55   | 1.0                | μg/L      | 10.0           |                  | 95.5   | 70-130         | 2.01  | 25           |            |   |
| Methyl Acetate                                    | 9.61   | 1.0                | μg/L      | 10.0           |                  | 96.1   | 70-130         | 5.96  | 25           |            |   |
| Methyl tert-Butyl Ether (MTBE)                    | 9.34   | 1.0                | μg/L      | 10.0           |                  | 93.4   | 70-130         | 1.91  | 25           |            |   |
| Methyl Cyclohexane                                | 9.40   | 1.0                | $\mu g/L$ | 10.0           |                  | 94.0   | 70-130         | 6.03  | 25           |            |   |
| Methylene Chloride                                | 10.7   | 5.0                | μg/L      | 10.0           |                  | 107    | 70-130         | 0.564 | 25           |            |   |
| 4-Methyl-2-pentanone (MIBK)                       | 93.6   | 10                 | μg/L      | 100            |                  | 93.6   | 70-160         | 7.15  | 25           |            | † |
| Naphthalene                                       | 5.46   | 2.0                | μg/L      | 10.0           |                  | 54.6   | 40-130         | 6.73  | 25           | V-05       | † |
| n-Propylbenzene                                   | 9.86   | 1.0                | μg/L      | 10.0           |                  | 98.6   | 70-130         | 2.36  | 25           |            |   |
| Styrene                                           | 10.5   | 1.0                | μg/L      | 10.0           |                  | 105    | 70-130         | 1.25  | 25           |            |   |
| 1,1,1,2-Tetrachloroethane                         | 10.5   | 1.0                | μg/L      | 10.0           |                  | 105    | 70-130         | 1.72  | 25           |            |   |
| 1,1,2,2-Tetrachloroethane                         | 9.99   | 0.50               | μg/L      | 10.0           |                  | 99.9   | 70-130         | 2.37  | 25           |            |   |
| Tetrachloroethylene                               | 10.6   | 1.0                | μg/L      | 10.0           |                  | 106    | 70-130         | 3.35  | 25           |            |   |
| Tetrahydrofuran                                   | 8.77   | 10                 | μg/L      | 10.0           |                  | 87.7   | 70-130         | 5.65  | 25           | J          |   |
| Toluene                                           | 11.1   | 1.0                | μg/L      | 10.0           |                  | 111    | 70-130         | 4.43  | 25           |            |   |
| 1,2,3-Trichlorobenzene                            | 6.42   | 5.0                | μg/L      | 10.0           |                  | 64.2 * | 70-130         | 5.45  | 25           | L-04, V-05 |   |
| 1,2,4-Trichlorobenzene                            | 7.23   | 1.0                | μg/L      | 10.0           |                  | 72.3   | 70-130         | 1.24  | 25           | V-05       |   |
| 1,3,5-Trichlorobenzene                            | 8.61   | 1.0                | μg/L      | 10.0           |                  | 86.1   | 70-130         | 0.582 | 25           |            |   |
| 1,1,1-Trichloroethane                             | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         | 1.78  | 25           |            |   |
| 1,1,2-Trichloroethane                             | 10.4   | 1.0                | μg/L      | 10.0           |                  | 104    | 70-130         | 2.85  | 25           |            |   |
| Trichloroethylene                                 | 10.4   | 1.0                | μg/L      | 10.0           |                  | 104    | 70-130         | 1.94  | 25           |            |   |
| Trichlorofluoromethane (Freon 11)                 | 10.6   | 2.0                | μg/L      | 10.0           |                  | 106    | 70-130         | 4.03  | 25           |            |   |
| 1,2,3-Trichloropropane                            | 8.59   | 2.0                | μg/L      | 10.0           |                  | 85.9   | 70-130         | 9.22  | 25           |            |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 9.69   | 1.0                | μg/L      | 10.0           |                  | 96.9   | 70-130         | 4.11  | 25           |            |   |
| 1,2,3-Trimethylbenzene                            | 13.8   | 0.50               | μg/L      | 10.0           |                  | 138 *  | 70-130         | 1.38  | 25           | L-02, V-20 |   |
| 1,2,4-Trimethylbenzene                            | 10.6   | 1.0                | $\mu g/L$ | 10.0           |                  | 106    | 70-130         | 6.72  | 25           |            |   |
| 1,3,5-Trimethylbenzene                            | 10.0   | 1.0                | $\mu g/L$ | 10.0           |                  | 100    | 70-130         | 3.97  | 25           |            |   |
| Vinyl Chloride                                    | 12.2   | 2.0                | $\mu g/L$ | 10.0           |                  | 122    | 40-160         | 1.49  | 25           |            | † |
| m+p Xylene                                        | 21.5   | 2.0                | $\mu g/L$ | 20.0           |                  | 107    | 70-130         | 6.99  | 25           |            |   |
| o-Xylene                                          | 11.1   | 1.0                | μg/L      | 10.0           |                  | 111    | 70-130         | 8.82  | 25           |            |   |
| Surrogate: 1,2-Dichloroethane-d4                  | 27.7   |                    | μg/L      | 25.0           |                  | 111    | 70-130         |       |              |            |   |
| Surrogate: Toluene-d8                             | 28.8   |                    | $\mu g/L$ | 25.0           |                  | 115    | 70-130         |       |              |            |   |
| Surrogate: 4-Bromofluorobenzene                   | 28.6   |                    | $\mu g/L$ | 25.0           |                  | 115    | 70-130         |       |              |            |   |



# QUALITY CONTROL

# Petroleum Hydrocarbons Analyses - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Batch B292781 - SW-846 3546         |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B292781-BLK1)                |        |                    |           | Prepared: 1    | 0/19/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Diesel Range Organics               | ND     | 8.3                | mg/Kg wet |                |                  |              |                |      |              |       |
| Surrogate: 2-Fluorobiphenyl         | 1.88   |                    | mg/Kg wet | 3.33           |                  | 56.4         | 40-140         |      |              |       |
| LCS (B292781-BS1)                   |        |                    |           | Prepared: 1    | 0/19/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Diesel Range Organics               | 21.8   | 8.3                | mg/Kg wet | 33.3           |                  | 65.3         | 40-140         |      |              |       |
| Surrogate: 2-Fluorobiphenyl         | 2.08   |                    | mg/Kg wet | 3.33           |                  | 62.5         | 40-140         |      |              |       |
| LCS Dup (B292781-BSD1)              |        |                    |           | Prepared: 1    | 0/19/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Diesel Range Organics               | 23.9   | 8.3                | mg/Kg wet | 33.3           |                  | 71.8         | 40-140         | 9.43 | 30           |       |
| Surrogate: 2-Fluorobiphenyl         | 2.30   |                    | mg/Kg wet | 3.33           |                  | 69.1         | 40-140         |      |              |       |
| Batch B292856 - SW-846 5030B        |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B292856-BLK1)                |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | ND     | 0.010              | mg/L      |                |                  |              |                |      |              |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.9   |                    | μg/L      | 15.0           |                  | 113          | 70-130         |      |              |       |
| LCS (B292856-BS1)                   |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | 0.242  | 0.010              | mg/L      | 0.250          |                  | 96.7         | 80-120         |      |              |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.1   |                    | μg/L      | 15.0           |                  | 107          | 70-130         |      |              |       |
| LCS Dup (B292856-BSD1)              |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | 0.245  | 0.010              | mg/L      | 0.250          |                  | 98.1         | 80-120         | 1.52 | 30           |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.4   |                    | μg/L      | 15.0           |                  | 110          | 70-130         |      |              |       |
| Batch B292858 - SW-846 5030B        |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B292858-BLK1)                |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | ND     | 1.0                | mg/Kg wet |                |                  |              |                |      |              |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.9   |                    | μg/L      | 15.0           |                  | 113          | 70-130         |      |              |       |
| LCS (B292858-BS1)                   |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | 24.2   | 1.0                | mg/Kg wet | 25.0           |                  | 96.7         | 80-120         |      |              |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.1   |                    | μg/L      | 15.0           |                  | 107          | 70-130         |      |              |       |
| LCS Dup (B292858-BSD1)              |        |                    |           | Prepared: 1    | 0/20/21 Anal     | yzed: 10/21/ | 21             |      |              |       |
| Gasoline Range Organics (GRO)       | 24.5   | 1.0                | mg/Kg wet | 25.0           |                  | 98.1         | 80-120         | 1.52 | 30           |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.4   |                    | μg/L      | 15.0           |                  | 110          | 70-130         |      |              |       |
|                                     |        |                    |           |                |                  |              |                |      |              |       |



# QUALITY CONTROL

| Analyte                     | Result     | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits          | RPD  | RPD<br>Limit | Notes |
|-----------------------------|------------|--------------------|------------------------|----------------|------------------|--------------|-------------------------|------|--------------|-------|
| Amaryte                     | Kesuit     | Lillit             | Omis                   | Level          | Resuit           | /0KEC        | Lillits                 | KFD  | Liiiit       | Notes |
| atch B292806 - SW-846 7471  |            |                    |                        |                |                  |              |                         |      |              |       |
| lank (B292806-BLK1)         |            |                    |                        | Prepared:      | 10/20/21 Analy   | zed: 10/21/  | /21                     |      |              |       |
| Mercury (                   | ND         | 0.025              | mg/Kg wet              |                |                  |              |                         |      |              |       |
| LCS (B292806-BS1)           |            |                    |                        | Prepared:      | 10/20/21 Analy   | zed: 10/21/  | /21                     |      |              |       |
| Mercury                     | 17.6       | 0.74               | mg/Kg wet              | 15.6           | 10/20/21 / mary  | 113          | 59.3-140.4              |      |              |       |
|                             | 17.0       | ***                |                        |                |                  |              |                         |      |              |       |
| LCS Dup (B292806-BSD1)      |            |                    |                        |                | 10/20/21 Analy   |              |                         |      |              |       |
| Mercury                     | 15.5       | 0.74               | mg/Kg wet              | 15.6           |                  | 99.4         | 59.3-140.4              | 12.4 | 20           |       |
| Ouplicate (B292806-DUP1)    | Sou        | rce: 21J1070-      | -02                    | Prepared:      | 10/20/21 Analy   | zed: 10/21/  | /21                     |      |              |       |
| Mercury (                   | 0.0442     | 0.031              | mg/Kg dry              |                | 0.0275           |              |                         | 46.6 | * 20         | R-04  |
| Aatrix Spike (B292806-MS1)  | Son        | rce: 21J1070-      | 02                     | Prepared:      | 10/20/21 Analy   | zed: 10/21   | /21                     |      |              |       |
| Mercury                     | 0.449      | 0.031              | mg/Kg dry              | 0.418          | 0.0275           | 101          | 80-120                  |      |              |       |
| icioury                     | 0.449      | 0.051              | mg/ng ury              | 0.416          | 0.0273           | 101          | 80-120                  |      |              |       |
| atch B292839 - SW-846 3050B |            |                    |                        |                |                  |              |                         |      |              |       |
| Blank (B292839-BLK1)        |            |                    |                        | Prepared:      | 10/20/21 Analy   | zed: 10/22/  | /21                     |      |              |       |
| luminum                     | ND         | 16                 | mg/Kg wet              | -              |                  |              |                         |      |              |       |
| ntimony                     | ND         | 1.6                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| rsenic                      | ND         | 3.3                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| arium                       | ND         | 1.6                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| eryllium                    | ND         | 0.16               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| admium                      | ND         | 0.33               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| alcium                      | ND         | 16                 | mg/Kg wet              |                |                  |              |                         |      |              |       |
| hromium                     | ND         | 0.66               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| obalt                       | ND         | 1.6                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| opper                       | ND         | 0.66               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| on .                        | ND         | 16                 | mg/Kg wet              |                |                  |              |                         |      |              |       |
| ead .                       | ND         | 0.49               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| lagnesium                   | ND         | 16                 | mg/Kg wet              |                |                  |              |                         |      |              |       |
| langanese<br>ickel          | ND         | 0.33               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| otassium                    | ND         | 0.66<br>160        | mg/Kg wet<br>mg/Kg wet |                |                  |              |                         |      |              |       |
| elenium                     | ND         | 3.3                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| ilver                       | ND         | 0.33               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| odium                       | ND         | 160                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| hallium                     | ND<br>ND   | 1.6                | mg/Kg wet              |                |                  |              |                         |      |              |       |
| anadium                     | ND         | 0.66               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| inc                         | ND         | 0.66               | mg/Kg wet              |                |                  |              |                         |      |              |       |
| GG (Pananan PG4)            |            |                    |                        |                | 10/20/21         | 1 10/22      | /0.1                    |      |              |       |
| CS (B292839-BS1)            | C400       | 50                 | mg/Kg wet              |                | 10/20/21 Analy   |              |                         |      |              |       |
| ntimony                     | 6420       | 5.0                | mg/Kg wet              | 8110<br>134    |                  | 79.2<br>84.1 | 48.1-151.7<br>1.9-200.7 |      |              |       |
| rsenic                      | 113<br>160 | 9.9                | mg/Kg wet              | 170            |                  | 94.3         | 82.9-117.6              |      |              |       |
| arium                       | 180        | 5.0                | mg/Kg wet              | 183            |                  | 98.5         | 82.5-117.5              |      |              |       |
| eryllium                    | 113        | 0.50               | mg/Kg wet              | 116            |                  | 97.7         | 83.4-116.4              |      |              |       |
| admium                      | 90.6       | 0.99               | mg/Kg wet              | 89.5           |                  | 101          | 82.8-117.3              |      |              |       |
| alcium                      | 4390       | 50                 | mg/Kg wet              | 4810           |                  | 91.2         | 81.7-118.1              |      |              |       |
| hromium                     | 99.6       | 2.0                | mg/Kg wet              | 101            |                  | 98.6         | 82.1-117.8              |      |              |       |
| obalt                       | 86.8       | 5.0                | mg/Kg wet              | 84.8           |                  | 102          | 83.5-116.5              |      |              |       |
| opper                       | 149        | 2.0                | mg/Kg wet              | 149            |                  | 100          | 83.9-116.1              |      |              |       |
| on                          | 12300      | 50                 | mg/Kg wet              | 14100          |                  | 87.3         | 60-139.7                |      |              |       |
| ead                         | 133        | 1.5                | mg/Kg wet              | 140            |                  | 95.0         | 82.9-117.1              |      |              |       |
| Magnesium (1997)            | 2030       | 50                 | mg/Kg wet              | 2350           |                  | 86.3         | 76.2-123.8              |      |              |       |



# QUALITY CONTROL

|                                  |        |                    |           | ~ "            |                  |             | 0/770          |       | 222          |       |
|----------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Analyte                          | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
| Satch B292839 - SW-846 3050B     |        |                    |           |                |                  |             |                |       |              |       |
| CS (B292839-BS1)                 |        |                    |           | Prepared: 10   | /20/21 Analy     | zed: 10/22/ | 21             |       |              |       |
| Anganese                         | 620    | 0.99               | mg/Kg wet | 648            |                  | 95.7        | 81.8-118.2     |       |              |       |
| lickel                           | 69.5   | 2.0                | mg/Kg wet | 68.3           |                  | 102         | 82.1-117.7     |       |              |       |
| otassium                         | 1780   | 500                | mg/Kg wet | 2050           |                  | 86.6        | 69.8-129.8     |       |              |       |
| elenium                          | 195    | 9.9                | mg/Kg wet | 182            |                  | 107         | 79.7-120.3     |       |              |       |
| lver                             | 47.3   | 0.99               | mg/Kg wet | 50.1           |                  | 94.5        | 80.2-120       |       |              |       |
| odium                            | 106    | 500                | mg/Kg wet | 136            |                  | 78.1        | 71.6-127.9     |       |              | J     |
| nallium                          | 95.0   | 5.0                | mg/Kg wet | 87.7           |                  | 108         | 81.1-118.6     |       |              |       |
| ınadium                          | 151    | 2.0                | mg/Kg wet | 153            |                  | 98.8        | 79.1-120.9     |       |              |       |
| nc                               | 221    | 2.0                | mg/Kg wet | 228            |                  | 96.9        | 80.7-118.9     |       |              |       |
| CS Dup (B292839-BSD1)            |        |                    |           | Prepared: 10   | /20/21 Analy     | zed: 10/22/ | 21             |       |              |       |
| uminum                           | 6730   | 50                 | mg/Kg wet | 8110           |                  | 82.9        | 48.1-151.7     | 4.62  | 30           |       |
| ntimony                          | 113    | 5.0                | mg/Kg wet | 134            |                  | 84.0        | 1.9-200.7      | 0.126 | 30           |       |
| rsenic                           | 167    | 10                 | mg/Kg wet | 170            |                  | 98.4        | 82.9-117.6     | 4.26  | 30           |       |
| rium                             | 192    | 5.0                | mg/Kg wet | 183            |                  | 105         | 82.5-117.5     | 6.04  | 20           |       |
| ryllium                          | 118    | 0.50               | mg/Kg wet | 116            |                  | 102         | 83.4-116.4     | 4.40  | 30           |       |
| admium                           | 96.2   | 1.0                | mg/Kg wet | 89.5           |                  | 107         | 82.8-117.3     | 6.01  | 20           |       |
| leium                            | 4580   | 50                 | mg/Kg wet | 4810           |                  | 95.2        | 81.7-118.1     | 4.25  | 30           |       |
| romium                           | 104    | 2.0                | mg/Kg wet | 101            |                  | 103         | 82.1-117.8     | 4.22  | 30           |       |
| balt                             | 91.4   | 5.0                | mg/Kg wet | 84.8           |                  | 108         | 83.5-116.5     | 5.14  | 20           |       |
| pper                             | 159    | 2.0                | mg/Kg wet | 149            |                  | 107         | 83.9-116.1     | 6.16  | 30           |       |
| n                                | 13300  | 50                 | mg/Kg wet | 14100          |                  | 94.7        | 60-139.7       | 8.13  | 30           |       |
| ad                               | 138    | 1.5                | mg/Kg wet | 140            |                  | 98.7        | 82.9-117.1     | 3.82  | 30           |       |
| agnesium                         | 2130   | 50                 | mg/Kg wet | 2350           |                  | 90.4        | 76.2-123.8     | 4.69  | 30           |       |
| anganese                         | 644    | 1.0                | mg/Kg wet | 648            |                  | 99.3        | 81.8-118.2     | 3.69  | 30           |       |
| ckel                             | 73.3   | 2.0                | mg/Kg wet | 68.3           |                  | 107         | 82.1-117.7     | 5.31  | 30           |       |
| tassium                          | 1880   | 500                | mg/Kg wet | 2050           |                  | 91.7        | 69.8-129.8     | 5.70  | 30           |       |
| lenium                           | 204    | 10                 | mg/Kg wet | 182            |                  | 112         | 79.7-120.3     | 4.49  | 30           |       |
| lver                             | 50.1   | 1.0                | mg/Kg wet | 50.1           |                  | 100         | 80.2-120       | 5.75  | 30           |       |
| dium                             | 113    | 500                | mg/Kg wet | 136            |                  | 83.1        | 71.6-127.9     | 6.24  | 30           | J     |
| nallium                          | 98.2   | 5.0                | mg/Kg wet | 87.7           |                  | 112         | 81.1-118.6     | 3.32  | 30           |       |
| nadium                           | 158    | 2.0                | mg/Kg wet | 153            |                  | 103         | 79.1-120.9     | 4.62  | 30           |       |
| nc                               | 236    | 2.0                | mg/Kg wet | 228            |                  | 104         | 80.7-118.9     | 6.67  | 30           |       |
| ference (B292839-SRM1) MRL CHECK |        |                    |           | Prepared: 10   | /20/21 Analy     | zed: 10/22/ | 21             |       |              |       |
| ead                              | 0.485  | 0.50               | mg/Kg wet | 0.499          |                  | 97.2        | 80-120         |       |              | J     |
| atch B292879 - SW-846 3005A      |        |                    |           |                |                  |             |                |       |              |       |
| lank (B292879-BLK1)              |        |                    |           | Prepared: 10   | /20/21 Analy     | zed: 10/21/ | 21             |       |              |       |
| ntimony                          | ND     | 1.0                | μg/L      |                |                  |             |                |       |              |       |
| rsenic                           | ND     | 0.80               | $\mu g/L$ |                |                  |             |                |       |              |       |
| rium                             | ND     | 10                 | $\mu g/L$ |                |                  |             |                |       |              |       |
| ryllium                          | ND     | 0.40               | $\mu g/L$ |                |                  |             |                |       |              |       |
| dmium                            | ND     | 0.20               | $\mu g/L$ |                |                  |             |                |       |              |       |
| romium                           | ND     | 1.0                | $\mu g/L$ |                |                  |             |                |       |              |       |
| balt                             | ND     | 1.0                | $\mu g/L$ |                |                  |             |                |       |              |       |
| opper                            | ND     | 1.0                | $\mu g/L$ |                |                  |             |                |       |              |       |
| ead                              | ND     | 0.50               | $\mu g/L$ |                |                  |             |                |       |              |       |
| anganese                         | ND     | 1.0                | $\mu g/L$ |                |                  |             |                |       |              |       |
| ickel                            | ND     | 5.0                | $\mu g/L$ |                |                  |             |                |       |              |       |
| elenium                          | ND     | 5.0                | μg/L      |                |                  |             |                |       |              |       |
|                                  |        |                    |           |                |                  |             |                |       |              |       |



# QUALITY CONTROL

| Analyte                      | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC           | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-------------------|----------------|------------------|----------------|----------------|------|--------------|-------|
| Batch B292879 - SW-846 3005A |        |                    |                   |                |                  |                |                |      |              |       |
| Blank (B292879-BLK1)         |        |                    |                   | Prepared: 10   | 0/20/21 Analy    | yzed: 10/21/2  | 21             |      |              |       |
| Thallium                     | ND     | 0.20               | μg/L              |                |                  |                |                |      |              |       |
| /anadium                     | ND     | 5.0                | $\mu g/L$         |                |                  |                |                |      |              |       |
| Zinc                         | ND     | 10                 | μg/L              |                |                  |                |                |      |              |       |
| LCS (B292879-BS1)            |        |                    |                   | Prepared: 10   | )/20/21 Analy    | yzed: 10/21/2  | 21             |      |              |       |
| Antimony                     | 549    | 10                 | $\mu g \! / \! L$ | 500            |                  | 110            | 80-120         |      |              |       |
| Arsenic                      | 503    | 8.0                | μg/L              | 500            |                  | 101            | 80-120         |      |              |       |
| Barium                       | 511    | 100                | μg/L              | 500            |                  | 102            | 80-120         |      |              |       |
| Beryllium                    | 526    | 4.0                | μg/L              | 500            |                  | 105            | 80-120         |      |              |       |
| Cadmium                      | 509    | 2.0                | μg/L              | 500            |                  | 102            | 80-120         |      |              |       |
| Chromium                     | 487    | 10                 | $\mu g/L$         | 500            |                  | 97.4           | 80-120         |      |              |       |
| Cobalt                       | 483    | 10                 | $\mu g \! / \! L$ | 500            |                  | 96.5           | 80-120         |      |              |       |
| Copper                       | 973    | 10                 | $\mu g/L$         | 1000           |                  | 97.3           | 80-120         |      |              |       |
| ead                          | 505    | 5.0                | $\mu g/L$         | 500            |                  | 101            | 80-120         |      |              |       |
| Manganese                    | 486    | 10                 | $\mu g/L$         | 500            |                  | 97.3           | 80-120         |      |              |       |
| lickel                       | 506    | 50                 | $\mu g/L$         | 500            |                  | 101            | 80-120         |      |              |       |
| elenium                      | 484    | 50                 | $\mu g/L$         | 500            |                  | 96.8           | 80-120         |      |              |       |
| ilver                        | 504    | 2.0                | $\mu g/L$         | 500            |                  | 101            | 80-120         |      |              |       |
| 'hallium                     | 510    | 2.0                | $\mu g/L$         | 500            |                  | 102            | 80-120         |      |              |       |
| <sup>7</sup> anadium         | 489    | 50                 | μg/L              | 500            |                  | 97.8           | 80-120         |      |              |       |
| ine                          | 1030   | 100                | $\mu g/L$         | 1000           |                  | 103            | 80-120         |      |              |       |
| .CS Dup (B292879-BSD1)       |        |                    |                   | Prepared: 10   | 0/20/21 Analy    | yzed: 10/21/2  | 21             |      |              |       |
| ntimony                      | 565    | 10                 | μg/L              | 500            |                  | 113            | 80-120         | 2.92 | 20           |       |
| ursenic                      | 519    | 8.0                | $\mu g/L$         | 500            |                  | 104            | 80-120         | 3.15 | 20           |       |
| Barium                       | 529    | 100                | μg/L              | 500            |                  | 106            | 80-120         | 3.36 | 20           |       |
| Beryllium                    | 543    | 4.0                | μg/L              | 500            |                  | 109            | 80-120         | 3.08 | 20           |       |
| Cadmium                      | 524    | 2.0                | μg/L              | 500            |                  | 105            | 80-120         | 2.84 | 20           |       |
| hromium                      | 499    | 10                 | $\mu g/L$         | 500            |                  | 99.9           | 80-120         | 2.49 | 20           |       |
| Cobalt                       | 498    | 10                 | μg/L              | 500            |                  | 99.5           | 80-120         | 3.03 | 20           |       |
| Copper                       | 999    | 10                 | μg/L              | 1000           |                  | 99.9           | 80-120         | 2.68 | 20           |       |
| ead                          | 521    | 5.0                | μg/L              | 500            |                  | 104            | 80-120         | 3.10 | 20           |       |
| Manganese                    | 499    | 10                 | μg/L              | 500            |                  | 99.9           | 80-120         | 2.62 | 20           |       |
| Jickel                       | 527    | 50                 | μg/L              | 500            |                  | 105            | 80-120         | 4.08 | 20           |       |
| elenium                      | 496    | 50                 | μg/L              | 500            |                  | 99.3           | 80-120         | 2.52 | 20           |       |
| ilver                        | 516    | 2.0                | μg/L              | 500            |                  | 103            | 80-120         | 2.48 | 20           |       |
| 'hallium                     | 521    | 2.0                | μg/L              | 500            |                  | 104            | 80-120         | 2.16 | 20           |       |
| Vanadium                     | 506    | 50                 | μg/L              | 500            |                  | 101            | 80-120         | 3.43 | 20           |       |
| inc                          | 1060   | 100                | μg/L              | 1000           |                  | 106            | 80-120         | 3.12 | 20           |       |
| Batch B292880 - SW-846 3005A |        |                    |                   |                |                  |                |                |      |              |       |
| Blank (B292880-BLK1)         |        |                    |                   | Prepared: 10   | )/20/21 Analy    | vzed· 10/24/2  | 21             |      |              |       |
| Aluminum                     | ND     | 0.050              | mg/L              | Tropared. 10   | 20.21 / mary     | , 200. 10/24/2 |                |      |              |       |
| Calcium                      |        | 0.50               | mg/L<br>mg/L      |                |                  |                |                |      |              |       |
| con                          | ND     | 0.050              | mg/L              |                |                  |                |                |      |              |       |
| Magnesium                    | ND     | 0.050              | mg/L              |                |                  |                |                |      |              |       |
| Potassium                    | ND     |                    | -                 |                |                  |                |                |      |              |       |
| Utabbiuiil                   | ND     | 2.0                | mg/L              |                |                  |                |                |      |              |       |



# QUALITY CONTROL

|                              |              | Reporting |                | Spike        | Source        |             | %REC       |      | RPD   |       |
|------------------------------|--------------|-----------|----------------|--------------|---------------|-------------|------------|------|-------|-------|
| Analyte                      | Result       | Limit     | Units          | Level        | Result        | %REC        | Limits     | RPD  | Limit | Notes |
| Batch B292880 - SW-846 3005A |              |           |                |              |               |             |            |      |       |       |
| .CS (B292880-BS1)            |              |           |                | Prepared: 10 | 0/20/21 Analy | zed: 10/24/ | 21         |      |       |       |
| Aluminum                     | 0.500        | 0.050     | mg/L           | 0.500        |               | 99.9        | 80-120     |      |       |       |
| Calcium                      | 3.97         | 0.50      | mg/L           | 4.00         |               | 99.1        | 80-120     |      |       |       |
| ron                          | 4.03         | 0.050     | mg/L           | 4.00         |               | 101         | 80-120     |      |       |       |
| Magnesium                    | 3.86         | 0.050     | mg/L           | 4.00         |               | 96.4        | 80-120     |      |       |       |
| Potassium                    | 3.81         | 2.0       | mg/L           | 4.00         |               | 95.2        | 80-120     |      |       |       |
| odium                        | 3.87         | 2.0       | mg/L           | 4.00         |               | 96.7        | 80-120     |      |       |       |
| .CS Dup (B292880-BSD1)       |              |           |                | Prepared: 10 | 0/20/21 Analy | zed: 10/24/ | 21         |      |       |       |
| Aluminum                     | 0.509        | 0.050     | mg/L           | 0.500        |               | 102         | 80-120     | 1.88 | 20    |       |
| Calcium                      | 4.10         | 0.50      | mg/L           | 4.00         |               | 102         | 80-120     | 3.24 | 20    |       |
| ron                          | 4.19         | 0.050     | mg/L           | 4.00         |               | 105         | 80-120     | 3.80 | 20    |       |
| Magnesium                    | 3.98         | 0.050     | mg/L           | 4.00         |               | 99.5        | 80-120     | 3.07 | 20    |       |
| Potassium                    | 3.98         | 2.0       | mg/L           | 4.00         |               | 97.8        | 80-120     | 2.74 | 20    |       |
| odium                        | 3.91<br>4.02 | 2.0       | mg/L           | 4.00         |               | 101         | 80-120     | 3.97 | 20    |       |
|                              | 4.02         |           |                | 1.00         |               | 101         | 00 120     | 3.77 | 20    |       |
| Batch B292933 - SW-846 3050B |              |           |                |              |               |             |            |      |       |       |
| Blank (B292933-BLK1)         |              |           |                | Prepared: 10 | 0/21/21 Analy | zed: 10/24/ | 21         |      |       |       |
| Aluminum                     | ND           | 17        | mg/Kg wet      |              |               |             |            |      |       |       |
| ntimony                      | ND           | 1.7       | mg/Kg wet      |              |               |             |            |      |       |       |
| rsenic                       | ND           | 3.3       | mg/Kg wet      |              |               |             |            |      |       |       |
| arium                        | ND           | 1.7       | mg/Kg wet      |              |               |             |            |      |       |       |
| eryllium                     | ND           | 0.17      | mg/Kg wet      |              |               |             |            |      |       |       |
| admium                       | ND           | 0.33      | mg/Kg wet      |              |               |             |            |      |       |       |
| Calcium                      | ND           | 17        | mg/Kg wet      |              |               |             |            |      |       |       |
| Chromium                     | ND           | 0.66      | mg/Kg wet      |              |               |             |            |      |       |       |
| Cobalt                       | ND           | 1.7       | mg/Kg wet      |              |               |             |            |      |       |       |
| Copper                       | ND           | 0.66      | mg/Kg wet      |              |               |             |            |      |       |       |
| ron                          | ND           | 17        | mg/Kg wet      |              |               |             |            |      |       |       |
| ead                          | ND           | 0.50      | mg/Kg wet      |              |               |             |            |      |       |       |
| Magnesium (1997)             | ND           | 17        | mg/Kg wet      |              |               |             |            |      |       |       |
| langanese                    | ND           | 0.33      | mg/Kg wet      |              |               |             |            |      |       |       |
| lickel                       | ND           | 0.66      | mg/Kg wet      |              |               |             |            |      |       |       |
| otassium                     | ND           | 170       | mg/Kg wet      |              |               |             |            |      |       |       |
| elenium                      | ND           | 3.3       | mg/Kg wet      |              |               |             |            |      |       |       |
| ilver                        | ND           | 0.33      | mg/Kg wet      |              |               |             |            |      |       |       |
| odium                        | ND<br>ND     | 170       | mg/Kg wet      |              |               |             |            |      |       |       |
| hallium                      | ND<br>ND     | 1.7       | mg/Kg wet      |              |               |             |            |      |       |       |
| Vanadium                     |              | 0.66      | mg/Kg wet      |              |               |             |            |      |       |       |
| ine                          | ND<br>ND     | 0.66      | mg/Kg wet      |              |               |             |            |      |       |       |
| .CS (B292933-BS1)            | 1.2          |           | - <del>-</del> | Prepared: 10 | 0/21/21 Analy | zed: 10/24/ | 21         |      |       |       |
| Aluminum                     | 6960         | 49        | mg/Kg wet      | 8110         |               | 85.9        | 48.1-151.7 |      |       |       |
| Antimony                     | 104          | 4.9       | mg/Kg wet      | 134          |               | 77.7        | 1.9-200.7  |      |       |       |
| Arsenic                      | 159          | 9.9       | mg/Kg wet      | 170          |               | 93.3        | 82.9-117.6 |      |       |       |
| Barium                       | 178          | 4.9       | mg/Kg wet      | 183          |               | 97.1        | 82.5-117.5 |      |       |       |
| Beryllium                    | 118          | 0.49      | mg/Kg wet      | 116          |               | 102         | 83.4-116.4 |      |       |       |
| Cadmium                      | 86.7         | 0.99      | mg/Kg wet      | 89.5         |               | 96.9        | 82.8-117.3 |      |       |       |
| Calcium                      | 4700         | 49        | mg/Kg wet      | 4810         |               | 97.7        | 81.7-118.1 |      |       |       |
| Chromium                     | 100          | 2.0       | mg/Kg wet      | 101          |               | 99.1        | 82.1-117.8 |      |       |       |
|                              | 85.9         | 4.9       | mg/Kg wet      | 84.8         |               | 101         | 83.5-116.5 |      |       |       |
| ODAII                        |              |           |                |              |               |             |            |      |       |       |
| Cobalt<br>Copper             | 153          | 2.0       | mg/Kg wet      | 149          |               | 103         | 83.9-116.1 |      |       |       |



# QUALITY CONTROL

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Batch B292933 - SW-846 3050B       |        |                    |           |                |                  |              |                |      |              |       |
| LCS (B292933-BS1)                  |        |                    |           | Prepared: 10   | )/21/21 Anal     | yzed: 10/24/ | /21            |      |              |       |
| Lead                               | 160    | 1.5                | mg/Kg wet | 140            |                  | 114          | 82.9-117.1     |      |              |       |
| Magnesium                          | 2210   | 49                 | mg/Kg wet | 2350           |                  | 94.2         | 76.2-123.8     |      |              |       |
| Manganese                          | 655    | 0.99               | mg/Kg wet | 648            |                  | 101          | 81.8-118.2     |      |              |       |
| Nickel                             | 68.8   | 2.0                | mg/Kg wet | 68.3           |                  | 101          | 82.1-117.7     |      |              |       |
| Potassium                          | 2010   | 490                | mg/Kg wet | 2050           |                  | 98.2         | 69.8-129.8     |      |              |       |
| elenium                            | 171    | 9.9                | mg/Kg wet | 182            |                  | 93.7         | 79.7-120.3     |      |              |       |
| Silver                             | 47.9   | 0.99               | mg/Kg wet | 50.1           |                  | 95.5         | 80.2-120       |      |              |       |
| Sodium                             | ND     | 490                | mg/Kg wet | 136            |                  | ×            | 71.6-127.9     |      |              |       |
| Thallium Thallium                  | 98.5   | 4.9                | mg/Kg wet | 87.7           |                  | 112          | 81.1-118.6     |      |              |       |
| Vanadium                           | 153    | 2.0                | mg/Kg wet | 153            |                  | 99.8         | 79.1-120.9     |      |              |       |
| Zinc                               | 221    | 2.0                | mg/Kg wet | 228            |                  | 97.1         | 80.7-118.9     |      |              |       |
| .CS Dup (B292933-BSD1)             |        |                    |           | Prepared: 10   | 0/21/21 Anal     | yzed: 10/24/ | 21             |      |              |       |
| Aluminum                           | 7370   | 50                 | mg/Kg wet | 8110           |                  | 90.8         | 48.1-151.7     | 5.62 | 30           |       |
| Antimony                           | 109    | 5.0                | mg/Kg wet | 134            |                  | 81.6         | 1.9-200.7      | 4.95 | 30           |       |
| Arsenic                            | 163    | 9.9                | mg/Kg wet | 170            |                  | 95.8         | 82.9-117.6     | 2.74 | 30           |       |
| Barium                             | 186    | 5.0                | mg/Kg wet | 183            |                  | 102          | 82.5-117.5     | 4.44 | 20           |       |
| Beryllium                          | 123    | 0.50               | mg/Kg wet | 116            |                  | 106          | 83.4-116.4     | 3.47 | 30           |       |
| Cadmium                            | 89.5   | 0.99               | mg/Kg wet | 89.5           |                  | 100          | 82.8-117.3     | 3.19 | 20           |       |
| Calcium                            | 4900   | 50                 | mg/Kg wet | 4810           |                  | 102          | 81.7-118.1     | 4.14 | 30           |       |
| Chromium                           | 104    | 2.0                | mg/Kg wet | 101            |                  | 103          | 82.1-117.8     | 4.11 | 30           |       |
| Cobalt                             | 89.3   | 5.0                | mg/Kg wet | 84.8           |                  | 105          | 83.5-116.5     | 3.87 | 20           |       |
| Copper                             | 157    | 2.0                | mg/Kg wet | 149            |                  | 105          | 83.9-116.1     | 2.40 | 30           |       |
| ron                                | 13000  | 50                 | mg/Kg wet | 14100          |                  | 92.4         | 60-139.7       | 5.05 | 30           |       |
| Lead                               | 139    | 1.5                | mg/Kg wet | 140            |                  | 99.1         | 82.9-117.1     | 14.2 | 30           |       |
| Magnesium                          | 2320   | 50                 | mg/Kg wet | 2350           |                  | 98.6         | 76.2-123.8     | 4.49 | 30           |       |
| Manganese                          | 681    | 0.99               | mg/Kg wet | 648            |                  | 105          | 81.8-118.2     | 3.86 | 30           |       |
| Nickel                             | 71.4   | 2.0                | mg/Kg wet | 68.3           |                  | 104          | 82.1-117.7     | 3.67 | 30           |       |
| Potassium                          | 2050   | 500                | mg/Kg wet | 2050           |                  | 100          | 69.8-129.8     | 2.02 | 30           |       |
| Selenium                           | 179    | 9.9                | mg/Kg wet | 182            |                  | 98.3         | 79.7-120.3     | 4.75 | 30           |       |
| Silver                             | 50.2   | 0.99               | mg/Kg wet | 50.1           |                  | 100          | 80.2-120       | 4.79 | 30           |       |
| Sodium                             | ND     | 500                | mg/Kg wet | 136            |                  | *            | 71.6-127.9     |      | 30           |       |
| Thallium                           | 103    | 5.0                | mg/Kg wet | 87.7           |                  | 117          | 81.1-118.6     | 4.26 | 30           |       |
| Vanadium                           | 159    | 2.0                | mg/Kg wet | 153            |                  | 104          | 79.1-120.9     | 3.83 | 30           |       |
| Zinc                               | 226    | 2.0                | mg/Kg wet | 228            |                  | 99.1         | 80.7-118.9     | 2.03 | 30           |       |
| Reference (B292933-SRM1) MRL CHECK |        |                    |           | Prepared: 10   | 0/21/21 Anal     | yzed: 10/22/ | /21            |      |              |       |
| ead                                | 0.404  | 0.49               | mg/Kg wet | 0.495          |                  | 81.5         | 80-120         |      |              | J     |
| Batch B292987 - SW-846 7470A Prep  |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B292987-BLK1)               |        |                    |           | Prepared: 10   | )/22/21 Anal     | yzed: 10/23/ | <u></u><br>′21 |      |              |       |
| Mercury                            | ND     | 0.00010            | mg/L      | -              |                  |              |                |      |              |       |



# QUALITY CONTROL

| Analyte                           | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-----------------------------------|---------|--------------------|-------|----------------|------------------|---------------|----------------|-------|--------------|-------|
| Batch B292987 - SW-846 7470A Prep |         |                    |       |                |                  |               |                |       |              |       |
| LCS (B292987-BS1)                 |         |                    |       | Prepared: 10/  | /22/21 Analy     | yzed: 10/23/2 | 21             |       |              |       |
| Mercury                           | 0.00442 | 0.00010            | mg/L  | 0.00402        |                  | 110           | 80-120         |       |              |       |
| LCS Dup (B292987-BSD1)            |         |                    |       | Prepared: 10/  | /22/21 Analy     | yzed: 10/23/2 | 21             |       |              |       |
| Mercury                           | 0.00441 | 0.00010            | mg/L  | 0.00402        |                  | 110           | 80-120         | 0.151 | 20           |       |



# QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                         | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|---------|--------------------|-----------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Batch B292770 - SW-846 9010C    | Testait | Ziiiit             | - Cinto   | 20101          | TOBAIT           | ,,,,,,,     | Zimito         |       | 2            | 1.000 |
| Blank (B292770-BLK1)            |         |                    |           | Prepared: 10   | 0/19/21 Anal     | yzed: 10/20 | /21            |       |              |       |
| Cyanide                         | ND      | 0.43               | mg/Kg wet |                | -                |             |                |       |              |       |
| LCS (B292770-BS1)               |         |                    |           | Prepared: 10   | 0/19/21 Analy    | zed: 10/20  | /21            |       |              |       |
| Cyanide                         | 74      | 2.4                | mg/Kg wet |                |                  | 108         | 80-120         |       |              |       |
| LCS Dup (B292770-BSD1)          |         |                    |           | Prepared: 10   | 0/19/21 Analy    | zed: 10/20  | /21            |       |              |       |
| Cyanide                         | 72      | 2.4                | mg/Kg wet |                | <u> </u>         | 105         | 80-120         | 2.77  | 20           |       |
| Matrix Spike (B292770-MS1)      | Sou     | rce: 21J1070-      | -04       | Prepared: 10   | 0/19/21 Analy    | zed: 10/20  | /21            |       |              |       |
| Cyanide                         | 16      | 0.42               | mg/Kg dry | 15.7           | ND               | 105         | 75-125         |       |              |       |
| Matrix Spike Dup (B292770-MSD1) | Sour    | rce: 21J1070-      | -04       | Prepared: 10   | 0/19/21 Analy    | zed: 10/20  | /21            |       |              |       |
| Cyanide                         | 16      | 0.42               | mg/Kg dry | 15.8           | ND               | 104         | 75-125         | 0.128 | 35           |       |
| Batch B292801 - SW-846 9045C    |         |                    |           |                |                  |             |                |       |              |       |
| LCS (B292801-BS1)               |         |                    |           | Prepared &     | Analyzed: 10     | /19/21      |                |       |              |       |
| рН                              | 6.02    |                    | pH Units  | 6.00           |                  | 100         | 90-110         |       |              |       |
| LCS (B292801-BS2)               |         |                    |           | Prepared &     | Analyzed: 10     | /19/21      |                |       |              |       |
| рН                              | 6.04    |                    | pH Units  | 6.00           |                  | 101         | 90-110         |       |              |       |
| Duplicate (B292801-DUP1)        | Sou     | rce: 21J1070-      | -10       | Prepared &     | Analyzed: 10     | /19/21      |                |       |              |       |
| рН                              | 5.0     |                    | pH Units  |                | 5.0              |             |                | 0.915 | 10           |       |
| Duplicate (B292801-DUP2)        | Sou     | rce: 21J1070-      | -21       | Prepared &     | Analyzed: 10     | /19/21      |                |       |              |       |
| рН                              | 9.2     |                    | pH Units  |                | 9.0              |             |                | 1.42  | 10           |       |
| Batch B292917 - SW-846 9010C    |         |                    |           |                |                  |             |                |       |              |       |
| Blank (B292917-BLK1)            |         |                    |           | Prepared: 10   | 0/21/21 Analy    | zed: 10/22  | /21            |       |              |       |
| Cyanide                         | ND      | 0.010              | mg/L      |                |                  |             |                |       |              |       |
| LCS (B292917-BS1)               |         |                    |           | Prepared: 10   | 0/21/21 Analy    | zed: 10/22  | /21            |       |              |       |
| Cyanide                         | 0.71    | 0.020              | mg/L      | 0.724          |                  | 97.6        | 80-120         |       |              |       |
| LCS Dup (B292917-BSD1)          |         |                    |           | Prepared: 10   | 0/21/21 Analy    | zed: 10/22  | /21            |       |              |       |
| Cyanide                         | 0.69    | 0.020              | mg/L      | 0.724          |                  | 94.7        | 80-120         | 3.00  | 20           |       |
| Batch B292922 - SW-846 9010C    |         |                    |           |                |                  |             |                |       |              |       |
| Blank (B292922-BLK1)            |         |                    |           | Prepared: 10   | 0/21/21 Anal     | yzed: 10/22 | /21            |       |              |       |
| Cyanide                         | ND      | 0.49               | mg/Kg wet |                |                  |             |                |       |              |       |



# QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|------|--------------|-------|
| Batch B292922 - SW-846 9010C |        |                    |           |                |                  |               |                |      |              |       |
| LCS (B292922-BS1)            |        |                    |           | Prepared: 10   | 0/21/21 Analy    | zed: 10/22/2  | .1             |      |              |       |
| Cyanide                      | 76     | 2.5                | mg/Kg wet | 75.5           |                  | 100           | 80-120         |      |              |       |
| LCS Dup (B292922-BSD1)       |        |                    |           | Prepared: 10   | 0/21/21 Analy    | yzed: 10/22/2 | .1             |      |              |       |
| Cyanide                      | 78     | 2.5                | mg/Kg wet | 75.5           |                  | 104           | 80-120         | 3.39 | 20           |       |



# FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                                                                                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                                                                                                                                  |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                                                                                                                       |
| #    | Data exceeded client recommended or regulatory level                                                                                                                                                                                                      |
| ND   | Not Detected                                                                                                                                                                                                                                              |
| RL   | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                     |
| DL   | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                               |
| MCL  | Maximum Contaminant Level                                                                                                                                                                                                                                 |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                                    |
|      | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                     |
| H-03 | Sample received after recommended holding time was exceeded.                                                                                                                                                                                              |
| J    | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                       |
| L-02 | Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. |
| L-04 | Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits Reported value for this compound is likely to be biased on the low side.                                                               |
| R-04 | Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).                                                                                                 |
| V-05 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                                            |
| V-20 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                                                  |
| V-34 | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                                                 |
| V-36 | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.                                                      |



# CERTIFICATIONS

| Analyte               | Certifications         |
|-----------------------|------------------------|
| SW-846 6010D in Soil  |                        |
| Aluminum              | CT,NH,NY,ME,VA,NC      |
| Antimony              | CT,NH,NY,ME,VA,NC      |
| Arsenic               | CT,NH,NY,ME,VA,NC      |
| Barium                | CT,NH,NY,ME,VA,NC      |
| Beryllium             | CT,NH,NY,ME,VA,NC      |
| Cadmium               | CT,NH,NY,ME,VA,NC      |
| Calcium               | CT,NH,NY,ME,VA,NC      |
| Chromium              | CT,NH,NY,ME,VA,NC      |
| Cobalt                | CT,NH,NY,ME,VA,NC      |
| Copper                | CT,NH,NY,ME,VA,NC      |
| Iron                  | CT,NH,NY,ME,VA,NC      |
| Lead                  | CT,NH,NY,AIHA,ME,VA,NC |
| Magnesium             | CT,NH,NY,ME,VA,NC      |
| Manganese             | CT,NH,NY,ME,VA,NC      |
| Nickel                | CT,NH,NY,ME,VA,NC      |
| Potassium             | CT,NH,NY,ME,VA,NC      |
| Selenium              | CT,NH,NY,ME,VA,NC      |
| Silver                | CT,NH,NY,ME,VA,NC      |
| Sodium                | CT,NH,NY,ME,VA,NC      |
| Thallium              | CT,NH,NY,ME,VA,NC      |
| Vanadium              | CT,NH,NY,ME,VA,NC      |
| Zinc                  | CT,NH,NY,ME,VA,NC      |
| SW-846 6010D in Water |                        |
| Aluminum              | CT,NH,NY,ME,VA,NC      |
| Calcium               | CT,NH,NY,ME,VA,NC      |
| Iron                  | CT,NH,NY,ME,VA,NC      |
| Magnesium             | CT,NH,NY,ME,VA,NC      |
| Potassium             | CT,NH,NY,ME,VA,NC      |
| Sodium                | CT,NH,NY,ME,VA,NC      |
| SW-846 6020B in Water |                        |
| Antimony              | CT,NH,NY,ME,VA,NC      |
| Arsenic               | CT,NH,NY,ME,VA,NC      |
| Barium                | CT,NH,NY,ME,VA,NC      |
| Beryllium             | CT,NH,NY,ME,VA,NC      |
| Cadmium               | CT,NH,NY,RI,ME,VA,NC   |
| Chromium              | CT,NH,NY,ME,VA,NC      |
| Cobalt                | CT,NH,NY,ME,VA,NC      |
| Copper                | CT,NH,NY,ME,VA,NC      |
| Lead                  | CT,NH,NY,ME,VA,NC      |
| Manganese             | CT,NH,NY,ME,VA,NC      |
| Nickel                | CT,NH,NY,ME,VA,NC      |
| Selenium              | CT,NH,NY,ME,VA,NC      |
| Silver                | CT,NH,NY,ME,VA,NC      |
| Thallium              | CT,NH,NY,ME,VA,NC      |
| Vanadium              | CT,NH,NY,ME,VA,NC      |
| Zinc                  | CT,NH,NY,ME,VA,NC      |



# CERTIFICATIONS

| Certified Analyses included in this Report |                         |
|--------------------------------------------|-------------------------|
| Analyte                                    | Certifications          |
| SW-846 7470A in Water                      |                         |
| Mercury                                    | CT,NH,NY,NC,ME,VA       |
| SW-846 7471B in Soil                       |                         |
| Mercury                                    | CT,NH,NY,NC,ME,VA       |
| SW-846 8015C in Soil                       |                         |
| Gasoline Range Organics (GRO)              | NY,VA,NH,NC             |
| Diesel Range Organics                      | NY, VA, NH, NC          |
| SW-846 8015C in Water                      |                         |
| Gasoline Range Organics (GRO)              | NY,VA,NH,NC             |
| Diesel Range Organics                      | NY, VA, NH, NC          |
| SW-846 8260D in Soil                       | 141, 445,411,440        |
|                                            |                         |
| Acetone                                    | CT,NH,NY,ME,VA          |
| Acrylonitrile                              | CT,NH,NY,ME,VA          |
| Benzene                                    | CT,NH,NY,ME,VA          |
| Bromobenzene                               | NH,NY,ME,VA             |
| Bromochloromethane                         | NH,NY,ME,VA             |
| Bromodichloromethane                       | CT,NH,NY,ME,VA          |
| Bromoform                                  | CT,NH,NY,ME,VA          |
| Bromomethane                               | CT,NH,NY,ME,VA          |
| 2-Butanone (MEK)                           | CT,NH,NY,ME,VA          |
| tert-Butyl Alcohol (TBA) n-Butylbenzene    | NY,ME<br>CT,NH,NY,ME,VA |
| sec-Butylbenzene                           | CT,NH,NY,ME,VA          |
| tert-Butylbenzene                          | CT,NH,NY,ME,VA          |
| Carbon Disulfide                           | CT,NH,NY,ME,VA          |
| Carbon Tetrachloride                       | CT,NH,NY,ME,VA          |
| Chlorobenzene                              | CT,NH,NY,ME,VA          |
| Chlorodibromomethane                       | CT,NH,NY,ME,VA          |
| Chloroethane                               | CT,NH,NY,ME,VA          |
| Chloroform                                 | CT,NH,NY,ME,VA          |
| Chloromethane                              | CT,NH,NY,ME,VA          |
| 2-Chlorotoluene                            | CT,NH,NY,ME,VA          |
| 4-Chlorotoluene                            | CT,NH,NY,ME,VA          |
| 1,2-Dibromo-3-chloropropane (DBCP)         | NY,ME                   |
| 1,2-Dibromoethane (EDB)                    | NH,NY                   |
| Dibromomethane                             | NH,NY,ME,VA             |
| 1,2-Dichlorobenzene                        | CT,NH,NY,ME,VA          |
| 1,3-Dichlorobenzene                        | CT,NH,NY,ME,VA          |
| 1,4-Dichlorobenzene                        | CT,NH,NY,ME,VA          |
| trans-1,4-Dichloro-2-butene                | NY,ME                   |
| Dichlorodifluoromethane (Freon 12)         | NH,NY,ME,VA             |
| 1,1-Dichloroethane                         | CT,NH,NY,ME,VA          |
| 1,2-Dichloroethane                         | CT,NH,NY,ME,VA          |
| 1,1-Dichloroethylene                       | CT,NH,NY,ME,VA          |
| cis-1,2-Dichloroethylene                   | CT,NH,NY,ME,VA          |
| trans-1,2-Dichloroethylene                 | CT,NH,NY,ME,VA          |



# CERTIFICATIONS

| SW-846 8260D in Soil  1,2-Dichloropropane CT,NH,NY,ME,VA  1,3-Dichloropropane NH,NY,ME,VA  2,2-Dichloropropane NH,NY,ME,VA  1,1-Dichloropropene NH,NY,ME,VA  cis-1,3-Dichloropropene CT,NH,NY,ME,VA  trans-1,3-Dichloropropene CT,NH,NY,ME,VA  Diethyl Ether ME  1,4-Dioxane NY,ME  Ethylbenzene CT,NH,NY,ME,VA |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1,3-Dichloropropane NH,NY,ME,VA 2,2-Dichloropropane NH,NY,ME,VA 1,1-Dichloropropene NH,NY,ME,VA cis-1,3-Dichloropropene CT,NH,NY,ME,VA trans-1,3-Dichloropropene CT,NH,NY,ME,VA Diethyl Ether ME 1,4-Dioxane NY,ME                                                                                              |  |
| 2,2-Dichloropropane NH,NY,ME,VA 1,1-Dichloropropene NH,NY,ME,VA cis-1,3-Dichloropropene CT,NH,NY,ME,VA trans-1,3-Dichloropropene CT,NH,NY,ME,VA Diethyl Ether ME 1,4-Dioxane NY,ME                                                                                                                              |  |
| 1,1-Dichloropropene NH,NY,ME,VA cis-1,3-Dichloropropene CT,NH,NY,ME,VA trans-1,3-Dichloropropene CT,NH,NY,ME,VA Diethyl Ether ME 1,4-Dioxane NY,ME                                                                                                                                                              |  |
| cis-1,3-Dichloropropene CT,NH,NY,ME,VA trans-1,3-Dichloropropene CT,NH,NY,ME,VA Diethyl Ether ME 1,4-Dioxane NY,ME                                                                                                                                                                                              |  |
| trans-1,3-Dichloropropene CT,NH,NY,ME,VA Diethyl Ether ME 1,4-Dioxane NY,ME                                                                                                                                                                                                                                     |  |
| Diethyl Ether ME<br>1,4-Dioxane NY,ME                                                                                                                                                                                                                                                                           |  |
| 1,4-Dioxane NY,ME                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                 |  |
| Ethylbenzene CT.NH.NY.ME.VA                                                                                                                                                                                                                                                                                     |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                           |  |
| Hexachlorobutadiene NH,NY,ME,VA                                                                                                                                                                                                                                                                                 |  |
| 2-Hexanone (MBK) CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                 |  |
| Isopropylbenzene (Cumene) CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                        |  |
| p-Isopropyltoluene (p-Cymene) NH,NY                                                                                                                                                                                                                                                                             |  |
| Methyl Acetate NY,ME                                                                                                                                                                                                                                                                                            |  |
| Methyl tert-Butyl Ether (MTBE) NY,ME,VA                                                                                                                                                                                                                                                                         |  |
| Methyl Cyclohexane NY                                                                                                                                                                                                                                                                                           |  |
| Methylene Chloride CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                               |  |
| 4-Methyl-2-pentanone (MIBK) CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                      |  |
| Naphthalene NH,NY,ME,VA                                                                                                                                                                                                                                                                                         |  |
| n-Propylbenzene NH,NY,ME                                                                                                                                                                                                                                                                                        |  |
| Styrene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                          |  |
| 1,1,1,2-Tetrachloroethane CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                        |  |
| 1,1,2,2-Tetrachloroethane CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                        |  |
| Tetrachloroethylene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                              |  |
| Toluene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                          |  |
| 1,2,3-Trichlorobenzene NY,ME                                                                                                                                                                                                                                                                                    |  |
| 1,2,4-Trichlorobenzene NH,NY,ME,VA                                                                                                                                                                                                                                                                              |  |
| 1,3,5-Trichlorobenzene ME                                                                                                                                                                                                                                                                                       |  |
| 1,1,1-Trichloroethane CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                            |  |
| 1,1,2-Trichloroethane CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                            |  |
| Trichloroethylene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                |  |
| Trichlorofluoromethane (Freon 11) CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                |  |
| 1,2,3-Trichloropropane NH,NY,ME,VA                                                                                                                                                                                                                                                                              |  |
| 1,2,4-Trimethylbenzene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                           |  |
| 1,3,5-Trimethylbenzene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                           |  |
| Vinyl Chloride CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                   |  |
| m+p Xylene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                       |  |
| o-Xylene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                         |  |
| SW-846 8260D in Water                                                                                                                                                                                                                                                                                           |  |
| Acetone CT,ME,NH,VA,NY                                                                                                                                                                                                                                                                                          |  |
| Acrylonitrile CT,ME,NH,VA,NY                                                                                                                                                                                                                                                                                    |  |
| tert-Amyl Methyl Ether (TAME) ME,NH,VA,NY                                                                                                                                                                                                                                                                       |  |
| Benzene CT,ME,NH,VA,NY                                                                                                                                                                                                                                                                                          |  |
| Bromobenzene ME,NY                                                                                                                                                                                                                                                                                              |  |
| Bromochloromethane ME,NH,VA,NY                                                                                                                                                                                                                                                                                  |  |
| Bromodichloromethane CT,ME,NH,VA,NY                                                                                                                                                                                                                                                                             |  |



# CERTIFICATIONS

| Analyte                            | Certifications |  |
|------------------------------------|----------------|--|
| SW-846 8260D in Water              |                |  |
| Bromoform                          | CT,ME,NH,VA,NY |  |
| Bromomethane                       | CT,ME,NH,VA,NY |  |
| 2-Butanone (MEK)                   | CT,ME,NH,VA,NY |  |
| tert-Butyl Alcohol (TBA)           | ME,NH,VA,NY    |  |
| n-Butylbenzene                     | ME,VA,NY       |  |
| sec-Butylbenzene                   | ME,VA,NY       |  |
| tert-Butylbenzene                  | ME,VA,NY       |  |
| tert-Butyl Ethyl Ether (TBEE)      | ME,NH,VA,NY    |  |
| Carbon Disulfide                   | CT,ME,NH,VA,NY |  |
| Carbon Tetrachloride               | CT,ME,NH,VA,NY |  |
| Chlorobenzene                      | CT,ME,NH,VA,NY |  |
| Chlorodibromomethane               | CT,ME,NH,VA,NY |  |
| Chloroethane                       | CT,ME,NH,VA,NY |  |
| Chloroform                         | CT,ME,NH,VA,NY |  |
| Chloromethane                      | CT,ME,NH,VA,NY |  |
| 2-Chlorotoluene                    | ME,NH,VA,NY    |  |
| 4-Chlorotoluene                    | ME,NH,VA,NY    |  |
| 1,2-Dibromo-3-chloropropane (DBCP) | ME,NY          |  |
| 1,2-Dibromoethane (EDB)            | ME,NY          |  |
| Dibromomethane                     | ME,NH,VA,NY    |  |
| 1,2-Dichlorobenzene                | CT,ME,NH,VA,NY |  |
| 1,3-Dichlorobenzene                | CT,ME,NH,VA,NY |  |
| 1,4-Dichlorobenzene                | CT,ME,NH,VA,NY |  |
| trans-1,4-Dichloro-2-butene        | ME,NH,VA,NY    |  |
| Dichlorodifluoromethane (Freon 12) | ME,NH,VA,NY    |  |
| 1,1-Dichloroethane                 | CT,ME,NH,VA,NY |  |
| 1,2-Dichloroethane                 | CT,ME,NH,VA,NY |  |
| 1,1-Dichloroethylene               | CT,ME,NH,VA,NY |  |
| cis-1,2-Dichloroethylene           | ME,NY          |  |
| trans-1,2-Dichloroethylene         | CT,ME,NH,VA,NY |  |
| 1,2-Dichloropropane                | CT,ME,NH,VA,NY |  |
| 1,3-Dichloropropane                | ME,VA,NY       |  |
| 2,2-Dichloropropane                | ME,NH,VA,NY    |  |
| 1,1-Dichloropropene                | ME,NH,VA,NY    |  |
| cis-1,3-Dichloropropene            | CT,ME,NH,VA,NY |  |
| trans-1,3-Dichloropropene          | CT,ME,NH,VA,NY |  |
| Diethyl Ether                      | ME,NY          |  |
| Diisopropyl Ether (DIPE)           | ME,NH,VA,NY    |  |
| 1,4-Dioxane                        | ME,NY          |  |
| Ethylbenzene                       | CT,ME,NH,VA,NY |  |
| Hexachlorobutadiene                | CT,ME,NH,VA,NY |  |
| 2-Hexanone (MBK)                   | CT,ME,NH,VA,NY |  |
| Isopropylbenzene (Cumene)          | ME,VA,NY       |  |
| p-Isopropyltoluene (p-Cymene)      | CT,ME,NH,VA,NY |  |
| Methyl Acetate                     | ME,NY          |  |
| Methyl tert-Butyl Ether (MTBE)     | CT,ME,NH,VA,NY |  |
| Methyl Cyclohexane                 | NY             |  |
|                                    |                |  |



# CERTIFICATIONS

| Analyte                                           | Certifications    |
|---------------------------------------------------|-------------------|
| SW-846 8260D in Water                             |                   |
| Methylene Chloride                                | CT,ME,NH,VA,NY    |
| 4-Methyl-2-pentanone (MIBK)                       | CT,ME,NH,VA,NY    |
| Naphthalene                                       | ME,NH,VA,NY       |
| n-Propylbenzene                                   | CT,ME,NH,VA,NY    |
| Styrene                                           | CT,ME,NH,VA,NY    |
| 1,1,1,2-Tetrachloroethane                         | CT,ME,NH,VA,NY    |
| 1,1,2,2-Tetrachloroethane                         | CT,ME,NH,VA,NY    |
| Tetrachloroethylene                               | CT,ME,NH,VA,NY    |
| Toluene                                           | CT,ME,NH,VA,NY    |
| 1,2,3-Trichlorobenzene                            | ME,NH,VA,NY       |
| 1,2,4-Trichlorobenzene                            | CT,ME,NH,VA,NY    |
| 1,3,5-Trichlorobenzene                            | ME                |
| 1,1,1-Trichloroethane                             | CT,ME,NH,VA,NY    |
| 1,1,2-Trichloroethane                             | CT,ME,NH,VA,NY    |
| Trichloroethylene                                 | CT,ME,NH,VA,NY    |
| Trichlorofluoromethane (Freon 11)                 | CT,ME,NH,VA,NY    |
| 1,2,3-Trichloropropane                            | ME,NH,VA,NY       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | VA,NY             |
| 1,2,4-Trimethylbenzene                            | ME,VA,NY          |
| 1,3,5-Trimethylbenzene                            | ME, VA, NY        |
| Vinyl Chloride                                    | CT,ME,NH,VA,NY    |
| m+p Xylene                                        | CT,ME,NH,VA,NY    |
| o-Xylene                                          | CT,ME,NH,VA,NY    |
| SW-846 9014 in Soil                               |                   |
| Cyanide                                           | NY,CT,NC,ME,NH,VA |
| SW-846 9014 in Water                              |                   |
| Cyanide                                           | NY,CT,NH,NC,ME,VA |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

001216

Phone: 413-525-2332

Face Analytical "

Fax: 413-525-6405

http://www.pacelabs.com

CHAIN OF CUSTODY RECORD

East Longmeadow, MA 01028 39 Spruce Street

Doc # 381 Rev 5\_07/13/2021

Prepackaged Cooler? Y / N Glassware in freezer? Y / N esponsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers \*Pace Analytical is not Tutai Number Of Preservation Codes: Courier Use Only X = Sodium Hydroxide B = Sodium Bisulfate 0 = Other (please 0 = Other (please define) Preservation Code S = Sulfuric Acid BACTERIA A = Air S = Soil SL = Studge SOL = Solid N = Nitric Acid PLASTIC ENCORE GLASS M = Methanol VIALS T = Sodium Thiosulfate define) 무무 possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and Alla-LAP, LLC Accredited Chromatogram AIHA-LAP,LLC Code cotumn above: not be held accountable. ANALYSIS REQUESTED Other <u>gonide</u> بر CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required 201 ENCORE BACTERIA Field Filtered Field Fittered Lab to Fitter Lab to Fitter PCB ONL GLASS PLASTIC School MWRA Sostertag a rampolitiON SOXHLET d 2 VIALS d 0 0 10. Pay Solution 10. Pays Matrix Conc Code Code Municipality Brownfield 3-Day 3 # OISMd 4-Day **(**) (2) **(**2) 6 21 J EB: Eguip blank CLP Like Data Pkg Required: COMP/GRAB TB: Trip Blank Gab Stab Qage D Sign Sign Ses Ses ويتعام On cap Grab <u>م</u> Grab PFAS 10-Day (std) OTHE NA DIZO Ending Date/Time Email To: Government ax To#: Format: Other: Federal 7-Day -Day 2-Day Client Comments: City Project Entity Beginning Date/Time 12/21/01 2/51/01 12/5/21 Dr. Achinitan, VA 33303 Sostertag (Oramby) com Access COC's and Support Requests HRP-58-812-15-17-211015 10-18-51 F100 HRP-6-DVP04-6-2-211015 MRP-58213 -5-7-211015 HRP-56213-16-18-211015 Date/Time; 121
10/15/py 121
Date/Time: 4/21 HAP-50312-5-7-211015 Date/Time: 1600 10-15-21 <u>5</u> HRP-56311-5-7-211015 HRP-56813-6-1-311015 HR1-38312-0-12-211015 HAP-36911-0-1-011015 10/15 HAI Client Sample ID / Description HRP-TROS-311015 12/51/0 Date/Time: Date/Time: 61 0 Project Location: UDD N: Ray Project Manager: 6164 Gro See 1.40.5/0.5 Durand Address: 4350 N Frair Ry Colmpany Maines signature) Sampled By: Aume 5 9 202 Received by: (signature) Pace Work Order# フ Invoice Recipient; Project Number: elinquished by: Lab Comments Phone:

0101010

Phone: 413-525-2332

Pace Analytical

Fax: 413-525-6405

http://www.pacelabs.com

CHAIN OF CUSTODY RECORD

39 Spruce Street East Longmeadow, MA 01028

ANALYSIS REQUESTED

Doc # 381 Rev 5\_07/13/2021

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? Y / N 'Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers \*Pace Analytical is not Total Number Of Preservation Codes: X = Sodium Hydroxide Courier Use Only B = Sodium Bisulfate 0 = Other (please 0 = Other (please define) S = Sulfuric Acid Preservation Code A = Air S = Soil SL = Sludge SOL = Solid N = Nitric Acid BACTERIA ENCORE PLASTIC M = Methanol GLASS VAALS T = Sodium Thiosulfate define) HH possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and Alka-LAP, LLC Accredited Chromatogram

AIHA-LAP, LLC not be held accountable. Code column above: 080 χ Other X メメメ Cyanide VOCs TPH GRO ત્રાહ્ય જ X HQ HQ CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required Refals ENCORE BACTERIA Field Filtered Field Filtered PCB ONL) Lab to Filter Lab to Fitter PLASTIC d School MBTA Sosterteg (Oxylle NON SOXHLET VIALS GLASS e S 0 3 3 3 SOXHLET I 0 0 0 0 コ 10-pay Due Dares Matrix Conc Code Code Ramboll EDD Municipality Brownfield # QISMd 3-Day EB: Equipment Blank 4-Day S 3 S 21 3 LP Like Data Pkg Required; COMP/GRAB Srab gread 6 Prab Parab ر الا Grab Grab <u>م</u> 2 عصح See b PFAS 10-Day (std) Officer | VA DE D Government Ending Date/Time Email To: ax To# ormat: Federal 2-Day Other; 7-Day -Day City | TRP-MW214-6-2-311014 | 1953 | TRP-MW214-6-2-311014 | 1953 | TRP-MW214-5-9-211014 | 19/14/21 | Project Entity 4350 N. Fairfux Dr., Arhington, VA 23202 Beginning Date/Time HRP-MW209-15-17-21M3 19654 16/13/01 HAP-MW308-5-4-211014 6920 N payal St Alleandin VA invoice Recipient: Sostertaga rampal. com Access COC's and Support Requests HRP-MW208-18-20-216A Date/Time: 160 HRP-mwa09-57-311013 10-18-71 1700 2 HRP-MW809-0-1-211013 10/15 /410 HAP-MU308-6-1-311014 HRP- EB03-211013 Chent Sample ID / Description Date/Time: 4 10/157 Date/Time: Jate/Time: Date/Time: PAGE NAME HRP PILES SC Grose Laurand. Junuary A Company Name: Rambot Project Location: 1400 <u>o</u> Project Manager: 610 Sampled By: AMM 9 by: (signature) Pace Quote Name/Number 3 yed by: (signature) Received by: (signature) Pace Work Order# guished by: (signa Relinguished by (sign 3 Project Number: Lab Comments: Refindutshed Address:

010100

Phone: 413-525-2332

Pace Analytical "

Fax: 413-525-6405

http://www.pacelabs.com

39 Spruce Street

CHAIN OF CUSTODY RECORD

Page 2 of 3 Doc # 381 Rev 5\_07/13/2021 East Longmeadow, MA 01028

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Glassware in the fridge? Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what from prepacked coolers \*Pace Analytical is not total Number Of: 1 Matrix Codes: GW = Ground Water WW = Waste Water Preservation Codes: DW = Drinking Water X = Sodium Hydroxide Courier Use Only A = Air S = Soil SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate O = Other (please Preservation Code S = Sulfuric Acid BACTERIA PLASTIC N ≅ Nitric Acid ENCORE GLASS\_ M = Methanol VIALS T = Sodium Thiosulfate H= HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate MELAC and AHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above; ANALYSIS REQUESTED I MR TAL MA OH Cyanid 2005 メメメ CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required Retals BACTERIA Field Filtered Field Filtered PCB ONLY Lab to Fitter Lab to Filter COMP/GRAB Matrix Conc. Code VIALS GLASS PLASTIC 4 School MBTA Email To: Sostertes & Rumbill wollow SOXHLET þ SOXHLET 0 0 0 0 10-Day K Ove Date? C Ramboll & DO Blank Municipality Brownfield 3 # QISMd 3-Day 4-Day 3 CLP Like Data Pkg Required: guap Grayer) Date/Time: , adj mEB: Equipment الاهم Client Comments: TB: Trip Blank PFAS 10-Day (std) OFF BED Ending Date/Time Government ormat: 2-Day Other: Federal -Ďay Ċţ Project Entity 12/5/01 12/5/01 12/5/01 12/5/01 Access COC's and Support Requests Project Location: 1400 N Royal St Alexandria, VA Invoice Recipient: Sostertage Rambollicom D-15-21 1400 Date/Time Address: 4350 N. Fairfax Dr. Arlington VA Prone: 703-316- 9293 5 Date/Time: MD 10-18-21 Mag 21015-F1-21-11685-PM Client Sample 1D / Description HRP-1804-911015 HRP-TB04-21105 10/15/21 Date/Time: 10/15/21 0 Date/Time: Project Manager: Ours Gross BUDTULA phone Morris Company Name: 1-4m to 1 Sampled By: Anne Ke IL 18 Pace Quote Name/Number:✓ d by: (signature) Relinquished by: (signature) Pace Work Order# Received by (signature) Project Number: Lab Comments: 3

# Fed -x

## TRACK ANOTHER SHIPMENT

285036984893

ADD NICKNAME



Delivered

THIS IS 1 OF 3 PIECES



## **DELIVERED**

Signed for by: R.PIETRIAS

GET STATUS UPDATES

OBTAIN PROOF OF DELIVERY

FROM

Mechanicsville, VA US

то

EAST LONGMEADOW, MA US

# 3 Piece Shipment

| TRACKING ID           | STATUS    | SHIP<br>Date | DELIVERY<br>Date | HANDLING PIECE<br>Units | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|-----------------------|-----------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 285036984893 (master) | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 285036986793          | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 285036988752          | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

# Travel History

TIME ZONE

Local Scan Time

Tuesday, October 19, 2021

9:54 AM

EAST LONGMEADOW, MA

Delivered

8:26 AM

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client                    | Ram          | 2011                                    |              |                |                |               |                         |              |       |
|---------------------------|--------------|-----------------------------------------|--------------|----------------|----------------|---------------|-------------------------|--------------|-------|
| Receiv                    | red By       | RU                                      |              | Date           | 10/10          | 9121          | Time                    | 950          | À     |
| How were th               | ne samples   | In Cooler                               | $\neg$       | No Cooler      |                | On Ice        |                         | No Ice       | •     |
| recei                     | ved?         | Direct from Sam                         | olina        | •              | -              | -<br>Ambient  |                         | Melted Ice   |       |
|                           | 1 111        |                                         | By Gun #     | 5              | •              | Actual Ten    | nn l ( sa-              |              |       |
| Were sam                  |              |                                         | •            |                |                |               |                         | 101          | -     |
| Temperatu                 |              | \                                       | By Blank #   |                |                | Actual Tem    |                         |              | -     |
|                           | Custody S    |                                         | <u> </u>     | -              |                | s Tampered    |                         |              | -     |
|                           |              | iquisried <i>:</i><br>eaking/loose caps | 1 00 0011000 |                | s Chain Ag<br> | ree With Sa   | mples?                  |              |       |
| Is COC in in              |              |                                         | on any sam   | •              | halos rocci    | Suad within h | alding time?            | - PH         | act - |
| Did COC in                | •            | Client                                  | -            | Analysis       | ripies recei   |               | olding time?<br>er Name | <u>+ h</u>   | igici |
| pertinent In              |              | Project                                 |              | . Allalysis .  | <u> </u>       | •             | Dates/Times             |              | •     |
| •                         |              | d out and legible?                      |              | . 153          |                | Concellor     | Dates/Times             |              | ,     |
| Are there La              |              | •                                       | <del></del>  | •              | Who wa         | s notified?   |                         |              |       |
| Are there Ru              |              |                                         | <u> </u>     | •              |                | s notified?   | *****                   | ·····        | •     |
| Are there Sh              | ort Holds?   |                                         | <del></del>  | •              |                | s notified?   | The all                 |              | •     |
| Is there enou             | igh Volume   | ?                                       | <del></del>  | •              |                |               | 1 12101                 |              | •     |
|                           | _            | ere applicable?                         | <del></del>  |                | MS/MSD?        | E             |                         |              |       |
| Proper Medi               | a/Container  | s Used?                                 | て            | •              |                | samples red   | uired?                  | <del>-</del> |       |
| Were trip bla             | inks receive | ed?                                     | 7            |                | On COC?        | •             |                         | •            |       |
| Do all sampl              | es have the  | proper pH?                              |              | Acid           | T              |               | Base -                  | T            |       |
| Vials                     | #            | Containers:                             | #            |                |                | #             |                         |              | #     |
| Unp-                      |              | 1 Liter Amb.                            |              | 1 Liter        | Plastic        |               | 16 oz                   | Amb.         |       |
| HCL-                      | Ч            | 500 mL Amb.                             |              | 500 mL         | Plastic        |               | 8oz <b>A</b> m          | b,Clear      | 33    |
| Meoh-                     | 6            | 250 mL Amb.                             |              | 250 mL         |                | a<br>a        | 4oz Æm                  |              | 2     |
| Bisulfate-                | <u> </u>     | Flashpoint                              |              | Col./Ba        |                |               | 2oz Am                  |              |       |
| DI-                       |              | Other Glass                             |              | Other I        | ~~~~           | <u> </u>      | Enc                     | ore          |       |
| Thiosulfate-<br>Sulfuric- |              | SOC Kit                                 |              | Plastic        |                |               | Frozen:                 |              | -     |
| Sullulic-                 |              | Perchlorate                             |              | Ziplo          |                |               |                         |              |       |
|                           |              |                                         |              | Unused N       | Nedia          |               |                         |              |       |
| Vials                     | #            | Containers:                             | #            |                |                | #             |                         |              | #     |
| Unp-                      |              | 1 Liter Amb.                            |              | 1 Liter I      |                |               | 16 oz                   |              |       |
| HCL-<br>Meoh-             |              | 500 mL Amb.                             |              | 500 mL         |                | <del></del>   | 8oz Am                  |              |       |
| Bisulfate-                |              | 250 mL Amb.<br>Col./Bacteria            |              | 250 mL         |                |               | 4oz Am                  |              |       |
| Disdilate-                |              | Other Plastic                           |              | Flash<br>Other |                |               | 2oz Am<br>Enc           | We then      |       |
| Thiosulfate-              |              | SOC Kit                                 |              | Plastic        |                | -             | Frozen:                 | ore j        |       |
| Sulfuric-                 |              | Perchlorate                             |              | Ziplo          |                |               | TOZOTI.                 |              |       |
| Comments:                 |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |



October 19, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St, Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21J0524

Enclosed are results of analyses for samples as received by the laboratory on October 9, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# **Table of Contents**

| Sample Summary                          | 4  |
|-----------------------------------------|----|
| Case Narrative                          | 6  |
| Sample Results                          | 9  |
| 21J0524-01                              | 9  |
| 21J0524-02                              | 11 |
| 21J0524-03                              | 13 |
| 21J0524-05                              | 18 |
| 21J0524-06                              | 19 |
| 21J0524-07                              | 23 |
| 21J0524-08                              | 29 |
| 21J0524-09                              | 32 |
| 21J0524-10                              | 36 |
| 21J0524-11                              | 40 |
| 21J0524-12                              | 46 |
| Sample Preparation Information          | 52 |
| QC Data                                 | 55 |
| Volatile Organic Compounds by GC/MS     | 55 |
| B292273                                 | 55 |
| Semivolatile Organic Compounds by GC/MS | 60 |
| B292324                                 | 60 |
| B292394                                 | 64 |
| Polychlorinated Biphenyls By GC/ECD     | 70 |
| B292279                                 | 70 |
| B292281                                 | 71 |
| Metals Analyses (Total)                 | 73 |

# Table of Contents (continued)

| B292195                                                              | 73 |
|----------------------------------------------------------------------|----|
| B292205                                                              | 73 |
| B292300                                                              | 74 |
| B292487                                                              | 75 |
| B292509                                                              | 76 |
| B292561                                                              | 76 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 78 |
| B292214                                                              | 78 |
| B292228                                                              | 78 |
| Dual Column RPD Report                                               | 79 |
| Flag/Qualifier Summary                                               | 85 |
| Certifications                                                       | 86 |
| Chain of Custody/Sample Receipt                                      | 94 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 10/19/2021

PROJECT NUMBER:

### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0524

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB221-0-1-211005   | 21J0524-01 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8082A |         |
| HRP-SB221-4-5-211005   | 21J0524-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8082A |         |
| HRP-SB226-0-1-211005   | 21J0524-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8082A |         |
|                        |            |        |                    | SW-846 8270E |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-EB01-211007        | 21J0524-05 | Water  |                    | SW-846 8082A |         |
| HRP-SB202-0-1-211007   | 21J0524-06 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB202-25-30-211007 | 21J0524-07 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-EB02-211007        | 21J0524-08 | Water  |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 6020B |         |
|                        |            |        |                    | SW-846 7470A |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB201-0-1-211008   | 21J0524-09 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-DUP01-0-1-211008   | 21J0524-10 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB201-10-12-211008 | 21J0524-11 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 8270E |         |
|                        |            |        |                    |              |         |



ATTN: Sarah Ostertag

39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

PURCHASE ORDER NUMBER:

REPORT DATE: 10/19/2021

[none]

PROJECT NUMBER:

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0524

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB201-24-26-211008 | 21J0524-12 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8260D |         |
|                        |            |        |                    | SW-846 8270E |         |



# CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.



### SW-846 8260D

### **Qualifications:**

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

### Analyte & Samples(s) Qualified:

### Dichlorodifluoromethane (Freon 12

21J0524-07[HRP-SB202-25-30-211007], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], B292273-BLK1, B292273-BS1, B292273-BSD1, S064182-CCV1

### tert-Butyl Alcohol (TBA)

21J0524-07[HRP-SB202-25-30-211007], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], B292273-BLK1, B292273-BS1,

### B292273-BSD1, S064182-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

# estimated. Analyte & Samples(s) Qualified:

### **Bromomethane**

21J0524-07[HRP-SB202-25-30-211007], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], B292273-BLK1, B292273-BS1,

### B292273-BSD1, S064182-CCV1

V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

### 2-Hexanone (MBK)

B292273-BS1, B292273-BSD1, S064182-CCV1

### Acetone

B292273-BS1, B292273-BSD1, S064182-CCV1

### SW-846 8270E

### Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

## N-Nitrosodimethylamine

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1

### V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

### 2.4-Dinitrophenol

21J0524-03[HRP-SB226-0-1-211005], 21J0524-06[HRP-SB202-0-1-211007], 21J0524-07[HRP-SB202-25-30-211007], 21J0524-09[HRP-SB201-0-1-211008], 21J0524-07[HRP-SB201-0-1-211008], 21J0524-07[HRP-SB201-0-1-21008], 21J0524-07[HRP-SB201-0-1-21008], 21J021J0524-10[HRP-DUP01-0-1-211008], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], B292394-BK1, B292394-BS1, B2925, B2925, B2925, B2925, B2925, B2925, B2925, B2925, B2925, B29S064307-CCV1, S064335-CCV1

### Benzidine

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1, S064314-CCV1

### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

## Analyte & Samples(s) Qualified:

## 4-Nitrophenol

21J0524-07[HRP-SB202-25-30-211007], 21J0524-09[HRP-SB201-0-1-211008], 21J0524-10[HRP-DUP01-0-1-211008], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], S064335-CCV1

### Benzidine

 $21J0524-08[HRP-EB02-211007],\,B292324-BLK1,\,B292324-BS1,\,B292324-BSD1,\,S064314-CCV1$ 

### Bis(2-chloroisopropyl)ether

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1, S064314-CCV1

### Hexachlorocyclopentadiene

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1, S064314-CCV1

### N-Nitrosodimethylamine

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1, S064314-CCV1



Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

### Analyte & Samples(s) Qualified:

### 2,4-Dinitrophenol

B292394-BS1, B292394-BSD1, S064307-CCV1, S064335-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

### 2,4-Dinitrophenol

21J0524-03[HRP-SB202-0-1-211005], 21J0524-06[HRP-SB202-0-1-211007], 21J0524-07[HRP-SB202-25-30-211007], 21J0524-09[HRP-SB201-0-1-211008], 21J0524-07[HRP-SB202-25-30-211007], 21J0524-09[HRP-SB201-0-1-211008], 21J0524-09[HRP-SB201-0-1-211008],

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

### Analyte & Samples(s) Qualified:

### 4-Chloroaniline

21J0524-03[HRP-SB202-0-1-211005], 21J0524-06[HRP-SB202-0-1-211007], 21J0524-07[HRP-SB202-25-30-211007], 21J0524-08[HRP-EB02-211007], 21J0524-09[HRP-SB201-0-1-211008], 21J0524-10[HRP-DUP01-0-1-211008], 21J0524-11[HRP-SB201-10-12-211008], 21J0524-12[HRP-SB201-24-26-211008], 21J0524-12[HRP-SB201-0-12-211008], 21J0524-12[HRP-S B292324-BLK1, B292324-BS1, B292324-BSD1, B292394-BLK1, B292394-BS1, B292394-BSD1, S064307-CCV1, S064314-CCV1, S064335-CCV1, S064307-CCV1, S06430

### Pyridine

21J0524-08[HRP-EB02-211007], B292324-BLK1, B292324-BS1, B292324-BSD1, S064314-CCV1

SW-846 9045C

### Qualifications:

H-03

Sample received after recommended holding time was exceeded.

### Analyte & Samples(s) Qualified:

21J0524-03[HRP-SB226-0-1-211005]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Jua Wattheyta



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB221-0-1-211005** Sampled: 10/5/2021 13:40

Sample ID: 21J0524-01
Sample Matrix: Soil

# Polychlorinated Biphenyls By GC/ECD

| Torychiof mareu Bipmenyis By GC/ECD |         |        |       |                |          |           |              |                  |                       |         |  |
|-------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|--|
| Analyte                             | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |
| Aroclor-1016 [1]                    | ND      | 0.090  | 0.054 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1221 [1]                    | ND      | 0.090  | 0.059 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1232 [1]                    | ND      | 0.090  | 0.041 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1242 [1]                    | ND      | 0.090  | 0.045 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1248 [1]                    | ND      | 0.090  | 0.054 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1254 [1]                    | ND      | 0.090  | 0.059 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1260 [1]                    | ND      | 0.090  | 0.063 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1262 [1]                    | ND      | 0.090  | 0.045 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Aroclor-1268 [1]                    | ND      | 0.090  | 0.036 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 12:46        | TG      |  |
| Surrogates                          |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |  |
| Decachlorobiphenyl [1]              |         | 90.7   |       | 30-150         |          |           |              |                  | 10/15/21 12:46        |         |  |
| Decachlorobiphenyl [2]              |         | 78.1   |       | 30-150         |          |           |              |                  | 10/15/21 12:46        |         |  |
| Tetrachloro-m-xylene [1]            |         | 90.5   |       | 30-150         |          |           |              |                  | 10/15/21 12:46        |         |  |
| Tetrachloro-m-xylene [2]            |         | 85.8   |       | 30-150         |          |           |              |                  | 10/15/21 12:46        |         |  |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB221-0-1-211005** Sampled: 10/5/2021 13:40

Sample ID: 21J0524-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 88.7    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:45 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB221-4-5-211005** Sampled: 10/5/2021 14:27

Sample ID: 21J0524-02
Sample Matrix: Soil

| Dolyoblo | winatad | Binhenvls | Dv. | CC/ECD |
|----------|---------|-----------|-----|--------|
|          |         |           |     |        |

| Totychiot mated Diplicity is Dy GC/2CD |         |        |       |                |          |           |              |                  |                       |         |
|----------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                                | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aroclor-1016 [1]                       | ND      | 0.094  | 0.056 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1221 [1]                       | ND      | 0.094  | 0.061 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1232 [1]                       | ND      | 0.094  | 0.042 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1242 [1]                       | ND      | 0.094  | 0.047 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1248 [1]                       | ND      | 0.094  | 0.056 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1254 [1]                       | ND      | 0.094  | 0.061 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1260 [1]                       | ND      | 0.094  | 0.066 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1262 [1]                       | ND      | 0.094  | 0.047 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Aroclor-1268 [1]                       | ND      | 0.094  | 0.038 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/15/21 13:03        | TG      |
| Surrogates                             |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| Decachlorobiphenyl [1]                 |         | 76.8   |       | 30-150         |          |           |              |                  | 10/15/21 13:03        |         |
| Decachlorobiphenyl [2]                 |         | 65.6   |       | 30-150         |          |           |              |                  | 10/15/21 13:03        |         |
| Tetrachloro-m-xylene [1]               |         | 74.1   |       | 30-150         |          |           |              |                  | 10/15/21 13:03        |         |
| Tetrachloro-m-xylene [2]               |         | 71.1   |       | 30-150         |          |           |              |                  | 10/15/21 13:03        |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB221-4-5-211005** Sampled: 10/5/2021 14:27

Sample ID: 21J0524-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.1    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:45 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB226-0-1-211005 Sampled: 10/5/2021 15:40

Sample ID: 21J0524-03
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results  | RL   | DL    | Units     | Dilution | Flag/Qual  | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analysi |
|----------------------------------|----------|------|-------|-----------|----------|------------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 0.21 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Acenaphthylene                   | ND       | 0.21 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Acetophenone                     | ND       | 0.41 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Aniline                          | ND       | 0.41 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Anthracene                       | ND       | 0.21 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzidine                        | ND       | 0.80 | 0.19  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzo(a)anthracene               | ND       | 0.21 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzo(a)pyrene                   | ND       | 0.21 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzo(b)fluoranthene             | ND       | 0.21 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzo(g,h,i)perylene             | ND       | 0.21 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzo(k)fluoranthene             | ND       | 0.21 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Benzoic Acid                     | ND       | 1.2  | 0.49  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 0.41 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 0.41 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 0.41 | 0.094 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 0.41 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Bromophenylphenylether         | ND       | 0.41 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Butylbenzylphthalate             | ND       | 0.41 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Carbazole                        | ND       | 0.21 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Chloroaniline                  | ND       | 0.80 | 0.055 | mg/Kg dry | 1        | V-34       | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 0.80 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Chloronaphthalene              | ND       | 0.41 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Chlorophenol                   | ND       | 0.41 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Chlorophenylphenylether        | ND       | 0.41 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Chrysene                         | ND       | 0.21 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Dibenz(a,h)anthracene            | ND       | 0.21 | 0.083 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Dibenzofuran                     | ND       | 0.41 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Di-n-butylphthalate              | ND       | 0.41 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,2-Dichlorobenzene              | ND       | 0.41 | 0.047 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,3-Dichlorobenzene              | ND       | 0.41 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,4-Dichlorobenzene              | ND       | 0.41 | 0.043 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 0.21 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4-Dichlorophenol               | ND       | 0.41 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Diethylphthalate                 | ND       | 0.41 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4-Dimethylphenol               | ND       | 0.41 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Dimethylphthalate                | ND       | 0.41 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.41 | 0.28  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4-Dinitrophenol                | ND       | 0.80 | 0.35  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4-Dinitrotoluene               | ND       | 0.41 | 0.080 | mg/Kg dry | 1        | , ot, t-20 | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,6-Dinitrotoluene               | ND       | 0.41 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Di-n-octylphthalate              | ND<br>ND | 0.41 | 0.008 | mg/Kg dry | 1        |            | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND<br>ND | 0.41 |       |           |          |            |                              | 10/13/21         |                       |         |
| Fluoranthene                     |          |      | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 |                  | 10/14/21 19:19        | BGL     |
|                                  | ND       | 0.21 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |
| Fluorene                         | ND       | 0.21 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:19        | BGL     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB226-0-1-211005** Sampled: 10/5/2021 15:40

Sample ID: 21J0524-03
Sample Matrix: Soil

| Semivolatile | Organic | Compounds | by GC/MS |
|--------------|---------|-----------|----------|
|              |         |           |          |

|                                      |         |        | Semivo | olatile Organic Co | ompounds by | GC/MS     |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|--------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units              | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.41   | 0.056  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Hexachlorobutadiene                  | ND      | 0.41   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.41   | 0.17   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Hexachloroethane                     | ND      | 0.41   | 0.049  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.21   | 0.093  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Isophorone                           | ND      | 0.41   | 0.068  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.21   | 0.057  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.21   | 0.065  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Methylphenol                       | ND      | 0.41   | 0.076  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 3/4-Methylphenol                     | ND      | 0.41   | 0.066  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Naphthalene                          | ND      | 0.21   | 0.056  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Nitroaniline                       | ND      | 0.41   | 0.087  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 3-Nitroaniline                       | ND      | 0.41   | 0.070  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Nitroaniline                       | ND      | 0.41   | 0.088  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Nitrobenzene                         | ND      | 0.41   | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2-Nitrophenol                        | ND      | 0.41   | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 4-Nitrophenol                        | ND      | 0.80   | 0.17   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.41   | 0.061  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.41   | 0.062  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.41   | 0.057  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Pentachloronitrobenzene              | ND      | 0.41   | 0.069  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Pentachlorophenol                    | ND      | 0.41   | 0.18   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Phenanthrene                         | ND      | 0.21   | 0.065  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Phenol                               | ND      | 0.41   | 0.058  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Pyrene                               | ND      | 0.21   | 0.065  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Pyridine                             | ND      | 0.41   | 0.042  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.41   | 0.053  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.41   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.41   | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.41   | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:19        | BGL     |
| Surrogates                           |         | % Reco | overy  | Recovery Limit     | s           | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 49.3   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |
| Phenol-d6                            |         | 46.8   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |
| Nitrobenzene-d5                      |         | 44.6   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |
| 2-Fluorobiphenyl                     |         | 55.1   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |
| 2,4,6-Tribromophenol                 |         | 67.2   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |
| p-Terphenyl-d14                      |         | 67.3   |        | 30-130             |             |           |              |                  | 10/14/21 19:19        |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB226-0-1-211005 Sampled: 10/5/2021 15:40

Sample ID: 21J0524-03
Sample Matrix: Soil

# Polychlorinated Biphenyls By GC/ECD

|                          |         |        | ,     |                |          | ,         |              |                  |                       |         |
|--------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                  | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aroclor-1016 [1]         | ND      | 0.097  | 0.058 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1221 [1]         | ND      | 0.097  | 0.063 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1232 [1]         | ND      | 0.097  | 0.043 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1242 [1]         | ND      | 0.097  | 0.048 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1248 [1]         | ND      | 0.097  | 0.058 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1254 [1]         | ND      | 0.097  | 0.063 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1260 [1]         | ND      | 0.097  | 0.068 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1262 [1]         | ND      | 0.097  | 0.048 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Aroclor-1268 [1]         | ND      | 0.097  | 0.039 | mg/Kg dry      | 4        |           | SW-846 8082A | 10/12/21         | 10/13/21 22:15        | TG      |
| Surrogates               |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| Decachlorobiphenyl [1]   |         | 79.2   |       | 30-150         |          |           |              |                  | 10/13/21 22:15        |         |
| Decachlorobiphenyl [2]   |         | 82.4   |       | 30-150         |          |           |              |                  | 10/13/21 22:15        |         |
| Tetrachloro-m-xylene [1] |         | 75.2   |       | 30-150         |          |           |              |                  | 10/13/21 22:15        |         |
| Tetrachloro-m-xylene [2] |         | 74.9   |       | 30-150         |          |           |              |                  | 10/13/21 22:15        |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB226-0-1-211005** Sampled: 10/5/2021 15:40

Sample ID: 21J0524-03
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|-------|-------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL    | DL    | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 11000   | 20    | 7.2   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Antimony  | ND      | 2.0   | 0.80  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Arsenic   | 4.5     | 4.0   | 1.4   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Barium    | 56      | 2.0   | 0.75  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Beryllium | 0.53    | 0.20  | 0.075 | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Cadmium   | ND      | 0.40  | 0.20  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Calcium   | 700     | 20    | 7.7   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Chromium  | 15      | 0.79  | 0.45  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Cobalt    | 6.5     | 2.0   | 0.73  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Copper    | 11      | 0.79  | 0.38  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Iron      | 22000   | 400   | 160   | mg/Kg dry | 20       |           | SW-846 6010D | 10/11/21 | 10/14/21 15:08 | MJH     |
| Lead      | 12      | 0.59  | 0.29  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Magnesium | 1300    | 400   | 140   | mg/Kg dry | 20       |           | SW-846 6010D | 10/11/21 | 10/14/21 15:08 | MJH     |
| Manganese | 96      | 0.40  | 0.15  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Mercury   | 0.012   | 0.032 | 0.011 | mg/Kg dry | 1        | J         | SW-846 7471B | 10/11/21 | 10/12/21 9:43  | DRL     |
| Nickel    | 9.2     | 0.79  | 0.40  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Potassium | 670     | 200   | 75    | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Selenium  | ND      | 4.0   | 1.4   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Silver    | ND      | 0.40  | 0.18  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Sodium    | ND      | 200   | 77    | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Thallium  | 1.4     | 2.0   | 0.95  | mg/Kg dry | 1        | J         | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Vanadium  | 28      | 0.79  | 0.39  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
| Zinc      | 30      | 0.79  | 0.51  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21 | 10/13/21 12:48 | QNW     |
|           |         |       |       |           |          |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB226-0-1-211005** Sampled: 10/5/2021 15:40

Sample ID: 21J0524-03
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 82.8    |      |      | % Wt      | 1        |           | SM 2540G     | 10/12/21 | 10/14/21 15:45 | BMB     |
| Cyanide    |         | ND      | 0.60 | 0.42 | mg/Kg dry | 1        |           | SW-846 9014  | 10/12/21 | 10/12/21 21:10 | DJM     |
| рН @17.3°C |         | 5.4     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/11/21 | 10/11/21 21:50 | DJM     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-EB01-211007** Sampled: 10/7/2021 11:15

Sample ID: 21J0524-05
Sample Matrix: Water

Polychlorinated Biphenyls By GC/ECD

| Folyemormated Diplicity is by GC/ECD |         |        |      |                 |          |           |              |                  |                       |         |  |  |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|--|--|
| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |  |
| Aroclor-1016 [1]                     | ND      | 0.20   | 0.17 | μg/L            | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1221 [1]                     | ND      | 0.20   | 0.16 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1232 [1]                     | ND      | 0.20   | 0.16 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1242 [1]                     | ND      | 0.20   | 0.17 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1248 [1]                     | ND      | 0.20   | 0.16 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1254 [1]                     | ND      | 0.20   | 0.18 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1260 [1]                     | ND      | 0.20   | 0.16 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1262 [1]                     | ND      | 0.20   | 0.17 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Aroclor-1268 [1]                     | ND      | 0.20   | 0.18 | $\mu g/L$       | 1        |           | SW-846 8082A | 10/12/21         | 10/13/21 18:54        | TG      |  |  |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |  |  |
| Decachlorobiphenyl [1]               |         | 77.8   |      | 30-150          |          |           |              |                  | 10/13/21 18:54        |         |  |  |
| Decachlorobiphenyl [2]               |         | 76.1   |      | 30-150          |          |           |              |                  | 10/13/21 18:54        |         |  |  |
| Tetrachloro-m-xylene [1]             |         | 72.0   |      | 30-150          |          |           |              |                  | 10/13/21 18:54        |         |  |  |
| Tetrachloro-m-xylene [2]             |         | 71.8   |      | 30-150          |          |           |              |                  | 10/13/21 18:54        |         |  |  |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB202-0-1-211007** Sampled: 10/7/2021 13:23

Sample ID: 21J0524-06
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results  | RL   | DL    | Units     | Dilution | Flag/Qual  | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|----------|------|-------|-----------|----------|------------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 0.23 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Acenaphthylene                   | ND       | 0.23 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Acetophenone                     | ND       | 0.46 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Aniline                          | ND       | 0.46 | 0.096 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Anthracene                       | ND       | 0.23 | 0.076 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzidine                        | ND       | 0.90 | 0.21  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzo(a)anthracene               | ND       | 0.23 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzo(a)pyrene                   | ND       | 0.23 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzo(b)fluoranthene             | ND       | 0.23 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzo(g,h,i)perylene             | ND       | 0.23 | 0.097 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzo(k)fluoranthene             | ND       | 0.23 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Benzoic Acid                     | ND       | 1.4  | 0.55  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 0.46 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 0.46 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 0.46 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 0.46 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 4-Bromophenylphenylether         | ND       | 0.46 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Butylbenzylphthalate             | ND       | 0.46 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Carbazole                        | ND       | 0.23 | 0.076 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 4-Chloroaniline                  | ND       | 0.90 | 0.062 | mg/Kg dry | 1        | V-34       | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 0.90 | 0.077 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2-Chloronaphthalene              | ND       | 0.46 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2-Chlorophenol                   | ND       | 0.46 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 4-Chlorophenylphenylether        | ND       | 0.46 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Chrysene                         | ND       | 0.23 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Dibenz(a,h)anthracene            | ND       | 0.23 | 0.094 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Dibenzofuran                     | ND       | 0.46 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Di-n-butylphthalate              | ND       | 0.46 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 1,2-Dichlorobenzene              | ND       | 0.46 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 1,3-Dichlorobenzene              | ND       | 0.46 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 1,4-Dichlorobenzene              | ND       | 0.46 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 0.23 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2,4-Dichlorophenol               | ND       | 0.46 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Diethylphthalate                 | ND       | 0.46 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2,4-Dimethylphenol               | ND       | 0.46 | 0.13  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Dimethylphthalate                | ND       | 0.46 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.46 | 0.31  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2,4-Dinitrophenol                | ND       | 0.90 | 0.40  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2,4-Dinitrotoluene               | ND       | 0.46 | 0.090 | mg/Kg dry | 1        | , . = .    | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 2,6-Dinitrotoluene               | ND       | 0.46 | 0.077 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| Di-n-octylphthalate              | ND       | 0.46 | 0.16  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 0.46 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/14/21 19:45        | BGL     |
| Fluoranthene                     | ND<br>ND | 0.46 | 0.000 | mg/Kg dry | 1        |            | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/14/21 19:45        | BGL     |
| Fluorene                         | ND<br>ND |      |       |           |          |            |                              |                  |                       |         |
| i idorene                        | ND       | 0.23 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 19:45        | BGL     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB202-0-1-211007 Sampled: 10/7/2021 13:23

Sample ID: 21J0524-06
Sample Matrix: Soil

| Semivolatile | Organia | Compounds | by CC/MS |
|--------------|---------|-----------|----------|
|              |         |           |          |

|                                         |          |              | Semivo | olatile Organic Co | ompounds by | GC/MS     |              |                  |                                  |         |
|-----------------------------------------|----------|--------------|--------|--------------------|-------------|-----------|--------------|------------------|----------------------------------|---------|
| Analyte                                 | Results  | RL           | DL     | Units              | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed            | Analyst |
| Hexachlorobenzene                       | ND       | 0.46         | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Hexachlorobutadiene                     | ND       | 0.46         | 0.059  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Hexachlorocyclopentadiene               | ND       | 0.46         | 0.19   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Hexachloroethane                        | ND       | 0.46         | 0.055  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Indeno(1,2,3-cd)pyrene                  | ND       | 0.23         | 0.10   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Isophorone                              | ND       | 0.46         | 0.077  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 1-Methylnaphthalene                     | ND       | 0.23         | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2-Methylnaphthalene                     | ND       | 0.23         | 0.073  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2-Methylphenol                          | ND       | 0.46         | 0.086  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 3/4-Methylphenol                        | ND       | 0.46         | 0.075  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Naphthalene                             | ND       | 0.23         | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2-Nitroaniline                          | ND       | 0.46         | 0.099  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 3-Nitroaniline                          | ND       | 0.46         | 0.079  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 4-Nitroaniline                          | ND<br>ND | 0.46         | 0.079  |                    | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Nitrobenzene                            |          |              |        | mg/Kg dry          |             |           |              |                  |                                  |         |
|                                         | ND       | 0.46         | 0.067  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2-Nitrophenol                           | ND       | 0.46         | 0.072  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 4-Nitrophenol                           | ND       | 0.90         | 0.19   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| N-Nitrosodimethylamine                  | ND       | 0.46         | 0.069  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine    | ND       | 0.46         | 0.069  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| N-Nitrosodi-n-propylamine               | ND       | 0.46         | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Pentachloronitrobenzene                 | ND       | 0.46         | 0.078  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Pentachlorophenol                       | ND       | 0.46         | 0.20   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Phenanthrene                            | ND       | 0.23         | 0.073  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Phenol                                  | ND       | 0.46         | 0.066  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Pyrene                                  | ND       | 0.23         | 0.074  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Pyridine                                | ND       | 0.46         | 0.047  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 1,2,4,5-Tetrachlorobenzene              | ND       | 0.46         | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 1,2,4-Trichlorobenzene                  | ND       | 0.46         | 0.058  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2,4,5-Trichlorophenol                   | ND       | 0.46         | 0.072  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| 2,4,6-Trichlorophenol                   | ND       | 0.46         | 0.071  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/13/21         | 10/14/21 19:45                   | BGL     |
| Surrogates                              |          | % Reco       | very   | Recovery Limit     | s           | Flag/Qual |              |                  |                                  |         |
| 2-Fluorophenol                          |          | 46.8         |        | 30-130             |             |           |              |                  | 10/14/21 19:45                   |         |
| Phenol-d6                               |          | 44.3         |        | 30-130             |             |           |              |                  | 10/14/21 19:45                   |         |
| Nitrobenzene-d5                         |          | 43.8         |        | 30-130             |             |           |              |                  | 10/14/21 19:45                   |         |
| 2-Fluorobiphenyl                        |          | 53.4         |        | 30-130<br>30-130   |             |           |              |                  | 10/14/21 19:45                   |         |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |          | 61.4<br>62.7 |        | 30-130             |             |           |              |                  | 10/14/21 19:45<br>10/14/21 19:45 |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB202-0-1-211007 Sampled: 10/7/2021 13:23

Sample ID: 21J0524-06
Sample Matrix: Soil

# Metals Analyses (Total)

|           |         |       |       | Metals Analy | yses (10tai) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8300    | 22    | 8.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Antimony  | ND      | 2.2   | 0.88  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Arsenic   | 8.1     | 4.4   | 1.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Barium    | 73      | 2.2   | 0.83  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Beryllium | 0.34    | 0.22  | 0.083 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Cadmium   | ND      | 0.44  | 0.22  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Calcium   | 280     | 22    | 8.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Chromium  | 16      | 0.88  | 0.50  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Cobalt    | 4.5     | 2.2   | 0.81  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Copper    | 24      | 0.88  | 0.42  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Iron      | 30000   | 440   | 180   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/14/21 15:16 | MJH     |
| Lead      | 18      | 0.66  | 0.32  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Magnesium | 1000    | 440   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/14/21 15:16 | MJH     |
| Manganese | 98      | 0.44  | 0.17  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Mercury   | ND      | 0.038 | 0.013 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/11/21 | 10/12/21 9:46  | DRL     |
| Nickel    | 9.2     | 0.88  | 0.45  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Potassium | 850     | 220   | 82    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Selenium  | ND      | 4.4   | 1.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Silver    | ND      | 0.44  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Sodium    | ND      | 220   | 85    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Thallium  | 1.3     | 2.2   | 1.1   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Vanadium  | 26      | 0.88  | 0.44  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
| Zinc      | 32      | 0.88  | 0.56  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 12:55 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB202-0-1-211007** Sampled: 10/7/2021 13:23

Sample ID: 21J0524-06
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 73.4    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:45 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB202-25-30-211007** Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

|                                    |         |         | <b>.</b> |           |          |           |              | Date     | Date/Time      |         |
|------------------------------------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                            | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Acetone                            | ND      | 0.086   | 0.028    | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Acrylonitrile (TANE)               | ND      | 0.0052  | 0.00084  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00086 | 0.00039  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Benzene                            | ND      | 0.0017  | 0.00041  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Bromobenzene                       | ND      | 0.0017  | 0.00029  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Bromochloromethane                 | ND      | 0.0017  | 0.00082  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Bromodichloromethane               | ND      | 0.0017  | 0.00041  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Bromoform                          | ND      | 0.0017  | 0.00052  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Bromomethane                       | ND      | 0.0086  | 0.0032   | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.035   | 0.010    | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.086   | 0.042    | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| n-Butylbenzene                     | ND      | 0.0017  | 0.00044  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| sec-Butylbenzene                   | ND      | 0.0017  | 0.00084  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| tert-Butylbenzene                  | ND      | 0.0035  | 0.00073  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00086 | 0.00044  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Carbon Disulfide                   | ND      | 0.0086  | 0.0061   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Carbon Tetrachloride               | ND      | 0.0017  | 0.00067  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Chlorobenzene                      | ND      | 0.0017  | 0.00046  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Chlorodibromomethane               | ND      | 0.00086 | 0.00044  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Chloroethane                       | ND      | 0.017   | 0.0030   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Chloroform                         | ND      | 0.0035  | 0.00086  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Chloromethane                      | ND      | 0.0086  | 0.0028   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0017  | 0.00039  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0017  | 0.00030  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0017  | 0.00058  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00086 | 0.00054  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Dibromomethane                     | ND      | 0.0017  | 0.00063  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0017  | 0.00034  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0017  | 0.00037  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0017  | 0.00044  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0035  | 0.00049  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.017   | 0.0010   | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0017  | 0.00043  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0017  | 0.00053  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0017  | 0.00033  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0033  | 0.00011  |           | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| trans-1,2-Dichloroethylene         |         |         |          | mg/Kg dry |          |           |              |          |                |         |
| •                                  | ND      | 0.0017  | 0.00041  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0017  | 0.00041  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,3-Dichloropropane                | ND      | 0.00086 | 0.00042  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0017  | 0.00066  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0017  | 0.00068  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00086 | 0.00034  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00086 | 0.00042  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |
| Diethyl Ether                      | ND      | 0.017   | 0.0019   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21 | 10/12/21 13:52 | MFF     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB202-25-30-211007** Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00086 | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,4-Dioxane                                       | ND      | 0.086   | 0.019   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Ethylbenzene                                      | ND      | 0.0017  | 0.00039 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.017   | 0.0050  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Methyl Acetate                                    | ND      | 0.0017  | 0.0012  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0035  | 0.00032 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0017  | 0.00063 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Methylene Chloride                                | 0.00062 | 0.017   | 0.00048 | mg/Kg dry      | 1        | J         | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.017   | 0.0038  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Naphthalene                                       | ND      | 0.0035  | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| n-Propylbenzene                                   | ND      | 0.0017  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Styrene                                           | ND      | 0.0017  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00086 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Tetrachloroethylene                               | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0086  | 0.0022  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Toluene                                           | ND      | 0.0017  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0017  | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Trichloroethylene                                 | ND      | 0.0017  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0086  | 0.0031  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0017  | 0.00083 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0086  | 0.0023  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0017  | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0017  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Vinyl Chloride                                    | ND      | 0.0086  | 0.0026  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| m+p Xylene                                        | ND      | 0.0035  | 0.00065 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| o-Xylene                                          | ND      | 0.0017  | 0.00035 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 13:52        | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 97.6       | 70-130          |           | 10/12/21 13:52 |
| Toluene-d8            | 100        | 70-130          |           | 10/12/21 13:52 |
| 4-Bromofluorobenzene  | 101        | 70-130          |           | 10/12/21 13:52 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB202-25-30-211007 Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

|                                  | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Prepared | Analyzed       | Analys |
|----------------------------------|---------|------|-------|-----------|----------|------------|--------------|----------|----------------|--------|
| Acenaphthene                     | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Acenaphthylene                   | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Acetophenone                     | ND      | 0.42 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Aniline                          | ND      | 0.42 | 0.088 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Anthracene                       | ND      | 0.21 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzidine                        | ND      | 0.82 | 0.19  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzo(a)anthracene               | ND      | 0.21 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzo(a)pyrene                   | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzo(b)fluoranthene             | ND      | 0.21 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzo(g,h,i)perylene             | ND      | 0.21 | 0.089 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzo(k)fluoranthene             | ND      | 0.21 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Benzoic Acid                     | ND      | 1.2  | 0.50  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Bis(2-chloroethoxy)methane       | ND      | 0.42 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Bis(2-chloroethyl)ether          | ND      | 0.42 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Bis(2-chloroisopropyl)ether      | ND      | 0.42 | 0.096 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.42 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 4-Bromophenylphenylether         | ND      | 0.42 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Butylbenzylphthalate             | ND      | 0.42 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Carbazole                        | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 4-Chloroaniline                  | ND      | 0.82 | 0.056 | mg/Kg dry | 1        | V-34       | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 4-Chloro-3-methylphenol          | ND      | 0.82 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2-Chloronaphthalene              | ND      | 0.42 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2-Chlorophenol                   | ND      | 0.42 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 4-Chlorophenylphenylether        | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Chrysene                         | ND      | 0.21 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Dibenz(a,h)anthracene            | ND      | 0.21 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Dibenzofuran                     | ND      | 0.42 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Di-n-butylphthalate              | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 1,2-Dichlorobenzene              | ND      | 0.42 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 1,3-Dichlorobenzene              | ND      | 0.42 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 1,4-Dichlorobenzene              | ND      | 0.42 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 3,3-Dichlorobenzidine            | ND      | 0.21 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2,4-Dichlorophenol               | ND      | 0.42 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Diethylphthalate                 | ND      | 0.42 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2,4-Dimethylphenol               | ND      | 0.42 | 0.12  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Dimethylphthalate                | ND      | 0.42 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.42 | 0.28  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2,4-Dinitrophenol                | ND      | 0.82 | 0.37  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2,4-Dinitrotoluene               | ND      | 0.42 | 0.083 | mg/Kg dry | 1        | •          | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 2,6-Dinitrotoluene               | ND      | 0.42 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Di-n-octylphthalate              | ND      | 0.42 | 0.15  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.42 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
| Fluoranthene                     | ND      | 0.21 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21 | 10/15/21 16:16 | IMR    |
|                                  |         | J1   | 2.007 |           | •        |            | 0.0 02/0D    | -0/15/21 |                |        |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB202-25-30-211007 Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

p-Terphenyl-d14

# Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.42   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.42   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.42   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Hexachloroethane                     | ND      | 0.42   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.21   | 0.096 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Isophorone                           | ND      | 0.42   | 0.071 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.21   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.21   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2-Methylphenol                       | ND      | 0.42   | 0.078 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.42   | 0.068 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Naphthalene                          | ND      | 0.21   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2-Nitroaniline                       | ND      | 0.42   | 0.090 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 3-Nitroaniline                       | ND      | 0.42   | 0.072 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 4-Nitroaniline                       | ND      | 0.42   | 0.091 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Nitrobenzene                         | ND      | 0.42   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2-Nitrophenol                        | ND      | 0.42   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 4-Nitrophenol                        | ND      | 0.82   | 0.17  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.42   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.42   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.42   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.42   | 0.071 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Pentachlorophenol                    | ND      | 0.42   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Phenanthrene                         | ND      | 0.21   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Phenol                               | ND      | 0.42   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Pyrene                               | ND      | 0.21   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Pyridine                             | ND      | 0.42   | 0.043 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.42   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.42   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.42   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.42   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:16        | IMR     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 53.6   |       | 30-130         |          |           |              |                  | 10/15/21 16:16        |         |
| Phenol-d6                            |         | 49.7   |       | 30-130         |          |           |              |                  | 10/15/21 16:16        |         |
| Nitrobenzene-d5                      |         | 50.6   |       | 30-130         |          |           |              |                  | 10/15/21 16:16        |         |
| 2-Fluorobiphenyl                     |         | 60.7   |       | 30-130         |          |           |              |                  | 10/15/21 16:16        |         |
| 2,4,6-Tribromophenol                 |         | 73.4   |       | 30-130         |          |           |              |                  | 10/15/21 16:16        |         |

72.1

30-130

10/15/21 16:16



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB202-25-30-211007 Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

# Metals Analyses (Total)

|           |         | Metais Analyses (10tal) |       |           |          |           |              |                  |                       |         |
|-----------|---------|-------------------------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL                      | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 12000   | 21                      | 7.6   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Antimony  | ND      | 2.1                     | 0.84  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Arsenic   | 6.3     | 4.1                     | 1.5   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Barium    | 59      | 2.1                     | 0.79  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Beryllium | 0.61    | 0.21                    | 0.079 | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Cadmium   | 0.34    | 0.41                    | 0.21  | mg/Kg dry | 1        | J         | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Calcium   | 1000    | 21                      | 8.1   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Chromium  | 18      | 0.83                    | 0.47  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Cobalt    | 8.5     | 2.1                     | 0.76  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Copper    | 14      | 0.83                    | 0.40  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Iron      | 30000   | 410                     | 170   | mg/Kg dry | 20       |           | SW-846 6010D | 10/11/21         | 10/14/21 15:23        | MJH     |
| Lead      | 15      | 0.62                    | 0.30  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Magnesium | 1400    | 410                     | 150   | mg/Kg dry | 20       |           | SW-846 6010D | 10/11/21         | 10/14/21 15:23        | MJH     |
| Manganese | 120     | 0.41                    | 0.16  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Mercury   | 0.031   | 0.032                   | 0.011 | mg/Kg dry | 1        | J         | SW-846 7471B | 10/11/21         | 10/12/21 9:10         | DRL     |
| Nickel    | 12      | 0.83                    | 0.42  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Potassium | 920     | 210                     | 78    | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/15/21 19:32        | MJH     |
| Selenium  | ND      | 4.1                     | 1.5   | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Silver    | ND      | 0.41                    | 0.19  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Sodium    | ND      | 210                     | 81    | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Thallium  | 1.6     | 2.1                     | 0.99  | mg/Kg dry | 1        | J         | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Vanadium  | 28      | 0.83                    | 0.41  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
| Zinc      | 55      | 0.83                    | 0.53  | mg/Kg dry | 1        |           | SW-846 6010D | 10/11/21         | 10/13/21 13:12        | QNW     |
|           |         |                         |       |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB202-25-30-211007** Sampled: 10/7/2021 15:02

Sample ID: 21J0524-07
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 80.3    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:46 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-EB02-211007** Sampled: 10/7/2021 13:40

Sample ID: 21J0524-08
Sample Matrix: Water

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results  | RL  | DL   | Units        | Dilution | Flag/Qual  | Method                       | Date<br>Prepared | Date/Time<br>Analyzed            | Analyst |
|----------------------------------|----------|-----|------|--------------|----------|------------|------------------------------|------------------|----------------------------------|---------|
| Acenaphthene                     | ND       | 5.0 | 0.34 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Acenaphthylene                   | ND       | 5.0 | 0.32 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Acetophenone                     | ND       | 10  | 0.45 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Aniline                          | ND       | 5.0 | 0.82 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Anthracene                       | ND       | 5.0 | 0.40 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzidine                        | ND       | 20  | 9.9  | μg/L         | 1        | V-04, V-05 | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzo(a)anthracene               | ND       | 5.0 | 0.38 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzo(a)pyrene                   | ND       | 5.0 | 0.48 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzo(b)fluoranthene             | ND       | 5.0 | 0.42 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzo(g,h,i)perylene             | ND       | 5.0 | 0.64 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzo(k)fluoranthene             | ND       | 5.0 | 0.37 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Benzoic Acid                     | ND       | 10  | 9.2  | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 10  | 0.43 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 10  | 0.52 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 10  | 0.60 | μg/L         | 1        | V-05       | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 10  | 0.92 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 4-Bromophenylphenylether         | ND       | 10  | 0.38 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Butylbenzylphthalate             | ND       | 10  | 0.70 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Carbazole                        | ND       | 10  | 0.41 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 4-Chloroaniline                  | ND       | 10  | 0.44 | μg/L         | 1        | V-34       | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 10  | 0.54 | μg/L         | 1        | , , ,      | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2-Chloronaphthalene              | ND       | 10  | 0.26 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2-Chlorophenol                   | ND       | 10  | 0.37 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 4-Chlorophenylphenylether        | ND       | 10  | 0.33 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Chrysene                         | ND       | 5.0 | 0.38 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Dibenz(a,h)anthracene            | ND       | 5.0 | 0.71 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Dibenzofuran                     | ND       | 5.0 | 0.34 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Di-n-butylphthalate              | ND       | 10  | 0.50 | μg/L<br>μg/L | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 1,2-Dichlorobenzene              | ND       | 5.0 | 0.23 | μg/L<br>μg/L | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 1,3-Dichlorobenzene              | ND       | 5.0 | 0.23 |              | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 1,4-Dichlorobenzene              | ND<br>ND | 5.0 | 0.24 | μg/L<br>μg/L | 1        |            | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 10  | 0.62 | μg/L<br>μg/L | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2,4-Dichlorophenol               | ND       | 10  | 0.36 | μg/L<br>μg/L | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Diethylphthalate                 | ND<br>ND | 10  | 0.48 | μg/L<br>μg/L | 1        |            |                              | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2,4-Dimethylphenol               |          |     |      |              |          |            | SW-846 8270E                 |                  |                                  |         |
| Dimethylphthalate                | ND       | 10  | 0.97 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 10  | 0.40 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2,4-Dinitrophenol                | ND       | 10  | 6.6  | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 2,4-Dinitrophenoi                | ND<br>ND | 10  | 8.0  | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47<br>10/14/21 16:47 | BGL     |
|                                  | ND       | 10  | 0.61 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         |                                  | BGL     |
| 2,6-Dinitrotoluene               | ND       | 10  | 0.50 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Di-n-octylphthalate              | ND       | 10  | 5.6  | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 10  | 0.53 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Fluoranthene                     | ND       | 5.0 | 0.37 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |
| Fluorene                         | ND       | 5.0 | 0.42 | μg/L         | 1        |            | SW-846 8270E                 | 10/13/21         | 10/14/21 16:47                   | BGL     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-EB02-211007** Sampled: 10/7/2021 13:40

Sample ID: 21J0524-08
Sample Matrix: Water

Phenol-d6

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

# Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 10     | 0.36 | μg/L            | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Hexachlorobutadiene                  | ND      | 10     | 0.27 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Hexachlorocyclopentadiene            | ND      | 10     | 4.2  | $\mu g/L$       | 1        | V-05       | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Hexachloroethane                     | ND      | 10     | 0.31 | μg/L            | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.0    | 0.79 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Isophorone                           | ND      | 10     | 0.49 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 1-Methylnaphthalene                  | ND      | 5.0    | 0.29 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2-Methylnaphthalene                  | ND      | 5.0    | 0.33 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2-Methylphenol                       | ND      | 10     | 0.36 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 3/4-Methylphenol                     | ND      | 10     | 0.38 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Naphthalene                          | ND      | 5.0    | 0.30 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2-Nitroaniline                       | ND      | 10     | 0.75 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 3-Nitroaniline                       | ND      | 10     | 0.51 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 4-Nitroaniline                       | ND      | 10     | 0.49 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Nitrobenzene                         | ND      | 10     | 0.53 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2-Nitrophenol                        | ND      | 10     | 0.47 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 4-Nitrophenol                        | ND      | 10     | 2.1  | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| N-Nitrosodimethylamine               | ND      | 10     | 0.82 | $\mu g/L$       | 1        | L-04, V-05 | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 10     | 0.40 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 10     | 0.53 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Pentachloronitrobenzene              | ND      | 10     | 0.64 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Pentachlorophenol                    | ND      | 10     | 3.7  | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Phenanthrene                         | ND      | 5.0    | 0.40 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Phenol                               | ND      | 10     | 0.25 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Pyrene                               | ND      | 5.0    | 0.47 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Pyridine                             | ND      | 5.0    | 2.6  | $\mu g/L$       | 1        | V-34       | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 10     | 0.27 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 5.0    | 0.24 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 10     | 0.46 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 10     | 0.41 | $\mu g/L$       | 1        |            | SW-846 8270E | 10/13/21         | 10/14/21 16:47        | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limits |          | Flag/Qual  |              |                  |                       |         |
| 2-Fluorophenol                       |         | 33.3   |      | 15-110          |          |            |              |                  | 10/14/21 16:47        |         |

23.6

52.5

61.6

83.4

88.9

15-110

30-130

30-130

15-110

30-130

10/14/21 16:47

10/14/21 16:47

10/14/21 16:47

10/14/21 16:47

10/14/21 16:47



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-EB02-211007** Sampled: 10/7/2021 13:40

Sample ID: 21J0524-08
Sample Matrix: Water

# Metals Analyses (Total)

|           |         |         |          |           | -,, ( ,  |           |              |          |                |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | МЈН     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/18/21 15:04 | TBC     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Barium    | 31      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Cadmium   | ND      | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Calcium   | 7.9     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | MJH     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Cobalt    | ND      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Copper    | 0.36    | 1.0     | 0.27     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Iron      | ND      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | MJH     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Magnesium | 1.7     | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | MJH     |
| Manganese | 7.0     | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 10/15/21 | 10/18/21 8:03  | DRL     |
| Nickel    | 1.7     | 5.0     | 0.52     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Potassium | 1.7     | 2.0     | 0.40     | mg/L      | 1        | J         | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | MJH     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Sodium    | 3.6     | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/15/21 | 10/15/21 20:57 | MJH     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
| Zinc      | 160     | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/14/21 | 10/15/21 17:30 | MJH     |
|           |         |         |          |           |          |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-0-1-211008 Sampled: 10/5/2021 08:55

Sample ID: 21J0524-09
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analysi |
|----------------------------------|---------|------|-------|-----------|----------|------------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.21 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Acenaphthylene                   | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Acetophenone                     | ND      | 0.43 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Aniline                          | ND      | 0.43 | 0.089 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Anthracene                       | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzidine                        | ND      | 0.83 | 0.20  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzo(a)anthracene               | ND      | 0.21 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzo(b)fluoranthene             | 0.069   | 0.21 | 0.065 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.21 | 0.090 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.21 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Benzoic Acid                     | ND      | 1.3  | 0.51  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.43 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.43 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.43 | 0.097 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.43 | 0.072 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.43 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Butylbenzylphthalate             | ND      | 0.43 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Carbazole                        | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Chloroaniline                  | ND      | 0.83 | 0.057 | mg/Kg dry | 1        | V-34       | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.83 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.43 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Chlorophenol                   | ND      | 0.43 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.43 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Chrysene                         | 0.063   | 0.21 | 0.062 | mg/Kg dry | 1        | J          | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.21 | 0.087 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Dibenzofuran                     | ND      | 0.43 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Di-n-butylphthalate              | ND      | 0.43 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.43 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.43 | 0.047 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.43 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.21 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.43 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Diethylphthalate                 | ND      | 0.43 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.43 | 0.12  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Dimethylphthalate                | ND      | 0.43 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.43 | 0.29  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.83 | 0.37  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.43 | 0.083 | mg/Kg dry | 1        | , . = .    | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.43 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| Di-n-octylphthalate              | ND      | 0.43 | 0.15  | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.43 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Fluoranthene                     | 0.072   | 0.43 | 0.061 | mg/Kg dry | 1        | J          | SW-846 8270E<br>SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Fluorene                         |         |      |       |           |          | J          |                              |                  |                       |         |
| riuorene                         | ND      | 0.21 | 0.072 | mg/Kg dry | 1        |            | SW-846 8270E                 | 10/13/21         | 10/15/21 16:42        | IMR     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-0-1-211008 Sampled: 10/5/2021 08:55

Sample ID: 21J0524-09
Sample Matrix: Soil

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

| Semivolatile   | Organic | Compounds | hv  | GC/MS |
|----------------|---------|-----------|-----|-------|
| Schillyolattic | Organic | Compounds | D.y | GC/MB |

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.43   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.43   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.43   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Hexachloroethane                     | ND      | 0.43   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.21   | 0.097 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Isophorone                           | ND      | 0.43   | 0.071 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1-Methylnaphthalene                  | 0.072   | 0.21   | 0.059 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Methylnaphthalene                  | 0.12    | 0.21   | 0.068 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Methylphenol                       | ND      | 0.43   | 0.079 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.43   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Naphthalene                          | ND      | 0.21   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Nitroaniline                       | ND      | 0.43   | 0.091 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 3-Nitroaniline                       | ND      | 0.43   | 0.073 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Nitroaniline                       | ND      | 0.43   | 0.092 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Nitrobenzene                         | ND      | 0.43   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2-Nitrophenol                        | ND      | 0.43   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 4-Nitrophenol                        | ND      | 0.83   | 0.17  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.43   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.43   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.43   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.43   | 0.072 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Pentachlorophenol                    | ND      | 0.43   | 0.19  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Phenanthrene                         | 0.077   | 0.21   | 0.067 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Phenol                               | ND      | 0.43   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Pyrene                               | 0.079   | 0.21   | 0.068 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Pyridine                             | ND      | 0.43   | 0.044 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.43   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.43   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.43   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.43   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 16:42        | IMR     |
| Surrogates                           |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 57.8   |       | 30-130         |          |           |              |                  | 10/15/21 16:42        | _       |
| Phenol-d6                            |         | 54.3   |       | 30-130         |          |           |              |                  | 10/15/21 16:42        |         |
| Nitrobenzene-d5                      |         | 51.8   |       | 30-130         |          |           |              |                  | 10/15/21 16:42        |         |

67.0

77.6

77.3

30-130

30-130

30-130

10/15/21 16:42

10/15/21 16:42

10/15/21 16:42



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-0-1-211008 Sampled: 10/5/2021 08:55

Sample ID: 21J0524-09
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 7700    | 20    | 7.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Antimony  | ND      | 2.0   | 0.82  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Arsenic   | 25      | 4.1   | 1.5   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Barium    | 42      | 2.0   | 0.77  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Beryllium | 0.35    | 0.20  | 0.077 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Cadmium   | 0.60    | 0.41  | 0.21  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Calcium   | 1300    | 20    | 7.9   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Chromium  | 19      | 0.81  | 0.46  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Cobalt    | 5.1     | 2.0   | 0.75  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Copper    | 16      | 0.81  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Iron      | 25000   | 410   | 160   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/11/21 | 10/15/21 18:32 | MJH     |
| Lead      | 14      | 0.61  | 0.30  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Magnesium | 700     | 410   | 140   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/11/21 | 10/15/21 18:32 | MJH     |
| Manganese | 54      | 0.41  | 0.16  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Mercury   | 0.050   | 0.032 | 0.011 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/11/21 | 10/12/21 9:48  | DRL     |
| Nickel    | 7.9     | 0.81  | 0.41  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Potassium | 710     | 200   | 76    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Selenium  | ND      | 4.1   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Silver    | ND      | 0.41  | 0.19  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Sodium    | ND      | 200   | 79    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Thallium  | 1.3     | 2.0   | 0.97  | mg/Kg dry    | 1           | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Vanadium  | 30      | 0.81  | 0.40  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
| Zinc      | 22      | 0.81  | 0.52  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:19 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-0-1-211008 Sampled: 10/5/2021 08:55

Sample ID: 21J0524-09
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 79.5    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:46 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-DUP01-0-1-211008** Sampled: 10/8/2021 08:55

Sample ID: 21J0524-10
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method        | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|------------|---------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Acenaphthylene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Acetophenone                     | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Aniline                          | ND      | 0.40 | 0.084 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Anthracene                       | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzidine                        | ND      | 0.78 | 0.19  | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.085 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Benzoic Acid                     | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.092 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Carbazole                        | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Chloroaniline                  | ND      | 0.78 | 0.054 | mg/Kg dry | 1        | V-34       | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.78 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.047 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Chrysene                         | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.082 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Dibenzofuran                     | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Diethylphthalate                 | ND      | 0.40 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Dimethylphthalate                | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.78 | 0.35  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.079 | mg/Kg dry | 1        | , . = -    | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Fluoranthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
| Fluorene                         | ND      | 0.20 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E  | 10/13/21         | 10/15/21 18:51        | IMR     |
|                                  | MD      | 0.20 | 0.000 | mg/ng ury | 1        |            | 5 W-040 02/UE | 10/13/21         | 10/13/21 10.31        | TIVIL   |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-DUP01-0-1-211008 Sampled: 10/8/2021 08:55

Sample ID: 21J0524-10
Sample Matrix: Soil

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

# Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.40   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Hexachloroethane                     | ND      | 0.40   | 0.048 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.091 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Isophorone                           | ND      | 0.40   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Methylphenol                       | ND      | 0.40   | 0.075 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Naphthalene                          | ND      | 0.20   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.086 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.087 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Nitrobenzene                         | ND      | 0.40   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 4-Nitrophenol                        | ND      | 0.78   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.068 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Pentachlorophenol                    | ND      | 0.40   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Phenanthrene                         | ND      | 0.20   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Phenol                               | ND      | 0.40   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Pyrene                               | ND      | 0.20   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Pyridine                             | ND      | 0.40   | 0.041 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 18:51        | IMR     |
| Surrogates                           |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 46.2   |       | 30-130         | _        | _         |              |                  | 10/15/21 18:51        |         |
| Phenol-d6                            |         | 44.2   |       | 30-130         |          |           |              |                  | 10/15/21 18:51        |         |
| Nitrobenzene-d5                      |         | 42.3   |       | 30-130         |          |           |              |                  | 10/15/21 18:51        |         |

55.1

63.4

68.0

30-130

30-130

30-130

10/15/21 18:51

10/15/21 18:51

10/15/21 18:51



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-DUP01-0-1-211008** Sampled: 10/8/2021 08:55

Sample ID: 21J0524-10
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8300    | 20    | 7.2   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/12/21 | 10/14/21 18:55 | MJH     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Arsenic   | 7.4     | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Barium    | 91      | 1.9   | 0.73  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Beryllium | 0.88    | 0.19  | 0.073 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Cadmium   | ND      | 0.38  | 0.20  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Calcium   | 1800    | 19    | 7.5   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Chromium  | 19      | 0.77  | 0.44  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Cobalt    | 9.5     | 1.9   | 0.71  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Copper    | 15      | 0.77  | 0.37  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Iron      | 31000   | 380   | 150   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/11/21 | 10/15/21 18:37 | MJH     |
| Lead      | 19      | 0.58  | 0.28  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Magnesium | 2200    | 380   | 130   | mg/Kg dry    | 20          |           | SW-846 6010D | 10/11/21 | 10/15/21 18:37 | MJH     |
| Manganese | 210     | 0.38  | 0.15  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Mercury   | 0.029   | 0.032 | 0.011 | mg/Kg dry    | 1           | J         | SW-846 7471B | 10/11/21 | 10/12/21 9:50  | DRL     |
| Nickel    | 16      | 0.77  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Potassium | 1100    | 190   | 72    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/15/21 19:45 | MJH     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Silver    | ND      | 0.38  | 0.18  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Sodium    | ND      | 190   | 75    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Thallium  | 1.4     | 1.9   | 0.92  | mg/Kg dry    | 1           | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Vanadium  | 30      | 0.77  | 0.38  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
| Zinc      | 53      | 0.77  | 0.49  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/11/21 | 10/13/21 13:26 | QNW     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-DUP01-0-1-211008 Sampled: 10/8/2021 08:55

Sample ID: 21J0524-10
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.1    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:46 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB201-10-12-211008** Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Acetone Acrylonitrile tert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA) n-Butylbenzene | ND ND ND ND ND ND ND | 0.081<br>0.0049<br>0.00081<br>0.0016 | 0.026<br>0.00079<br>0.00037 | mg/Kg dry<br>mg/Kg dry | 1 1 |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|-----------------------------|------------------------|-----|------|--------------|----------|----------------|-----|
| tert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)                                      | ND<br>ND<br>ND       | 0.00081<br>0.0016                    | 0.00037                     |                        | 1   |      |              |          |                |     |
| Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)                                                                    | ND<br>ND             | 0.0016                               |                             |                        | -   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)                                                                            | ND                   |                                      | 0.00020                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)                                                                                         |                      | 0.0016                               | 0.00038                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)                                                                                                            | ND                   | 0.0010                               | 0.00027                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Bromoform<br>Bromomethane<br>2-Butanone (MEK)<br>tert-Butyl Alcohol (TBA)                                                                                                                        |                      | 0.0016                               | 0.00077                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Bromomethane<br>2-Butanone (MEK)<br>tert-Butyl Alcohol (TBA)                                                                                                                                     | ND                   | 0.0016                               | 0.00039                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 2-Butanone (MEK)<br>tert-Butyl Alcohol (TBA)                                                                                                                                                     | ND                   | 0.0016                               | 0.00049                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| tert-Butyl Alcohol (TBA)                                                                                                                                                                         | ND                   | 0.0081                               | 0.0030                      | mg/Kg dry              | 1   | V-34 | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                          | ND                   | 0.032                                | 0.0098                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| n-Butylbenzene                                                                                                                                                                                   | ND                   | 0.081                                | 0.039                       | mg/Kg dry              | 1   | V-05 | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| -                                                                                                                                                                                                | ND                   | 0.0016                               | 0.00042                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| sec-Butylbenzene                                                                                                                                                                                 | ND                   | 0.0016                               | 0.00079                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| tert-Butylbenzene                                                                                                                                                                                | ND                   | 0.0032                               | 0.00069                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| tert-Butyl Ethyl Ether (TBEE)                                                                                                                                                                    | ND                   | 0.00081                              | 0.00042                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Carbon Disulfide                                                                                                                                                                                 | ND                   | 0.0081                               | 0.0058                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Carbon Tetrachloride                                                                                                                                                                             | ND                   | 0.0016                               | 0.00063                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Chlorobenzene                                                                                                                                                                                    | ND                   | 0.0016                               | 0.00043                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Chlorodibromomethane                                                                                                                                                                             | ND                   | 0.00081                              | 0.00042                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Chloroethane                                                                                                                                                                                     | ND                   | 0.016                                | 0.0029                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Chloroform                                                                                                                                                                                       | ND                   | 0.0032                               | 0.00081                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Chloromethane                                                                                                                                                                                    | ND                   | 0.0081                               | 0.0026                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 2-Chlorotoluene                                                                                                                                                                                  | ND                   | 0.0016                               | 0.00037                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 4-Chlorotoluene                                                                                                                                                                                  | ND                   | 0.0016                               | 0.00028                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,2-Dibromo-3-chloropropane (DBCP)                                                                                                                                                               | ND                   | 0.0016                               | 0.00054                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                          | ND                   | 0.00081                              | 0.00051                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Dibromomethane                                                                                                                                                                                   | ND                   | 0.0016                               | 0.00059                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,2-Dichlorobenzene                                                                                                                                                                              | ND                   | 0.0016                               | 0.00032                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,3-Dichlorobenzene                                                                                                                                                                              | ND                   | 0.0016                               | 0.00035                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,4-Dichlorobenzene                                                                                                                                                                              | ND                   | 0.0016                               | 0.00042                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| trans-1,4-Dichloro-2-butene                                                                                                                                                                      | ND                   | 0.0032                               | 0.00046                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Dichlorodifluoromethane (Freon 12)                                                                                                                                                               | ND                   | 0.016                                | 0.00094                     | mg/Kg dry              | 1   | V-05 | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,1-Dichloroethane                                                                                                                                                                               | ND                   | 0.0016                               | 0.00041                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,2-Dichloroethane                                                                                                                                                                               | ND                   | 0.0016                               | 0.00050                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,1-Dichloroethylene                                                                                                                                                                             | ND                   | 0.0032                               | 0.0010                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| cis-1,2-Dichloroethylene                                                                                                                                                                         | ND                   | 0.0016                               | 0.00043                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| trans-1,2-Dichloroethylene                                                                                                                                                                       | ND                   | 0.0016                               | 0.00045                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,2-Dichloropropane                                                                                                                                                                              | ND                   | 0.0016                               | 0.00038                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,3-Dichloropropane                                                                                                                                                                              | ND                   | 0.00081                              | 0.00039                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 2,2-Dichloropropane                                                                                                                                                                              | ND                   | 0.0016                               | 0.00062                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| 1,1-Dichloropropene                                                                                                                                                                              | ND                   | 0.0016                               | 0.00063                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| cis-1,3-Dichloropropene                                                                                                                                                                          | ND                   | 0.00081                              | 0.00032                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| trans-1,3-Dichloropropene                                                                                                                                                                        | ND                   | 0.00081                              | 0.00040                     | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |
| Diethyl Ether                                                                                                                                                                                    | ND                   | 0.016                                | 0.0018                      | mg/Kg dry              | 1   |      | SW-846 8260D | 10/12/21 | 10/12/21 14:17 | MFF |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-10-12-211008 Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00081 | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,4-Dioxane                                       | ND      | 0.081   | 0.018   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Ethylbenzene                                      | ND      | 0.0016  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0016  | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.016   | 0.0047  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0016  | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0016  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Methyl Acetate                                    | ND      | 0.0016  | 0.0011  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0032  | 0.00030 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0016  | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Methylene Chloride                                | ND      | 0.016   | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.016   | 0.0036  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Naphthalene                                       | ND      | 0.0032  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| n-Propylbenzene                                   | ND      | 0.0016  | 0.00031 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Styrene                                           | ND      | 0.0016  | 0.00034 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0016  | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00081 | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Tetrachloroethylene                               | ND      | 0.0016  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0081  | 0.0021  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Toluene                                           | ND      | 0.0016  | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0016  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0016  | 0.00039 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0016  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0016  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0016  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Trichloroethylene                                 | ND      | 0.0016  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0081  | 0.0029  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0016  | 0.00078 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0081  | 0.0022  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0016  | 0.00052 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0016  | 0.00035 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Vinyl Chloride                                    | ND      | 0.0081  | 0.0025  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| m+p Xylene                                        | ND      | 0.0032  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| o-Xylene                                          | ND      | 0.0016  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:17        | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

99.8

96.4

103

70-130

70-130

70-130

10/12/21 14:17

10/12/21 14:17

10/12/21 14:17



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-10-12-211008 Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analys |
|----------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|--------|
| Acenaphthene                     | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Acenaphthylene                   | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Acetophenone                     | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Aniline                          | ND      | 0.39 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Anthracene                       | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzidine                        | ND      | 0.76 | 0.18  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzo(a)anthracene               | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.082 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Benzoic Acid                     | ND      | 1.1  | 0.47  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Bis(2-chloroethoxy)methane       | ND      | 0.39 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Bis(2-chloroethyl)ether          | ND      | 0.39 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Bis(2-chloroisopropyl)ether      | ND      | 0.39 | 0.089 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.39 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 4-Bromophenylphenylether         | ND      | 0.39 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Butylbenzylphthalate             | ND      | 0.39 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Carbazole                        | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 4-Chloroaniline                  | ND      | 0.76 | 0.052 | mg/Kg dry | 1        | V-34       | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 4-Chloro-3-methylphenol          | ND      | 0.76 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2-Chloronaphthalene              | ND      | 0.39 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2-Chlorophenol                   | ND      | 0.39 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 4-Chlorophenylphenylether        | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Chrysene                         | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.079 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Dibenzofuran                     | ND      | 0.39 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Di-n-butylphthalate              | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 1,2-Dichlorobenzene              | ND      | 0.39 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 1,3-Dichlorobenzene              | ND      | 0.39 | 0.043 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 1,4-Dichlorobenzene              | ND      | 0.39 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2,4-Dichlorophenol               | ND      | 0.39 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Diethylphthalate                 | ND      | 0.39 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2,4-Dimethylphenol               | ND      | 0.39 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Dimethylphthalate                | ND      | 0.39 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.39 | 0.26  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2,4-Dinitrophenol                | ND      | 0.76 | 0.34  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2,4-Dinitrotoluene               | ND      | 0.39 | 0.076 | mg/Kg dry | 1        | •          | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 2,6-Dinitrotoluene               | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Di-n-octylphthalate              | ND      | 0.39 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
| Fluoranthene                     | 0.093   | 0.20 | 0.062 | mg/Kg dry | 1        | J          | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR    |
|                                  | 0/5     |      |       | 5         | -        | -          | 2 2.0 02,02  |                  |                       |        |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-10-12-211008 Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

| Semivolatile Organic Compounds by GC/N | MS | C/I | G | hv | Ь | าดแท | omi | nic ( | )rgai | tile | ivola | Sem |
|----------------------------------------|----|-----|---|----|---|------|-----|-------|-------|------|-------|-----|
|----------------------------------------|----|-----|---|----|---|------|-----|-------|-------|------|-------|-----|

|                                      |         |        | Semivo | Diatile Organic C | ompounds by | GC/MS     |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.39   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.39   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.39   | 0.16   | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Hexachloroethane                     | ND      | 0.39   | 0.046  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.088  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Isophorone                           | ND      | 0.39   | 0.065  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2-Methylphenol                       | ND      | 0.39   | 0.072  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 3/4-Methylphenol                     | 0.10    | 0.39   | 0.063  | mg/Kg dry         | 1           | J         | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Naphthalene                          | ND      | 0.20   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2-Nitroaniline                       | ND      | 0.39   | 0.083  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 3-Nitroaniline                       | ND      | 0.39   | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 4-Nitroaniline                       | ND      | 0.39   | 0.084  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Nitrobenzene                         | ND      | 0.39   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2-Nitrophenol                        | ND      | 0.39   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 4-Nitrophenol                        | ND      | 0.76   | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.39   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.39   | 0.059  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.39   | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.39   | 0.066  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Pentachlorophenol                    | ND      | 0.39   | 0.17   | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Phenanthrene                         | 0.062   | 0.20   | 0.062  | mg/Kg dry         | 1           | J         | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Phenol                               | ND      | 0.39   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Pyrene                               | 0.098   | 0.20   | 0.062  | mg/Kg dry         | 1           | J         | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Pyridine                             | ND      | 0.39   | 0.040  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.39   | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.39   | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.39   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.39   | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 10/13/21         | 10/15/21 19:17        | IMR     |
| Surrogates                           |         | % Reco | very   | Recovery Limit    | ts          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 47.9   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |
| Phenol-d6                            |         | 45.2   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |
| Nitrobenzene-d5                      |         | 42.5   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |
| 2-Fluorobiphenyl                     |         | 55.8   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |
| 2,4,6-Tribromophenol                 |         | 53.4   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |
| p-Terphenyl-d14                      |         | 67.0   |        | 30-130            |             |           |              |                  | 10/15/21 19:17        |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-10-12-211008 Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

# Metals Analyses (Total)

|           |         |       |        | Metals Analy | yses (10tai) |           |              |          |                |         |
|-----------|---------|-------|--------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 7600    | 19    | 6.9    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Antimony  | ND      | 1.9   | 0.76   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Arsenic   | 9.7     | 3.8   | 1.4    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Barium    | 58      | 1.9   | 0.72   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Beryllium | 0.56    | 0.19  | 0.071  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Cadmium   | 0.24    | 0.38  | 0.19   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Calcium   | 2000    | 19    | 7.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Chromium  | 21      | 0.75  | 0.43   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Cobalt    | 8.3     | 1.9   | 0.69   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Copper    | 15      | 0.75  | 0.36   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Iron      | 23000   | 380   | 150    | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/15/21 18:41 | MJH     |
| Lead      | 11      | 0.56  | 0.27   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Magnesium | 1300    | 380   | 130    | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/15/21 18:41 | MJH     |
| Manganese | 260     | 0.38  | 0.15   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Mercury   | 0.022   | 0.029 | 0.0098 | mg/Kg dry    | 1            | J         | SW-846 7471B | 10/11/21 | 10/12/21 9:52  | DRL     |
| Nickel    | 13      | 0.75  | 0.38   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Potassium | 800     | 190   | 71     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/15/21 19:51 | MJH     |
| Selenium  | ND      | 3.8   | 1.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Silver    | ND      | 0.38  | 0.17   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Sodium    | ND      | 190   | 73     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Thallium  | 1.4     | 1.9   | 0.90   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Vanadium  | 22      | 0.75  | 0.37   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
| Zinc      | 69      | 0.75  | 0.48   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:31 | QNW     |
|           |         |       |        |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-10-12-211008 Sampled: 10/8/2021 11:00

Sample ID: 21J0524-11
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 87.0    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:46 | BMB     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-24-26-211008 Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Accordant   Acc    | Analyte                            | Results | RL     | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|--------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| International Methyl Lither (TAML)   NID   0.0011   0.00419   mg/kg dry   1   SW-446 (Sciol)   101221   101221   1412   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acetone                            | ND      | 0.11   | 0.035   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Rememer   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acrylonitrile                      | ND      | 0.0066 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Brome-chargemene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tert-Amyl Methyl Ether (TAME)      | ND      | 0.0011 | 0.00049 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Bromechloromethinne   ND   0.0022   0.0010   mg/Kg dy   1   SW-466 \$2.001   101221   101221   1412   Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzene                            | ND      | 0.0022 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Bromoficilitoromathane   ND   0.0022   0.00652   mg/Kg dy   1   SW-466 \$2500   101221   101221   14124   Mg   Mg   Mg   Mg   Mg   Mg   Mg   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromobenzene                       | ND      | 0.0022 | 0.00037 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Brownendame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromochloromethane                 | ND      | 0.0022 | 0.0010  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromodichloromethane               | ND      | 0.0022 | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 2-Butanene (MEK) ND 0.044 0.013 mg/Kg dry 1 V-05 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Alcehol (TBA) ND 0.11 0.053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Alcehol (TBA) ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Benzene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ether (TBEF) ND 0.0011 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0011 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0011 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0011 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0012 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0012 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0012 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0012 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ether (TBEF) ND 0.0012 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 1442 M neth-Buryl Ethyl Ethy  | Bromoform                          | ND      | 0.0022 | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| tert-Busyl Alcohol (TBA) ND 0.11 0.053 mg/Kg dy 1 V.05 SW-846 8260D 101221 101221 1442 M ne-BatylKazanea ND 0.0022 0.00056 mg/Kg dy 1 SW-846 8260D 101222 101221 1442 M tert-Busyl Enteryl Ent | Bromomethane                       | ND      | 0.011  | 0.0040  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| -Butylbenzene ND 0,0022 0,00056 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0011 mg/Kg dy 1 SW-846 8260D 101222 101221 1442 Mg-8c-Butylbenzene ND 0,0044 0,00093 mg/Kg dy 1 SW-846 8260D 101222 101221 1442 Mg-8c-Butylbenzene ND 0,0044 0,00093 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0011 0,0078 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0011 0,0078 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0085 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0085 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0085 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0011 0,00056 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0038 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0038 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0035 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0035 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 101221 1442 Mg-8c-Butylbenzene ND 0,0022 0,0036 mg/Kg dy 1 SW-846 8260D 101221 1012  | 2-Butanone (MEK)                   | ND      | 0.044  | 0.013   | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| see-Barlylbenzene ND 0,0022 0,0011 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M tert-BurlylEthyl Ether (TBEF) ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M tert-Burlyl Ethyl Ether (TBEF) ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Carbon International ND 0,0011 0,0078 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Carbon International ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Carbon International ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0021 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0011 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0012 0,00059 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M Chlorodharane ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L2-Bhromon-3-chloropropane (DBCP) ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L2-Bhromon-3-chloropropane (DBCP) ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chloropropane (DBCP) ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chloropropane (DBCP) ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chloropropane (DBCP) ND 0,0022 0,00058 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chloropropane ND 0,0022 0,00056 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chloropropane ND 0,0022 0,00057 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M L3-Bhromon-3-chl | tert-Butyl Alcohol (TBA)           | ND      | 0.11   | 0.053   | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| tert-Burylbenzene ND 0.0044 0.0093 mg/kg dy 1 SW-846 8260D 101221 101221 1442 M tert-Buryl Ethyl | n-Butylbenzene                     | ND      | 0.0022 | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| tert-Buryl Ethyl Ether (TBEE) ND 0.0011 0.00056 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Carbon Tetrachloride ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Carbon Tetrachloride ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrzome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhromomethane ND 0.0011 0.00056 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhromomethane ND 0.0011 0.00056 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhromomethane ND 0.0014 0.0011 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhromomethane ND 0.0014 0.0011 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0024 0.00015 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Chlorodhrome ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (EDB) ND 0.0022 0.00068 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane RD 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fron 12) ND 0.0022 0.00058 mg/kg dry 1 SW-346 8260D 10/12/21 10/12/21 14.42 M Dibromomethane (Fr | sec-Butylbenzene                   | ND      | 0.0022 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Carbon Disulfide         ND         0.011         0.0078         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/22         14/24         M           Carbon Edrachloride         ND         0.0022         0.00088         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/24         M           Chlorochenzene         ND         0.0022         0.00088         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/24         M           Chlorochane         ND         0.022         0.0038         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/22         M           Chlorochane         ND         0.0024         0.0011         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/22         M           Chlorochane         ND         0.0022         0.00038         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/22         M           Chlorochane         ND         0.0022         0.00038         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         14/22         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tert-Butylbenzene                  | ND      | 0.0044 | 0.00093 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Carbon Tetrachloride  ND  0.0022  0.00085  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChlorobenzene  ND  0.0022  0.00085  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChlorobenzene  ND  0.0011  0.00086  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChloroform  ND  0.0012  0.00088  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChloroform  ND  0.0040  0.0041  0.0035  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChloroformethane  ND  0.0042  0.0035  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChlorofordene  ND  0.0042  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00050  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  14/12/2  MChlorofoluene  ND  0.0022  0.00060  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  10/12/21  10/12/21  10/12/21  10/12/21  10/12/ | tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.0011 | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chlorodenzene ND 0.0022 0.0068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibromomethane ND 0.0011 0.0056 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibromomethane ND 0.022 0.0038 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodenae ND 0.022 0.0038 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chloromethane ND 0.0014 0.0011 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chloromethane ND 0.0022 0.00050 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorotoluene ND 0.0022 0.00050 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00038 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00038 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorome-3-chloropropane (DBCP) ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00066 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00066 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0022 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14-42 M Chlorodibropencene ND 0.0020 0.00068 mg/kg dry 1  | Carbon Disulfide                   | ND      | 0.011  | 0.0078  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chlorodibromomethane  ND 0.0011 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M Chlorocethane  ND 0.022 0.0038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M Chloroform  ND 0.0044 0.0011 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M Chloromethane  ND 0.011 0.0035 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M Chlorotoluene  ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotoluene  ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotolenzene  ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14.42 M 4-Chlorotelhylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8 | Carbon Tetrachloride               | ND      | 0.0022 | 0.00085 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chloroethane ND 0.022 0.0038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M Chloroform ND 0.0044 0.0011 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M Chloroform ND 0.011 0.0055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 2-Chlorotoluene ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 2-Chlorotoluene ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dibromo-3-chloropropane (DBCP) ND 0.0022 0.00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dibromo-thane (EDB) ND 0.0011 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dibromo-thane (EDB) ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dibromo-thane ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dichlorobenzene ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.2-Dichlorobenzene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.4-Dichlorobenzene ND 0.0022 0.00066 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.4-Dichlorobenzene ND 0.0022 0.00066 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.4-Dichlorobenzene ND 0.0022 0.00066 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.4-Dichlorochane ND 0.0022 0.00065 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichlorochane ND 0.0022 0.00065 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichlorochylene ND 0.0022 0.00065 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichlorochylene ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichlorochylene ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichlorochylene ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichloropropane ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichloropropane ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichloropropane ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14/42 M 1.1-Dichloropropane  | Chlorobenzene                      | ND      | 0.0022 | 0.00058 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chloroform ND 0.0044 0.0011 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Chloromethane ND 0.011 0.0035 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2-Chlorotoluene ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene (EDB) ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene (EDB) ND 0.0022 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene (EDB) ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-2-Dichlorotenzene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-3-Dichlorotenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-4-Dichloro-2-butene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothane (Fren 12) ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothane (Fren 12) ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorothylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorotoropone ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorotoropone ND 0.0022 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-1-Dichlorotor | Chlorodibromomethane               | ND      | 0.0011 | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chloroform ND 0.0044 0.0011 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Chloromethane ND 0.011 0.0035 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2-Chlorotoluene ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00088 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene (EDB) ND 0.0021 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00088 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00051 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chloroto | Chloroethane                       | ND      | 0.022  | 0.0038  | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Chloromethane ND 0.011 0.0035 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2-Chlorotoluene ND 0.0022 0.00050 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.2-Dibromo-3-chloropropane (DBCP) ND 0.0022 0.00063 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.2-Dibromo-thane (EDB) ND 0.0011 0.00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.2-Dibromo-thane (EDB) ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.2-Dichlorobenzene ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.3-Dichlorobenzene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichloro-2-butene ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloroethane (Freon 12) ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloroethane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloropropane ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloropropane ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloropropane ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloropropane ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.1-Dichloropropane ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12 | Chloroform                         | ND      | 0.0044 | 0.0011  |           | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 2-Chlorotoluene ND 0.0022 0.00050 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 4-Chlorotoluene ND 0.0022 0.00038 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0022 0.00073 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dibromo-64nane (EDB) ND 0.0011 0.00068 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Dibromomethane ND 0.0022 0.00080 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichlorobenzene ND 0.0022 0.00084 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichlorobenzene ND 0.0022 0.00044 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichlorobenzene ND 0.0022 0.00056 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichloro-2-butene ND 0.0022 0.00056 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1 trans-1,4-Dichloro-2-butene ND 0.0024 0.00056 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethane (Freon 12) ND 0.022 0.0013 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethane ND 0.0022 0.00055 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00055 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00058 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/kg dry 1 SW-84 | Chloromethane                      | ND      | 0.011  | 0.0035  |           | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) ND 0,0022 0,00073 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dibromoethane (EDB) ND 0,0011 0,00068 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichlorobenzene ND 0,0022 0,00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichlorobenzene ND 0,0022 0,00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichlorobenzene ND 0,0022 0,00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichlorobenzene ND 0,0022 0,00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichlorobenzene ND 0,0022 0,00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorobenzene ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,00022 0,00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropenpane ND 0,0011 0,00053 mg/Kg dry 1 SW-846 8260D 10/12 | 2-Chlorotoluene                    | ND      | 0.0022 | 0.00050 |           | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Chlorotoluene                    | ND      | 0.0022 | 0.00038 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Dibromomethane  ND 0.0022 0.00080 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichlorobenzene  ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichlorobenzene  ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichlorobenzene  ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichloroc-2-butene  ND 0.0044 0.00062 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Dichlorodifluoromethane (Freon 12)  ND 0.022 0.00013 mg/Kg dry 1 V-05 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorocethane  ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethane  ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane  ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane  ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane  ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane  ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane  ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane  ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane  ND 0.0011 0.0003 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane  ND 0.0011 0.0003 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                | 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0022 | 0.00073 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2-Dichlorobenzene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichlorobenzene ND 0.0022 0.00047 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichlorobenzene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,4-Dichloro-2-butene ND 0.0044 0.00062 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodifluoromethane (Fron 12) ND 0.022 0.0013 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichlorodenane ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenylene ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenylene ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00054 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8 | 1,2-Dibromoethane (EDB)            | ND      | 0.0011 | 0.00068 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2-Dichlorobenzene ND 0.0022 0.00044 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichlorobenzene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorobenzene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichloro-2-butene ND 0.0044 0.00062 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.4-Dichlorodifluoromethane (Freon 12) ND 0.022 0.0013 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichlorodenane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethane ND 0.0022 0.00065 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00085 mg/Kg dry 1 SW-846 8260D 10/ | Dibromomethane                     | ND      | 0.0022 | 0.00080 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,4-Dichlorobenzene ND 0.0022 0.00056 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,4-Dichloro-2-butene ND 0.0044 0.00062 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Dichlorodifluoromethane (Freon 12) ND 0.022 0.0013 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethane ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0044 0.0014 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0022 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0002 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0002 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene                                                | 1,2-Dichlorobenzene                | ND      | 0.0022 | 0.00044 |           | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,4-Dichlorobenzene         ND         0.0022         0.0056         mg/Kg dry         1         SW-846 8260D         10/12/21         10/12/21         12/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21         14/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,3-Dichlorobenzene                | ND      | 0.0022 | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| trans-1,4-Dichloro-2-butene ND 0.0044 0.00062 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M Dichlorodifluoromethane (Freon 12) ND 0.022 0.0013 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethane ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0044 0.0014 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0012 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                                                                                                                                                                                                                       | 1,4-Dichlorobenzene                |         |        |         |           |          |           |              |                  |                       | MFF     |
| Dichlorodifluoromethane (Freon 12)  ND  0.022  0.0013  mg/Kg dry  1  V-05  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,1-Dichloroethane  ND  0.0022  0.00055  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,2-Dichloroethane  ND  0.0022  0.00067  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,1-Dichloroethylene  ND  0.0044  0.0014  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,1-Dichloroethylene  ND  0.0022  0.00058  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,2-Dichloroethylene  ND  0.0022  0.00058  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,2-Dichloroethylene  ND  0.0022  0.00051  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21 14:42  M  1,3-Dichloropropane  ND  0.0011  0.00053  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  11/12/21  14:42  M  1,1-Dichloropropane  ND  0.0022  0.00084  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  11/12/21  14:42  M  1,1-Dichloropropane  ND  0.0022  0.00085  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  11/12/21  14:42  M  1,1-Dichloropropane  ND  0.0022  0.00085  mg/Kg dry  1  SW-846 8260D  10/12/21  10/12/21  10/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/12/21  11/ | trans-1,4-Dichloro-2-butene        | ND      | 0.0044 | 0.00062 |           | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1-Dichloroethane ND 0.0022 0.00055 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethane ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0044 0.0014 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0012 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dichlorodifluoromethane (Freon 12) | ND      | 0.022  | 0.0013  |           | 1        | V-05      | SW-846 8260D | 10/12/21         |                       | MFF     |
| 1,2-Dichloroethane ND 0.0022 0.00067 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloroethylene ND 0.0044 0.0014 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M cis-1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1-Dichloroethane                 | ND      | 0.0022 |         |           | 1        |           | SW-846 8260D | 10/12/21         |                       | MFF     |
| 1,1-Dichloroethylene ND 0.0044 0.0014 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M cis-1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/1 | 1,2-Dichloroethane                 |         |        |         |           |          |           |              |                  | 10/12/21 14:42        | MFF     |
| cis-1,2-Dichloroethylene ND 0.0022 0.00058 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M cis-1,3-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethylene               |         |        |         |           |          |           |              |                  |                       | MFF     |
| trans-1,2-Dichloroethylene ND 0.0022 0.00061 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,2-Dichloropropane ND 0.0022 0.00052 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropane ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0012 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21  | ·                                  |         |        |         |           |          |           |              |                  |                       | MFF     |
| 1,2-Dichloropropane       ND       0.0022       0.0052       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21       10/12/21 14:42       M         1,3-Dichloropropane       ND       0.0011       0.00053       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         2,2-Dichloropropane       ND       0.0022       0.00084       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         1,1-Dichloropropene       ND       0.0012       0.00085       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         cis-1,3-Dichloropropene       ND       0.0011       0.00042       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         trans-1,3-Dichloropropene       ND       0.0011       0.00053       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                  |         |        |         |           |          |           |              |                  |                       | MFF     |
| 1,3-Dichloropropane ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 2,2-Dichloropropane ND 0.0022 0.00084 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1,1-Dichloropropene ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M cis-1,3-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M 1.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |         |        |         |           |          |           |              |                  |                       | MFF     |
| 2,2-Dichloropropane       ND       0.0022       0.0084       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21       10/12/21 14:42       M         1,1-Dichloropropene       ND       0.0022       0.00085       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         cis-1,3-Dichloropropene       ND       0.0011       0.00042       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M         trans-1,3-Dichloropropene       ND       0.0011       0.00053       mg/Kg dry       1       SW-846 8260D       10/12/21       10/12/21 14:42       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                                |         |        |         |           |          |           |              |                  |                       | MFF     |
| 1,1-Dichloropropene ND 0.0022 0.00085 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M cis-1,3-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |         |        |         |           |          |           |              |                  |                       | MFF     |
| cis-1,3-Dichloropropene ND 0.0011 0.00042 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |         |        |         |           |          |           |              |                  |                       | MFF     |
| trans-1,3-Dichloropropene ND 0.0011 0.00053 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |         |        |         |           |          |           |              |                  |                       | MFF     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |         |        |         |           |          |           |              |                  |                       | MFF     |
| Diethyl Ether ND 0.022 0.0024 mg/Kg dry 1 SW-846 8260D 10/12/21 10/12/21 14:42 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diethyl Ether                      | ND      | 0.022  | 0.0024  |           |          |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-24-26-211008 Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.0011 | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,4-Dioxane                                       | ND      | 0.11   | 0.024   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Ethylbenzene                                      | ND      | 0.0022 | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0022 | 0.00078 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.022  | 0.0063  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0022 | 0.00078 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0022 | 0.00050 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Methyl Acetate                                    | ND      | 0.0022 | 0.0015  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0044 | 0.00041 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0022 | 0.00080 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Methylene Chloride                                | 0.00068 | 0.022  | 0.00061 | mg/Kg dry      | 1        | J         | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.022  | 0.0048  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Naphthalene                                       | ND      | 0.0044 | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| n-Propylbenzene                                   | ND      | 0.0022 | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Styrene                                           | ND      | 0.0022 | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0022 | 0.00060 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.0011 | 0.00060 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Tetrachloroethylene                               | ND      | 0.0022 | 0.00060 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Tetrahydrofuran                                   | ND      | 0.011  | 0.0028  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Toluene                                           | ND      | 0.0022 | 0.00061 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0022 | 0.00060 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0022 | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0022 | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0022 | 0.00074 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0022 | 0.00051 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Trichloroethylene                                 | ND      | 0.0022 | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.011  | 0.0039  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0022 | 0.0010  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.011  | 0.0029  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0022 | 0.00071 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0022 | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Vinyl Chloride                                    | ND      | 0.011  | 0.0033  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| m+p Xylene                                        | ND      | 0.0044 | 0.00083 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| o-Xylene                                          | ND      | 0.0022 | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/12/21         | 10/12/21 14:42        | MFF     |
| Surrogates                                        |         | % Reco | overy   | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

98.5

99.1

105

70-130

70-130

70-130

10/12/21 14:42

10/12/21 14:42

10/12/21 14:42



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-24-26-211008 Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Acenaphthylene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Acetophenone                     | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Aniline                          | ND      | 0.40 | 0.082 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzidine                        | ND      | 0.77 | 0.18  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Benzoic Acid                     | ND      | 1.2  | 0.47  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.090 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Carbazole                        | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Chloroaniline                  | ND      | 0.77 | 0.053 | mg/Kg dry | 1        | V-34       | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.77 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Chrysene                         | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.080 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Dibenzofuran                     | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.043 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Diethylphthalate                 | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Dimethylphthalate                | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.77 | 0.34  | mg/Kg dry | 1        | V-04, V-20 | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.077 | mg/Kg dry | 1        | ,          | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Fluoranthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Fluorene                         | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| -                                | 112     | 0.20 | 0.507 |           | •        |            | 5 010 02/0E  | 10,13,21         | 20,10,21 17.13        |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-24-26-211008 Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

2-Fluorobiphenyl 2,4,6-Tribromophenol

p-Terphenyl-d14

# Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.40   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Hexachloroethane                     | ND      | 0.40   | 0.047 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.090 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Isophorone                           | ND      | 0.40   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Methylphenol                       | ND      | 0.40   | 0.073 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Naphthalene                          | ND      | 0.20   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.084 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.085 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Nitrobenzene                         | ND      | 0.40   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 4-Nitrophenol                        | ND      | 0.77   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Pentachlorophenol                    | ND      | 0.40   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Phenanthrene                         | ND      | 0.20   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Phenol                               | ND      | 0.40   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Pyrene                               | ND      | 0.20   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Pyridine                             | ND      | 0.40   | 0.040 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/13/21         | 10/15/21 19:43        | IMR     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 49.2   |       | 30-130         | _        |           |              |                  | 10/15/21 19:43        |         |
| Phenol-d6                            |         | 46.6   |       | 30-130         |          |           |              |                  | 10/15/21 19:43        |         |
| Nitrobenzene-d5                      |         | 46.2   |       | 30-130         |          |           |              |                  | 10/15/21 19:43        |         |

58.2

70.8

75.9

30-130

30-130

30-130

10/15/21 19:43

10/15/21 19:43

10/15/21 19:43



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

Field Sample #: HRP-SB201-24-26-211008 Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

Metals Analyses (Total)

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 9600    | 19    | 7.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Arsenic   | 2.7     | 3.8   | 1.4   | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Barium    | 72      | 1.9   | 0.73  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Beryllium | 0.80    | 0.19  | 0.073 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Cadmium   | ND      | 0.38  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Calcium   | 1200    | 19    | 7.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Chromium  | 13      | 0.77  | 0.44  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Cobalt    | 14      | 1.9   | 0.71  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Copper    | 14      | 0.77  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Iron      | 24000   | 380   | 150   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/15/21 18:46 | MJH     |
| Lead      | 8.3     | 0.58  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Magnesium | 1700    | 380   | 130   | mg/Kg dry    | 20           |           | SW-846 6010D | 10/11/21 | 10/15/21 18:46 | MJH     |
| Manganese | 130     | 0.38  | 0.15  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Mercury   | 0.018   | 0.032 | 0.011 | mg/Kg dry    | 1            | J         | SW-846 7471B | 10/11/21 | 10/12/21 9:54  | DRL     |
| Nickel    | 15      | 0.77  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Potassium | 860     | 190   | 72    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/15/21 19:57 | MJH     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Silver    | ND      | 0.38  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Sodium    | ND      | 190   | 75    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Thallium  | 1.3     | 1.9   | 0.92  | mg/Kg dry    | 1            | J         | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Vanadium  | 25      | 0.77  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
| Zinc      | 44      | 0.77  | 0.49  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/11/21 | 10/13/21 13:38 | QNW     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J0524

Date Received: 10/9/2021

**Field Sample #: HRP-SB201-24-26-211008** Sampled: 10/8/2021 11:05

Sample ID: 21J0524-12
Sample Matrix: Soil

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.9    |    |    | % Wt  | 1        |           | SM 2540G | 10/12/21 | 10/14/21 15:46 | BMB     |



#### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21J0524-01 [HRP-SB221-0-1-211005]   | B292290 | 10/12/21 |
| 21J0524-02 [HRP-SB221-4-5-211005]   | B292290 | 10/12/21 |
| 21J0524-03 [HRP-SB226-0-1-211005]   | B292290 | 10/12/21 |
| 21J0524-06 [HRP-SB202-0-1-211007]   | B292290 | 10/12/21 |
| 21J0524-07 [HRP-SB202-25-30-211007] | B292290 | 10/12/21 |
| 21J0524-09 [HRP-SB201-0-1-211008]   | B292290 | 10/12/21 |
| 21J0524-10 [HRP-DUP01-0-1-211008]   | B292290 | 10/12/21 |
| 21J0524-11 [HRP-SB201-10-12-211008] | B292290 | 10/12/21 |
| 21J0524-12 [HRP-SB201-24-26-211008] | B292290 | 10/12/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0524-03 [HRP-SB226-0-1-211005]   | B292205 | 1.53        | 50.0       | 10/11/21 |
| 21J0524-06 [HRP-SB202-0-1-211007]   | B292205 | 1.56        | 50.0       | 10/11/21 |
| 21J0524-07 [HRP-SB202-25-30-211007] | B292205 | 1.50        | 50.0       | 10/11/21 |
| 21J0524-09 [HRP-SB201-0-1-211008]   | B292205 | 1.55        | 50.0       | 10/11/21 |
| 21J0524-10 [HRP-DUP01-0-1-211008]   | B292205 | 1.55        | 50.0       | 10/11/21 |
| 21J0524-11 [HRP-SB201-10-12-211008] | B292205 | 1.53        | 50.0       | 10/11/21 |
| 21J0524-12 [HRP-SB201-24-26-211008] | B292205 | 1.51        | 50.0       | 10/11/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J0524-10 [HRP-DUP01-0-1-211008] | B292300 | 1.51        | 50.0       | 10/12/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0524-08 [HRP-EB02-211007] | B292561 | 50.0         | 50.0       | 10/15/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0524-08 [HRP-EB02-211007] | B292487 | 50.0         | 50.0       | 10/14/21 |

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0524-08 [HRP-EB02-211007] | B292509 | 10.0         | 10.0       | 10/15/21 |

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0524-03 [HRP-SB226-0-1-211005]   | B292195 | 0.565       | 50.0       | 10/11/21 |
| 21J0524-06 [HRP-SB202-0-1-211007]   | B292195 | 0.533       | 50.0       | 10/11/21 |
| 21J0524-07 [HRP-SB202-25-30-211007] | B292195 | 0.588       | 50.0       | 10/11/21 |



#### **Sample Extraction Data**

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0524-09 [HRP-SB201-0-1-211008]   | B292195 | 0.582       | 50.0       | 10/11/21 |
| 21J0524-10 [HRP-DUP01-0-1-211008]   | B292195 | 0.557       | 50.0       | 10/11/21 |
| 21J0524-11 [HRP-SB201-10-12-211008] | B292195 | 0.600       | 50.0       | 10/11/21 |
| 21J0524-12 [HRP-SB201-24-26-211008] | B292195 | 0.552       | 50.0       | 10/11/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8082A

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J0524-01 [HRP-SB221-0-1-211005] | B292281 | 10.0        | 10.0       | 10/12/21 |
| 21J0524-02 [HRP-SB221-4-5-211005] | B292281 | 10.0        | 10.0       | 10/12/21 |
| 21J0524-03 [HRP-SB226-0-1-211005] | B292281 | 10.0        | 10.0       | 10/12/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8082A

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0524-05 [HRP-EB01-211007] | B292279 | 1020         | 10.0       | 10/12/21 |

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0524-07 [HRP-SB202-25-30-211007] | B292273 | 7.21        | 10.0       | 10/12/21 |
| 21J0524-11 [HRP-SB201-10-12-211008] | B292273 | 7.08        | 10.0       | 10/12/21 |
| 21J0524-12 [HRP-SB201-24-26-211008] | B292273 | 5.33        | 10.0       | 10/12/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J0524-03 [HRP-SB226-0-1-211005]   | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-06 [HRP-SB202-0-1-211007]   | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-07 [HRP-SB202-25-30-211007] | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-09 [HRP-SB201-0-1-211008]   | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-10 [HRP-DUP01-0-1-211008]   | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-11 [HRP-SB201-10-12-211008] | B292394 | 30.0        | 1.00       | 10/13/21 |  |
| 21J0524-12 [HRP-SB201-24-26-211008] | B292394 | 30.0        | 1.00       | 10/13/21 |  |

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0524-08 [HRP-EB02-211007] | B292324 | 1000         | 1.00       | 10/13/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21J0524-03 [HRP-SB226-0-1-211005] | B292228 | 1.01        | 50.0       | 10/12/21 |



## Sample Extraction Data

## SW-846 9045C

| Lab Number [Field ID]             | Batch   | Initial [g] | Date     |
|-----------------------------------|---------|-------------|----------|
| 21J0524-03 [HRP-SB226-0-1-211005] | B292214 | 20.0        | 10/11/21 |



Methyl Acetate

## 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

|                                    | Volatil | le Organic Con | npounds by G | C/MS - Qua | inty Control |        |        |     |       |       |
|------------------------------------|---------|----------------|--------------|------------|--------------|--------|--------|-----|-------|-------|
|                                    |         | Reporting      |              | Spike      | Source       |        | %REC   |     | RPD   |       |
| Analyte                            | Result  | Limit          | Units        | Level      | Result       | %REC   | Limits | RPD | Limit | Notes |
| Batch B292273 - SW-846 5035        |         |                |              |            |              |        |        |     |       |       |
| Blank (B292273-BLK1)               |         |                |              | Prepared & | Analyzed: 10 | /12/21 |        |     |       |       |
| Acetone                            | ND      | 0.10           | mg/Kg wet    |            |              |        |        |     |       |       |
| Acrylonitrile                      | ND      | 0.0060         | mg/Kg wet    |            |              |        |        |     |       |       |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| Benzene                            | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Bromobenzene                       | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Bromochloromethane                 | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Bromodichloromethane               | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Bromoform                          | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Bromomethane                       | ND      | 0.010          | mg/Kg wet    |            |              |        |        |     |       | V-34  |
| 2-Butanone (MEK)                   | ND      | 0.040          | mg/Kg wet    |            |              |        |        |     |       |       |
| ert-Butyl Alcohol (TBA)            | ND      | 0.10           | mg/Kg wet    |            |              |        |        |     |       | V-05  |
| n-Butylbenzene                     | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| sec-Butylbenzene                   | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| tert-Butylbenzene                  | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ert-Butyl Ethyl Ether (TBEE)       | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| Carbon Disulfide                   | ND      | 0.010          | mg/Kg wet    |            |              |        |        |     |       |       |
| Carbon Tetrachloride               | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Chlorobenzene                      | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Chlorodibromomethane               | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| Chloroethane                       | ND      | 0.020          | mg/Kg wet    |            |              |        |        |     |       |       |
| Chloroform                         | ND      | 0.0040         | mg/Kg wet    |            |              |        |        |     |       |       |
| Chloromethane                      | ND      | 0.010          | mg/Kg wet    |            |              |        |        |     |       |       |
| 2-Chlorotoluene                    | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| 1-Chlorotoluene                    | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,2-Dibromo-3-chloropropane (DBCP)  | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,2-Dibromoethane (EDB)             | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| Dibromomethane                     | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| 1,2-Dichlorobenzene                | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| 1,3-Dichlorobenzene                | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,4-Dichlorobenzene                 | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| rans-1,4-Dichloro-2-butene         | ND      | 0.0040         | mg/Kg wet    |            |              |        |        |     |       |       |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.020          | mg/Kg wet    |            |              |        |        |     |       | V-05  |
| 1,1-Dichloroethane                 | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,2-Dichloroethane                  | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,1-Dichloroethylene                | ND      | 0.0040         | mg/Kg wet    |            |              |        |        |     |       |       |
| eis-1,2-Dichloroethylene           | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| rans-1,2-Dichloroethylene          | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,2-Dichloropropane                 | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,3-Dichloropropane                 | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| 2,2-Dichloropropane                | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,1-Dichloropropene                 | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| sis-1,3-Dichloropropene            | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| rans-1,3-Dichloropropene           | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| Diethyl Ether                      | ND      | 0.020          | mg/Kg wet    |            |              |        |        |     |       |       |
| Diisopropyl Ether (DIPE)           | ND      | 0.0010         | mg/Kg wet    |            |              |        |        |     |       |       |
| ,4-Dioxane                         | ND      | 0.10           | mg/Kg wet    |            |              |        |        |     |       |       |
| Ethylbenzene                       | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Hexachlorobutadiene                | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| 2-Hexanone (MBK)                   | ND      | 0.020          | mg/Kg wet    |            |              |        |        |     |       |       |
| (Sopropylbenzene (Cumene)          | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| p-Isopropyltoluene (p-Cymene)      | ND      | 0.0020         | mg/Kg wet    |            |              |        |        |     |       |       |
| Mad 14 and                         |         | 0.0020         | /77          |            |              |        |        |     |       |       |

ND



## QUALITY CONTROL

| Analyte                                     | Result           | Reporting<br>Limit | Units                  | Spike<br>Level   | Source<br>Result | %REC       | %REC<br>Limits   | RPD | RPD<br>Limit | Notes |  |
|---------------------------------------------|------------------|--------------------|------------------------|------------------|------------------|------------|------------------|-----|--------------|-------|--|
| Batch B292273 - SW-846 5035                 |                  |                    |                        |                  |                  |            |                  |     |              |       |  |
| Blank (B292273-BLK1)                        |                  |                    |                        | Prepared & A     | Analyzed: 10     | /12/21     |                  |     |              |       |  |
| Methyl tert-Butyl Ether (MTBE)              | ND               | 0.0040             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Methyl Cyclohexane                          | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Methylene Chloride                          | ND               | 0.020              | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 4-Methyl-2-pentanone (MIBK)                 | ND               | 0.020              | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Naphthalene                                 | ND               | 0.0040             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| n-Propylbenzene                             | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Styrene                                     | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,1,2-Tetrachloroethane                     | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,1,2,2-Tetrachloroethane                   | ND               | 0.0010             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Fetrachloroethylene<br>Fetrahydrofuran      | ND               | 0.0020<br>0.010    | mg/Kg wet<br>mg/Kg wet |                  |                  |            |                  |     |              |       |  |
| Foluene                                     | ND<br>ND         | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1.2.3-Trichlorobenzene                      | ND<br>ND         | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,2,4-Trichlorobenzene                      | ND<br>ND         | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,3,5-Trichlorobenzene                      | ND<br>ND         | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,1,1-Trichloroethane                       | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 1,1,2-Trichloroethane                       | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Frichloroethylene                           | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Frichlorofluoromethane (Freon 11)           | ND               | 0.010              | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| ,2,3-Trichloropropane                       | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND               | 0.010              | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| 13)                                         |                  |                    |                        |                  |                  |            |                  |     |              |       |  |
| ,2,4-Trimethylbenzene                       | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| ,3,5-Trimethylbenzene                       | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Vinyl Chloride                              | ND               | 0.010              | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| n+p Xylene                                  | ND               | 0.0040             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| o-Xylene                                    | ND               | 0.0020             | mg/Kg wet              |                  |                  |            |                  |     |              |       |  |
| Surrogate: 1,2-Dichloroethane-d4            | 0.0496           |                    | mg/Kg wet              | 0.0500           |                  | 99.1       | 70-130           |     |              |       |  |
| Surrogate: Toluene-d8                       | 0.0495           |                    | mg/Kg wet              | 0.0500           |                  | 99.0       | 70-130           |     |              |       |  |
| Surrogate: 4-Bromofluorobenzene             | 0.0521           |                    | mg/Kg wet              | 0.0500           |                  | 104        | 70-130           |     |              |       |  |
| LCS (B292273-BS1)                           |                  |                    |                        | Prepared & A     | Analyzed: 10     |            |                  |     |              |       |  |
| Acetone                                     | 0.173            | 0.10               | mg/Kg wet              | 0.200            |                  | 86.6       | 70-160           |     |              | V-36  |  |
| Acrylonitrile                               | 0.0196           | 0.0060             | mg/Kg wet              | 0.0200           |                  | 98.2       | 70-130           |     |              |       |  |
| ert-Amyl Methyl Ether (TAME)                | 0.0168           | 0.0010             | mg/Kg wet              | 0.0200           |                  | 83.8       | 70-130           |     |              |       |  |
| Benzene<br>Bromobenzene                     | 0.0191           | 0.0020<br>0.0020   | mg/Kg wet              | 0.0200           |                  | 95.4       | 70-130           |     |              |       |  |
| Bromochloromethane                          | 0.0225           | 0.0020             | mg/Kg wet<br>mg/Kg wet | 0.0200           |                  | 113        | 70-130           |     |              |       |  |
| Bromodichloromethane                        | 0.0205           | 0.0020             | mg/Kg wet              | 0.0200<br>0.0200 |                  | 102<br>101 | 70-130<br>70-130 |     |              |       |  |
| Bromoform                                   | 0.0202<br>0.0205 | 0.0020             | mg/Kg wet              | 0.0200           |                  | 101        | 70-130           |     |              |       |  |
| Bromomethane                                | 0.0203           | 0.010              | mg/Kg wet              | 0.0200           |                  | 102        | 40-130           |     |              | V-34  |  |
| 2-Butanone (MEK)                            | 0.0218           | 0.040              | mg/Kg wet              | 0.200            |                  | 89.5       | 70-160           |     |              | V-3-T |  |
| ert-Butyl Alcohol (TBA)                     | 0.179            | 0.10               | mg/Kg wet              | 0.200            |                  | 74.2       | 40-130           |     |              | V-05  |  |
| n-Butylbenzene                              | 0.0198           | 0.0020             | mg/Kg wet              | 0.0200           |                  | 99.0       | 70-130           |     |              | , 02  |  |
| sec-Butylbenzene                            | 0.0193           | 0.0020             | mg/Kg wet              | 0.0200           |                  | 96.7       | 70-130           |     |              |       |  |
| ert-Butylbenzene                            | 0.0193           | 0.0020             | mg/Kg wet              | 0.0200           |                  | 93.4       | 70-160           |     |              |       |  |
| ert-Butyl Ethyl Ether (TBEE)                | 0.0167           | 0.0010             | mg/Kg wet              | 0.0200           |                  | 83.6       | 70-130           |     |              |       |  |
| Carbon Disulfide                            | 0.185            | 0.010              | mg/Kg wet              | 0.200            |                  | 92.4       | 70-130           |     |              |       |  |
| Carbon Tetrachloride                        | 0.0192           | 0.0020             | mg/Kg wet              | 0.0200           |                  | 96.2       | 70-130           |     |              |       |  |
| Chlorobenzene                               | 0.0198           | 0.0020             | mg/Kg wet              | 0.0200           |                  | 98.8       | 70-130           |     |              |       |  |
| Chlorodibromomethane                        | 0.0208           | 0.0010             | mg/Kg wet              | 0.0200           |                  | 104        | 70-130           |     |              |       |  |
| Chloroethane                                | 0.0205           | 0.020              | mg/Kg wet              | 0.0200           |                  | 103        | 70-130           |     |              |       |  |
| Chloroform                                  | 0.0196           | 0.0040             | mg/Kg wet              | 0.0200           |                  | 97.8       | 70-130           |     |              |       |  |



## QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

|                                    |        | Reporting |           | Spike        | Source       |        | %REC   | <b>-</b> | RPD   |         |  |
|------------------------------------|--------|-----------|-----------|--------------|--------------|--------|--------|----------|-------|---------|--|
| Analyte                            | Result | Limit     | Units     | Level        | Result       | %REC   | Limits | RPD      | Limit | Notes   |  |
| Batch B292273 - SW-846 5035        |        |           |           |              |              |        |        |          |       |         |  |
| LCS (B292273-BS1)                  |        |           |           | Prepared & A | Analyzed: 10 | /12/21 |        |          |       |         |  |
| Chloromethane                      | 0.0161 | 0.010     | mg/Kg wet | 0.0200       |              | 80.7   | 70-130 |          |       |         |  |
| 2-Chlorotoluene                    | 0.0209 | 0.0020    | mg/Kg wet | 0.0200       |              | 104    | 70-130 |          |       |         |  |
| 4-Chlorotoluene                    | 0.0219 | 0.0020    | mg/Kg wet | 0.0200       |              | 109    | 70-130 |          |       |         |  |
| 1,2-Dibromo-3-chloropropane (DBCP) | 0.0175 | 0.0020    | mg/Kg wet | 0.0200       |              | 87.7   | 70-130 |          |       |         |  |
| 1,2-Dibromoethane (EDB)            | 0.0208 | 0.0010    | mg/Kg wet | 0.0200       |              | 104    | 70-130 |          |       |         |  |
| Dibromomethane                     | 0.0207 | 0.0020    | mg/Kg wet | 0.0200       |              | 104    | 70-130 |          |       |         |  |
| 1,2-Dichlorobenzene                | 0.0205 | 0.0020    | mg/Kg wet | 0.0200       |              | 103    | 70-130 |          |       |         |  |
| ,3-Dichlorobenzene                 | 0.0195 | 0.0020    | mg/Kg wet | 0.0200       |              | 97.4   | 70-130 |          |       |         |  |
| 1,4-Dichlorobenzene                | 0.0188 | 0.0020    | mg/Kg wet | 0.0200       |              | 94.2   | 70-130 |          |       |         |  |
| rans-1,4-Dichloro-2-butene         | 0.0198 | 0.0040    | mg/Kg wet | 0.0200       |              | 99.2   | 70-130 |          |       |         |  |
| Dichlorodifluoromethane (Freon 12) | 0.0146 | 0.020     | mg/Kg wet | 0.0200       |              | 73.1   | 40-160 |          |       | V-05, J |  |
| 1,1-Dichloroethane                 | 0.0193 | 0.0020    | mg/Kg wet | 0.0200       |              | 96.6   | 70-130 |          |       |         |  |
| 1,2-Dichloroethane                 | 0.0201 | 0.0020    | mg/Kg wet | 0.0200       |              | 100    | 70-130 |          |       |         |  |
| 1,1-Dichloroethylene               | 0.0187 | 0.0040    | mg/Kg wet | 0.0200       |              | 93.6   | 70-130 |          |       |         |  |
| eis-1,2-Dichloroethylene           | 0.0199 | 0.0020    | mg/Kg wet | 0.0200       |              | 99.4   | 70-130 |          |       |         |  |
| trans-1,2-Dichloroethylene         | 0.0194 | 0.0020    | mg/Kg wet | 0.0200       |              | 97.1   | 70-130 |          |       |         |  |
| 1,2-Dichloropropane                | 0.0194 | 0.0020    | mg/Kg wet | 0.0200       |              | 97.6   | 70-130 |          |       |         |  |
| 1,3-Dichloropropane                | 0.0193 | 0.0010    | mg/Kg wet | 0.0200       |              | 106    | 70-130 |          |       |         |  |
| 2,2-Dichloropropane                | 0.0212 | 0.0020    | mg/Kg wet | 0.0200       |              | 91.8   | 70-130 |          |       |         |  |
| 1,1-Dichloropropene                |        | 0.0020    | mg/Kg wet | 0.0200       |              | 94.0   | 70-130 |          |       |         |  |
| cis-1,3-Dichloropropene            | 0.0188 | 0.0020    | mg/Kg wet |              |              |        |        |          |       |         |  |
|                                    | 0.0207 |           |           | 0.0200       |              | 104    | 70-130 |          |       |         |  |
| rans-1,3-Dichloropropene           | 0.0174 | 0.0010    | mg/Kg wet | 0.0200       |              | 86.9   | 70-130 |          |       |         |  |
| Diethyl Ether                      | 0.0207 | 0.020     | mg/Kg wet | 0.0200       |              | 104    | 70-130 |          |       |         |  |
| Diisopropyl Ether (DIPE)           | 0.0198 | 0.0010    | mg/Kg wet | 0.0200       |              | 99.0   | 70-130 |          |       |         |  |
| I,4-Dioxane                        | 0.154  | 0.10      | mg/Kg wet | 0.200        |              | 77.0   | 40-160 |          |       |         |  |
| Ethylbenzene                       | 0.0213 | 0.0020    | mg/Kg wet | 0.0200       |              | 106    | 70-130 |          |       |         |  |
| Hexachlorobutadiene                | 0.0190 | 0.0020    | mg/Kg wet | 0.0200       |              | 95.2   | 70-160 |          |       |         |  |
| 2-Hexanone (MBK)                   | 0.195  | 0.020     | mg/Kg wet | 0.200        |              | 97.3   | 70-160 |          |       | V-36    |  |
| Isopropylbenzene (Cumene)          | 0.0211 | 0.0020    | mg/Kg wet | 0.0200       |              | 105    | 70-130 |          |       |         |  |
| p-Isopropyltoluene (p-Cymene)      | 0.0202 | 0.0020    | mg/Kg wet | 0.0200       |              | 101    | 70-130 |          |       |         |  |
| Methyl Acetate                     | 0.0173 | 0.0020    | mg/Kg wet | 0.0200       |              | 86.4   | 70-130 |          |       |         |  |
| Methyl tert-Butyl Ether (MTBE)     | 0.0194 | 0.0040    | mg/Kg wet | 0.0200       |              | 97.2   | 70-130 |          |       |         |  |
| Methyl Cyclohexane                 | 0.0201 | 0.0020    | mg/Kg wet | 0.0200       |              | 101    | 70-130 |          |       |         |  |
| Methylene Chloride                 | 0.0194 | 0.020     | mg/Kg wet | 0.0200       |              | 96.9   | 40-160 |          |       | J       |  |
| 4-Methyl-2-pentanone (MIBK)        | 0.198  | 0.020     | mg/Kg wet | 0.200        |              | 99.1   | 70-160 |          |       |         |  |
| Naphthalene                        | 0.0187 | 0.0040    | mg/Kg wet | 0.0200       |              | 93.4   | 40-130 |          |       |         |  |
| n-Propylbenzene                    | 0.0222 | 0.0020    | mg/Kg wet | 0.0200       |              | 111    | 70-130 |          |       |         |  |
| Styrene                            | 0.0229 | 0.0020    | mg/Kg wet | 0.0200       |              | 114    | 70-130 |          |       |         |  |
| 1,1,1,2-Tetrachloroethane          | 0.0207 | 0.0020    | mg/Kg wet | 0.0200       |              | 103    | 70-130 |          |       |         |  |
| 1,1,2,2-Tetrachloroethane          | 0.0204 | 0.0010    | mg/Kg wet | 0.0200       |              | 102    | 70-130 |          |       |         |  |
| Tetrachloroethylene                | 0.0194 | 0.0020    | mg/Kg wet | 0.0200       |              | 97.1   | 70-130 |          |       |         |  |
| Tetrahydrofuran                    | 0.0174 | 0.010     | mg/Kg wet | 0.0200       |              | 86.8   | 70-130 |          |       |         |  |
| Toluene                            | 0.0191 | 0.0020    | mg/Kg wet | 0.0200       |              | 95.4   | 70-130 |          |       |         |  |
| 1,2,3-Trichlorobenzene             | 0.0205 | 0.0020    | mg/Kg wet | 0.0200       |              | 102    | 70-130 |          |       |         |  |
| 1,2,4-Trichlorobenzene             | 0.0193 | 0.0020    | mg/Kg wet | 0.0200       |              | 96.7   | 70-130 |          |       |         |  |
| 1,3,5-Trichlorobenzene             | 0.0188 | 0.0020    | mg/Kg wet | 0.0200       |              | 93.9   | 70-130 |          |       |         |  |
| 1,1,1-Trichloroethane              | 0.0190 | 0.0020    | mg/Kg wet | 0.0200       |              | 95.2   | 70-130 |          |       |         |  |
| 1,1,2-Trichloroethane              | 0.0206 | 0.0020    | mg/Kg wet | 0.0200       |              | 103    | 70-130 |          |       |         |  |
| Trichloroethylene                  | 0.0208 | 0.0020    | mg/Kg wet | 0.0200       |              | 96.4   | 70-130 |          |       |         |  |
| Trichlorofluoromethane (Freon 11)  | 0.0193 | 0.010     | mg/Kg wet | 0.0200       |              | 101    | 70-130 |          |       |         |  |
| 1,2,3-Trichloropropane             | 0.0202 | 0.0020    | mg/Kg wet | 0.0200       |              | 101    | 70-130 |          |       |         |  |



## QUALITY CONTROL

|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prepared & A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyzed: 10/ | 12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |         |        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|--------|
| 0.0198 | 0.010                                                                                                                                  | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70-130 |        |        |         |        |
| 0.0105 | 0.0020                                                                                                                                 | ma/K a wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 07.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 120 |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         | †      |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         | 1      |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        | 0.0020                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.0527 |                                                                                                                                        | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /0-130 |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyzed: 10/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.180  | 0.10                                                                                                                                   | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70-160 | 4.04   | 25     | V-36    | †      |
| 0.0209 | 0.0060                                                                                                                                 | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70-130 | 6.22   | 25     |         |        |
| 0.0164 | 0.0010                                                                                                                                 | mg/Kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 82.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70-130 | 1.93   | 25     |         |        |
| 0.0181 | 0.0020                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 90.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70-130 | 5.16   | 25     |         |        |
| 0.0217 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.0191 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.0204 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.28   |        |         |        |
| 0.0208 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.45   |        |         |        |
| 0.0198 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | V-34    | Ť      |
| 0.190  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 95.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70-160 | 6.20   | 25     |         | †      |
| 0.164  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 81.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-130 | 9.71   | 25     | V-05    | †      |
| 0.0188 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.0182 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.0176 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         | †      |
| 0.0163 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
| 0.172  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | J       |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | V 05 I  | †      |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        | V-03, J | 1      |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |         |        |
|        | 0.0209<br>0.0164<br>0.0181<br>0.0217<br>0.0191<br>0.0204<br>0.0208<br>0.0198<br>0.190<br>0.164<br>0.0188<br>0.0182<br>0.0176<br>0.0163 | 0.0221         0.0020           0.0184         0.010           0.0442         0.0040           0.0223         0.0020           0.0481         0.0492           0.0527         0.0527           0.180         0.10           0.0209         0.0060           0.0164         0.0010           0.0217         0.0020           0.0217         0.0020           0.0204         0.0020           0.0298         0.0020           0.0199         0.040           0.164         0.10           0.198         0.010           0.190         0.040           0.164         0.10           0.0188         0.0020           0.0188         0.0020           0.0182         0.0020           0.0183         0.0010           0.0184         0.0020           0.0185         0.0040           0.0185         0.0040           0.0185         0.0040           0.0182         0.0020           0.0183         0.0020           0.0184         0.0020           0.0185         0.0020           0.0180         0.00 | 0.0221 0.0020 mg/Kg wet 0.0184 0.010 mg/Kg wet 0.0223 0.0020 mg/Kg wet 0.0223 0.0020 mg/Kg wet 0.0223 0.0020 mg/Kg wet 0.0492 mg/Kg wet mg/Kg wet mg/Kg wet 0.0527 mg/Kg wet 0.0527 mg/Kg wet 0.0209 0.0060 mg/Kg wet 0.0181 0.0020 mg/Kg wet 0.0217 0.0020 mg/Kg wet 0.0217 0.0020 mg/Kg wet 0.0204 0.0020 mg/Kg wet 0.0208 0.0020 mg/Kg wet 0.190 0.040 mg/Kg wet 0.190 0.040 mg/Kg wet 0.190 0.040 mg/Kg wet 0.164 0.10 mg/Kg wet 0.0188 0.0020 mg/Kg wet 0.0182 0.0020 mg/Kg wet 0.0182 0.0020 mg/Kg wet 0.0181 0.0020 mg/Kg wet 0.0182 0.0020 mg/Kg wet 0.0185 0.0010 mg/Kg wet 0.0185 0.0020 mg/Kg wet 0.0182 0.0020 mg/Kg wet 0.0185 0.0020 mg/Kg wet 0.0182 0.0020 mg/Kg wet 0.0189 0.0020 mg/Kg wet 0.0180 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0180 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0183 0.0020 mg/Kg wet 0.0180 0.0020 mg/Kg wet 0.0168 0.0020 mg/Kg wet 0.0168 0.0020 mg/Kg wet 0.0168 0.0020 mg/ | 0.0221        | 0.0221 0.0020 mg/Kg wet 0.0200 0.0184 0.010 mg/Kg wet 0.0200 0.0442 0.0040 mg/Kg wet 0.0200 0.0223 0.0020 mg/Kg wet 0.0200 0.0481 mg/Kg wet 0.0500 0.0492 mg/Kg wet 0.0500 0.0527 mg/Kg wet 0.0500 0.0527 mg/Kg wet 0.0200 0.0180 0.10 mg/Kg wet 0.0200 0.0164 0.0010 mg/Kg wet 0.0200 0.0164 0.0010 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0191 0.0020 mg/Kg wet 0.0200 0.0191 0.0020 mg/Kg wet 0.0200 0.0190 0.000 mg/Kg wet 0.0200 0.0191 0.0020 mg/Kg wet 0.0200 0.0198 0.010 mg/Kg wet 0.0200 0.0198 0.010 mg/Kg wet 0.0200 0.0188 0.0020 mg/Kg wet 0.0200 0.0180 0.010 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0182 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0172 0.010 mg/Kg wet 0.0200 0.0172 0.010 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0182 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0180 0.0020 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0182 0.0020 mg/Kg wet 0.0200 0.0183 0.0020 mg/Kg wet 0.0200 0.0184 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0180 0.0020 mg/Kg wet 0.0200 0.0181 0.0020 mg/Kg wet 0.0200 0.0182 0.0020 mg/Kg wet 0.0200 0.0183 0.0020 mg/Kg wet 0.0200 0.0184 0.0020 mg/Kg wet 0.0200 0.0185 0.0020 mg/Kg wet 0.0200 0.0189 0.0020 mg/Kg wet 0.0200 | 0.0221 | 0.0221 | 0.0221 | 0.0221  | 0.0221 |



## QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |     |
|---------------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|-------|-----|
| Batch B292273 - SW-846 5035                       |        |                    |           |                |                  |        |                |       |              |       |     |
| LCS Dup (B292273-BSD1)                            |        |                    |           | Prepared &     | Analyzed: 10     | /12/21 |                |       |              |       |     |
| cis-1,3-Dichloropropene                           | 0.0209 | 0.0010             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         | 0.960 | 25           |       |     |
| trans-1,3-Dichloropropene                         | 0.0177 | 0.0010             | mg/Kg wet | 0.0200         |                  | 88.7   | 70-130         | 2.05  | 25           |       |     |
| Diethyl Ether                                     | 0.0201 | 0.020              | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 3.03  | 25           |       |     |
| Diisopropyl Ether (DIPE)                          | 0.0198 | 0.0010             | mg/Kg wet | 0.0200         |                  | 98.8   | 70-130         | 0.202 | 25           |       |     |
| 1,4-Dioxane                                       | 0.177  | 0.10               | mg/Kg wet | 0.200          |                  | 88.5   | 40-160         | 13.9  | 50           |       | † ‡ |
| Ethylbenzene                                      | 0.0203 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101    | 70-130         | 4.81  | 25           |       |     |
| Hexachlorobutadiene                               | 0.0181 | 0.0020             | mg/Kg wet | 0.0200         |                  | 90.5   | 70-160         | 5.06  | 25           |       |     |
| 2-Hexanone (MBK)                                  | 0.224  | 0.020              | mg/Kg wet | 0.200          |                  | 112    | 70-160         | 13.8  | 25           | V-36  | †   |
| Isopropylbenzene (Cumene)                         | 0.0194 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.0   | 70-130         | 8.30  | 25           |       |     |
| p-Isopropyltoluene (p-Cymene)                     | 0.0192 | 0.0020             | mg/Kg wet | 0.0200         |                  | 95.9   | 70-130         | 5.38  | 25           |       |     |
| Methyl Acetate                                    | 0.0179 | 0.0020             | mg/Kg wet | 0.0200         |                  | 89.3   | 70-130         | 3.30  | 25           |       |     |
| Methyl tert-Butyl Ether (MTBE)                    | 0.0192 | 0.0040             | mg/Kg wet | 0.0200         |                  | 95.9   | 70-130         | 1.35  | 25           |       |     |
| Methyl Cyclohexane                                | 0.0197 | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.3   | 70-130         | 2.31  | 25           |       |     |
| Methylene Chloride                                | 0.0184 | 0.020              | mg/Kg wet | 0.0200         |                  | 91.8   | 40-160         | 5.41  | 25           | J     | †   |
| 4-Methyl-2-pentanone (MIBK)                       | 0.220  | 0.020              | mg/Kg wet | 0.200          |                  | 110    | 70-160         | 10.5  | 25           |       | †   |
| Naphthalene                                       | 0.0190 | 0.0040             | mg/Kg wet | 0.0200         |                  | 94.9   | 40-130         | 1.59  | 25           |       | †   |
| n-Propylbenzene                                   | 0.0206 | 0.0020             | mg/Kg wet | 0.0200         |                  | 103    | 70-130         | 7.46  | 25           |       |     |
| Styrene                                           | 0.0215 | 0.0020             | mg/Kg wet | 0.0200         |                  | 108    | 70-130         | 5.95  | 25           |       |     |
| 1,1,1,2-Tetrachloroethane                         | 0.0198 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.0   | 70-130         | 4.35  | 25           |       |     |
| 1,1,2,2-Tetrachloroethane                         | 0.0210 | 0.0010             | mg/Kg wet | 0.0200         |                  | 105    | 70-130         | 2.90  | 25           |       |     |
| Tetrachloroethylene                               | 0.0193 | 0.0020             | mg/Kg wet | 0.0200         |                  | 96.6   | 70-130         | 0.516 | 25           |       |     |
| Tetrahydrofuran                                   | 0.0181 | 0.010              | mg/Kg wet | 0.0200         |                  | 90.7   | 70-130         | 4.39  | 25           |       |     |
| Toluene                                           | 0.0190 | 0.0020             | mg/Kg wet | 0.0200         |                  | 95.0   | 70-130         | 0.420 | 25           |       |     |
| 1,2,3-Trichlorobenzene                            | 0.0200 | 0.0020             | mg/Kg wet | 0.0200         |                  | 100    | 70-130         | 2.47  | 25           |       |     |
| 1,2,4-Trichlorobenzene                            | 0.0188 | 0.0020             | mg/Kg wet | 0.0200         |                  | 94.0   | 70-130         | 2.83  | 25           |       |     |
| 1,3,5-Trichlorobenzene                            | 0.0180 | 0.0020             | mg/Kg wet | 0.0200         |                  | 89.9   | 70-130         | 4.35  | 25           |       |     |
| 1,1,1-Trichloroethane                             | 0.0180 | 0.0020             | mg/Kg wet | 0.0200         |                  | 90.1   | 70-130         | 5.50  | 25           |       |     |
| 1,1,2-Trichloroethane                             | 0.0211 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106    | 70-130         | 2.68  | 25           |       |     |
| Trichloroethylene                                 | 0.0196 | 0.0020             | mg/Kg wet | 0.0200         |                  | 97.8   | 70-130         | 1.44  | 25           |       |     |
| Trichlorofluoromethane (Freon 11)                 | 0.0186 | 0.010              | mg/Kg wet | 0.0200         |                  | 92.9   | 70-130         | 8.26  | 25           |       |     |
| 1,2,3-Trichloropropane                            | 0.0178 | 0.0020             | mg/Kg wet | 0.0200         |                  | 89.2   | 70-130         | 3.77  | 25           |       |     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 0.0176 | 0.010              | mg/Kg wet | 0.0200         |                  | 91.0   | 70-130         | 8.32  | 25           |       |     |
| 1,2,4-Trimethylbenzene                            | 0.0189 | 0.0020             | mg/Kg wet | 0.0200         |                  | 94.3   | 70-130         | 3.13  | 25           |       |     |
| 1,3,5-Trimethylbenzene                            | 0.0209 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         | 5.86  | 25           |       |     |
| Vinyl Chloride                                    | 0.0171 | 0.010              | mg/Kg wet | 0.0200         |                  | 85.4   | 40-130         | 7.66  | 25           |       | †   |
| m+p Xylene                                        | 0.0415 | 0.0040             | mg/Kg wet | 0.0400         |                  | 104    | 70-130         | 6.39  | 25           |       |     |
| o-Xylene                                          | 0.0209 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104    | 70-130         | 6.49  | 25           |       |     |
| Surrogate: 1,2-Dichloroethane-d4                  | 0.0471 |                    | mg/Kg wet | 0.0500         |                  | 94.3   | 70-130         |       |              |       | _   |
| Surrogate: Toluene-d8                             | 0.0497 |                    | mg/Kg wet | 0.0500         |                  | 99.4   | 70-130         |       |              |       |     |
| Surrogate: 4-Bromofluorobenzene                   | 0.0515 |                    | mg/Kg wet | 0.0500         |                  | 103    | 70-130         |       |              |       |     |
|                                                   | 0.0010 |                    |           | 0.0500         |                  | 103    | , 0 150        |       |              |       |     |



## QUALITY CONTROL

| Analyte                                      | Result   | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|----------------------------------------------|----------|--------------------|-------------------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| Batch B292324 - SW-846 3510C                 |          |                    |                   |                |                  |               |                |     |              |            |
| Blank (B292324-BLK1)                         |          |                    |                   | Prepared: 10   | )/13/21 Anal     | yzed: 10/14/2 | 21             |     |              |            |
| Acenaphthene                                 | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Acenaphthylene                               | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Acetophenone                                 | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Aniline                                      | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Anthracene                                   | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzidine                                    | ND       | 20                 | μg/L              |                |                  |               |                |     |              | V-04, V-05 |
| Benzo(a)anthracene                           | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(a)pyrene                               | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(b)fluoranthene                         | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
|                                              | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzoic Acid Bis(2-chloroethoxy)methane      | ND       | 10                 | μg/L<br>μg/I      |                |                  |               |                |     |              |            |
| Bis(2-chloroethyl)ether                      | ND       | 10<br>10           | μg/L<br>μg/I      |                |                  |               |                |     |              |            |
| Bis(2-chloroisopropyl)ether                  | ND       | 10                 | μg/L<br>μg/I      |                |                  |               |                |     |              | V-05       |
| Bis(2-Ethylhexyl)phthalate                   | ND       | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              | V-U5       |
| 4-Bromophenylphenylether                     | ND       | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| Butylbenzylphthalate                         | ND       | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| Carbazole                                    | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| 4-Chloroaniline                              | ND<br>ND | 10                 | μg/L              |                |                  |               |                |     |              | V-34       |
| 4-Chloro-3-methylphenol                      | ND       | 10                 | μg/L              |                |                  |               |                |     |              | V-54       |
| 2-Chloronaphthalene                          | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 2-Chlorophenol                               | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 4-Chlorophenylphenylether                    | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Chrysene                                     | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Dibenz(a,h)anthracene                        | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Dibenzofuran                                 | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Di-n-butylphthalate                          | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 1,2-Dichlorobenzene                          | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 1,3-Dichlorobenzene                          | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 1,4-Dichlorobenzene                          | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 3,3-Dichlorobenzidine                        | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 2,4-Dichlorophenol                           | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Diethylphthalate                             | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 2,4-Dimethylphenol                           | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Dimethylphthalate                            | ND       | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |              |            |
| 4,6-Dinitro-2-methylphenol                   | ND       | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |              |            |
| 2,4-Dinitrophenol                            | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| 2,4-Dinitrotoluene                           | ND       | 10                 | $\mu g\!/\!L$     |                |                  |               |                |     |              |            |
| 2,6-Dinitrotoluene                           | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| Di-n-octylphthalate                          | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| 1,2-Diphenylhydrazine/Azobenzene             | ND       | 10                 | $\mu g\!/\!L$     |                |                  |               |                |     |              |            |
| Fluoranthene                                 | ND       | 5.0                | $\mu g\!/\!L$     |                |                  |               |                |     |              |            |
| Fluorene                                     | ND       | 5.0                | $\mu g\!/\!L$     |                |                  |               |                |     |              |            |
| Hexachlorobenzene                            | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| Hexachlorobutadiene                          | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| Hexachlorocyclopentadiene                    | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              | V-05       |
| Hexachloroethane                             | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| Indeno(1,2,3-cd)pyrene                       | ND       | 5.0                | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| Isophorone                                   | ND       | 10                 | $\mu g\!/\!L$     |                |                  |               |                |     |              |            |
| 1-Methylnaphthalene                          | ND       | 5.0                | $\mu g/L$         |                |                  |               |                |     |              |            |
| 2-Methylnaphthalene                          | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |



#### QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

|                                      |        | Reporting |                   | Spike        | Source        |               | %REC   |     | RPD   |            |
|--------------------------------------|--------|-----------|-------------------|--------------|---------------|---------------|--------|-----|-------|------------|
| Analyte                              | Result | Limit     | Units             | Level        | Result        | %REC          | Limits | RPD | Limit | Notes      |
| Satch B292324 - SW-846 3510C         |        |           |                   |              |               |               |        |     |       |            |
| lank (B292324-BLK1)                  |        |           |                   | Prepared: 10 | )/13/21 Analy | yzed: 10/14/2 | 1      |     |       |            |
| -Methylphenol                        | ND     | 10        | $\mu g \! / \! L$ |              |               |               |        |     |       |            |
| /4-Methylphenol                      | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| Naphthalene                          | ND     | 5.0       | $\mu g/L$         |              |               |               |        |     |       |            |
| -Nitroaniline                        | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| -Nitroaniline                        | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| -Nitroaniline                        | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| litrobenzene                         | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| -Nitrophenol                         | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| -Nitrophenol                         | ND     | 10        | $\mu g/L$         |              |               |               |        |     |       |            |
| N-Nitrosodimethylamine               | ND     | 10        | μg/L              |              |               |               |        |     |       | L-04, V-05 |
| V-Nitrosodiphenylamine/Diphenylamine | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| I-Nitrosodi-n-propylamine            | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| entachloronitrobenzene               | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| entachlorophenol                     | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| Phenanthrene                         | ND     | 5.0       | μg/L              |              |               |               |        |     |       |            |
| Phenol                               | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| vyrene                               | ND     | 5.0       | μg/L              |              |               |               |        |     |       |            |
| Pyridine                             | ND     | 5.0       | μg/L              |              |               |               |        |     |       | V-34       |
| ,2,4,5-Tetrachlorobenzene            | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| ,2,4-Trichlorobenzene                | ND     | 5.0       | μg/L              |              |               |               |        |     |       |            |
| ,4,5-Trichlorophenol                 | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| ,4,6-Trichlorophenol                 | ND     | 10        | μg/L              |              |               |               |        |     |       |            |
| urrogate: 2-Fluorophenol             | 68.9   |           | μg/L              | 200          |               | 34.4          | 15-110 |     |       |            |
| urrogate: Phenol-d6                  | 48.3   |           | $\mu g/L$         | 200          |               | 24.2          | 15-110 |     |       |            |
| durrogate: Nitrobenzene-d5           | 52.8   |           | $\mu g/L$         | 100          |               | 52.8          | 30-130 |     |       |            |
| Surrogate: 2-Fluorobiphenyl          | 60.1   |           | $\mu g/L$         | 100          |               | 60.1          | 30-130 |     |       |            |
| Surrogate: 2,4,6-Tribromophenol      | 156    |           | $\mu g/L$         | 200          |               | 78.0          | 15-110 |     |       |            |
| surrogate: p-Terphenyl-d14           | 84.7   |           | $\mu g/L$         | 100          |               | 84.7          | 30-130 |     |       |            |
| LCS (B292324-BS1)                    |        |           |                   | Prepared: 10 | 0/13/21 Analy | yzed: 10/14/2 | 1      |     |       |            |
| Acenaphthene                         | 30.6   | 5.0       | μg/L              | 50.0         |               | 61.3          | 40-140 |     |       |            |
| Acenaphthylene                       | 32.8   | 5.0       | μg/L              | 50.0         |               | 65.7          | 40-140 |     |       |            |
| Acetophenone                         | 31.5   | 10        | μg/L              | 50.0         |               | 62.9          | 40-140 |     |       |            |
| Aniline                              | 32.7   | 5.0       | μg/L              | 50.0         |               | 65.5          | 40-140 |     |       |            |
| Anthracene                           | 35.4   | 5.0       | μg/L              | 50.0         |               | 70.7          | 40-140 |     |       |            |
| Benzidine                            | 36.5   | 20        | $\mu g/L$         | 50.0         |               | 72.9          | 40-140 |     |       | V-04, V-05 |
| Benzo(a)anthracene                   | 33.9   | 5.0       | $\mu g/L$         | 50.0         |               | 67.7          | 40-140 |     |       |            |
| Benzo(a)pyrene                       | 38.2   | 5.0       | $\mu g/L$         | 50.0         |               | 76.5          | 40-140 |     |       |            |
| Benzo(b)fluoranthene                 | 36.2   | 5.0       | $\mu g/L$         | 50.0         |               | 72.4          | 40-140 |     |       |            |
| Benzo(g,h,i)perylene                 | 34.5   | 5.0       | $\mu \text{g/L}$  | 50.0         |               | 68.9          | 40-140 |     |       |            |
| Benzo(k)fluoranthene                 | 38.4   | 5.0       | $\mu g/L$         | 50.0         |               | 76.9          | 40-140 |     |       |            |
| Benzoic Acid                         | 7.89   | 10        | $\mu g/L$         | 50.0         |               | 15.8          | 10-130 |     |       | J          |
| Bis(2-chloroethoxy)methane           | 31.6   | 10        | $\mu g/L$         | 50.0         |               | 63.2          | 40-140 |     |       |            |
| bis(2-chloroethyl)ether              | 26.8   | 10        | $\mu g/L$         | 50.0         |               | 53.6          | 40-140 |     |       |            |
| Bis(2-chloroisopropyl)ether          | 27.2   | 10        | $\mu g/L$         | 50.0         |               | 54.5          | 40-140 |     |       | V-05       |
| Bis(2-Ethylhexyl)phthalate           | 35.9   | 10        | $\mu g/L$         | 50.0         |               | 71.8          | 40-140 |     |       |            |
| -Bromophenylphenylether              | 34.0   | 10        | μg/L              | 50.0         |               | 68.0          | 40-140 |     |       |            |
| Butylbenzylphthalate                 | 33.2   | 10        | μg/L              | 50.0         |               | 66.3          | 40-140 |     |       |            |
| Carbazole                            | 34.9   | 10        | μg/L              | 50.0         |               | 69.7          | 40-140 |     |       |            |
| -Chloroaniline                       | 35.8   | 10        | μg/L              | 50.0         |               | 71.7          | 40-140 |     |       | V-34       |
| -Chloro-3-methylphenol               | 32.3   | 10        | μg/L              | 50.0         |               | 64.6          | 30-130 |     |       |            |
| * A                                  | 24.3   |           |                   | - 0.0        |               |               | 100    |     |       |            |



## QUALITY CONTROL

|                                      |        | Reporting |                  | Spike        | Source       |               | %REC             |     | RPD   |            |
|--------------------------------------|--------|-----------|------------------|--------------|--------------|---------------|------------------|-----|-------|------------|
| Analyte                              | Result | Limit     | Units            | Level        | Result       | %REC          | Limits           | RPD | Limit | Notes      |
| Batch B292324 - SW-846 3510C         |        |           |                  |              |              |               |                  |     |       |            |
| LCS (B292324-BS1)                    |        |           |                  | Prepared: 10 | )/13/21 Anal | yzed: 10/14/2 | 21               |     |       |            |
| 2-Chlorophenol                       | 27.8   | 10        | μg/L             | 50.0         |              | 55.7          | 30-130           |     |       |            |
| 4-Chlorophenylphenylether            | 33.4   | 10        | $\mu g/L$        | 50.0         |              | 66.7          | 40-140           |     |       |            |
| Chrysene                             | 35.9   | 5.0       | $\mu g/L$        | 50.0         |              | 71.7          | 40-140           |     |       |            |
| Dibenz(a,h)anthracene                | 36.6   | 5.0       | $\mu g/L$        | 50.0         |              | 73.3          | 40-140           |     |       |            |
| Dibenzofuran                         | 34.5   | 5.0       | $\mu g/L$        | 50.0         |              | 69.1          | 40-140           |     |       |            |
| Di-n-butylphthalate                  | 34.8   | 10        | $\mu g/L$        | 50.0         |              | 69.6          | 40-140           |     |       |            |
| 1,2-Dichlorobenzene                  | 24.4   | 5.0       | $\mu g/L$        | 50.0         |              | 48.9          | 40-140           |     |       |            |
| 1,3-Dichlorobenzene                  | 22.7   | 5.0       | $\mu g/L$        | 50.0         |              | 45.4          | 40-140           |     |       |            |
| 1,4-Dichlorobenzene                  | 23.4   | 5.0       | μg/L             | 50.0         |              | 46.7          | 40-140           |     |       |            |
| 3,3-Dichlorobenzidine                | 33.5   | 10        | μg/L             | 50.0         |              | 66.9          | 40-140           |     |       |            |
| 2,4-Dichlorophenol                   | 31.6   | 10        | μg/L             | 50.0         |              | 63.2          | 30-130           |     |       |            |
| Diethylphthalate                     | 33.1   | 10        | $\mu g/L$        | 50.0         |              | 66.2          | 40-140           |     |       |            |
| 2,4-Dimethylphenol                   | 33.1   | 10        | $\mu g/L$        | 50.0         |              | 66.3          | 30-130           |     |       |            |
| Dimethylphthalate                    | 34.7   | 10        | μg/L             | 50.0         |              | 69.4          | 40-140           |     |       |            |
| 4,6-Dinitro-2-methylphenol           | 32.0   | 10        | μg/L             | 50.0         |              | 64.0          | 30-130           |     |       |            |
| 2,4-Dinitrophenol                    | 28.5   | 10        | μg/L             | 50.0         |              | 57.1          | 30-130           |     |       |            |
| 2,4-Dinitrotoluene                   | 34.7   | 10        | μg/L             | 50.0         |              | 69.4          | 40-140           |     |       |            |
| 2,6-Dinitrotoluene                   | 36.4   | 10        | μg/L             | 50.0         |              | 72.7          | 40-140           |     |       |            |
| Di-n-octylphthalate                  | 34.2   | 10        | μg/L             | 50.0         |              | 68.3          | 40-140           |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene     | 33.8   | 10        | μg/L             | 50.0         |              | 67.6          | 40-140           |     |       |            |
| Fluoranthene                         | 35.8   | 5.0       | μg/L             | 50.0         |              | 71.5          | 40-140           |     |       |            |
| Fluorene                             | 34.2   | 5.0       | μg/L             | 50.0         |              | 68.3          | 40-140           |     |       |            |
| Hexachlorobenzene                    |        | 10        | μg/L<br>μg/L     | 50.0         |              | 68.4          | 40-140           |     |       |            |
| Hexachlorobutadiene                  | 34.2   | 10        | μg/L<br>μg/L     | 50.0         |              | 50.6          | 40-140           |     |       |            |
| Hexachlorocyclopentadiene            | 25.3   | 10        |                  |              |              |               |                  |     |       | V 05       |
| Hexachloroethane                     | 16.2   | 10        | μg/L             | 50.0         |              | 32.5<br>45.3  | 30-140<br>40-140 |     |       | V-05       |
| Indeno(1,2,3-cd)pyrene               | 22.6   | 5.0       | μg/L             | 50.0         |              |               |                  |     |       |            |
|                                      | 36.6   | 10        | μg/L             | 50.0         |              | 73.1          | 40-140           |     |       |            |
| Isophorone                           | 34.1   |           | μg/L             | 50.0         |              | 68.2          | 40-140           |     |       |            |
| 1-Methylnaphthalene                  | 28.3   | 5.0       | μg/L             | 50.0         |              | 56.6          | 40-140           |     |       |            |
| 2-Methylnaphthalene                  | 34.2   | 5.0       | μg/L             | 50.0         |              | 68.4          | 40-140           |     |       |            |
| 2-Methylphenol                       | 25.7   | 10        | μg/L             | 50.0         |              | 51.4          | 30-130           |     |       |            |
| 3/4-Methylphenol                     | 29.2   | 10        | μg/L             | 50.0         |              | 58.3          | 30-130           |     |       |            |
| Naphthalene                          | 28.9   | 5.0       | μg/L             | 50.0         |              | 57.8          | 40-140           |     |       |            |
| 2-Nitroaniline                       | 32.6   | 10        | μg/L             | 50.0         |              | 65.3          | 40-140           |     |       |            |
| 3-Nitroaniline                       | 35.2   | 10        | μg/L             | 50.0         |              | 70.5          | 40-140           |     |       |            |
| 4-Nitroaniline                       | 34.6   | 10        | μg/L             | 50.0         |              | 69.2          | 40-140           |     |       |            |
| Nitrobenzene                         | 28.3   | 10        | μg/L             | 50.0         |              | 56.7          | 40-140           |     |       |            |
| 2-Nitrophenol                        | 29.4   | 10        | μg/L             | 50.0         |              | 58.9          | 30-130           |     |       |            |
| 4-Nitrophenol                        | 20.2   | 10        | μg/L             | 50.0         |              | 40.3          | 10-130           |     |       |            |
| N-Nitrosodimethylamine               | 17.2   | 10        | μg/L             | 50.0         |              | 34.5 *        | 40-140           |     |       | L-04, V-05 |
| N-Nitrosodiphenylamine/Diphenylamine | 37.6   | 10        | μg/L             | 50.0         |              | 75.2          | 40-140           |     |       |            |
| N-Nitrosodi-n-propylamine            | 32.0   | 10        | μg/L             | 50.0         |              | 63.9          | 40-140           |     |       |            |
| Pentachloronitrobenzene              | 34.8   | 10        | μg/L             | 50.0         |              | 69.6          | 40-140           |     |       |            |
| Pentachlorophenol                    | 28.3   | 10        | $\mu g/L$        | 50.0         |              | 56.6          | 30-130           |     |       |            |
| Phenanthrene                         | 34.8   | 5.0       | $\mu \text{g/L}$ | 50.0         |              | 69.7          | 40-140           |     |       |            |
| Phenol                               | 15.0   | 10        | $\mu \text{g/L}$ | 50.0         |              | 29.9          | 20-130           |     |       |            |
| Pyrene                               | 34.4   | 5.0       | $\mu g/L$        | 50.0         |              | 68.8          | 40-140           |     |       |            |
| Pyridine                             | 13.6   | 5.0       | μg/L             | 50.0         |              | 27.2          | 10-140           |     |       | V-34       |
| 1,2,4,5-Tetrachlorobenzene           | 30.4   | 10        | μg/L             | 50.0         |              | 60.7          | 40-140           |     |       |            |
| 1,2,4-Trichlorobenzene               | 26.9   | 5.0       | μg/L             | 50.0         |              | 53.8          | 40-140           |     |       |            |
| 2,4,5-Trichlorophenol                | 35.8   | 10        | μg/L             | 50.0         |              | 71.5          | 30-130           |     |       |            |
| 2,4,6-Trichlorophenol                | 33.9   | 10        | μg/L             | 50.0         |              | 67.8          | 30-130           |     |       |            |



#### QUALITY CONTROL

| Analyte                          | Result       | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |     |
|----------------------------------|--------------|--------------------|------------------|----------------|------------------|---------------|----------------|-------|--------------|------------|-----|
| Batch B292324 - SW-846 3510C     |              |                    |                  |                |                  |               |                |       |              |            |     |
| LCS (B292324-BS1)                |              |                    |                  | Prepared: 10   | )/13/21 Anal     | yzed: 10/14/2 | 21             |       |              |            |     |
| Surrogate: 2-Fluorophenol        | 87.9         |                    | μg/L             | 200            |                  | 44.0          | 15-110         |       |              |            |     |
| Surrogate: Phenol-d6             | 64.6         |                    | $\mu g/L$        | 200            |                  | 32.3          | 15-110         |       |              |            |     |
| Surrogate: Nitrobenzene-d5       | 63.2         |                    | $\mu g/L$        | 100            |                  | 63.2          | 30-130         |       |              |            |     |
| Surrogate: 2-Fluorobiphenyl      | 72.0         |                    | $\mu g/L$        | 100            |                  | 72.0          | 30-130         |       |              |            |     |
| Surrogate: 2,4,6-Tribromophenol  | 148          |                    | $\mu g/L$        | 200            |                  | 73.8          | 15-110         |       |              |            |     |
| Surrogate: p-Terphenyl-d14       | 76.7         |                    | $\mu g/L$        | 100            |                  | 76.7          | 30-130         |       |              |            |     |
| LCS Dup (B292324-BSD1)           |              |                    |                  | Prepared: 10   | )/13/21 Anal     | yzed: 10/14/2 | 21             |       |              |            |     |
| Acenaphthene                     | 31.5         | 5.0                | $\mu g/L$        | 50.0           |                  | 62.9          | 40-140         | 2.71  | 20           |            |     |
| Acenaphthylene                   | 33.9         | 5.0                | $\mu g/L$        | 50.0           |                  | 67.8          | 40-140         | 3.21  | 20           |            |     |
| Acetophenone                     | 31.8         | 10                 | μg/L             | 50.0           |                  | 63.6          | 40-140         | 1.14  | 20           |            |     |
| Aniline                          | 29.9         | 5.0                | μg/L             | 50.0           |                  | 59.7          | 40-140         | 9.20  | 50           |            | ‡   |
| Anthracene                       | 34.9         | 5.0                | μg/L             | 50.0           |                  | 69.9          | 40-140         | 1.22  | 20           |            |     |
| Benzidine                        | 44.0         | 20                 | μg/L             | 50.0           |                  | 88.0          | 40-140         | 18.8  | 20           | V-04, V-05 |     |
| Benzo(a)anthracene               | 34.8         | 5.0                | μg/L             | 50.0           |                  | 69.6          | 40-140         | 2.77  | 20           | •          |     |
| Benzo(a)pyrene                   | 38.4         | 5.0                | μg/L             | 50.0           |                  | 76.9          | 40-140         | 0.496 | 20           |            |     |
| Benzo(b)fluoranthene             | 36.3         | 5.0                | μg/L             | 50.0           |                  | 72.6          | 40-140         | 0.386 | 20           |            |     |
| Benzo(g,h,i)perylene             | 33.7         | 5.0                | μg/L             | 50.0           |                  | 67.4          | 40-140         | 2.20  | 20           |            |     |
| Benzo(k)fluoranthene             | 38.9         | 5.0                | μg/L             | 50.0           |                  | 77.8          | 40-140         | 1.22  | 20           |            |     |
| Benzoic Acid                     | 9.82         | 10                 | μg/L             | 50.0           |                  | 19.6          | 10-130         | 21.8  | 50           | J          | † ‡ |
| Bis(2-chloroethoxy)methane       | 33.9         | 10                 | μg/L             | 50.0           |                  | 67.8          | 40-140         | 7.05  | 20           | v          | 1 3 |
| Bis(2-chloroethyl)ether          | 27.5         | 10                 | μg/L             | 50.0           |                  | 55.0          | 40-140         | 2.69  | 20           |            |     |
| Bis(2-chloroisopropyl)ether      |              | 10                 | μg/L<br>μg/L     | 50.0           |                  | 57.0          | 40-140         | 4.49  | 20           | V-05       |     |
| Bis(2-Ethylhexyl)phthalate       | 28.5<br>38.8 | 10                 | μg/L<br>μg/L     | 50.0           |                  | 77.6          | 40-140         | 7.71  | 20           | V-03       |     |
| 4-Bromophenylphenylether         |              | 10                 | μg/L<br>μg/L     | 50.0           |                  | 66.3          | 40-140         | 2.53  | 20           |            |     |
| Butylbenzylphthalate             | 33.2         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 70.1          | 40-140         | 5.45  | 20           |            |     |
| Carbazole                        | 35.0         | 10                 | μg/L<br>μg/L     | 50.0           |                  |               |                |       |              |            |     |
| 4-Chloroaniline                  | 35.2         | 10                 |                  |                |                  | 70.4          | 40-140         | 0.999 | 20           | 37.24      |     |
| 4-Chloro-3-methylphenol          | 35.3         | 10                 | μg/L             | 50.0           |                  | 70.6          | 40-140         | 1.55  | 20           | V-34       |     |
| 2-Chloronaphthalene              | 32.8         | 10                 | μg/L             | 50.0           |                  | 65.6          | 30-130         | 1.66  | 20           |            |     |
| *                                | 30.6         |                    | μg/L             | 50.0           |                  | 61.1          | 40-140         | 5.48  | 20           |            |     |
| 2-Chlorophenol                   | 28.5         | 10                 | μg/L             | 50.0           |                  | 57.0          | 30-130         | 2.31  | 20           |            |     |
| 4-Chlorophenylphenylether        | 34.2         | 10                 | μg/L             | 50.0           |                  | 68.4          | 40-140         | 2.55  | 20           |            |     |
| Chrysene                         | 36.6         | 5.0                | μg/L             | 50.0           |                  | 73.1          | 40-140         | 1.91  | 20           |            |     |
| Dibenz(a,h)anthracene            | 36.2         | 5.0                | μg/L             | 50.0           |                  | 72.4          | 40-140         | 1.21  | 20           |            |     |
| Dibenzofuran                     | 35.4         | 5.0                | μg/L             | 50.0           |                  | 70.9          | 40-140         | 2.63  | 20           |            |     |
| Di-n-butylphthalate              | 36.1         | 10                 | μg/L             | 50.0           |                  | 72.3          | 40-140         | 3.75  | 20           |            |     |
| 1,2-Dichlorobenzene              | 25.2         | 5.0                | μg/L             | 50.0           |                  | 50.4          | 40-140         | 3.02  | 20           |            |     |
| 1,3-Dichlorobenzene              | 23.6         | 5.0                | μg/L             | 50.0           |                  | 47.1          | 40-140         | 3.59  | 20           |            |     |
| 1,4-Dichlorobenzene              | 24.2         | 5.0                | μg/L             | 50.0           |                  | 48.3          | 40-140         | 3.37  | 20           |            |     |
| 3,3-Dichlorobenzidine            | 33.8         | 10                 | μg/L             | 50.0           |                  | 67.7          | 40-140         | 1.10  | 20           |            |     |
| 2,4-Dichlorophenol               | 32.4         | 10                 | μg/L             | 50.0           |                  | 64.8          | 30-130         | 2.50  | 20           |            |     |
| Diethylphthalate                 | 34.7         | 10                 | μg/L             | 50.0           |                  | 69.4          | 40-140         | 4.63  | 20           |            |     |
| 2,4-Dimethylphenol               | 34.4         | 10                 | μg/L             | 50.0           |                  | 68.8          | 30-130         | 3.70  | 20           |            |     |
| Dimethylphthalate                | 35.3         | 10                 | μg/L             | 50.0           |                  | 70.6          | 40-140         | 1.77  | 50           |            | ‡   |
| 4,6-Dinitro-2-methylphenol       | 32.6         | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 65.2          | 30-130         | 1.92  | 50           |            | 1   |
| 2,4-Dinitrophenol                | 30.0         | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 59.9          | 30-130         | 4.92  | 50           |            | 1   |
| 2,4-Dinitrotoluene               | 36.6         | 10                 | $\mu g/L$        | 50.0           |                  | 73.1          | 40-140         | 5.25  | 20           |            |     |
| 2,6-Dinitrotoluene               | 36.9         | 10                 | μg/L             | 50.0           |                  | 73.8          | 40-140         | 1.47  | 20           |            |     |
| Di-n-octylphthalate              | 36.6         | 10                 | $\mu \text{g}/L$ | 50.0           |                  | 73.2          | 40-140         | 6.93  | 20           |            |     |
| 1,2-Diphenylhydrazine/Azobenzene | 34.2         | 10                 | μg/L             | 50.0           |                  | 68.5          | 40-140         | 1.29  | 20           |            |     |
| Fluoranthene                     | 36.2         | 5.0                | μg/L             | 50.0           |                  | 72.5          | 40-140         | 1.31  | 20           |            |     |
| Fluorene                         | 35.1         | 5.0                | μg/L             | 50.0           |                  | 70.2          | 40-140         | 2.71  | 20           |            |     |



## QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |     |
|--------------------------------------|--------|--------------------|------------------|----------------|------------------|---------------|----------------|-------|--------------|------------|-----|
| Batch B292324 - SW-846 3510C         |        |                    |                  |                |                  |               |                |       |              |            |     |
| LCS Dup (B292324-BSD1)               |        |                    |                  | Prepared: 10   | )/13/21 Anal     | yzed: 10/14/2 | 21             |       |              |            |     |
| Hexachlorobenzene                    | 33.4   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 66.9          | 40-140         | 2.19  | 20           |            |     |
| Hexachlorobutadiene                  | 27.1   | 10                 | $\mu g/L$        | 50.0           |                  | 54.1          | 40-140         | 6.64  | 20           |            |     |
| Hexachlorocyclopentadiene            | 17.8   | 10                 | $\mu g/L$        | 50.0           |                  | 35.7          | 30-140         | 9.51  | 50           | V-05       | † : |
| Hexachloroethane                     | 23.4   | 10                 | μg/L             | 50.0           |                  | 46.8          | 40-140         | 3.26  | 50           |            |     |
| Indeno(1,2,3-cd)pyrene               | 36.3   | 5.0                | μg/L             | 50.0           |                  | 72.7          | 40-140         | 0.604 | 50           |            |     |
| Isophorone                           | 35.6   | 10                 | μg/L             | 50.0           |                  | 71.3          | 40-140         | 4.48  | 20           |            |     |
| 1-Methylnaphthalene                  | 29.4   | 5.0                | μg/L             | 50.0           |                  | 58.9          | 40-140         | 3.99  | 20           |            |     |
| 2-Methylnaphthalene                  | 35.8   | 5.0                | μg/L             | 50.0           |                  | 71.6          | 40-140         | 4.57  | 20           |            |     |
| 2-Methylphenol                       | 25.8   | 10                 | μg/L             | 50.0           |                  | 51.6          | 30-130         | 0.272 | 20           |            |     |
| 3/4-Methylphenol                     | 29.1   | 10                 | μg/L             | 50.0           |                  | 58.2          | 30-130         | 0.172 | 20           |            |     |
| Naphthalene                          | 30.9   | 5.0                | μg/L             | 50.0           |                  | 61.8          | 40-140         | 6.75  | 20           |            |     |
| 2-Nitroaniline                       | 33.6   | 10                 | μg/L             | 50.0           |                  | 67.2          | 40-140         | 2.99  | 20           |            |     |
| 3-Nitroaniline                       | 35.8   | 10                 | μg/L             | 50.0           |                  | 71.6          | 40-140         | 1.60  | 20           |            |     |
| 4-Nitroaniline                       | 35.9   | 10                 | $\mu g/L$        | 50.0           |                  | 71.8          | 40-140         | 3.63  | 20           |            |     |
| Nitrobenzene                         | 30.5   | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 61.0          | 40-140         | 7.28  | 20           |            |     |
| 2-Nitrophenol                        | 31.7   | 10                 | $\mu g/L$        | 50.0           |                  | 63.3          | 30-130         | 7.30  | 20           |            |     |
| 4-Nitrophenol                        | 20.3   | 10                 | $\mu g/L$        | 50.0           |                  | 40.6          | 10-130         | 0.692 | 50           |            | † : |
| N-Nitrosodimethylamine               | 16.4   | 10                 | μg/L             | 50.0           |                  | 32.7 *        | 40-140         | 5.30  | 20           | L-04, V-05 |     |
| N-Nitrosodiphenylamine/Diphenylamine | 36.7   | 10                 | μg/L             | 50.0           |                  | 73.4          | 40-140         | 2.42  | 20           |            |     |
| N-Nitrosodi-n-propylamine            | 32.8   | 10                 | $\mu g/L$        | 50.0           |                  | 65.5          | 40-140         | 2.50  | 20           |            |     |
| Pentachloronitrobenzene              | 34.4   | 10                 | $\mu g/L$        | 50.0           |                  | 68.8          | 40-140         | 1.16  | 20           |            |     |
| Pentachlorophenol                    | 28.3   | 10                 | $\mu g/L$        | 50.0           |                  | 56.6          | 30-130         | 0.106 | 50           |            |     |
| Phenanthrene                         | 34.8   | 5.0                | μg/L             | 50.0           |                  | 69.6          | 40-140         | 0.172 | 20           |            |     |
| Phenol                               | 15.0   | 10                 | $\mu g/L$        | 50.0           |                  | 29.9          | 20-130         | 0.134 | 20           |            | †   |
| Pyrene                               | 34.9   | 5.0                | μg/L             | 50.0           |                  | 69.7          | 40-140         | 1.27  | 20           |            |     |
| Pyridine                             | 13.6   | 5.0                | μg/L             | 50.0           |                  | 27.2          | 10-140         | 0.221 | 50           | V-34       | † : |
| 1,2,4,5-Tetrachlorobenzene           | 31.5   | 10                 | $\mu g/L$        | 50.0           |                  | 62.9          | 40-140         | 3.56  | 20           |            |     |
| 1,2,4-Trichlorobenzene               | 28.8   | 5.0                | $\mu g/L$        | 50.0           |                  | 57.5          | 40-140         | 6.72  | 20           |            |     |
| 2,4,5-Trichlorophenol                | 35.0   | 10                 | $\mu g/L$        | 50.0           |                  | 69.9          | 30-130         | 2.21  | 20           |            |     |
| 2,4,6-Trichlorophenol                | 33.8   | 10                 | $\mu g/L$        | 50.0           |                  | 67.7          | 30-130         | 0.118 | 50           |            | :   |
| Surrogate: 2-Fluorophenol            | 86.8   |                    | μg/L             | 200            |                  | 43.4          | 15-110         |       |              |            | _   |
| Surrogate: Phenol-d6                 | 63.1   |                    | μg/L             | 200            |                  | 31.6          | 15-110         |       |              |            |     |
| Surrogate: Nitrobenzene-d5           | 66.1   |                    | $\mu g/L$        | 100            |                  | 66.1          | 30-130         |       |              |            |     |
| Surrogate: 2-Fluorobiphenyl          | 73.2   |                    | μg/L             | 100            |                  | 73.2          | 30-130         |       |              |            |     |
| Surrogate: 2,4,6-Tribromophenol      | 149    |                    | μg/L             | 200            |                  | 74.7          | 15-110         |       |              |            |     |
| Surrogate: p-Terphenyl-d14           | 77.9   |                    | $\mu g/L$        | 100            |                  | 77.9          | 30-130         |       |              |            |     |
| Batch B292394 - SW-846 3546          |        |                    |                  |                |                  |               |                |       |              |            | _   |
| Blank (B292394-BLK1)                 |        |                    |                  | Prepared: 10   | )/13/21 Anal     | yzed: 10/14/2 | 21             |       |              |            |     |
| Acenaphthene                         | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Acenaphthylene                       | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Acetophenone                         | ND     | 0.34               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Aniline                              | ND     | 0.34               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Anthracene                           | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzidine                            | ND     | 0.66               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzo(a)anthracene                   | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzo(a)pyrene                       | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzo(b)fluoranthene                 | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzo(g,h,i)perylene                 | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzo(k)fluoranthene                 | ND     | 0.17               | mg/Kg wet        |                |                  |               |                |       |              |            |     |
| Benzoic Acid                         | ND     | 1.0                | mg/Kg wet        |                |                  |               |                |       |              |            |     |
|                                      | 1112   |                    |                  |                |                  |               |                |       |              |            |     |



Pentachloronitrobenzene

## 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

|                                      |          | Reporting |           | Spike        | Source       |              | %REC   |     | RPD   |            |
|--------------------------------------|----------|-----------|-----------|--------------|--------------|--------------|--------|-----|-------|------------|
| Analyte                              | Result   | Limit     | Units     | Level        | Result       | %REC         | Limits | RPD | Limit | Notes      |
| Batch B292394 - SW-846 3546          |          |           |           |              |              |              |        |     |       |            |
| Blank (B292394-BLK1)                 |          |           | :         | Prepared: 10 | 0/13/21 Anal | yzed: 10/14/ | 21     |     |       |            |
| Bis(2-chloroethyl)ether              | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Bis(2-chloroisopropyl)ether          | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Bis(2-Ethylhexyl)phthalate           | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 4-Bromophenylphenylether             | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Butylbenzylphthalate                 | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Carbazole                            | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| 4-Chloroaniline                      | ND       | 0.66      | mg/Kg wet |              |              |              |        |     |       | V-34       |
| 4-Chloro-3-methylphenol              | ND       | 0.66      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Chloronaphthalene                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Chlorophenol                       | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 4-Chlorophenylphenylether            | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Chrysene                             | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| Dibenz(a,h)anthracene                | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| Dibenzofuran                         | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Di-n-butylphthalate                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 1,2-Dichlorobenzene                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 1,3-Dichlorobenzene                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 1,4-Dichlorobenzene                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 3.3-Dichlorobenzidine                | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| 2,4-Dichlorophenol                   | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Diethylphthalate                     | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 2,4-Dimethylphenol                   | ND<br>ND | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Dimethylphthalate                    | ND<br>ND | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 4,6-Dinitro-2-methylphenol           |          | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 2,4-Dinitrophenol                    | ND       | 0.66      | mg/Kg wet |              |              |              |        |     |       | V-04, V-20 |
| 2,4-Dinitrotoluene                   | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       | V-04, V-20 |
| 2,6-Dinitrotoluene                   | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Di-n-octylphthalate                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
|                                      | ND       |           |           |              |              |              |        |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene     | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Fluoranthene                         | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| Fluorene                             | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| Hexachlorobenzene                    | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Hexachlorobutadiene                  | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Hexachlorocyclopentadiene            | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Hexachloroethane                     | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Indeno(1,2,3-cd)pyrene               | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| Isophorone                           | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 1-Methylnaphthalene                  | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Methylnaphthalene                  | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Methylphenol                       | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 3/4-Methylphenol                     | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Naphthalene                          | ND       | 0.17      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Nitroaniline                       | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 3-Nitroaniline                       | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 4-Nitroaniline                       | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| Nitrobenzene                         | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 2-Nitrophenol                        | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| 4-Nitrophenol                        | ND       | 0.66      | mg/Kg wet |              |              |              |        |     |       |            |
| N-Nitrosodimethylamine               | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| N-Nitrosodiphenylamine/Diphenylamine | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |
| N-Nitrosodi-n-propylamine            | ND       | 0.34      | mg/Kg wet |              |              |              |        |     |       |            |

ND

0.34 mg/Kg wet



## QUALITY CONTROL

| Analyte                                                     | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD | RPD<br>Limit | Notes  |   |
|-------------------------------------------------------------|--------------|--------------------|-----------|----------------|------------------|---------------|------------------|-----|--------------|--------|---|
| Batch B292394 - SW-846 3546                                 | resurt       | Ziiiit             | Jiiw      | 20101          | . tesuit         | , sille       | Zimito           |     | Limit        | 110003 |   |
| Blank (B292394-BLK1)                                        |              |                    |           | Prepared: 10   | )/13/21 Analy    | yzed: 10/14/2 | 1                |     |              |        | _ |
| Pentachlorophenol                                           | ND           | 0.34               | mg/Kg wet | •              |                  | <u>'</u>      |                  |     |              |        |   |
| Phenanthrene                                                | ND           | 0.17               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| Phenol                                                      | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| Pyrene                                                      | ND           | 0.17               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| Pyridine                                                    | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| 1,2,4,5-Tetrachlorobenzene                                  | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| 1,2,4-Trichlorobenzene                                      | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| 2,4,5-Trichlorophenol                                       | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| 2,4,6-Trichlorophenol                                       | ND           | 0.34               | mg/Kg wet |                |                  |               |                  |     |              |        |   |
| <u> </u>                                                    |              |                    |           |                |                  | 65.1          | 20.120           |     |              |        |   |
| Surrogate: 2-Fluorophenol                                   | 4.34         |                    | mg/Kg wet | 6.67           |                  | 65.1          | 30-130           |     |              |        |   |
| Surrogate: Phenol-d6                                        | 4.14         |                    | mg/Kg wet | 6.67           |                  | 62.1          | 30-130           |     |              |        |   |
| Surrogate: Nitrobenzene-d5                                  | 2.00         |                    | mg/Kg wet | 3.33           |                  | 59.9          | 30-130           |     |              |        |   |
| Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol | 2.42<br>5.77 |                    | mg/Kg wet | 3.33           |                  | 72.6<br>86.5  | 30-130           |     |              |        |   |
| •                                                           | 5.77<br>2.81 |                    | mg/Kg wet | 6.67<br>3.33   |                  | 86.5<br>84.2  | 30-130<br>30-130 |     |              |        |   |
| Surrogate: p-Terphenyl-d14                                  | 2.81         |                    | mg/Kg wet | 3.33           |                  | 84.2          | 30-130           |     |              |        |   |
| LCS (B292394-BS1)                                           |              |                    |           | Prepared: 10   | 0/13/21 Analy    | zed: 10/14/2  | 1                |     |              |        |   |
| Acenaphthene                                                | 1.18         | 0.17               | mg/Kg wet | 1.67           |                  | 70.6          | 40-140           |     |              |        |   |
| Acenaphthylene                                              | 1.28         | 0.17               | mg/Kg wet | 1.67           |                  | 77.0          | 40-140           |     |              |        |   |
| Acetophenone                                                | 0.979        | 0.34               | mg/Kg wet | 1.67           |                  | 58.7          | 40-140           |     |              |        |   |
| Aniline                                                     | 0.810        | 0.34               | mg/Kg wet | 1.67           |                  | 48.6          | 10-140           |     |              |        |   |
| Anthracene                                                  | 1.26         | 0.17               | mg/Kg wet | 1.67           |                  | 75.6          | 40-140           |     |              |        |   |
| Benzidine                                                   | 1.24         | 0.66               | mg/Kg wet | 1.67           |                  | 74.7          | 40-140           |     |              |        |   |
| Benzo(a)anthracene                                          | 1.25         | 0.17               | mg/Kg wet | 1.67           |                  | 74.8          | 40-140           |     |              |        |   |
| Benzo(a)pyrene                                              | 1.37         | 0.17               | mg/Kg wet | 1.67           |                  | 82.2          | 40-140           |     |              |        |   |
| Benzo(b)fluoranthene                                        | 1.28         | 0.17               | mg/Kg wet | 1.67           |                  | 77.1          | 40-140           |     |              |        |   |
| Benzo(g,h,i)perylene                                        | 1.28         | 0.17               | mg/Kg wet | 1.67           |                  | 76.5          | 40-140           |     |              |        |   |
| Benzo(k)fluoranthene                                        | 1.37         | 0.17               | mg/Kg wet | 1.67           |                  | 82.4          | 40-140           |     |              |        |   |
| Benzoic Acid                                                | 0.934        | 1.0                | mg/Kg wet | 1.67           |                  | 56.0          | 30-130           |     |              | J      |   |
| Bis(2-chloroethoxy)methane                                  | 1.06         | 0.34               | mg/Kg wet | 1.67           |                  | 63.3          | 40-140           |     |              |        |   |
| Bis(2-chloroethyl)ether                                     | 1.03         | 0.34               | mg/Kg wet | 1.67           |                  | 62.0          | 40-140           |     |              |        |   |
| Bis(2-chloroisopropyl)ether                                 | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.5          | 40-140           |     |              |        |   |
| Bis(2-Ethylhexyl)phthalate                                  | 1.35         | 0.34               | mg/Kg wet | 1.67           |                  | 81.1          | 40-140           |     |              |        |   |
| 4-Bromophenylphenylether                                    | 1.32         | 0.34               | mg/Kg wet | 1.67           |                  | 79.2          | 40-140           |     |              |        |   |
| Butylbenzylphthalate                                        | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.4          | 40-140           |     |              |        |   |
| Carbazole                                                   | 1.23         | 0.17               | mg/Kg wet | 1.67           |                  | 73.7          | 40-140           |     |              |        |   |
| 4-Chloroaniline                                             | 0.775        | 0.66               | mg/Kg wet | 1.67           |                  | 46.5          | 10-140           |     |              | V-34   |   |
| 4-Chloro-3-methylphenol                                     | 1.14         | 0.66               | mg/Kg wet | 1.67           |                  | 68.2          | 30-130           |     |              |        |   |
| 2-Chloronaphthalene                                         | 1.16         | 0.34               | mg/Kg wet | 1.67           |                  | 69.7          | 40-140           |     |              |        |   |
| 2-Chlorophenol                                              | 1.10         | 0.34               | mg/Kg wet | 1.67           |                  | 66.1          | 30-130           |     |              |        |   |
| 4-Chlorophenylphenylether                                   | 1.20         | 0.34               | mg/Kg wet | 1.67           |                  | 72.0          | 40-140           |     |              |        |   |
| Chrysene                                                    | 1.29         | 0.17               | mg/Kg wet | 1.67           |                  | 77.4          | 40-140           |     |              |        |   |
| Dibenz(a,h)anthracene                                       | 1.34         | 0.17               | mg/Kg wet | 1.67           |                  | 80.2          | 40-140           |     |              |        |   |
| Dibenzofuran                                                | 1.27         | 0.34               | mg/Kg wet | 1.67           |                  | 76.3          | 40-140           |     |              |        |   |
| Di-n-butylphthalate                                         | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.2          | 40-140           |     |              |        |   |
| 1,2-Dichlorobenzene                                         | 1.00         | 0.34               | mg/Kg wet | 1.67           |                  | 60.3          | 40-140           |     |              |        |   |
| 1,3-Dichlorobenzene                                         | 0.976        | 0.34               | mg/Kg wet | 1.67           |                  | 58.6          | 40-140           |     |              |        |   |
| 1,4-Dichlorobenzene                                         | 0.991        | 0.34               | mg/Kg wet | 1.67           |                  | 59.5          | 40-140           |     |              |        |   |
| 3,3-Dichlorobenzidine                                       | 0.920        | 0.17               | mg/Kg wet | 1.67           |                  | 55.2          | 20-140           |     |              |        |   |
| 2,4-Dichlorophenol                                          | 1.12         | 0.34               | mg/Kg wet | 1.67           |                  | 67.1          | 30-130           |     |              |        |   |
| Diethylphthalate                                            | 1.12         | 0.34               | mg/Kg wet | 1.67           |                  | 73.1          | 40-140           |     |              |        |   |
| 2,4-Dimethylphenol                                          | 1.15         | 0.34               | mg/Kg wet | 1.67           |                  | 68.7          | 30-130           |     |              |        |   |



#### QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                    | Result       | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD | RPD<br>Limit | Notes      |
|------------------------------------------------------------|--------------|--------------------|------------------------|----------------|------------------|---------------|------------------|-----|--------------|------------|
| Batch B292394 - SW-846 3546                                |              |                    |                        |                |                  |               |                  |     |              |            |
| LCS (B292394-BS1)                                          |              |                    | 1                      | Prepared: 10   | )/13/21 Analy    | yzed: 10/14/2 | 21               |     |              |            |
| Dimethylphthalate                                          | 1.23         | 0.34               | mg/Kg wet              | 1.67           |                  | 74.1          | 40-140           |     |              |            |
| 4,6-Dinitro-2-methylphenol                                 | 1.26         | 0.34               | mg/Kg wet              | 1.67           |                  | 75.6          | 30-130           |     |              |            |
| 2,4-Dinitrophenol                                          | 1.36         | 0.66               | mg/Kg wet              | 1.67           |                  | 81.4          | 30-130           |     |              | V-04, V-06 |
| 2,4-Dinitrotoluene                                         | 1.40         | 0.34               | mg/Kg wet              | 1.67           |                  | 83.7          | 40-140           |     |              |            |
| 2,6-Dinitrotoluene                                         | 1.42         | 0.34               | mg/Kg wet              | 1.67           |                  | 85.2          | 40-140           |     |              |            |
| Di-n-octylphthalate                                        | 1.22         | 0.34               | mg/Kg wet              | 1.67           |                  | 72.9          | 40-140           |     |              |            |
| 1,2-Diphenylhydrazine/Azobenzene                           | 1.15         | 0.34               | mg/Kg wet              | 1.67           |                  | 68.9          | 40-140           |     |              |            |
| Fluoranthene                                               | 1.15         | 0.17               | mg/Kg wet              | 1.67           |                  | 68.9          | 40-140           |     |              |            |
| Fluorene                                                   | 1.23         | 0.17               | mg/Kg wet              | 1.67           |                  | 73.7          | 40-140           |     |              |            |
| Hexachlorobenzene                                          | 1.40         | 0.34               | mg/Kg wet              | 1.67           |                  | 83.8          | 40-140           |     |              |            |
| Hexachlorobutadiene                                        | 0.978        | 0.34               | mg/Kg wet              | 1.67           |                  | 58.7          | 40-140           |     |              |            |
| Hexachlorocyclopentadiene                                  | 1.01         | 0.34               | mg/Kg wet              | 1.67           |                  | 60.7          | 40-140           |     |              |            |
| Hexachloroethane                                           | 0.906        | 0.34               | mg/Kg wet              | 1.67           |                  | 54.3          | 40-140           |     |              |            |
| Indeno(1,2,3-cd)pyrene                                     | 1.32         | 0.17               | mg/Kg wet              | 1.67           |                  | 79.5          | 40-140           |     |              |            |
| Isophorone                                                 | 1.07         | 0.34               | mg/Kg wet              | 1.67           |                  | 64.3          | 40-140           |     |              |            |
| 1-Methylnaphthalene                                        | 1.02         | 0.17               | mg/Kg wet              | 1.67           |                  | 61.0          | 40-140           |     |              |            |
| 2-Methylnaphthalene                                        | 1.28         | 0.17               | mg/Kg wet              | 1.67           |                  | 76.7          | 40-140           |     |              |            |
| 2-Methylphenol                                             | 1.10         | 0.34               | mg/Kg wet              | 1.67           |                  | 66.1          | 30-130           |     |              |            |
| 3/4-Methylphenol                                           | 1.13         | 0.34               | mg/Kg wet              | 1.67           |                  | 67.6          | 30-130           |     |              |            |
| Naphthalene                                                | 1.10         | 0.17               | mg/Kg wet              | 1.67           |                  | 66.1          | 40-140           |     |              |            |
| 2-Nitroaniline                                             | 1.25         | 0.34               | mg/Kg wet              | 1.67           |                  | 74.7          | 40-140           |     |              |            |
| 3-Nitroaniline                                             | 1.27         | 0.34               | mg/Kg wet              | 1.67           |                  | 76.2          | 30-140           |     |              |            |
| 4-Nitroaniline                                             | 1.37         | 0.34               | mg/Kg wet              | 1.67           |                  | 82.1          | 40-140           |     |              |            |
| Nitrobenzene                                               | 0.964        | 0.34               | mg/Kg wet              | 1.67           |                  | 57.9          | 40-140           |     |              |            |
| 2-Nitrophenol                                              | 1.23         | 0.34               | mg/Kg wet              | 1.67           |                  | 73.8          | 30-130           |     |              |            |
| 4-Nitrophenol                                              | 1.03         | 0.66               | mg/Kg wet              | 1.67           |                  | 61.6          | 30-130           |     |              |            |
| N-Nitrosodimethylamine                                     | 0.988        | 0.34               | mg/Kg wet              | 1.67           |                  | 59.3          | 40-140           |     |              |            |
| N-Nitrosodiphenylamine/Diphenylamine                       | 1.41         | 0.34               | mg/Kg wet              | 1.67           |                  | 84.7          | 40-140           |     |              |            |
| N-Nitrosodi-n-propylamine<br>Pentachloronitrobenzene       | 0.988        | 0.34               | mg/Kg wet              | 1.67           |                  | 59.3          | 40-140           |     |              |            |
| Pentachlorophenol                                          | 1.38         | 0.34<br>0.34       | mg/Kg wet              | 1.67           |                  | 82.7          | 40-140           |     |              |            |
| Phenanthrene                                               | 1.07         | 0.34               | mg/Kg wet<br>mg/Kg wet | 1.67           |                  | 64.5          | 30-130           |     |              |            |
| Phenol                                                     | 1.30         | 0.17               | mg/Kg wet              | 1.67           |                  | 77.7<br>62.5  | 40-140<br>30-130 |     |              |            |
| Pyrene                                                     | 1.04         | 0.34               | mg/Kg wet              | 1.67           |                  |               |                  |     |              |            |
| Pyridine                                                   | 1.26         | 0.17               | mg/Kg wet              | 1.67<br>1.67   |                  | 75.7<br>32.3  | 40-140<br>30-140 |     |              |            |
| 1,2,4,5-Tetrachlorobenzene                                 | 0.539        | 0.34               | mg/Kg wet              |                |                  | 67.9          | 40-140           |     |              |            |
| 1,2,4-Trichlorobenzene                                     | 1.13         | 0.34               | mg/Kg wet              | 1.67<br>1.67   |                  | 62.8          | 40-140           |     |              |            |
| 2,4,5-Trichlorophenol                                      | 1.05         | 0.34               | mg/Kg wet              | 1.67           |                  | 80.5          | 30-130           |     |              |            |
| 2,4,6-Trichlorophenol                                      | 1.34         | 0.34               | mg/Kg wet              | 1.67           |                  | 75.4          | 30-130           |     |              |            |
| <u> </u>                                                   | 1.26         | 0.54               |                        |                |                  |               |                  |     |              |            |
| Surrogate: 2-Fluorophenol                                  | 4.65         |                    | mg/Kg wet              | 6.67           |                  | 69.8          | 30-130           |     |              |            |
| Surrogate: Phenol-d6                                       | 4.37         |                    | mg/Kg wet              | 6.67           |                  | 65.5          | 30-130           |     |              |            |
| Surrogate: Nitrobenzene-d5                                 | 2.10         |                    | mg/Kg wet              | 3.33           |                  | 63.1          | 30-130           |     |              |            |
| Surrogate: 2-Fluorobiphenyl                                | 2.58         |                    | mg/Kg wet              | 3.33           |                  | 77.4          | 30-130           |     |              |            |
| Surrogate: 2,4,6-Tribromophenol Surrogate: p-Terphenyl-d14 | 6.36<br>2.84 |                    | mg/Kg wet<br>mg/Kg wet | 6.67<br>3.33   |                  | 95.3          | 30-130<br>30-130 |     |              |            |



## QUALITY CONTROL

| Analyte                          | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |     |
|----------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|------------|-----|
| Batch B292394 - SW-846 3546      |        |                    |           |                |                  |               |                |       |              |            | _   |
| LCS Dup (B292394-BSD1)           |        |                    |           | Prepared: 10   | 0/13/21 Anal     | yzed: 10/14/2 | 21             |       |              |            |     |
| Acenaphthene                     | 1.15   | 0.17               | mg/Kg wet | 1.67           |                  | 68.8          | 40-140         | 2.50  | 30           |            |     |
| Acenaphthylene                   | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.6          | 40-140         | 3.06  | 30           |            |     |
| Acetophenone                     | 0.922  | 0.34               | mg/Kg wet | 1.67           |                  | 55.3          | 40-140         | 5.93  | 30           |            |     |
| Aniline                          | 0.804  | 0.34               | mg/Kg wet | 1.67           |                  | 48.3          | 10-140         | 0.702 | 50           |            | † : |
| Anthracene                       | 1.26   | 0.17               | mg/Kg wet | 1.67           |                  | 75.4          | 40-140         | 0.371 | 30           |            |     |
| Benzidine                        | 1.20   | 0.66               | mg/Kg wet | 1.67           |                  | 72.1          | 40-140         | 3.49  | 30           |            |     |
| Benzo(a)anthracene               | 1.23   | 0.17               | mg/Kg wet | 1.67           |                  | 73.8          | 40-140         | 1.29  | 30           |            |     |
| Benzo(a)pyrene                   | 1.33   | 0.17               | mg/Kg wet | 1.67           |                  | 79.8          | 40-140         | 2.94  | 30           |            |     |
| Benzo(b)fluoranthene             | 1.27   | 0.17               | mg/Kg wet | 1.67           |                  | 76.4          | 40-140         | 0.964 | 30           |            |     |
| Benzo(g,h,i)perylene             | 1.28   | 0.17               | mg/Kg wet | 1.67           |                  | 76.9          | 40-140         | 0.521 | 30           |            |     |
| Benzo(k)fluoranthene             | 1.36   | 0.17               | mg/Kg wet | 1.67           |                  | 81.7          | 40-140         | 0.902 | 30           |            |     |
| Benzoic Acid                     | 0.973  | 1.0                | mg/Kg wet | 1.67           |                  | 58.4          | 30-130         | 4.16  | 50           | J          |     |
| Bis(2-chloroethoxy)methane       | 1.03   | 0.34               | mg/Kg wet | 1.67           |                  | 61.5          | 40-140         | 2.92  | 30           |            |     |
| Bis(2-chloroethyl)ether          | 0.960  | 0.34               | mg/Kg wet | 1.67           |                  | 57.6          | 40-140         | 7.39  | 30           |            |     |
| Bis(2-chloroisopropyl)ether      | 1.21   | 0.34               | mg/Kg wet | 1.67           |                  | 72.6          | 40-140         | 9.04  | 30           |            |     |
| Bis(2-Ethylhexyl)phthalate       | 1.34   | 0.34               | mg/Kg wet | 1.67           |                  | 80.6          | 40-140         | 0.594 | 30           |            |     |
| 4-Bromophenylphenylether         | 1.28   | 0.34               | mg/Kg wet | 1.67           |                  | 76.6          | 40-140         | 3.36  | 30           |            |     |
| Butylbenzylphthalate             | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.5          | 40-140         | 0.186 | 30           |            |     |
| Carbazole                        | 1.19   | 0.17               | mg/Kg wet | 1.67           |                  | 71.3          | 40-140         | 3.31  | 30           |            |     |
| 4-Chloroaniline                  | 0.780  | 0.66               | mg/Kg wet | 1.67           |                  | 46.8          | 10-140         | 0.643 | 30           | V-34       | †   |
| 4-Chloro-3-methylphenol          | 1.12   | 0.66               | mg/Kg wet | 1.67           |                  | 67.2          | 30-130         | 1.42  | 30           |            |     |
| 2-Chloronaphthalene              | 1.12   | 0.34               | mg/Kg wet | 1.67           |                  | 67.3          | 40-140         | 3.59  | 30           |            |     |
| 2-Chlorophenol                   | 1.03   | 0.34               | mg/Kg wet | 1.67           |                  | 61.9          | 30-130         | 6.59  | 30           |            |     |
| 4-Chlorophenylphenylether        | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 71.7          | 40-140         | 0.390 | 30           |            |     |
| Chrysene                         | 1.28   | 0.17               | mg/Kg wet | 1.67           |                  | 77.1          | 40-140         | 0.363 | 30           |            |     |
| Dibenz(a,h)anthracene            | 1.30   | 0.17               | mg/Kg wet | 1.67           |                  | 78.3          | 40-140         | 2.50  | 30           |            |     |
| Dibenzofuran                     | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 75.1          | 40-140         | 1.64  | 30           |            |     |
| Di-n-butylphthalate              | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.1          | 40-140         | 2.83  | 30           |            |     |
| 1,2-Dichlorobenzene              | 0.962  | 0.34               | mg/Kg wet | 1.67           |                  | 57.7          | 40-140         | 4.30  | 30           |            |     |
| 1,3-Dichlorobenzene              | 0.922  | 0.34               | mg/Kg wet | 1.67           |                  | 55.3          | 40-140         | 5.69  | 30           |            |     |
| 1,4-Dichlorobenzene              | 0.938  | 0.34               | mg/Kg wet | 1.67           |                  | 56.3          | 40-140         | 5.50  | 30           |            |     |
| 3,3-Dichlorobenzidine            | 0.946  | 0.17               | mg/Kg wet | 1.67           |                  | 56.8          | 20-140         | 2.79  | 50           |            | † : |
| 2,4-Dichlorophenol               | 1.10   | 0.34               | mg/Kg wet | 1.67           |                  | 66.2          | 30-130         | 1.32  | 30           |            |     |
| Diethylphthalate                 | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.5          | 40-140         | 2.16  | 30           |            |     |
| 2,4-Dimethylphenol               | 1.12   | 0.34               | mg/Kg wet | 1.67           |                  | 67.0          | 30-130         | 2.59  | 30           |            |     |
| Dimethylphthalate                | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 72.2          | 40-140         | 2.60  | 30           |            |     |
| 4,6-Dinitro-2-methylphenol       | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.4          | 30-130         | 3.01  | 30           |            |     |
| 2,4-Dinitrophenol                | 1.26   | 0.66               | mg/Kg wet | 1.67           |                  | 75.7          | 30-130         | 7.28  | 30           | V-04, V-06 |     |
| 2,4-Dinitrotoluene               | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.7          | 40-140         | 1.30  | 30           |            |     |
| 2,6-Dinitrotoluene               | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.8          | 40-140         | 2.81  | 30           |            |     |
| Di-n-octylphthalate              | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.6          | 40-140         | 1.80  | 30           |            |     |
| 1,2-Diphenylhydrazine/Azobenzene | 1.12   | 0.34               | mg/Kg wet | 1.67           |                  | 67.2          | 40-140         | 2.47  | 30           |            |     |
| Fluoranthene                     | 1.14   | 0.17               | mg/Kg wet | 1.67           |                  | 68.4          | 40-140         | 0.816 | 30           |            |     |
| Fluorene                         | 1.22   | 0.17               | mg/Kg wet | 1.67           |                  | 72.9          | 40-140         | 1.01  | 30           |            |     |
| Hexachlorobenzene                | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 83.0          | 40-140         | 0.912 | 30           |            |     |
| Hexachlorobutadiene              | 0.954  | 0.34               | mg/Kg wet | 1.67           |                  | 57.2          | 40-140         | 2.55  | 30           |            |     |
| Hexachlorocyclopentadiene        | 0.919  | 0.34               | mg/Kg wet | 1.67           |                  | 55.1          | 40-140         | 9.60  | 30           |            |     |
| Hexachloroethane                 | 0.854  | 0.34               | mg/Kg wet | 1.67           |                  | 51.2          | 40-140         | 5.91  | 30           |            |     |
| Indeno(1,2,3-cd)pyrene           | 1.31   | 0.17               | mg/Kg wet | 1.67           |                  | 78.7          | 40-140         | 1.04  | 30           |            |     |
| Isophorone                       | 1.06   | 0.34               | mg/Kg wet | 1.67           |                  | 63.3          | 40-140         | 1.63  | 30           |            |     |
| 1-Methylnaphthalene              | 1.01   | 0.17               | mg/Kg wet | 1.67           |                  | 60.5          | 40-140         | 0.724 | 30           |            |     |
| 2-Methylnaphthalene              | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.4          | 40-140         | 2.97  | 30           |            |     |



## QUALITY CONTROL

|                                      |        | Reporting |           | Spike        | Source       | 0/255         | %REC   |       | RPD   |       |
|--------------------------------------|--------|-----------|-----------|--------------|--------------|---------------|--------|-------|-------|-------|
| Analyte                              | Result | Limit     | Units     | Level        | Result       | %REC          | Limits | RPD   | Limit | Notes |
| Batch B292394 - SW-846 3546          |        |           |           |              |              |               |        |       |       |       |
| LCS Dup (B292394-BSD1)               |        |           | 1         | Prepared: 10 | 0/13/21 Anal | yzed: 10/14/2 | 21     |       |       |       |
| 2-Methylphenol                       | 1.06   | 0.34      | mg/Kg wet | 1.67         |              | 63.7          | 30-130 | 3.67  | 30    |       |
| 3/4-Methylphenol                     | 1.07   | 0.34      | mg/Kg wet | 1.67         |              | 64.2          | 30-130 | 5.16  | 30    |       |
| Naphthalene                          | 1.08   | 0.17      | mg/Kg wet | 1.67         |              | 64.9          | 40-140 | 1.86  | 30    |       |
| 2-Nitroaniline                       | 1.21   | 0.34      | mg/Kg wet | 1.67         |              | 72.7          | 40-140 | 2.71  | 30    |       |
| 3-Nitroaniline                       | 1.24   | 0.34      | mg/Kg wet | 1.67         |              | 74.1          | 30-140 | 2.77  | 30    |       |
| 4-Nitroaniline                       | 1.33   | 0.34      | mg/Kg wet | 1.67         |              | 80.0          | 40-140 | 2.59  | 30    |       |
| Nitrobenzene                         | 0.953  | 0.34      | mg/Kg wet | 1.67         |              | 57.2          | 40-140 | 1.18  | 30    |       |
| 2-Nitrophenol                        | 1.19   | 0.34      | mg/Kg wet | 1.67         |              | 71.2          | 30-130 | 3.59  | 30    |       |
| 4-Nitrophenol                        | 0.986  | 0.66      | mg/Kg wet | 1.67         |              | 59.2          | 30-130 | 4.07  | 50    |       |
| N-Nitrosodimethylamine               | 0.942  | 0.34      | mg/Kg wet | 1.67         |              | 56.5          | 40-140 | 4.84  | 30    |       |
| N-Nitrosodiphenylamine/Diphenylamine | 1.36   | 0.34      | mg/Kg wet | 1.67         |              | 81.5          | 40-140 | 3.83  | 30    |       |
| N-Nitrosodi-n-propylamine            | 0.936  | 0.34      | mg/Kg wet | 1.67         |              | 56.2          | 40-140 | 5.37  | 30    |       |
| Pentachloronitrobenzene              | 1.38   | 0.34      | mg/Kg wet | 1.67         |              | 83.0          | 40-140 | 0.290 | 30    |       |
| Pentachlorophenol                    | 1.03   | 0.34      | mg/Kg wet | 1.67         |              | 61.9          | 30-130 | 4.15  | 30    |       |
| Phenanthrene                         | 1.24   | 0.17      | mg/Kg wet | 1.67         |              | 74.5          | 40-140 | 4.15  | 30    |       |
| Phenol                               | 0.974  | 0.34      | mg/Kg wet | 1.67         |              | 58.4          | 30-130 | 6.68  | 30    |       |
| Pyrene                               | 1.24   | 0.17      | mg/Kg wet | 1.67         |              | 74.6          | 40-140 | 1.41  | 30    |       |
| Pyridine                             | 0.533  | 0.34      | mg/Kg wet | 1.67         |              | 32.0          | 30-140 | 0.995 | 30    |       |
| 1,2,4,5-Tetrachlorobenzene           | 1.10   | 0.34      | mg/Kg wet | 1.67         |              | 65.7          | 40-140 | 3.23  | 30    |       |
| 1,2,4-Trichlorobenzene               | 1.02   | 0.34      | mg/Kg wet | 1.67         |              | 61.0          | 40-140 | 3.01  | 30    |       |
| 2,4,5-Trichlorophenol                | 1.28   | 0.34      | mg/Kg wet | 1.67         |              | 77.0          | 30-130 | 4.50  | 30    |       |
| 2,4,6-Trichlorophenol                | 1.22   | 0.34      | mg/Kg wet | 1.67         |              | 73.4          | 30-130 | 2.71  | 30    |       |
| Surrogate: 2-Fluorophenol            | 4.23   |           | mg/Kg wet | 6.67         |              | 63.4          | 30-130 |       |       |       |
| Surrogate: Phenol-d6                 | 3.96   |           | mg/Kg wet | 6.67         |              | 59.4          | 30-130 |       |       |       |
| Surrogate: Nitrobenzene-d5           | 1.99   |           | mg/Kg wet | 3.33         |              | 59.7          | 30-130 |       |       |       |
| Surrogate: 2-Fluorobiphenyl          | 2.46   |           | mg/Kg wet | 3.33         |              | 73.7          | 30-130 |       |       |       |
| Surrogate: 2,4,6-Tribromophenol      | 6.02   |           | mg/Kg wet | 6.67         |              | 90.3          | 30-130 |       |       |       |
| Surrogate: p-Terphenyl-d14           | 2.79   |           | mg/Kg wet | 3.33         |              | 83.6          | 30-130 |       |       |       |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Polychlorinated Biphenyls By GC/ECD - Quality Control

Reporting

| Analyte                              | Result | Limit | Units             | Level        | Result        | %REC          | Limits | RPD  | Limit | Notes |
|--------------------------------------|--------|-------|-------------------|--------------|---------------|---------------|--------|------|-------|-------|
| Batch B292279 - SW-846 3510C         |        |       |                   |              |               |               |        |      |       |       |
| Blank (B292279-BLK1)                 |        |       |                   | Prepared: 10 | )/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| Aroclor-1016                         | ND     | 0.20  | $\mu g/L$         |              |               |               |        |      |       |       |
| Aroclor-1016 [2C]                    | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| Aroclor-1221                         | ND     | 0.20  | $\mu g \! / \! L$ |              |               |               |        |      |       |       |
| Aroclor-1221 [2C]                    | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| croclor-1232                         | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| roclor-1232 [2C]                     | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| croclor-1242                         | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| aroclor-1242 [2C]                    | ND     | 0.20  | $\mu g\!/\!L$     |              |               |               |        |      |       |       |
| aroclor-1248                         | ND     | 0.20  | $\mu g\!/\!L$     |              |               |               |        |      |       |       |
| aroclor-1248 [2C]                    | ND     | 0.20  | $\mu g \! / \! L$ |              |               |               |        |      |       |       |
| croclor-1254                         | ND     | 0.20  | $\mu g \! / \! L$ |              |               |               |        |      |       |       |
| Aroclor-1254 [2C]                    | ND     | 0.20  | $\mu g/L$         |              |               |               |        |      |       |       |
| Aroclor-1260                         | ND     | 0.20  | $\mu g \! / \! L$ |              |               |               |        |      |       |       |
| Aroclor-1260 [2C]                    | ND     | 0.20  | $\mu g \! / \! L$ |              |               |               |        |      |       |       |
| aroclor-1262                         | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| aroclor-1262 [2C]                    | ND     | 0.20  | μg/L              |              |               |               |        |      |       |       |
| Aroclor-1268                         | ND     | 0.20  | $\mu g/L$         |              |               |               |        |      |       |       |
| Aroclor-1268 [2C]                    | ND     | 0.20  | $\mu g/L$         |              |               |               |        |      |       |       |
| urrogate: Decachlorobiphenyl         | 1.55   |       | μg/L              | 2.00         |               | 77.4          | 30-150 |      |       |       |
| urrogate: Decachlorobiphenyl [2C]    | 1.58   |       | $\mu g/L$         | 2.00         |               | 79.1          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 1.39   |       | $\mu g/L$         | 2.00         |               | 69.5          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.42   |       | μg/L              | 2.00         |               | 71.0          | 30-150 |      |       |       |
| LCS (B292279-BS1)                    |        |       |                   | Prepared: 10 | )/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| aroclor-1016                         | 0.45   | 0.20  | μg/L              | 0.500        |               | 90.1          | 40-140 |      |       |       |
| Aroclor-1016 [2C]                    | 0.42   | 0.20  | μg/L              | 0.500        |               | 84.0          | 40-140 |      |       |       |
| aroclor-1260                         | 0.40   | 0.20  | $\mu g/L$         | 0.500        |               | 80.3          | 40-140 |      |       |       |
| aroclor-1260 [2C]                    | 0.41   | 0.20  | $\mu g/L$         | 0.500        |               | 81.2          | 40-140 |      |       |       |
| Surrogate: Decachlorobiphenyl        | 1.50   |       | μg/L              | 2.00         |               | 75.1          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 1.51   |       | μg/L              | 2.00         |               | 75.7          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 1.45   |       | μg/L              | 2.00         |               | 72.7          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.48   |       | μg/L              | 2.00         |               | 73.9          | 30-150 |      |       |       |
| LCS Dup (B292279-BSD1)               |        |       |                   | Prepared: 10 | 0/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| Aroclor-1016                         | 0.41   | 0.20  | μg/L              | 0.500        |               | 82.7          | 40-140 | 8.56 | 20    |       |
| Aroclor-1016 [2C]                    | 0.38   | 0.20  | $\mu g/L$         | 0.500        |               | 76.1          | 40-140 | 9.90 | 20    |       |
| Aroclor-1260                         | 0.37   | 0.20  | μg/L              | 0.500        |               | 73.3          | 40-140 | 9.19 | 20    |       |
| Aroclor-1260 [2C]                    | 0.36   | 0.20  | μg/L              | 0.500        |               | 73.0          | 40-140 | 10.7 | 20    |       |
| Surrogate: Decachlorobiphenyl        | 1.30   |       | μg/L              | 2.00         |               | 65.1          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 1.30   |       | $\mu g/L$         | 2.00         |               | 65.1          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 1.37   |       | $\mu g/L$         | 2.00         |               | 68.3          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.36   |       | μg/L              | 2.00         |               | 68.1          | 30-150 |      |       |       |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Polychlorinated Biphenyls By GC/ECD - Quality Control

Reporting

| Analyte                              | Result | Limit | Units     | Level        | Result        | %REC          | Limits | RPD  | Limit | Notes |
|--------------------------------------|--------|-------|-----------|--------------|---------------|---------------|--------|------|-------|-------|
| Batch B292281 - SW-846 3546          |        |       |           |              |               |               |        |      |       |       |
| Blank (B292281-BLK1)                 |        |       |           | Prepared: 10 | )/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| Aroclor-1016                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1016 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1221                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1221 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1232                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1232 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1242                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1242 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1248                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1248 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1254                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1254 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1260                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1260 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1262                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1262 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1268                         | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Aroclor-1268 [2C]                    | ND     | 0.020 | mg/Kg wet |              |               |               |        |      |       |       |
| Surrogate: Decachlorobiphenyl        | 0.196  |       | mg/Kg wet | 0.200        |               | 97.8          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.181  |       | mg/Kg wet | 0.200        |               | 90.7          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 0.170  |       | mg/Kg wet | 0.200        |               | 84.9          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.150  |       | mg/Kg wet | 0.200        |               | 75.2          | 30-150 |      |       |       |
| LCS (B292281-BS1)                    |        |       |           | Prepared: 10 | )/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| Aroclor-1016                         | 0.16   | 0.020 | mg/Kg wet | 0.200        |               | 81.8          | 40-140 |      |       |       |
| Aroclor-1016 [2C]                    | 0.16   | 0.020 | mg/Kg wet | 0.200        |               | 78.4          | 40-140 |      |       |       |
| Aroclor-1260                         | 0.17   | 0.020 | mg/Kg wet | 0.200        |               | 84.5          | 40-140 |      |       |       |
| Aroclor-1260 [2C]                    | 0.16   | 0.020 | mg/Kg wet | 0.200        |               | 79.7          | 40-140 |      |       |       |
| Surrogate: Decachlorobiphenyl        | 0.193  |       | mg/Kg wet | 0.200        |               | 96.6          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.181  |       | mg/Kg wet | 0.200        |               | 90.4          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 0.168  |       | mg/Kg wet | 0.200        |               | 83.9          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.150  |       | mg/Kg wet | 0.200        |               | 74.9          | 30-150 |      |       |       |
| LCS Dup (B292281-BSD1)               |        |       |           | Prepared: 10 | )/12/21 Analy | yzed: 10/13/2 | .1     |      |       |       |
| Aroclor-1016                         | 0.16   | 0.020 | mg/Kg wet | 0.200        |               | 80.2          | 40-140 | 1.99 | 30    |       |
| Aroclor-1016 [2C]                    | 0.15   | 0.020 | mg/Kg wet | 0.200        |               | 76.2          | 40-140 | 2.76 | 30    |       |
| Aroclor-1260                         | 0.16   | 0.020 | mg/Kg wet | 0.200        |               | 81.2          | 40-140 | 4.05 | 30    |       |
| Aroclor-1260 [2C]                    | 0.15   | 0.020 | mg/Kg wet | 0.200        |               | 76.7          | 40-140 | 3.88 | 30    |       |
| Surrogate: Decachlorobiphenyl        | 0.182  |       | mg/Kg wet | 0.200        |               | 90.8          | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.173  |       | mg/Kg wet | 0.200        |               | 86.6          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 0.162  |       | mg/Kg wet | 0.200        |               | 81.0          | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.150  |       | mg/Kg wet | 0.200        |               | 74.8          | 30-150 |      |       |       |



## QUALITY CONTROL

#### Polychlorinated Biphenyls By GC/ECD - Quality Control

|                                      |        | Reporting   |           | Spike        | Source         |              | %REC   |      | RPD   |       |
|--------------------------------------|--------|-------------|-----------|--------------|----------------|--------------|--------|------|-------|-------|
| Analyte                              | Result | Limit       | Units     | Level        | Result         | %REC         | Limits | RPD  | Limit | Notes |
| Batch B292281 - SW-846 3546          |        |             |           |              |                |              |        |      |       |       |
| Matrix Spike (B292281-MS1)           | Sour   | ce: 21J0524 | -03       | Prepared: 10 | 0/12/21 Analy: | zed: 10/13/2 | 21     |      |       |       |
| Aroclor-1016                         | 0.19   | 0.097       | mg/Kg dry | 0.242        | ND             | 78.1         | 40-140 |      |       |       |
| Aroclor-1016 [2C]                    | 0.18   | 0.097       | mg/Kg dry | 0.242        | ND             | 76.4         | 40-140 |      |       |       |
| Aroclor-1260                         | 0.18   | 0.097       | mg/Kg dry | 0.242        | ND             | 75.3         | 40-140 |      |       |       |
| Aroclor-1260 [2C]                    | 0.18   | 0.097       | mg/Kg dry | 0.242        | ND             | 74.0         | 40-140 |      |       |       |
| Surrogate: Decachlorobiphenyl        | 0.189  |             | mg/Kg dry | 0.242        |                | 78.1         | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.199  |             | mg/Kg dry | 0.242        |                | 82.3         | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 0.168  |             | mg/Kg dry | 0.242        |                | 69.4         | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.167  |             | mg/Kg dry | 0.242        |                | 69.3         | 30-150 |      |       |       |
| Matrix Spike Dup (B292281-MSD1)      | Sour   | ce: 21J0524 | -03       | Prepared: 10 | 0/12/21 Analy  | zed: 10/13/2 | 21     |      |       |       |
| Aroclor-1016                         | 0.17   | 0.097       | mg/Kg dry | 0.242        | ND             | 70.6         | 40-140 | 10.0 | 30    |       |
| Aroclor-1016 [2C]                    | 0.17   | 0.097       | mg/Kg dry | 0.242        | ND             | 69.3         | 40-140 | 9.76 | 30    |       |
| Aroclor-1260                         | 0.17   | 0.097       | mg/Kg dry | 0.242        | ND             | 68.4         | 40-140 | 9.59 | 30    |       |
| Aroclor-1260 [2C]                    | 0.16   | 0.097       | mg/Kg dry | 0.242        | ND             | 66.1         | 40-140 | 11.2 | 30    |       |
| Surrogate: Decachlorobiphenyl        | 0.164  |             | mg/Kg dry | 0.242        |                | 67.8         | 30-150 |      |       |       |
| Surrogate: Decachlorobiphenyl [2C]   | 0.173  |             | mg/Kg dry | 0.242        |                | 71.7         | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene      | 0.155  |             | mg/Kg dry | 0.242        |                | 64.2         | 30-150 |      |       |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.159  |             | mg/Kg dry | 0.242        |                | 65.7         | 30-150 |      |       |       |



#### QUALITY CONTROL

|                              |          | Reporting    |                        | Spike        | Source         |              | %REC       |      | RPD   |       |
|------------------------------|----------|--------------|------------------------|--------------|----------------|--------------|------------|------|-------|-------|
| Analyte                      | Result   | Limit        | Units                  | Level        | Result         | %REC         | Limits     | RPD  | Limit | Notes |
| Batch B292195 - SW-846 7471  |          |              |                        |              |                |              |            |      |       |       |
| Blank (B292195-BLK1)         |          |              |                        | Prepared: 1  | 0/11/21 Analy  | zed: 10/12/2 | 21         |      |       |       |
| Mercury                      | ND       | 0.025        | mg/Kg wet              |              |                |              |            |      |       |       |
| LCS (B292195-BS1)            |          |              |                        | Prepared: 1  | 0/11/21 Analy  | zed: 10/12/2 | 21         |      |       |       |
| Mercury                      | 16.8     | 0.75         | mg/Kg wet              | 15.6         | 0,11,21 111111 | 108          | 59.3-140.4 |      |       |       |
| •                            | 10.0     |              | 0 0                    |              |                |              |            |      |       |       |
| LCS Dup (B292195-BSD1)       |          |              |                        |              | 0/11/21 Analy  |              |            |      |       |       |
| Mercury                      | 20.5     | 0.75         | mg/Kg wet              | 15.6         |                | 131          | 59.3-140.4 | 19.6 | 20    |       |
| Ouplicate (B292195-DUP1)     | Sou      | rce: 21J0524 | -07                    | Prepared: 1  | 0/11/21 Analy  | zed: 10/12/2 | 21         |      |       |       |
| Mercury                      | 0.0330   | 0.034        | mg/Kg dry              |              | 0.0306         |              |            | 7.50 | 20    | J     |
| Matrix Spike (B292195-MS1)   | Sou      | rce: 21J0524 | -07                    | Prepared: 1  | 0/11/21 Analy  | zed: 10/12/2 | 21         |      |       |       |
| Mercury                      | 0.479    | 0.033        | mg/Kg dry              | 0.434        | 0.0306         |              | 80-120     |      |       |       |
| satch B292205 - SW-846 3050B |          |              |                        |              |                |              |            |      |       |       |
| lank (B292205-BLK1)          |          |              |                        | Prepared: 1  | 0/11/21 Analy  | zed: 10/13/2 | 21         |      |       |       |
| luminum                      | ND       | 17           | mg/Kg wet              | F            |                |              |            |      |       |       |
| antimony                     | ND       | 1.7          | mg/Kg wet              |              |                |              |            |      |       |       |
| rsenic                       | ND       | 3.3          | mg/Kg wet              |              |                |              |            |      |       |       |
| arium                        | ND       | 1.7          | mg/Kg wet              |              |                |              |            |      |       |       |
| eryllium                     | ND       | 0.17         | mg/Kg wet              |              |                |              |            |      |       |       |
| admium                       | ND       | 0.33         | mg/Kg wet              |              |                |              |            |      |       |       |
| alcium                       | ND       | 17           | mg/Kg wet              |              |                |              |            |      |       |       |
| hromium                      | ND       | 0.67         | mg/Kg wet              |              |                |              |            |      |       |       |
| obalt                        | ND       | 1.7          | mg/Kg wet              |              |                |              |            |      |       |       |
| opper                        | ND       | 0.67         | mg/Kg wet              |              |                |              |            |      |       |       |
| ron                          | ND       | 17           | mg/Kg wet              |              |                |              |            |      |       |       |
| ead                          | ND       | 0.50         | mg/Kg wet              |              |                |              |            |      |       |       |
| Iagnesium                    | ND       | 17           | mg/Kg wet              |              |                |              |            |      |       |       |
| Manganese                    | ND       | 0.33         | mg/Kg wet              |              |                |              |            |      |       |       |
| lickel                       | ND       | 0.67         | mg/Kg wet              |              |                |              |            |      |       |       |
| otassium                     | ND       | 170          | mg/Kg wet              |              |                |              |            |      |       |       |
| elenium                      | ND       | 3.3          | mg/Kg wet              |              |                |              |            |      |       |       |
| ilver                        | ND       | 0.33         | mg/Kg wet              |              |                |              |            |      |       |       |
| odium<br>'hallium            | ND       | 170          | mg/Kg wet              |              |                |              |            |      |       |       |
| nailium<br>⁄anadium          | ND       | 1.7<br>0.67  | mg/Kg wet<br>mg/Kg wet |              |                |              |            |      |       |       |
| inc                          | ND<br>ND | 0.67         | mg/Kg wet<br>mg/Kg wet |              |                |              |            |      |       |       |
|                              | ND       | 0.07         |                        | Draman- J. 1 | 0/11/21 41     | god: 10/12/  | 21         |      |       |       |
| LCS (B292205-BS1)            | 7010     | 47           | mg/Kg wet              |              | 0/11/21 Analy  | 86.4         | 48.1-151.7 |      |       |       |
| Antimony                     | 115      | 4.7          | mg/Kg wet              |              |                | 85.5         | 1.9-200.7  |      |       |       |
| Arsenic                      | 161      | 9.5          | mg/Kg wet              |              |                | 94.7         | 82.9-117.6 |      |       |       |
| Barium                       | 181      | 4.7          | mg/Kg wet              |              |                | 99.1         | 82.5-117.5 |      |       |       |
| Beryllium                    | 113      | 0.47         | mg/Kg wet              |              |                | 97.6         | 83.4-116.4 |      |       |       |
| admium                       | 90.5     | 0.95         | mg/Kg wet              | 89.5         |                | 101          | 82.8-117.3 |      |       |       |
| alcium                       | 4560     | 47           | mg/Kg wet              | 4810         |                | 94.8         | 81.7-118.1 |      |       |       |
| Chromium                     | 99.8     | 1.9          | mg/Kg wet              | 101          |                | 98.8         | 82.1-117.8 |      |       |       |
| Cobalt                       | 86.8     | 4.7          | mg/Kg wet              | 84.8         |                | 102          | 83.5-116.5 |      |       |       |
| Copper                       | 154      | 1.9          | mg/Kg wet              | 149          |                | 103          | 83.9-116.1 |      |       |       |
| ron                          | 13200    | 47           | mg/Kg wet              | 14100        |                | 93.7         | 60-139.7   |      |       |       |
| ead                          | 137      | 1.4          | mg/Kg wet              | 140          |                | 97.9         | 82.9-117.1 |      |       |       |
| Magnesium                    | 2210     | 47           | mg/Kg wet              | 2350         |                | 94.2         | 76.2-123.8 |      |       |       |



#### QUALITY CONTROL

|                                   |        | Reporting |           | Spike        | Source       |             | %REC       |       | RPD   |       |
|-----------------------------------|--------|-----------|-----------|--------------|--------------|-------------|------------|-------|-------|-------|
| Analyte                           | Result | Limit     | Units     | Level        | Result       | %REC        | Limits     | RPD   | Limit | Notes |
| satch B292205 - SW-846 3050B      |        |           |           |              |              |             |            |       |       |       |
| LCS (B292205-BS1)                 |        |           | 1         | Prepared: 10 | /11/21 Analy | zed: 10/13/ | 21         |       |       |       |
| Manganese                         | 631    | 0.95      | mg/Kg wet | 648          |              | 97.4        | 81.8-118.2 |       |       |       |
| Vickel                            | 69.4   | 1.9       | mg/Kg wet | 68.3         |              | 102         | 82.1-117.7 |       |       |       |
| Potassium                         | 1980   | 470       | mg/Kg wet | 2050         |              | 96.6        | 69.8-129.8 |       |       |       |
| elenium                           | 180    | 9.5       | mg/Kg wet | 182          |              | 98.9        | 79.7-120.3 |       |       |       |
| ilver                             | 49.6   | 0.95      | mg/Kg wet | 50.1         |              | 99.0        | 80.2-120   |       |       |       |
| odium                             | 117    | 470       | mg/Kg wet | 136          |              | 86.0        | 71.6-127.9 |       |       | J     |
| nallium                           | 90.0   | 4.7       | mg/Kg wet | 87.7         |              | 103         | 81.1-118.6 |       |       |       |
| nnadium                           | 154    | 1.9       | mg/Kg wet | 153          |              | 101         | 79.1-120.9 |       |       |       |
| ne                                | 227    | 1.9       | mg/Kg wet | 228          |              | 99.5        | 80.7-118.9 |       |       |       |
| CS Dup (B292205-BSD1)             |        |           | 1         | Prepared: 10 | /11/21 Analy | zed: 10/13/ | 21         |       |       |       |
| uminum                            | 7410   | 49        | mg/Kg wet | 8110         |              | 91.4        | 48.1-151.7 | 5.58  | 30    |       |
| ntimony                           | 120    | 4.9       | mg/Kg wet | 134          |              | 89.8        | 1.9-200.7  | 4.91  | 30    |       |
| rsenic                            | 169    | 9.7       | mg/Kg wet | 170          |              | 99.1        | 82.9-117.6 | 4.63  | 30    |       |
| arium                             | 187    | 4.9       | mg/Kg wet | 183          |              | 102         | 82.5-117.5 | 3.34  | 20    |       |
| eryllium                          | 118    | 0.49      | mg/Kg wet | 116          |              | 102         | 83.4-116.4 | 4.21  | 30    |       |
| admium                            | 95.0   | 0.97      | mg/Kg wet | 89.5         |              | 106         | 82.8-117.3 | 4.80  | 20    |       |
| ılcium                            | 4760   | 49        | mg/Kg wet | 4810         |              | 98.9        | 81.7-118.1 | 4.28  | 30    |       |
| nromium                           | 102    | 1.9       | mg/Kg wet | 101          |              | 101         | 82.1-117.8 | 2.62  | 30    |       |
| balt                              | 90.2   | 4.9       | mg/Kg wet | 84.8         |              | 106         | 83.5-116.5 | 3.81  | 20    |       |
| opper                             | 159    | 1.9       | mg/Kg wet | 149          |              | 107         | 83.9-116.1 | 3.29  | 30    |       |
| on                                | 13300  | 49        | mg/Kg wet | 14100        |              | 94.2        | 60-139.7   | 0.489 | 30    |       |
| ead                               | 144    | 1.5       | mg/Kg wet | 140          |              | 103         | 82.9-117.1 | 4.85  | 30    |       |
| agnesium                          | 2310   | 49        | mg/Kg wet | 2350         |              | 98.1        | 76.2-123.8 | 4.06  | 30    |       |
| anganese                          | 663    | 0.97      | mg/Kg wet | 648          |              | 102         | 81.8-118.2 | 4.97  | 30    |       |
| ckel                              | 72.0   | 1.9       | mg/Kg wet | 68.3         |              | 105         | 82.1-117.7 | 3.61  | 30    |       |
| otassium                          | 2030   | 490       | mg/Kg wet | 2050         |              | 99.2        | 69.8-129.8 | 2.61  | 30    |       |
| elenium                           | 192    | 9.7       | mg/Kg wet | 182          |              | 105         | 79.7-120.3 | 6.22  | 30    |       |
| lver                              | 52.0   | 0.97      | mg/Kg wet | 50.1         |              | 104         | 80.2-120   | 4.76  | 30    |       |
| dium                              | 121    | 490       | mg/Kg wet | 136          |              | 89.3        | 71.6-127.9 | 3.80  | 30    | J     |
| allium                            | 92.7   | 4.9       | mg/Kg wet | 87.7         |              | 106         | 81.1-118.6 | 2.95  | 30    |       |
| nnadium                           | 158    | 1.9       | mg/Kg wet | 153          |              | 104         | 79.1-120.9 | 2.84  | 30    |       |
| ne                                | 238    | 1.9       | mg/Kg wet | 228          |              | 104         | 80.7-118.9 | 4.61  | 30    |       |
| eference (B292205-SRM1) MRL CHECK |        |           | 1         | Prepared: 10 | /11/21 Analy | zed: 10/13/ | 21         |       |       |       |
| ead                               | 0.512  | 0.49      | mg/Kg wet | 0.495        |              | 104         | 80-120     |       |       |       |
| atch B292300 - SW-846 3050B       | 0.312  |           |           |              |              |             |            |       |       |       |
|                                   |        |           | ,         | D 1. 10      | V/12/21 A. 1 | J. 10/14:   | 21         |       |       |       |
| lank (B292300-BLK1)               |        |           |           | Prepared: 10 | /12/21 Analy | zed: 10/14/ | 21         |       |       |       |
| luminum                           | ND     | 17        | mg/Kg wet |              |              |             |            |       |       |       |



#### QUALITY CONTROL

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Batch B292300 - SW-846 3050B |        |                    |           |                |                  |              |                |      |              |       |
| LCS (B292300-BS1)            |        |                    |           | Prepared: 10   | 0/12/21 Anal     | yzed: 10/14/ | /21            |      |              |       |
| Aluminum                     | 7460   | 50                 | mg/Kg wet | 8110           |                  | 92.0         | 48.1-151.7     |      |              |       |
| LCS Dup (B292300-BSD1)       |        |                    |           | Prepared: 10   | 0/12/21 Anal     | yzed: 10/14/ | /21            |      |              |       |
| Aluminum                     | 7390   | 50                 | mg/Kg wet | 8110           |                  | 91.1         | 48.1-151.7     | 1.03 | 30           |       |
| Batch B292487 - SW-846 3005A |        |                    |           |                |                  |              |                |      |              |       |
| Blank (B292487-BLK1)         |        |                    |           | Prepared: 10   | 0/14/21 Anal     | yzed: 10/18  | /21            |      |              |       |
| Antimony                     | ND     | 1.0                | μg/L      |                |                  |              |                |      |              |       |
| Arsenic                      | ND     | 0.80               | μg/L      |                |                  |              |                |      |              |       |
| Barium                       | ND     | 10                 | $\mu g/L$ |                |                  |              |                |      |              |       |
| Beryllium                    | ND     | 0.40               | $\mu g/L$ |                |                  |              |                |      |              |       |
| Cadmium                      | ND     | 0.20               | $\mu g/L$ |                |                  |              |                |      |              |       |
| Chromium                     | ND     | 1.0                | μg/L      |                |                  |              |                |      |              |       |
| Cobalt                       | ND     | 1.0                | μg/L      |                |                  |              |                |      |              |       |
| Copper                       | ND     | 1.0                | μg/L      |                |                  |              |                |      |              |       |
| ead                          | ND     | 0.50               | $\mu g/L$ |                |                  |              |                |      |              |       |
| Manganese                    | ND     | 1.0                | $\mu g/L$ |                |                  |              |                |      |              |       |
| Nickel                       | ND     | 5.0                | μg/L      |                |                  |              |                |      |              |       |
| Selenium                     | ND     | 5.0                | μg/L      |                |                  |              |                |      |              |       |
| Silver                       | ND     | 0.20               | μg/L      |                |                  |              |                |      |              |       |
| Гhallium                     | ND     | 0.20               | $\mu g/L$ |                |                  |              |                |      |              |       |
| Vanadium                     | ND     | 5.0                | $\mu g/L$ |                |                  |              |                |      |              |       |
| Zinc                         | ND     | 10                 | $\mu g/L$ |                |                  |              |                |      |              |       |
| LCS (B292487-BS1)            |        |                    |           | Prepared: 10   | 0/14/21 Anal     | yzed: 10/18/ | /21            |      |              |       |
| Antimony                     | 537    | 10                 | μg/L      | 500            |                  | 107          | 80-120         |      |              |       |
| Arsenic                      | 494    | 8.0                | $\mu g/L$ | 500            |                  | 98.8         | 80-120         |      |              |       |
| Barium                       | 508    | 100                | $\mu g/L$ | 500            |                  | 102          | 80-120         |      |              |       |
| Beryllium                    | 483    | 4.0                | $\mu g/L$ | 500            |                  | 96.6         | 80-120         |      |              |       |
| Cadmium                      | 505    | 2.0                | $\mu g/L$ | 500            |                  | 101          | 80-120         |      |              |       |
| Chromium                     | 482    | 10                 | $\mu g/L$ | 500            |                  | 96.3         | 80-120         |      |              |       |
| Cobalt                       | 494    | 10                 | $\mu g/L$ | 500            |                  | 98.8         | 80-120         |      |              |       |
| Copper                       | 976    | 10                 | $\mu g/L$ | 1000           |                  | 97.6         | 80-120         |      |              |       |
| Lead                         | 490    | 5.0                | $\mu g/L$ | 500            |                  | 98.0         | 80-120         |      |              |       |
| Manganese                    | 492    | 10                 | $\mu g/L$ | 500            |                  | 98.4         | 80-120         |      |              |       |
| Nickel                       | 517    | 50                 | $\mu g/L$ | 500            |                  | 103          | 80-120         |      |              |       |
| Selenium                     | 500    | 50                 | $\mu g/L$ | 500            |                  | 100          | 80-120         |      |              |       |
| Silver                       | 492    | 2.0                | $\mu g/L$ | 500            |                  | 98.4         | 80-120         |      |              |       |
| Гhallium                     | 488    | 2.0                | $\mu g/L$ | 500            |                  | 97.7         | 80-120         |      |              |       |
| Vanadium                     | 483    | 50                 | $\mu g/L$ | 500            |                  | 96.6         | 80-120         |      |              |       |
| Zinc                         | 994    | 100                | $\mu g/L$ | 1000           |                  | 99.4         | 80-120         |      |              |       |



#### QUALITY CONTROL

|                                            |          | - ·                |                   | a :-                                  |                  |               | 0/5            |       | n            |        |
|--------------------------------------------|----------|--------------------|-------------------|---------------------------------------|------------------|---------------|----------------|-------|--------------|--------|
| Analyte                                    | Result   | Reporting<br>Limit | Units             | Spike<br>Level                        | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes  |
| ·                                          | Result   | Limit              | Onits             | LCVCI                                 | Result           | /UNEC         | Lillits        | KI D  | Dillit       | 110103 |
| Batch B292487 - SW-846 3005A               |          |                    |                   |                                       |                  |               |                |       |              |        |
| LCS Dup (B292487-BSD1)                     |          |                    |                   | Prepared: 10/14/21 Analyzed: 10/18/21 |                  |               |                |       |              |        |
| Antimony                                   | 538      | 10                 | $\mu \text{g/L}$  | 500                                   |                  | 108           | 80-120         | 0.189 | 20           |        |
| Arsenic                                    | 493      | 8.0                | μg/L              | 500                                   |                  | 98.6          | 80-120         | 0.242 | 20           |        |
| Barium                                     | 498      | 100                | μg/L              | 500                                   |                  | 99.6          | 80-120         | 1.89  | 20           |        |
| Beryllium                                  | 478      | 4.0                | μg/L              | 500                                   |                  | 95.6          | 80-120         | 1.05  | 20           |        |
| Cadmium                                    | 497      | 2.0                | μg/L              | 500                                   |                  | 99.4          | 80-120         | 1.52  | 20           |        |
| Chromium                                   | 477      | 10                 | μg/L              | 500                                   |                  | 95.3          | 80-120         | 1.03  | 20           |        |
| Cobalt                                     | 486      | 10                 | $\mu \text{g/L}$  | 500                                   |                  | 97.1          | 80-120         | 1.73  | 20           |        |
| Copper                                     | 965      | 10                 | $\mu g\!/\!L$     | 1000                                  |                  | 96.5          | 80-120         | 1.13  | 20           |        |
| Lead                                       | 491      | 5.0                | $\mu g \! / \! L$ | 500                                   |                  | 98.1          | 80-120         | 0.141 | 20           |        |
| Manganese                                  | 484      | 10                 | $\mu g \! / \! L$ | 500                                   |                  | 96.8          | 80-120         | 1.64  | 20           |        |
| Nickel                                     | 512      | 50                 | μg/L              | 500                                   |                  | 102           | 80-120         | 0.850 | 20           |        |
| Selenium                                   | 494      | 50                 | $\mu g \! / \! L$ | 500                                   |                  | 98.8          | 80-120         | 1.22  | 20           |        |
| Silver                                     | 484      | 2.0                | μg/L              | 500                                   |                  | 96.8          | 80-120         | 1.66  | 20           |        |
| Thallium                                   | 487      | 2.0                | μg/L              | 500                                   |                  | 97.4          | 80-120         | 0.268 | 20           |        |
| Vanadium                                   | 477      | 50                 | $\mu g/L$         | 500                                   |                  | 95.5          | 80-120         | 1.12  | 20           |        |
| Zinc                                       | 979      | 100                | $\mu g/L$         | 1000                                  |                  | 97.9          | 80-120         | 1.55  | 20           |        |
| Batch B292509 - SW-846 7470A Prep          |          |                    |                   |                                       |                  |               |                |       |              |        |
| Blank (B292509-BLK1)                       |          |                    |                   | Prepared: 10                          | /15/21 Anal      | yzed: 10/18/2 | 21             |       |              |        |
| Mercury                                    | ND       | 0.00010            | mg/L              |                                       |                  |               |                |       |              |        |
| LCS (B292509-BS1)                          |          |                    |                   | Prepared: 10                          | /15/21 Anal      | vzed: 10/18/2 | 21             |       |              |        |
| Mercury                                    | 0.00435  | 0.00010            | mg/L              | 0.00402                               |                  | 108           | 80-120         |       |              |        |
| LCS Dup (B292509-BSD1)                     |          |                    |                   | Prepared: 10                          | /15/21 Anal      | vzed: 10/18/2 | 21             |       |              |        |
| Mercury                                    | 0.00438  | 0.00010            | mg/L              | 0.00402                               |                  | 109           | 80-120         | 0.672 | 20           |        |
| Duplicate (B292509-DUP1)                   | Sou      | rce: 21J0524-      | 08                | Prepared: 10                          | /15/21 Anal      | yzed: 10/18/2 | 21             |       |              |        |
| Mercury                                    | ND       | 0.00010            | mg/L              |                                       | NE               | -             |                | NC    | 20           |        |
| Matrix Spike (B292509-MS1)                 | Sou      | rce: 21J0524-      | 18                | Prepared: 10                          | /15/21 Anal      | vzed: 10/18/2 | 21             |       |              |        |
| Mercury                                    | 0.00439  | 0.00010            | mg/L              | 0.00402                               | NE               |               | 75-125         |       |              |        |
| Batch B292561 - SW-846 3005A               |          |                    |                   |                                       |                  |               |                |       |              |        |
|                                            |          |                    |                   | Prepared & A                          | Analyzed: 10     | )/15/21       |                |       |              |        |
| Blank (B292561-BLK1)                       |          |                    | 17                | •                                     |                  |               |                |       |              |        |
|                                            | ND       | 0.050              | mg/L              |                                       |                  |               |                |       |              |        |
| Aluminum                                   | ND<br>ND |                    | mg/L<br>mg/L      |                                       |                  |               |                |       |              |        |
| Blank (B292561-BLK1) Aluminum Calcium Iron | ND       | 0.50               | mg/L              |                                       |                  |               |                |       |              |        |
| Aluminum<br>Calcium<br>Iron                | ND<br>ND | 0.50<br>0.050      | mg/L<br>mg/L      |                                       |                  |               |                |       |              |        |
| Aluminum<br>Calcium                        | ND       | 0.50               | mg/L              |                                       |                  |               |                |       |              |        |



#### QUALITY CONTROL

| Analyte                      | Result                        | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------|-------------------------------|--------------------|-------|----------------|------------------|--------|----------------|-------|--------------|-------|
| Batch B292561 - SW-846 3005A |                               |                    |       |                |                  |        |                |       |              |       |
| LCS (B292561-BS1)            | Prepared & Analyzed: 10/15/21 |                    |       |                |                  |        |                |       |              |       |
| Aluminum                     | 0.514                         | 0.050              | mg/L  | 0.500          |                  | 103    | 80-120         |       |              |       |
| Calcium                      | 4.08                          | 0.50               | mg/L  | 4.00           |                  | 102    | 80-120         |       |              |       |
| Iron                         | 3.99                          | 0.050              | mg/L  | 4.00           |                  | 99.7   | 80-120         |       |              |       |
| Magnesium                    | 4.10                          | 0.050              | mg/L  | 4.00           |                  | 103    | 80-120         |       |              |       |
| Potassium                    | 3.93                          | 2.0                | mg/L  | 4.00           |                  | 98.2   | 80-120         |       |              |       |
| Sodium                       | 4.03                          | 2.0                | mg/L  | 4.00           |                  | 101    | 80-120         |       |              |       |
| LCS Dup (B292561-BSD1)       |                               |                    |       | Prepared &     | Analyzed: 10     | /15/21 |                |       |              |       |
| Aluminum                     | 0.507                         | 0.050              | mg/L  | 0.500          |                  | 101    | 80-120         | 1.46  | 20           |       |
| Calcium                      | 4.11                          | 0.50               | mg/L  | 4.00           |                  | 103    | 80-120         | 0.790 | 20           |       |
| Iron                         | 4.02                          | 0.050              | mg/L  | 4.00           |                  | 101    | 80-120         | 0.834 | 20           |       |
| Magnesium                    | 4.12                          | 0.050              | mg/L  | 4.00           |                  | 103    | 80-120         | 0.510 | 20           |       |
| Potassium                    | 3.95                          | 2.0                | mg/L  | 4.00           |                  | 98.8   | 80-120         | 0.628 | 20           |       |
| Sodium                       | 4.04                          | 2.0                | mg/L  | 4.00           |                  | 101    | 80-120         | 0.124 | 20           |       |



#### QUALITY CONTROL

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

|                              |                               | Reporting |           | Spike      | Source       |        | %REC   |      | RPD   |       |  |
|------------------------------|-------------------------------|-----------|-----------|------------|--------------|--------|--------|------|-------|-------|--|
| Analyte                      | Result                        | Limit     | Units     | Level      | Result       | %REC   | Limits | RPD  | Limit | Notes |  |
| Batch B292214 - SW-846 9045C |                               |           |           |            |              |        |        |      |       |       |  |
| LCS (B292214-BS1)            | Prepared & Analyzed: 10/11/21 |           |           |            |              |        |        |      |       |       |  |
| pH                           | 5.99                          |           | pH Units  | 6.00       |              | 99.9   | 90-110 |      |       |       |  |
| Batch B292228 - SW-846 9010C |                               |           |           |            |              |        |        |      |       |       |  |
| Blank (B292228-BLK1)         | Prepared & Analyzed: 10/12/21 |           |           |            |              |        |        |      |       |       |  |
| Cyanide                      | ND                            | 0.47      | mg/Kg wet |            |              |        |        |      |       |       |  |
| LCS (B292228-BS1)            |                               |           |           | Prepared & | Analyzed: 10 | /12/21 |        |      |       |       |  |
| Cyanide                      | 78                            | 2.5       | mg/Kg wet | 69.8       |              | 111    | 80-120 |      |       |       |  |
| LCS Dup (B292228-BSD1)       |                               |           |           | Prepared & | Analyzed: 10 | /12/21 |        |      |       |       |  |
| Cyanide                      | 80                            | 2.5       | mg/Kg wet | 70.0       |              | 114    | 80-120 | 2.72 | 20    |       |  |
| Reference (B292228-SRM1)     |                               |           |           | Prepared & | Analyzed: 10 | /12/21 |        |      |       |       |  |
| Cyanide                      | 18.2                          | 0.50      | mg/Kg wet | 18.6       |              | 97.9   | 0-200  |      |       |       |  |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS |  |
|-----|--|
|     |  |

| Lab Sample ID: B292279-BS1 |      |      | Date(s) Analyzed:  | 10/13/2021 | 10/13/2021 |      |
|----------------------------|------|------|--------------------|------------|------------|------|
| Instrument ID (1):         | ECD3 | _    | Instrument ID (2): | ECD3       |            |      |
| GC Column (1):             | ID:  | (mm) | GC Column (2):     |            | ID:        | (mm) |

| ANALYTE      | COL | RT    | RT WI | NDOW  | CONCENTRATION       | %RPD    |
|--------------|-----|-------|-------|-------|---------------------|---------|
| 7.1.0.12112  | 002 |       | FROM  | TO    | 0011021111111111111 | 70111 2 |
| Aroclor-1016 | 1   | 0.000 | 0.000 | 0.000 | 0.45                |         |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.42                | 6.9     |
| Aroclor-1260 | 1   | 0.000 | 0.000 | 0.000 | 0.40                |         |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.41                | 2.5     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS Dup |  |
|---------|--|

| ab Sample ID: B292279-BSD1 |     |      | Date(s) Analyzed:  | 10/13/2021 | 10/13/ | 2021 |
|----------------------------|-----|------|--------------------|------------|--------|------|
| Instrument ID (1): ECD3    |     | _    | Instrument ID (2): | ECD3       |        | _    |
| GC Column (1):             | ID: | (mm) | GC Column (2):     |            | ID:    | (mm) |

| ANALYTE      | COL | RT    | RT WI | NDOW  | CONCENTRATION   | %RPD    |
|--------------|-----|-------|-------|-------|-----------------|---------|
| 7.07.2112    | OOL | 111   | FROM  | TO    | OONOLIVITUUTION | 70111 D |
| Aroclor-1016 | 1   | 0.000 | 0.000 | 0.000 | 0.41            |         |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.38            | 7.6     |
| Aroclor-1260 | 1   | 0.000 | 0.000 | 0.000 | 0.37            |         |
|              | 2   | 0.000 | 0.000 | 0.000 | 0.36            | 2.7     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| Lab Sample ID:     | D: B292281-BS1 |      | Date(s) Analyzed:  | 10/13/2021 10/13/20 |     | /2021 |
|--------------------|----------------|------|--------------------|---------------------|-----|-------|
| Instrument ID (1): | ECD1           | _    | Instrument ID (2): | ECD1                |     | _     |
| GC Column (1):     | ID:            | (mm) | GC Column (2):     |                     | ID: | (mm)  |

| ANALYTE      | COL | RT    | RT WINDOW |       | CONCENTRATION   | %RPD    |
|--------------|-----|-------|-----------|-------|-----------------|---------|
| 7.17.2112    | OOL | 111   | FROM      | TO    | OONOLIVITUUTION | 70111 D |
| Aroclor-1016 | 1   | 0.000 | 0.000     | 0.000 | 0.16            |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.16            | 0.0     |
| Aroclor-1260 | 1   | 0.000 | 0.000     | 0.000 | 0.17            |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.16            | 6.1     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS | Dup |  |
|-----|-----|--|

| Lab Sample ID:     | Sample ID: B292281-BSD1 |      | Date(s) Analyzed:  | 10/13/2021 | 10/13/202 | 21   |
|--------------------|-------------------------|------|--------------------|------------|-----------|------|
| Instrument ID (1): | ECD1                    |      | Instrument ID (2): | ECD1       |           |      |
| GC Column (1):     | ID:                     | (mm) | GC Column (2):     |            | ID:       | (mm) |

| ANALYTE      | COL | RT    | RT WINDOW |       | CONCENTRATION | %RPD    |
|--------------|-----|-------|-----------|-------|---------------|---------|
| 7110/12112   | OOL | '\'   | FROM      | TO    | CONCENTIVITOR | /0111 5 |
| Aroclor-1016 | 1   | 0.000 | 0.000     | 0.000 | 0.16          |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.15          | 6.5     |
| Aroclor-1260 | 1   | 0.000 | 0.000     | 0.000 | 0.16          |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.15          | 6.5     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

| Lab Sample ID:     | Sample ID: B292281-MS1 |      | Date(s) Analyzed:  | 10/13/2021 | 10/13/2 | 2021 |
|--------------------|------------------------|------|--------------------|------------|---------|------|
| Instrument ID (1): | ECD1                   | -    | Instrument ID (2): | ECD1       |         | _    |
| GC Column (1):     | ID:                    | (mm) | GC Column (2):     |            | ID:     | (mm) |

| ANALYTE      | COL | RT    | RT WINDOW |       | CONCENTRATION  | %RPD    |
|--------------|-----|-------|-----------|-------|----------------|---------|
| 7.17.2112    | 002 | 111   | FROM      | TO    | CONCENTIVITION | 70111 D |
| Aroclor-1016 | 1   | 0.000 | 0.000     | 0.000 | 0.19           |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.18           | 5.4     |
| Aroclor-1260 | 1   | 0.000 | 0.000     | 0.000 | 0.18           |         |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.18           | 0.0     |



# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike Dup

| Lab Sample ID:     | B292281-MSD1 |      | Date(s) Analyzed:  | 10/13/2021 | 10/13/20 | 21   |
|--------------------|--------------|------|--------------------|------------|----------|------|
| Instrument ID (1): | ECD1         |      | Instrument ID (2): | ECD1       |          |      |
| GC Column (1):     | ID:          | (mm) | GC Column (2):     |            | ID:      | (mm) |

| ANALYTE      | COL | RT    | RT WINDOW |       | CONCENTRATION  | %RPD     |
|--------------|-----|-------|-----------|-------|----------------|----------|
| 7.1.0.12112  | 002 | 111   | FROM      | TO    | CONCENTIVITION | 70111 15 |
| Aroclor-1016 | 1   | 0.000 | 0.000     | 0.000 | 0.17           |          |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.17           | 0.0      |
| Aroclor-1260 | 1   | 0.000 | 0.000     | 0.000 | 0.17           |          |
|              | 2   | 0.000 | 0.000     | 0.000 | 0.16           | 6.1      |



## FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                                                                                 |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                                                                      |
| #    | Data exceeded client recommended or regulatory level                                                                                                                                                     |
| ND   | Not Detected                                                                                                                                                                                             |
| RL   | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                    |
| DL   | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                              |
| MCL  | Maximum Contaminant Level                                                                                                                                                                                |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                   |
|      | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                    |
| H-03 | Sample received after recommended holding time was exceeded.                                                                                                                                             |
| J    | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                      |
| L-04 | Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.             |
| V-04 | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                |
| V-05 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                           |
| V-06 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                          |
| V-20 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound. |
| V-34 | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                |
| V-36 | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.     |
|      |                                                                                                                                                                                                          |



### CERTIFICATIONS

| Analyte               | Certifications                                                                                                  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|--|
| SW-846 6010D in Soil  |                                                                                                                 |  |
| Aluminum              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Antimony              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Arsenic               | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Barium                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Beryllium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Cadmium               | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Calcium               | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Chromium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Cobalt                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Copper                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Iron                  | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Lead                  | CT,NH,NY,AIHA,ME,VA,NC                                                                                          |  |
| Magnesium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Manganese             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Nickel                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Potassium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Selenium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Silver                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Sodium                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Thallium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Vanadium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Zinc                  | CT,NH,NY,ME,VA,NC                                                                                               |  |
| SW-846 6010D in Water |                                                                                                                 |  |
| Aluminum              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Calcium               | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Iron                  | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Magnesium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Potassium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Sodium                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| SW-846 6020B in Water |                                                                                                                 |  |
| Antimony              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Arsenic               | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Barium                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Beryllium             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Cadmium               | CT,NH,NY,RI,ME,VA,NC                                                                                            |  |
| Chromium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Cobalt                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Copper                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Lead                  | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Manganese             | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Nickel                | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Selenium<br>Silver    | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Thallium              | CT,NH,NY,ME,VA,NC<br>CT,NH,NY,ME,VA,NC                                                                          |  |
| Vanadium              | CT,NH,NY,ME,VA,NC                                                                                               |  |
| Zinc                  | CT,NH,NY,ME,VA,NC                                                                                               |  |
|                       | المارية الماردة |  |



### CERTIFICATIONS

| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte               | Certifications           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 7470A in Water |                          |
| SW-466 7471B in Soil         CTNH,NY,NC,ME,VA           SW-466 8082A in Soil         CTNH,NY,NC,ME,VA,PA           Arcelor-1016 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1221 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1221 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1223 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1223 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1242 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1243 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1248 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1248 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1249 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1254 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1260 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1260 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1260 [C]         NH,NY,NC,ME,VA,PA           Arcelor-1260 [C]         NH,NY,NC,ME,VA,PA           Arcelor-1268 [C]         NH,NY,NC,ME,VA,PA           Arcelor-1268 [C]         NH,NY,NC,ME,VA,PA           Arcelor-1268 [C]         NH,NY,NC,ME,VA,PA           Arcelor-1268 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1261 [C]         CTNH,NY,NC,ME,VA,PA           Arcelor-1221 [C]         CTNH,NY,NC,ME,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mercury               | CT,NH,NY,NC,ME,VA        |
| Arcelor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW-846 7471B in Soil  |                          |
| Arcelor-1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mercury               | CT NH NY NC ME VA        |
| Aroclor-1016 CT.NI,NY,NC,ME,VA,PA Aroclor-1016 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1211 CT.NH,NY,NC,ME,VA,PA Aroclor-1221 CC] CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1242 CT.NH,NY,NC,ME,VA,PA Aroclor-1248 CT.NH,NY,NC,ME,VA,PA Aroclor-1248 CT.NH,NY,NC,ME,VA,PA Aroclor-1248 CT.NH,NY,NC,ME,VA,PA Aroclor-1248 CT.NH,NY,NC,ME,VA,PA Aroclor-1254 CT.NH,NY,NC,ME,VA,PA Aroclor-1254 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 CT.NH,NY,NC,ME,VA,PA Aroclor-1268 CT.NH,NY,NC,ME,VA,PA Aroclor-1268 CT.NH,NY,NC,ME,VA,PA Aroclor-1268 CT.NH,NY,NC,ME,VA,PA Aroclor-1268 CT.NH,NY,NC,ME,VA,PA Aroclor-1261 CT.NH,NY,NC,ME,VA,PA Aroclor-1261 CT.NH,NY,NC,ME,VA,PA Aroclor-1262 CT.NH,NY,NC,ME,VA,PA Aroclor-1263 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1262 CT.NH,NY,NC,ME,VA,PA Aroclor-1263 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1265 CT.NH,NY,NC,ME,VA,PA Aroclor-1264 CT.NH,NY,NC,ME,VA,PA Aroclor-1265 CT.NH,NY,NC,ME,VA,PA Aroclor-1266 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA                 | •                     |                          |
| Aroclor-1016 [2C] CT.NILNY.NC.ME.VA.PA Aroclor-1221 [2C] CT.NILNY.NC.ME.VA.PA Aroclor-1232 CT.NILNY.NC.ME.VA.PA Aroclor-1232 CT.NILNY.NC.ME.VA.PA Aroclor-1232 CT.NILNY.NC.ME.VA.PA Aroclor-1232 CT.NILNY.NC.ME.VA.PA Aroclor-1242 CT.NILNY.NC.ME.VA.PA Aroclor-1242 CT.NILNY.NC.ME.VA.PA Aroclor-1248 CT.NILNY.NC.ME.VA.PA Aroclor-1248 CT.NILNY.NC.ME.VA.PA Aroclor-1248 CT.NILNY.NC.ME.VA.PA Aroclor-1254 CT. CT.NILNY.NC.ME.VA.PA Aroclor-1254 CT. CT.NILNY.NC.ME.VA.PA Aroclor-1254 CT. CT.NILNY.NC.ME.VA.PA Aroclor-1260 CT.NILNY.NC.ME.VA.PA Aroclor-1260 CT.NILNY.NC.ME.VA.PA Aroclor-1262 NILNY.NC.ME.VA.PA Aroclor-1262 NILNY.NC.ME.VA.PA Aroclor-1262 NILNY.NC.ME.VA.PA Aroclor-1268 NILNY.NC.ME.VA.PA Aroclor-1268 NILNY.NC.ME.VA.PA Aroclor-1268 NILNY.NC.ME.VA.PA Aroclor-1268 NILNY.NC.ME.VA.PA Aroclor-1269 CT.NILNY.NC.ME.VA.PA Aroclor-1261 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1262 CT.NILNY.NC.ME.VA.PA Aroclor-1264 CT.NILNY.NC.ME.VA.PA Aroclor-1260 CT.NILNY.NC.ME.VA.PA Aroclor-1260 CT.NILNY.NC.ME.VA.PA Aroclor-1260 CT.NILNY.NC.ME.VA.PA                                                                                                                                                                                 | Arcolor 1016          | CT NILI NIV NIC ME VA DA |
| Aroclor-1221   CT,NH,NY,NC,ME,VA,PA Aroclor-1232   CT,NH,NY,NC,ME,VA,PA Aroclor-1232   CT,NH,NY,NC,ME,VA,PA Aroclor-1242   CT,NH,NY,NC,ME,VA,PA Aroclor-1242   CT,NH,NY,NC,ME,VA,PA Aroclor-1248   CT,NH,NY,NC,ME,VA,PA Aroclor-1248   CT,NH,NY,NC,ME,VA,PA Aroclor-1248   CT,NH,NY,NC,ME,VA,PA Aroclor-1254   CT,NH,NY,NC,ME,VA,PA Aroclor-1254   CT,NH,NY,NC,ME,VA,PA Aroclor-1260   CT,NH,NY,NC,ME,VA,PA Aroclor-1260   CT,NH,NY,NC,ME,VA,PA Aroclor-1260   CT,NH,NY,NC,ME,VA,PA Aroclor-1260   CT,NH,NY,NC,ME,VA,PA Aroclor-1262   NH,NY,NC,ME,VA,PA Aroclor-1262   NH,NY,NC,ME,VA,PA Aroclor-1268   CT,NH,NY,NC,ME,VA,PA Aroclor-1268   CT,NH,NY,NC,ME,VA,PA Aroclor-1268   CT,NH,NY,NC,ME,VA,PA Aroclor-1268   CT,NH,NY,NC,ME,VA,PA Aroclor-1210   CT,NH,NY,NC,ME,VA,PA Aroclor-1211   CT,NH,NY,NC,ME,VA,PA Aroclor-1212   CT,NH,NY,NC,ME,VA,PA Aroclor-1242   CT,NH,NY,NC,ME,VA,PA Aroclor-1248   CT,NH,NY,NC,ME,VA,PA Aroclor-1240   CT,NH,NY,NC,ME,VA,PA Aroclor-1241   CT,NH,NY,NC,ME,VA,PA Aroclor-1242   CT,NH,NY,NC,ME,VA,PA Aroclor-1244   CT,NH,NY,NC,ME,VA,PA Aroclor-1245   CT,NH,NY,NC,ME,VA,PA Aroclor-1246   CT,NH,NY,NC,ME,VA,PA Aroclor-1247   CT,NH,NY,NC,ME,VA,PA Aroclor-1248   CT,NH,NY,NC,ME,VA,PA Aroclor-1249   CT,NH,NY,NC,ME,VA,PA Aroclor-1240   CT,NH,NY,NC,ME,VA,PA Aroclor-1240   CT,NH,NY,NC,ME,VA,PA Aroclor-1240   CT,NH,NY,NC,ME,VA,PA Aroclor-1240   CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                          |                       |                          |
| Arcelor-1221 [2C] CT.NILNY.NC.ME,VA.PA Arcelor-1232 (CT.NILNY.NC.ME,VA.PA Arcelor-1232 [2C] CT.NILNY.NC.ME,VA.PA Arcelor-1242 (CT.NILNY.NC.ME,VA.PA Arcelor-1242 (CT.NILNY.NC.ME,VA.PA Arcelor-1248 (CT.NILNY.NC.ME,VA.PA Arcelor-1248 (CT.NILNY.NC.ME,VA.PA Arcelor-1254 (CT.NILNY.NC.ME,VA.PA Arcelor-1254 (CT.NILNY.NC.ME,VA.PA Arcelor-1254 (CT.NILNY.NC.ME,VA.PA Arcelor-1254 (CT.NILNY.NC.ME,VA.PA Arcelor-1260 (CT.NILNY.NC.ME,VA.PA Arcelor-1260 (CT.NILNY.NC.ME,VA.PA Arcelor-1262 (CT.NILNY.NC.ME,VA.PA Arcelor-1263 (CT.NILNY.NC.ME,VA.PA Arcelor-1264 (CT.NILNY.NC.ME,VA.PA Arcelor-1265 (CT.NILNY.NC.ME,VA.PA Arcelor-1266 (CT.NILNY.NC.ME,VA.PA Arcelor-1272 (CT.NILNY.NC.ME,VA.PA Arcelor-1221 (CT.NILNY.NC.ME,VA.PA Arcelor-1221 (CT.NILNY.NC.ME,VA.PA Arcelor-1221 (CT.NILNY.NC.ME,VA.PA Arcelor-1222 (CT.NILNY.NC.ME,VA.PA Arcelor-1224 (CT.NILNY.NC.ME,VA.PA Arcelor-1226 (CT.NILNY.NC.ME,VA.PA Arcelor-1226 (CT.NILNY.NC.ME,VA.PA                                                                                                                                                                                         |                       |                          |
| Arcolor-1232 CT,NILNYNC,ME,VA,PA Arcolor-1242 CC CT,NILNYNC,ME,VA,PA Arcolor-1242 CC CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1249 CC CT,NILNYNC,ME,VA,PA Arcolor-1240 CT,NILNYNC,ME,VA,PA Arcolor-1260 CT,NILNYNC,ME,VA,PA Arcolor-1260 CT,NILNYNC,ME,VA,PA Arcolor-1260 CT,NILNYNC,ME,VA,PA Arcolor-1260 NILNYNC,ME,VA,PA Arcolor-1260 NILNYNC,ME,VA,PA Arcolor-1262 NILNYNC,ME,VA,PA Arcolor-1268 NILNYNC,ME,VA,PA Arcolor-1268 NILNYNC,ME,VA,PA Arcolor-1268 NILNYNC,ME,VA,PA Arcolor-1268 CT,NILNYNC,ME,VA,PA Arcolor-1268 CT,NILNYNC,ME,VA,PA Arcolor-1269 CT,NILNYNC,ME,VA,PA Arcolor-1210 CT,NILNYNC,ME,VA,PA Arcolor-1210 CT,NILNYNC,ME,VA,PA Arcolor-1221 CT,NILNYNC,ME,VA,PA Arcolor-1221 CT,NILNYNC,ME,VA,PA Arcolor-1221 CT,NILNYNC,ME,VA,PA Arcolor-1222 CT,NILNYNC,ME,VA,PA Arcolor-1224 CT,NILNYNC,ME,VA,PA Arcolor-1224 CT,NILNYNC,ME,VA,PA Arcolor-1224 CT,NILNYNC,ME,VA,PA Arcolor-1224 CT,NILNYNC,ME,VA,PA Arcolor-1224 CT,NILNYNC,ME,VA,PA Arcolor-1248 CT,NILNYNC,ME,VA,PA Arcolor-1249 CT,NILNYNC,ME,VA,PA Arcolor-1240 CT,NILNYNC,ME,VA,PA Arcolor-1 |                       |                          |
| Aroclor-1232 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1242 CT.NH,NY,NC.ME,VA,PA Aroclor-1248 CT.NH,NY,NC.ME,VA,PA Aroclor-1248 CT.NH,NY,NC.ME,VA,PA Aroclor-1248 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1248 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1254 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1254 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1260 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1260 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1262 [2C] NH,NY,NC.ME,VA,PA Aroclor-1268 NH,NY,NC.ME,VA,PA Aroclor-1268 NH,NY,NC.ME,VA,PA Aroclor-1268 NH,NY,NC.ME,VA,PA Aroclor-1268 NH,NY,NC.ME,VA,PA Aroclor-1268 NH,NY,NC.ME,VA,PA Aroclor-1269 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1248 [2C] CT.NH,NY,NC.ME,VA,PA Aroclor-1254 CT.NH,NY,NC.ME,VA,PA Aroclor-1255 CT.NH,NY,NC.ME,VA,PA Aroclor-1256 CT.NH,NY,NC.ME,VA,PA                                                                                                                                                                                                                                                                                        |                       |                          |
| Aroclor-1242   CT.NH.NY.NC.ME,VA.PA Aroclor-1242   ZC   CT.NH.NY.NC.ME,VA.PA Aroclor-1248   CT.NH.NY.NC.ME,VA.PA Aroclor-1248   CT.NH.NY.NC.ME,VA.PA Aroclor-1248   ZC   CT.NH.NY.NC.ME,VA.PA Aroclor-1254   CT.NH.NY.NC.ME,VA.PA Aroclor-1254   CC   CT.NH.NY.NC.ME,VA.PA Aroclor-1260   CT.NH.NY.NC.ME,VA.PA Aroclor-1260   CT.NH.NY.NC.ME,VA.PA Aroclor-1260   CT.NH.NY.NC.ME,VA.PA Aroclor-1262   ZC   NH.NY.NC.ME,VA.PA Aroclor-1262   ZC   NH.NY.NC.ME,VA.PA Aroclor-1268   NH.NY.NC.ME,VA.PA Aroclor-1268   ZC   NH.NY.NC.ME,VA.PA Aroclor-1268   ZC   NH.NY.NC.ME,VA.PA Aroclor-1206   CT.NH.NY.NC.ME,VA.PA Aroclor-1216   CT.NH.NY.NC.ME,VA.PA Aroclor-1216   CT.NH.NY.NC.ME,VA.PA Aroclor-1221   CT.NH.NY.NC.ME,VA.PA Aroclor-1221   CT.NH.NY.NC.ME,VA.PA Aroclor-1232   CT.NH.NY.NC.ME,VA.PA Aroclor-1232   CT.NH.NY.NC.ME,VA.PA Aroclor-1242   CT.NH.NY.NC.ME,VA.PA Aroclor-1242   CT.NH.NY.NC.ME,VA.PA Aroclor-1242   CT.NH.NY.NC.ME,VA.PA Aroclor-1244   CT.NH.NY.NC.ME,VA.PA Aroclor-1248   CT.NH.NY.NC.ME,VA.PA Aroclor-1248   CT.NH.NY.NC.ME,VA.PA Aroclor-1254   CT.NH.NY.NC.ME,VA.PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                          |
| Aroclor-1242 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1260 CT.NH,NY,NC,ME,VA,PA Aroclor-1260 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1262 [2C] NH,NY,NC,ME,VA,PA Aroclor-1262 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-12168 [2C] CT.NH,NY,NC,ME,VA,PA Aroclor-1210 CT.NH,NY,NC,ME,VA,PA Aroclor-1231 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1232 CT.NH,NY,NC,ME,VA,PA Aroclor-1242 CT.NH,NY,NC,ME,VA,PA Aroclor-1242 CT.NH,NY,NC,ME,VA,PA Aroclor-1242 CT.NH,NY,NC,ME,VA,PA Aroclor-1248 [CC] CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CCT.NH,NY,NC,ME,VA,PA Aroclor-1248 CCT.NH,NY,NC,ME,VA,PA Aroclor-1248 CCT.NH,NY,NC,ME,VA,PA Aroclor-1248 CCT.NH,NY,NC,ME,VA,PA Aroclor-1254 CT.NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                          |
| Aroelor-1248         CT,NH,NY,NC,ME,VA,PA           Aroelor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1254         CT,NH,NY,NC,ME,VA,PA           Aroelor-1260 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1260 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1262 [2C]         NH,NY,NC,ME,VA,PA           Aroelor-1268 [2C]         NH,NY,NC,ME,VA,PA           Aroelor-1268 [2C]         NH,NY,NC,ME,VA,PA           Aroelor-1268 [2C]         NH,NY,NC,ME,VA,PA           Aroelor-1268 [2C]         NH,NY,NC,ME,VA,PA           Aroelor-1269 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1261 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1016 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1221 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroelor-1254 [2C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                          |
| Aroclor-1248 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1254 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1262 (2C) NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 (2C) NH,NY,NC,ME,VA,PA Aroclor-1268 (2C) NH,NY,NC,ME,VA,PA Aroclor-1268 (2C) NH,NY,NC,ME,VA,PA Aroclor-1269 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1016 CT,NH,NY,NC,ME,VA,PA Aroclor-1016 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1221 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1249 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1249 (2C) CT,NH,NY,NC,ME,VA,PA Aroclor-1249 (2C) CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |
| Aroclor-1254 (CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (CT,NH,NY,NC,ME,VA,PA Aroclor-1260 (CT,NH,NY,NC,ME,VA,PA Aroclor-1262 (CT,NH,NY,NC,ME,VA,PA Aroclor-1262 (CT,NH,NY,NC,ME,VA,PA Aroclor-1268 (CT,NH,NY,NC,ME,VA,PA Aroclor-1268 (CT,NH,NY,NC,ME,VA,PA Aroclor-1268 (CT,NH,NY,NC,ME,VA,PA Aroclor-1016 (CT,NH,NY,NC,ME,VA,PA Aroclor-1016 (CT,NH,NY,NC,ME,VA,PA Aroclor-1221 (CT,NH,NY,NC,ME,VA,PA Aroclor-1221 (CT,NH,NY,NC,ME,VA,PA Aroclor-1222 (CT,NH,NY,NC,ME,VA,PA Aroclor-1232 (CT,NH,NY,NC,ME,VA,PA Aroclor-1232 (CT,NH,NY,NC,ME,VA,PA Aroclor-1242 (CT,NH,NY,NC,ME,VA,PA Aroclor-1242 (CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (CT,NH,NY,NC,ME,VA,PA Aroclor-1248 (CT,NH,NY,NC,ME,VA,PA Aroclor-1254 (CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                          |
| Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1260 CT,NH,NY,NC,ME,VA,PA Aroclor-1260 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1262 NH,NY,NC,ME,VA,PA Aroclor-1262 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA Aroclor-1069 CT,NH,NY,NC,ME,VA,PA Aroclor-1016 CT,NH,NY,NC,ME,VA,PA Aroclor-1016 CT,NH,NY,NC,ME,VA,PA Aroclor-1221 CT,NH,NY,NC,ME,VA,PA Aroclor-1221 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                          |
| Aroclor-1260         CT,NH,NY,NC,ME,VA,PA           Aroclor-1260 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1262 [2C]         NH,NY,NC,ME,VA,PA           Aroclor-1268 [2C]         NH,NY,NC,ME,VA,PA           Aroclor-1268 [2C]         NH,NY,NC,ME,VA,PA           SW-846 80824 in Water         SW-846 80824 in Water           Aroclor-1016 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1021 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1222 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aroclor-1254 [2C]     |                          |
| Arcelor-1262 NH,NY,NC,ME,VA,PA Arcelor-1268 NH,NY,NC,ME,VA,PA Arcelor-1268 (2C) NH,NY,NC,ME,VA,PA  SW-846 8082A in Water  Arcelor-1016 CT,NH,NY,NC,ME,VA,PA  Arcelor-1016 (2C) CT,NH,NY,NC,ME,VA,PA  Arcelor-1221 CT,NH,NY,NC,ME,VA,PA  Arcelor-1221 CT,NH,NY,NC,ME,VA,PA  Arcelor-1221 CT,NH,NY,NC,ME,VA,PA  Arcelor-1232 CT,NH,NY,NC,ME,VA,PA  Arcelor-1232 CT,NH,NY,NC,ME,VA,PA  Arcelor-1242 CT,NH,NY,NC,ME,VA,PA  Arcelor-1242 CT,NH,NY,NC,ME,VA,PA  Arcelor-1242 CT,NH,NY,NC,ME,VA,PA  Arcelor-1248 CT,NH,NY,NC,ME,VA,PA  Arcelor-1254 CT,NH,NY,NC,ME,VA,PA  Arcelor-1256 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                          |
| Aroclor-1262 [2C] NH,NY,NC,ME,VA,PA Aroclor-1268 NH,NY,NC,ME,VA,PA  Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA  SW-846 8082.4 in Water  Aroclor-1016 [2C] CT,NH,NY,NC,ME,VA,PA  Aroclor-1021 CT,NH,NY,NC,ME,VA,PA  Aroclor-1221 CT,NH,NY,NC,ME,VA,PA  Aroclor-1221 CT,NH,NY,NC,ME,VA,PA  Aroclor-1222 CT,NH,NY,NC,ME,VA,PA  Aroclor-1232 CT,NH,NY,NC,ME,VA,PA  Aroclor-1232 CT,NH,NY,NC,ME,VA,PA  Aroclor-1242 CT,NH,NY,NC,ME,VA,PA  Aroclor-1242 CT,NH,NY,NC,ME,VA,PA  Aroclor-1242 CT,NH,NY,NC,ME,VA,PA  Aroclor-1248 CT,NH,NY,NC,ME,VA,PA  Aroclor-1248 CT,NH,NY,NC,ME,VA,PA  Aroclor-1254 CT,NH,NY,NC,ME,VA,PA  Aroclor-1256 CT,NH,NY,NC,ME,VA,PA  Aroclor-1256 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroclor-1260 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1268 NH,NY,NC,ME,VA,PA Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA  SW-846 8082A in Water  Aroclor-1016 CT,NH,NY,NC,ME,VA,PA Aroclor-1016 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1221 CT,NH,NY,NC,ME,VA,PA Aroclor-1221 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 CT,NH,NY,NC,ME,VA,PA Aroclor-1232 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1242 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1262          | NH,NY,NC,ME,VA,PA        |
| Aroclor-1268 [2C]         NH,NY,NC,ME,VA,PA           SW-846 8082A in Water           Aroclor-1016         CT,NH,NY,NC,ME,VA,PA           Aroclor-1016 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1250         CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aroclor-1262 [2C]     | NH,NY,NC,ME,VA,PA        |
| SW-846 8082A in Water           Aroclor-1016         CT,NH,NY,NC,ME,VA,PA           Aroclor-1016 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1260         CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroclor-1268          | NH,NY,NC,ME,VA,PA        |
| Aroclor-1016         CT,NH,NY,NC,ME,VA,PA           Aroclor-1016 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221         CT,NH,NY,NC,ME,VA,PA           Aroclor-1221 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232         CT,NH,NY,NC,ME,VA,PA           Aroclor-1232 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242         CT,NH,NY,NC,ME,VA,PA           Aroclor-1242 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248         CT,NH,NY,NC,ME,VA,PA           Aroclor-1248 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1254 [2C]         CT,NH,NY,NC,ME,VA,PA           Aroclor-1260         CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aroclor-1268 [2C]     | NH,NY,NC,ME,VA,PA        |
| Aroclor-1016 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1221       CT,NH,NY,NC,ME,VA,PA         Aroclor-1221 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SW-846 8082A in Water |                          |
| Aroclor-1221       CT,NH,NY,NC,ME,VA,PA         Aroclor-1221 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aroclor-1016          | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1221 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aroclor-1016 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1232       CT,NH,NY,NC,ME,VA,PA         Aroclor-1232 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aroclor-1221          | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1232 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aroclor-1221 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1242       CT,NH,NY,NC,ME,VA,PA         Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aroclor-1232          | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1242 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248       CT,NH,NY,NC,ME,VA,PA         Aroclor-1248 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254       CT,NH,NY,NC,ME,VA,PA         Aroclor-1254 [2C]       CT,NH,NY,NC,ME,VA,PA         Aroclor-1260       CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aroclor-1232 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1248 CT,NH,NY,NC,ME,VA,PA Aroclor-1248 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1260 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aroclor-1242          | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1248 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1254 CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1260 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1242 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1254 CT,NH,NY,NC,ME,VA,PA Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1260 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroclor-1248          | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1254 [2C] CT,NH,NY,NC,ME,VA,PA Aroclor-1260 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aroclor-1248 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1260 CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1254          | CT,NH,NY,NC,ME,VA,PA     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroclor-1254 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1260 [2C] CT,NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aroclor-1260          | CT,NH,NY,NC,ME,VA,PA     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroclor-1260 [2C]     | CT,NH,NY,NC,ME,VA,PA     |
| Aroclor-1262 NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | NH,NY,NC,ME,VA,PA        |
| Aroclor-1262 [2C] NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | NH,NY,NC,ME,VA,PA        |
| Aroclor-1268 NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                          |
| Aroclor-1268 [2C] NH,NY,NC,ME,VA,PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | NH,NY,NC,ME,VA,PA        |
| SW-846 8260D in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8260D in Soil  |                          |
| Acetone CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acetone               | CT,NH,NY,ME,VA           |
| Acrylonitrile CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acrylonitrile         | CT,NH,NY,ME,VA           |
| Benzene CT,NH,NY,ME,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzene               | CT,NH,NY,ME,VA           |



### CERTIFICATIONS

| Analyte                                        | Certifications |
|------------------------------------------------|----------------|
| SW-846 8260D in Soil                           |                |
| Bromobenzene                                   | NH,NY,ME,VA    |
| Bromochloromethane                             | NH,NY,ME,VA    |
| Bromodichloromethane                           | CT,NH,NY,ME,VA |
| Bromoform                                      | CT,NH,NY,ME,VA |
| Bromomethane                                   | CT,NH,NY,ME,VA |
| 2-Butanone (MEK)                               | CT,NH,NY,ME,VA |
| tert-Butyl Alcohol (TBA)                       | NY,ME          |
| n-Butylbenzene                                 | CT,NH,NY,ME,VA |
| sec-Butylbenzene                               | CT,NH,NY,ME,VA |
| tert-Butylbenzene                              | CT,NH,NY,ME,VA |
| Carbon Disulfide                               | CT,NH,NY,ME,VA |
| Carbon Tetrachloride                           | CT,NH,NY,ME,VA |
| Chlorobenzene                                  | CT,NH,NY,ME,VA |
| Chlorodibromomethane                           | CT,NH,NY,ME,VA |
| Chloroethane                                   | CT,NH,NY,ME,VA |
| Chloroform                                     | CT,NH,NY,ME,VA |
| Chloromethane                                  | CT,NH,NY,ME,VA |
| 2-Chlorotoluene                                | CT,NH,NY,ME,VA |
| 4-Chlorotoluene                                | CT,NH,NY,ME,VA |
| 1,2-Dibromo-3-chloropropane (DBCP)             | NY,ME          |
| 1,2-Dibromoethane (EDB)                        | NH,NY          |
| Dibromomethane                                 | NH,NY,ME,VA    |
| 1,2-Dichlorobenzene                            | CT,NH,NY,ME,VA |
| 1,3-Dichlorobenzene                            | CT,NH,NY,ME,VA |
| 1,4-Dichlorobenzene                            | CT,NH,NY,ME,VA |
| trans-1,4-Dichloro-2-butene                    | NY,ME          |
| Dichlorodifluoromethane (Freon 12)             | NH,NY,ME,VA    |
| 1,1-Dichloroethane                             | CT,NH,NY,ME,VA |
| 1,2-Dichloroethane                             | CT,NH,NY,ME,VA |
| 1,1-Dichloroethylene                           | CT,NH,NY,ME,VA |
| cis-1,2-Dichloroethylene                       | CT,NH,NY,ME,VA |
| trans-1,2-Dichloroethylene                     | CT,NH,NY,ME,VA |
| 1,2-Dichloropropane                            | CT,NH,NY,ME,VA |
| 1,3-Dichloropropane                            | NH,NY,ME,VA    |
| 2,2-Dichloropropane                            | NH,NY,ME,VA    |
| 1,1-Dichloropropene                            | NH,NY,ME,VA    |
| cis-1,3-Dichloropropene                        | CT,NH,NY,ME,VA |
| trans-1,3-Dichloropropene                      | CT,NH,NY,ME,VA |
| Diethyl Ether                                  | ME             |
| 1,4-Dioxane                                    | NY,ME          |
| Ethylbenzene                                   | CT,NH,NY,ME,VA |
| Hexachlorobutadiene                            | NH,NY,ME,VA    |
| 2-Hexanone (MBK)                               | CT,NH,NY,ME,VA |
| Isopropyltohyana (n. Cymana)                   | CT,NH,NY,ME,VA |
| p-Isopropyltoluene (p-Cymene)                  | NH,NY<br>NVME  |
| Methyl Acetate  Methyl text Putyl Ether (MEDE) | NY,ME          |
| Methyl tert-Butyl Ether (MTBE)                 | NY,ME,VA       |



### CERTIFICATIONS

| Certified Analyses included in this Report |                   |
|--------------------------------------------|-------------------|
| Analyte                                    | Certifications    |
| SW-846 8260D in Soil                       |                   |
| Methyl Cyclohexane                         | NY                |
| Methylene Chloride                         | CT,NH,NY,ME,VA    |
| 4-Methyl-2-pentanone (MIBK)                | CT,NH,NY,ME,VA    |
| Naphthalene                                | NH,NY,ME,VA       |
| n-Propylbenzene                            | NH,NY,ME          |
| Styrene                                    | CT,NH,NY,ME,VA    |
| 1,1,1,2-Tetrachloroethane                  | CT,NH,NY,ME,VA    |
| 1,1,2,2-Tetrachloroethane                  | CT,NH,NY,ME,VA    |
| Tetrachloroethylene                        | CT,NH,NY,ME,VA    |
| Toluene                                    | CT,NH,NY,ME,VA    |
| 1,2,3-Trichlorobenzene                     | NY,ME             |
| 1,2,4-Trichlorobenzene                     | NH,NY,ME,VA       |
| 1,3,5-Trichlorobenzene                     | ME                |
| 1,1,1-Trichloroethane                      | CT,NH,NY,ME,VA    |
| 1,1,2-Trichloroethane                      | CT,NH,NY,ME,VA    |
| Trichloroethylene                          | CT,NH,NY,ME,VA    |
| Trichlorofluoromethane (Freon 11)          | CT,NH,NY,ME,VA    |
| 1,2,3-Trichloropropane                     | NH,NY,ME,VA       |
| 1,2,4-Trimethylbenzene                     | CT,NH,NY,ME,VA    |
| 1,3,5-Trimethylbenzene                     | CT,NH,NY,ME,VA    |
| Vinyl Chloride                             | CT,NH,NY,ME,VA    |
| m+p Xylene                                 | CT,NH,NY,ME,VA    |
| o-Xylene                                   | CT,NH,NY,ME,VA    |
| SW-846 8270E in Soil                       |                   |
| Acenaphthene                               | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                             | CT,NY,NH,ME,NC,VA |
| Acetophenone                               | NY,NH,ME,NC,VA    |
| Aniline                                    | NY,NH,ME,NC,VA    |
| Anthracene                                 | CT,NY,NH,ME,NC,VA |
| Benzidine                                  | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene                         | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                             | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene                       | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene                       | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene                       | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                               | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane                 | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether                    | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroisopropyl)ether                | CT,NY,NH,ME,NC,VA |
| Bis(2-Ethylhexyl)phthalate                 | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether                   | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate                       | CT,NY,NH,ME,NC,VA |
| Carbazole                                  | NC                |
| 4-Chloroaniline                            | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol                    | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene                        | CT,NY,NH,NC,VA    |



### CERTIFICATIONS

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Soil             |                   |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |
| Hexachloroethane                 | CT,NY,NH,ME,NC,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NH,ME,NC,VA |
| Isophorone                       | CT,NY,NH,ME,NC,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NH,ME,NC,VA |
| 2-Methylphenol                   | CT,NY,NH,ME,NC,VA |
| 3/4-Methylphenol                 | CT,NY,NH,ME,NC,VA |
| Naphthalene                      | CT,NY,NH,ME,NC,VA |
| 2-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| 3-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| 4-Nitroaniline                   | CT,NY,NH,ME,NC,VA |
| Nitrobenzene                     | CT,NY,NH,ME,NC,VA |
| 2-Nitrophenol                    | CT,NY,NH,ME,NC,VA |
| 4-Nitrophenol                    | CT,NY,NH,ME,NC,VA |
| N-Nitrosodimethylamine           | CT,NY,NH,ME,NC,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NH,ME,NC,VA |
| Pentachloronitrobenzene          | NY,NC             |
| Pentachlorophenol                | CT,NY,NH,ME,NC,VA |
| Phenanthrene                     | CT,NY,NH,ME,NC,VA |
| Phenol                           | CT,NY,NH,ME,NC,VA |
| Pyrene                           | CT,NY,NH,ME,NC,VA |
| Pyridine                         | CT,NY,NH,ME,NC,VA |
|                                  |                   |



### CERTIFICATIONS

| Analyte                     | Certifications    |
|-----------------------------|-------------------|
| SW-846 8270E in Soil        |                   |
| 1,2,4,5-Tetrachlorobenzene  | NY,NC             |
| 1,2,4-Trichlorobenzene      | CT,NY,NH,ME,NC,VA |
| 2,4,5-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2,4,6-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2-Fluorophenol              | NC                |
| SW-846 8270E in Water       |                   |
| Acenaphthene                | CT,NY,NC,ME,NH,VA |
| Acenaphthylene              | CT,NY,NC,ME,NH,VA |
| Acetophenone                | NY,NC             |
| Aniline                     | CT,NY,NC,ME,VA    |
| Anthracene                  | CT,NY,NC,ME,NH,VA |
| Benzidine                   | CT,NY,NC,ME,NH,VA |
| Benzo(a)anthracene          | CT,NY,NC,ME,NH,VA |
| Benzo(a)pyrene              | CT,NY,NC,ME,NH,VA |
| Benzo(b)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzo(g,h,i)perylene        | CT,NY,NC,ME,NH,VA |
| Benzo(k)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzoic Acid                | NY,NC,ME,NH,VA    |
| Bis(2-chloroethoxy)methane  | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroethyl)ether     | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroisopropyl)ether | CT,NY,NC,ME,NH,VA |
| Bis(2-Ethylhexyl)phthalate  | CT,NY,NC,ME,NH,VA |
| 4-Bromophenylphenylether    | CT,NY,NC,ME,NH,VA |
| Butylbenzylphthalate        | CT,NY,NC,ME,NH,VA |
| Carbazole                   | NC                |
| 4-Chloroaniline             | CT,NY,NC,ME,NH,VA |
| 4-Chloro-3-methylphenol     | CT,NY,NC,ME,NH,VA |
| 2-Chloronaphthalene         | CT,NY,NC,ME,NH,VA |
| 2-Chlorophenol              | CT,NY,NC,ME,NH,VA |
| 4-Chlorophenylphenylether   | CT,NY,NC,ME,NH,VA |
| Chrysene                    | CT,NY,NC,ME,NH,VA |
| Dibenz(a,h)anthracene       | CT,NY,NC,ME,NH,VA |
| Dibenzofuran                | CT,NY,NC,ME,NH,VA |
| Di-n-butylphthalate         | CT,NY,NC,ME,NH,VA |
| 1,2-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |
| 1,3-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |
| 1,4-Dichlorobenzene         | CT,NY,NC,ME,NH,VA |
| 3,3-Dichlorobenzidine       | CT,NY,NC,ME,NH,VA |
| 2,4-Dichlorophenol          | CT,NY,NC,ME,NH,VA |
| Diethylphthalate            | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol          | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate           | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol  | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol           | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene          | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene          | CT,NY,NC,ME,NH,VA |



### CERTIFICATIONS

### Certified Analyses included in this Report

Cyanide

| Analyte                          | Certifications    |  |
|----------------------------------|-------------------|--|
| W-846 8270E in Water             |                   |  |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |  |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |  |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |  |
| Fluorene                         | NY,NC,ME,NH,VA    |  |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |  |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |  |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |  |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |  |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |  |
| Isophorone                       | CT,NY,NC,ME,NH,VA |  |
| 1-Methylnaphthalene              | NC                |  |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |  |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |  |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |  |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |  |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |  |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |  |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |  |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |  |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |  |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |  |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |  |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |  |
| Pentachloronitrobenzene          | NC                |  |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |  |
| Phenanthrene                     | CT,NY,NC,ME,NH,VA |  |
| Phenol                           | CT,NY,NC,ME,NH,VA |  |
| Pyrene                           | CT,NY,NC,ME,NH,VA |  |
| Pyridine                         | CT,NY,NC,ME,NH,VA |  |
| 1,2,4,5-Tetrachlorobenzene       | NY,NC             |  |
| 1,2,4-Trichlorobenzene           | CT,NY,NC,ME,NH,VA |  |
| 2,4,5-Trichlorophenol            | CT,NY,NC,ME,NH,VA |  |
| 2,4,6-Trichlorophenol            | CT,NY,NC,ME,NH,VA |  |
| 2-Fluorophenol                   | NC                |  |
| W-846 9014 in Soil               |                   |  |

NY,CT,NC,ME,NH,VA



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

2110024

Glassware in freezer? Y / N Prepackaged Cooler? Y / N esponsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers Total Number Of "Pace Analytical is not Preservation Codes: X = Sodium Hydroxide Courier Use Only A = Air
S = Soil
SL = Studge
SOL = Solid
O = Other (please B = Sodium Bisulfate Page 1 of 2 O = Other (please define) 5 = Sulfuric Acid <sup>2</sup> Preservation Code N ≈ Nitric Acid BACTERIA M = Methanol PLASTIC GLASS ENCORE VIALS. T = Sodium Thiosulfate HCL H Eghio Blank Egulp Blank possible sample concentration within the Conc CT RCP Required

H. High; M. Medium; L. Low; C. Clean; U. Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram
AIHA-LAP,LLC Hout not be held accountable. ANALYSIS REQUESTED 10-821 125 Note: Pace did not provide Trip Blank containers, no TB included in this shipment I T MB C yanide V OCS Doc # 381 Rev 5\_07/13/2021 Hδ TAL Metals 7 2 T ゾ × 57015 × MA MCP Required MCP Certification Form Required MA State DW Required X 5878 XX 39 Spruce Street East Longmeadow, MA 01028 ENCORE X BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL GLASS PLASTIC School MWRA Sostertag ( ) ramball .com | NON SOXHLET 4 0 7 N N  $\mathbf{C}$ SOXHLET CHAIN OF CUSTODY RECORD VIALS  $\Diamond \wedge$ 0 0 0 0 10-Day F Conc Code ل U Ú J http://www.pacelabs.com Municipality Brownfield Ramboll EDD Matrix Code # QISMd 3-Day S 3 4-Day 3 5  $\sim$ 21 J CLP Like Data Pkg Required: COMP/GRAB Other Virginia DER S P ७ D Date/Time: Client Comments: 10.8.21 (2) 1235 HOLD: 58.226-4-5 Ø Ġ 9 O 9 PFAS 10-Day (std) Ending Date/Time 1 HRP-58201-0-1-211008 10-8-21/12 0855 0651 (0) 12-5-01 1017-4 (D) 1502 10-7-24 (01323 бочеглтен€ imail To: 10-5-21 1723 8451 CA2-5-01 S111012-E-01 10.7.2 1/1 (340 10.5.11 ax To#: ormat; Federal Other: 7-Day 1-Day -Day Š Project Entity Beginning Date/Time THE PERSON NAMED IN Address: 4350 N Fairtax Orive, Ste 300, Artington VA Access COC's and Support Requests 1400 N Royal St. Alexandia VA D-8-21170A HRP-58226-4-5-211005 HRP-58221-4-5-211005 12-8-21 (526 HLP-58226-0-1-211005 NEF-56202 - - 201607 W82132 7 HRP. SB 202-35-34 1007 4 HP-5B202872 11007 HRT-58221-0-11-211005 Clent Sample ID / Description HRP-EBOI-24007 Phone: 413-525-2332 270 S WEP-EBOZ-211003 invoice Recipient: 505 ter tagaramboll. com Fax: 413-525-6405 Date/Time: Date/Time: Date/Time; Date/Time HRP PRGS 5 CS 125 Survivas Sampled By: Sarah 0 Storte Project Manager: Grey Grose Pace Analytical \* 7 Company Names (Lenne) Phone: 413 5162383 (signature) (signature) g (signature Pace Quote Name/Numb**e**r Received by: (signature) 727 Work Order# Project Location: Project Number: tal all the elinquished by Lab Comments:

7650176

http://www.pacelabs.com

Prepackaged Cooler? Y / N analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Glassware in freezer? Y / N responsible for missing samples Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? from prepacked coolers 1 Matrix Codes: GW = Ground Water WW = Waste Water Total Number Of: "Pace Analytical is not Preservation Codes: DW = Drinking Water X = Sodium Hydroxide A = Air S = Soil SL = Sludge SOL = Solid O = Other (please B = Sodium Bisulfate Courier Use Only Page 2 of 2 0 = Other (please define) S # Sulfuric Acid Preservation Code N = Nitric Acid M = Methanol BACTERIA PLASTIC GLASS ENCORE ZWZ T = Sodium Thiosulfate define) H # HCL CT RCP Required

H. High; M. Medium; L. Low; C. Clean; U. RCP Certification Form Required

Linknown possible sample concentration within the Conc Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram

AIHA-LAP,LLC containers, no TB induded in this shipment, not be held accountable. Code column above: ANALYSIS REQUESTED Doc # 381 Rev 5\_07/13/2021 H B E 5 20A X Vater Matals И Z × MCP Certification Form Required MA MCP Required Y WRTA MA State DW Required ¥ 240C3 × ¥ 39 Spruce Street East Longmeadow, MA 01028 Matrix Conc. Code VIALS GLASS PLASTIC BACTERIA ENCORE Field Filtered Field Filtered PCB ONLY Lab to Filter Lab to Fitter School MWRA MBTA CLP Like Data Pkg Required: []
Email To: 505 4cr 4ag @ Namball.com NON SOXHLET ч ч SOXHLET CHAIN OF CUSTODY RECORD Note: Pace did not provide Trip Blank 3 0 0 10-Day X PC V J Municipality Brownfield POF & EXCEL RAMPAL EDD # GISMd V 3-Day 4-Day Ś COMP/GRAB OTTER VINGTANT DER Ġ Ġ G PFAS 10-Day (std) Government Beginning Ending Date/Time Date/Time 10.8.21 @ 1105 0011 0 12.8.01 Fax To #: HRP-DUPO1-0-1-211008 10-8-21 (2) 08-55 Federal City format: Other: 2-Day 7-Day -Day Client Comments: Project Entity Address: 4350 N Fairfax Brive Ste 300, Arlington VA 7210-3 Access COC's and Support Requests HRP-58201-24-26-211008 10.8.c1 (D) 12.35 Date/Time: 73 HRP-58201-10-12.211008 10-8-21 1521 Project Location: (460 N . Rays | St. Alexandria, VA 10-8-21 1700 Date/Time: 70-8-34/8-3 Client Sample 10 / Description Phone: 413-525-2332 HRP PAGS SCA Fax: 413-525-6405 Date/Time: Invoice Recipient: 505 tertag (a comboff, com Date/Time: 2 mond Greg Grove Sampled By: Sarah Ostrov fra Durana Pace Analytical 9 \_ かん elinquished by: (signature) Pace Quote Name/Number; by: (signature Anh & artistics (signatur Received by (signature) Work Order# Project Manager: Project Number: ab Comments: Refinduished by telinquish



#### TRACK ANOTHER SHIPMENT

774925774754





ADD NICKNAME

## Delivered Saturday, October 9, 2021 at 9:58 am

THIS IS 1 OF 2 PIECES



#### **DELIVERED**

Signature release on file GET STATUS UPDATES

**OBTAIN PROOF OF DELIVERY** 

FROM TO

Mechanicsville, VA US EAST LONGMEADOW, MA US

### 2 Piece Shipment

| TRACKING ID           | STATUS    | SHIP<br>Date | DEL(VERY<br>DATE | HANDLING PIECE<br>UNITS | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>State |
|-----------------------|-----------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 774925774754 (master) | Delivered | 10/8/21      | 10/9/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 774925775280          | Delivered | 10/8/21      | 10/9/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

## Travel History

TIME ZONE
Local Scan Time

## Saturday, October 9, 2021

| 9:58 AM | EAST LONGMEADOW, MA | Delivered Package delivered to recipient address - release authorized |
|---------|---------------------|-----------------------------------------------------------------------|
| 8:55 AM | WINDSOR LOCKS, CT   | On FedEx vehicle for delivery                                         |
| 8:10 AM | WINDSOR LOCKS, CT   | At local FedEx facility                                               |

# I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Statement will be brought to the attention of the Client - State True or False  Client 2 6 7 11                          |               |                                                                                                                                                                                    |             |                                                                                                      |                                                                                                                                                                          |              |                                                                                             |                                                                                        |      |
|--------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|
| Client<br>Receiv                                                                                                         |               | nap                                                                                                                                                                                |             | Date                                                                                                 | 10(9)                                                                                                                                                                    | 121          | Time                                                                                        | 708                                                                                    |      |
| How were th                                                                                                              | <del>-</del>  | In Cooler                                                                                                                                                                          |             | No Cooler                                                                                            |                                                                                                                                                                          | On Ice       |                                                                                             | No Ice                                                                                 |      |
| receiv                                                                                                                   | •             | Direct from Samp                                                                                                                                                                   | ling        | . 110 000.0.                                                                                         |                                                                                                                                                                          | Ambient      |                                                                                             | - Melted Ice                                                                           |      |
|                                                                                                                          |               | Direct from Samp                                                                                                                                                                   | •           |                                                                                                      |                                                                                                                                                                          |              | (1 = 1                                                                                      | <i>t</i> ~                                                                             |      |
| Were samp                                                                                                                | oles within   |                                                                                                                                                                                    | By Gun#     |                                                                                                      | P                                                                                                                                                                        | ctual Tem    | b - 01.3                                                                                    | 5.8                                                                                    |      |
| Temperatu                                                                                                                | re? 2-6°C     | T                                                                                                                                                                                  | By Blank #  |                                                                                                      |                                                                                                                                                                          | ctual Tem    |                                                                                             |                                                                                        |      |
| Was                                                                                                                      | Custody Se    | eal Intact?                                                                                                                                                                        |             | Wei                                                                                                  | re Samples                                                                                                                                                               | Tampered     | with?                                                                                       |                                                                                        |      |
| Was                                                                                                                      | COC Relin     | quished?                                                                                                                                                                           |             | Does                                                                                                 | Chain Agre                                                                                                                                                               | e With Sai   | mples?                                                                                      | <u> </u>                                                                               |      |
| Are the                                                                                                                  | re broken/l   | eaking/loose caps                                                                                                                                                                  | on any sam  | ples?                                                                                                | <u> </u>                                                                                                                                                                 |              |                                                                                             |                                                                                        |      |
| Is COC in in                                                                                                             | k/ Legible?   | 7                                                                                                                                                                                  | _           | Were sam                                                                                             | iples receive                                                                                                                                                            | ed within he | olding time?                                                                                |                                                                                        |      |
| Did COC ir                                                                                                               | nclude all    | Client                                                                                                                                                                             | <u> </u>    | Analysis _                                                                                           |                                                                                                                                                                          | •            | er Name                                                                                     |                                                                                        |      |
| pertinent Inf                                                                                                            | formation?    | Project                                                                                                                                                                            |             | ID's                                                                                                 | <u> </u>                                                                                                                                                                 | Collection   | Dates/Times                                                                                 | 5                                                                                      |      |
| Are Sample                                                                                                               | labels filled | out and legible?                                                                                                                                                                   | _           | _                                                                                                    |                                                                                                                                                                          |              |                                                                                             |                                                                                        |      |
| Are there La                                                                                                             | b to Filters? | )                                                                                                                                                                                  | F           |                                                                                                      | Who was                                                                                                                                                                  | notified?    |                                                                                             |                                                                                        |      |
| Are there Ru                                                                                                             | shes?         |                                                                                                                                                                                    | E           | •                                                                                                    | Who was                                                                                                                                                                  | notified?    |                                                                                             |                                                                                        |      |
| Are there Sh                                                                                                             | ort Holds?    |                                                                                                                                                                                    | <del></del> | •                                                                                                    | Who was                                                                                                                                                                  | notified?    |                                                                                             |                                                                                        |      |
| Is there enou                                                                                                            | ugh Volume    | ?                                                                                                                                                                                  |             | •                                                                                                    |                                                                                                                                                                          |              |                                                                                             |                                                                                        |      |
|                                                                                                                          | _             | ere applicable?                                                                                                                                                                    | F           | •<br>!                                                                                               | MS/MSD?                                                                                                                                                                  | +            |                                                                                             |                                                                                        |      |
| Proper Medi                                                                                                              | •             |                                                                                                                                                                                    | 一丁          | •                                                                                                    | ls splitting s                                                                                                                                                           | amples rec   | uired?                                                                                      | f                                                                                      |      |
|                                                                                                                          |               |                                                                                                                                                                                    | F           | •                                                                                                    | On COC?                                                                                                                                                                  | _            |                                                                                             |                                                                                        |      |
| Were trip blanks received?  F On COC? —  Do all samples have the proper pH?  Acid PNLL Base                              |               |                                                                                                                                                                                    |             |                                                                                                      |                                                                                                                                                                          |              |                                                                                             |                                                                                        |      |
| 20 all camp.                                                                                                             | oo naro me    | proper pri:                                                                                                                                                                        |             | , 1010                                                                                               | <u>/</u>                                                                                                                                                                 |              | Dase                                                                                        |                                                                                        |      |
| Vials                                                                                                                    | #             | Containers:                                                                                                                                                                        | #           |                                                                                                      |                                                                                                                                                                          | Ħ            |                                                                                             |                                                                                        | #    |
| <b>Vials</b><br>Unp-                                                                                                     | #             | Containers:<br>1 Liter Amb.                                                                                                                                                        | #<br>J      | 1 Liter I                                                                                            | Plastic                                                                                                                                                                  | #            | 16 oz                                                                                       | z Amb.                                                                                 | #    |
| Vials<br>Unp-<br>HCL-                                                                                                    | #             | Containers:<br>1 Liter Amb.<br>500 mL Amb.                                                                                                                                         |             | 1 Liter I<br>500 mL                                                                                  | Plastic<br>Plastic                                                                                                                                                       |              | 16 oz<br>8oz/An                                                                             | ŋb/Clear                                                                               | #    |
| Vials<br>Unp-<br>HCL-<br>Meoh-                                                                                           | 3             | Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.                                                                                                                                   |             | 1 Liter I<br>500 mL<br>250 mL                                                                        | Plastic Plastic Plastic                                                                                                                                                  | #            | 16 oz<br>8oz An<br>4oz An                                                                   | ŋb/Clear<br>nb/Clear                                                                   | 18   |
| Vials Unp- HCL- Meoh- Bisulfate-                                                                                         | #             | Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint                                                                                                                        |             | 1 Liter I<br>500 mL<br>250 mL<br>Col./Ba                                                             | Plastic Plastic Plastic Acteria                                                                                                                                          | 1            | 16 oz<br>8oz An<br>4oz An<br>2oz An                                                         | ŋb/Clear<br>nb/Clear<br>nb/Clear                                                       | 18   |
| Vials Unp- HCL- Meoh- Bisulfate- DI-                                                                                     | 3             | Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass                                                                                                            |             | 1 Liter I<br>500 mL<br>250 mL<br>Col./Ba<br>Other F                                                  | Plastic Plastic Plastic acteria                                                                                                                                          |              | 16 oz<br>8oz An<br>4oz An<br>2oz An                                                         | ŋb/Clear<br>nb/Clear                                                                   | 18   |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-                                                                        | 3             | Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit                                                                                                    |             | 1 Liter I<br>500 mL<br>250 mL<br>Col./Ba<br>Other F                                                  | Plastic Plastic Plastic ecteria Plastic Elastic Elastic Elastic                                                                                                          |              | 16 oz<br>8oz An<br>4oz An<br>2oz An                                                         | ŋb/Clear<br>nb/Clear<br>nb/Clear                                                       | 18   |
| Vials Unp- HCL- Meoh- Bisulfate- DI-                                                                                     | 3             | Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass                                                                                                            |             | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic                                                      | Plastic Plastic Plastic Acteria Plastic Bag Dock                                                                                                                         |              | 16 oz<br>8oz An<br>4oz An<br>2oz An                                                         | ŋb/Clear<br>nb/Clear<br>nb/Clear                                                       | *    |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-                                                              | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate                                                                                       | 4           | 1 Liter I<br>500 mL<br>250 mL<br>Col./Ba<br>Other F                                                  | Plastic Plastic Plastic Acteria Plastic Bag Dock                                                                                                                         |              | 16 oz<br>8oz An<br>4oz An<br>2oz An                                                         | ŋb/Clear<br>nb/Clear<br>nb/Clear                                                       |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials                                                        | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers:                                                                          |             | 1 Liter I<br>500 mL<br>250 mL<br>Col./Ba<br>Other F<br>Plastic<br>Ziplo                              | Plastic Plastic Plastic Plastic acteria Plastic Bag ock  Media                                                                                                           | #            | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:                                        | ŋb/Clear<br>nb/Clear<br>nb/Clear<br>core                                               | # 18 |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp-                                                  | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb.                                                             | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziple Unused I                                       | Plastic Plastic Plastic acteria Plastic Bag book Media                                                                                                                   |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:                                        | mb/Clear<br>nb/Clear<br>mb/Clear<br>ncore                                              |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL-                                             | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb.                                                 | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziple Unused I 1 Liter I 500 mL                      | Plastic Plastic Plastic Plastic acteria Plastic Bag bck Media Plastic Plastic                                                                                            |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:                                        | mb/Clear<br>nb/Clear<br>nb/Clear<br>nb/Clear<br>ncore<br>z Amb.<br>nb/Clear            |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh-                                       | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.                                     | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziple Unused I 1 Liter I 500 mL 250 mL               | Plastic Plastic Plastic Plastic Reteria Plastic Redia Plastic Plastic Plastic Plastic Plastic Plastic                                                                    |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:                                        | mb/Clear<br>mb/Clear<br>mb/Clear<br>core<br>z Amb.<br>mb/Clear<br>mb/Clear             |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate-                            | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria                       | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash         | Plastic Plastic Plastic Plastic Plastic Bag Dock Media Plastic Plastic Plastic Plastic Plastic                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An           | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI-                        | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziple Unused I 1 Liter I 500 mL 250 mL Flash Other I | Plastic Plastic Plastic Plastic Bag Dock  Media  Plastic |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>mb/Clear<br>mb/Clear<br>core<br>z Amb.<br>mb/Clear<br>mb/Clear             |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-           | 3 3           | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash Other F | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An           | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziple Unused I 1 Liter I 500 mL 250 mL Flash Other I | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-           | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash Other F | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash Other F | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash Other F | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |
| Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- | 3             | Containers:  1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | 4           | 1 Liter I 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused I 1 Liter I 500 mL 250 mL Flash Other F | Plastic Plastic Plastic Plastic Bag Dck  Media  Plastic Plastic Bag Dck  Media                                                                                           |              | 16 oz<br>8oz An<br>4oz An<br>2oz An<br>En<br>Frozen:<br>16 oz<br>8oz An<br>4oz An<br>2oz An | mb/Clear<br>nb/Clear<br>nb/Clear<br>core<br>z Amb.<br>mb/Clear<br>nb/Clear<br>mb/Clear |      |



October 27, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21J0887

Enclosed are results of analyses for samples as received by the laboratory on October 15, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

## **Table of Contents**

| Sample Summary                          | 4  |
|-----------------------------------------|----|
| Case Narrative                          | 7  |
| Sample Results                          | 11 |
| 21J0887-01                              | 11 |
| 21J0887-02                              | 14 |
| 21J0887-03                              | 19 |
| 21J0887-04                              | 24 |
| 21J0887-05                              | 29 |
| 21J0887-06                              | 33 |
| 21J0887-07                              | 37 |
| 21J0887-08                              | 39 |
| 21J0887-09                              | 42 |
| 21J0887-10                              | 45 |
| 21J0887-11                              | 50 |
| 21J0887-12                              | 55 |
| 21J0887-13                              | 60 |
| 21J0887-14                              | 65 |
| Sample Preparation Information          | 68 |
| QC Data                                 | 71 |
| Volatile Organic Compounds by GC/MS     | 71 |
| B292647                                 | 71 |
| B292672                                 | 75 |
| B293177                                 | 80 |
| Semivolatile Organic Compounds by GC/MS | 86 |
| B292783                                 | 86 |

## Table of Contents (continued)

| Petroleum Hydrocarbons Analyses                                      | 91  |
|----------------------------------------------------------------------|-----|
| B292550                                                              | 91  |
| B292666                                                              | 91  |
| B292690                                                              | 91  |
| B292856                                                              | 91  |
| B293162                                                              | 92  |
| Metals Analyses (Total)                                              | 93  |
| B292559                                                              | 93  |
| B292571                                                              | 95  |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 96  |
| B292587                                                              | 96  |
| B292627                                                              | 96  |
| B292770                                                              | 96  |
| Flag/Qualifier Summary                                               | 97  |
| Certifications                                                       | 98  |
| Chain of Custody/Sample Receipt                                      | 106 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 10/27/2021

PROJECT NUMBER:

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0887

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-TB01-211011        | 21J0887-01 | Water  |                    | -            |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8260D |         |
| HRP-SB205-0-1-211011   | 21J0887-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8270E |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB205-13-15-211011 | 21J0887-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8270E |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-DUP02-13-15-211011 | 21J0887-04 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8015C |         |
|                        |            |        |                    | SW-846 8270E |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
| HRP-SB203-0-1-211012   | 21J0887-05 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB203-11-13-211012 | 21J0887-06 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB206-0-1-211012   | 21J0887-07 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 6010D |         |
|                        |            |        |                    | SW-846 7471B |         |
|                        |            |        |                    | SW-846 9014  |         |
|                        |            |        |                    | SW-846 9045C |         |
|                        |            |        |                    |              |         |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 10/27/2021

PROJECT NUMBER:

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0887

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| SW-846 6010D SW-846 7471B SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9010D SW-846 9010D SW-846 7471B SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9010D SW-846 9010D SW-846 9014 SW-846 9010D SW-846 7471B SW-846 9014 SW-846 9010D SW-846 7471B SW-846 9014 SW-846 9014 SW-846 9010D SW-846 7471B SW-846 9014 SW-846 9010 SW-846 7471B SW-846 9014 SW-846 9010 SW-846 7471B SW-846 9010 SW-846 7471B SW-846 9014 SW-846 9015 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|--------|--------------------|--------------|---------|
| SW-846 7471B   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9015     | HRP-SB206-5-7-211012   | 21J0887-08 | Soil   |                    | SM 2540G     |         |
| ### SP 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |            |        |                    | SW-846 6010D |         |
| 田R-B200-15-17-211012 2110887-09 2110887-09 2110887-09 2110887-09 2110887-09 2110887-09 2110887-09 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-10 2110887-     |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9045C   SW-846 9045C   SW-846 9045C   SW-846 901D   SW-846 901D   SW-846 901D   SW-846 9015C   SW-846 9015C   SW-846 9015C   SW-846 9045C   SW-846 9045C   SW-846 9015C   SW-846 9014   SW-846 9015C   SW-846 9014   SW-846 9015C   SW-846 9014   SW-846 9015C   SW-846 901   |                        |            |        |                    | SW-846 8015C |         |
| HRP-SB207-16-18-211013  HRP-DUP03-6-8-211013  ARE SB206-15-17-211012  BRP-SB207-16-18-211013  ARE SB206-15-17-211012  BRP-SB207-16-18-211013  ARE SB206-15-17-211012  BRP-SB207-16-18-211013  BRP-SB20 |                        |            |        |                    | SW-846 9014  |         |
| SW-846 6010D SW-846 7471B SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9014 SW-846 9015C SW-846 9010D SW-846 7471B SW-846 9015C SW-946 9 |                        |            |        |                    | SW-846 9045C |         |
| SW-846 7471B   SW-846 9014   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 8015C   SW-846 8015C   SW-846 8015C   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9015C   SW-846 8015C   SW-846 8015C   SW-846 9014   SW-846 9015C   SW-946 9015C   SW-94   | HR-SB206-15-17-211012  | 21J0887-09 | Soil   |                    | SM 2540G     |         |
| SW-846 8015C   SW-846 9014C   SW-846 9010D   SW-846 8015C   SW-846 8015C   SW-846 9014C   SW-8   |                        |            |        |                    | SW-846 6010D |         |
| SW-846 9014   SW-846 9015   SW-846 9016   SW-846 9016   SW-846 9010   SW-846 9010   SW-846 9010   SW-846 9010   SW-846 9015   SW-846 9015   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9016      |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9045C   SM 2540G   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 8015C   SW-846 9045C   SW-846 9045C   SW-846 9045C   SW-846 9045C   SW-846 6010D   SW-846 9045C   SW-846 9045C   SW-846 9045C   SW-846 9015C   SW-846 9   |                        |            |        |                    | SW-846 8015C |         |
| HRP-SB207-0-1-211013 21J0887-10 Soil SM 2540G SW-846 6010D SW-846 67471B SW-846 8015C SW-846 9045C SW-846 9045C SW-846 9045C SW-846 9045C SW-846 7471B SW-846 9045C SW-846 7471B SW-846 9014 SW-846 9015C SW-846 9014 SW-846 9015C SW-846 901 |                        |            |        |                    | SW-846 9014  |         |
| SW-846 6010D SW-846 7471B SW-846 8015C SW-846 9014 SW-846 9045C SW-846 9045C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8016C SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9014 SW-846 9015C SW-846 8260D SW-846 9015C SW-846 8260D SW-846 9015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 9015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |            |        |                    | SW-846 9045C |         |
| SW-846 7471B   SW-846 8015C   SW-846 8016C   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9015C   SW-846 9015C   SW-846 7471B   SW-846 7471B   SW-846 7471B   SW-846 8015C   SW-846 8015C   SW-846 8015C   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9015C   SW-846 8015C   SW-846 9015C   SW-846 6010D   SW-846 7471B   SW-846 6010D   SW-846 7471B   SW-846 6015C   SW-846 6015C   SW-846 8015C    | HRP-SB207-0-1-211013   | 21J0887-10 | Soil   |                    | SM 2540G     |         |
| SW-846 8015C SW-846 9014 SW-846 9045C SM-846 9045C SM-846 9045C SM-846 6010D SW-846 6010D SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9014 SW-846 9015C SW-846 9015C SW-846 9015C SW-846 9016 SW-846 9016 SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9016 SW-846 9016 SW-846 9016 SW-846 9010D SW-846 7471B SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |            |        |                    | SW-846 6010D |         |
| SW-846 8260D SW-846 9014 SW-846 9014 SW-846 9045C HRP-SB207-6-8-211013 21J0887-11 Soil SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8015C SW-846 9014 SW-846 9014 SW-846 9010 SW-846 9014 SW-846 9010 SW-846 9015 SW-846 9015 SW-846 9010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9014   SW-846 9045   SW-846 9045   SW-846 6010   SW-846 6010   SW-846 7471   SW-846 8015   SW-846 9045   SW-846 8015   SW-846 9045   SW-846 9010   SW-846 9010   SW-846 9010   SW-846 9014   SW-846 9015   SW-846 8015      |                        |            |        |                    | SW-846 8015C |         |
| SW-846 9045C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |        |                    | SW-846 8260D |         |
| HRP-SB207-6-8-211013 410887-11 50il 50il 50il 50il 50il 50il 50il 50il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |            |        |                    | SW-846 9014  |         |
| SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C HRP-DUP03-6-8-211013 21J0887-12 Soil SW-846 6010D SW-846 7471B SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8015C SW-846 805C SW-846 9045C SW-846 9045C SW-846 9014 SW-846 9015C SW-846 9015C SW-846 9015C SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |            |        |                    | SW-846 9045C |         |
| SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C SW-846 9045C SW-846 6010D SW-846 7471B SW-846 7471B SW-846 9015C SW-846 7471B SW-846 9015C SW-846 9015C SW-846 9016 SW-846 9014 SW-846 9010 SW-846 9010 SW-846 9010 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9015C SW-846 8260D SW-846 9015C SW-846 8260D SW-846 9014 SW-846 9014 SW-846 9015C SW-846 8015C SW-846 8015C SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HRP-SB207-6-8-211013   | 21J0887-11 | Soil   |                    | SM 2540G     |         |
| SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C  HRP-DUP03-6-8-211013  21J0887-12  Soil  SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 805C SW-846 805C SW-846 8015C SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9014 SW-846 9015C SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |            |        |                    | SW-846 6010D |         |
| SW-846 8260D SW-846 9014 SW-846 9045C  HRP-DUP03-6-8-211013 21J0887-12 Soil SW-846 6010D SW-846 7471B SW-846 8015C SW-846 800D SW-846 9014 SW-846 9045C SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9015C SW-846 9015C SW-846 8010D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9014 SW-846 9045C  HRP-DUP03-6-8-211013 21J0887-12 Soil SW-846 6010D SW-846 7471B SW-846 8015C SW-846 805C SW-846 9014 SW-846 9045C  SW-846 9014 SW-846 9014 SW-846 9015C SW-846 9015C SW-846 9010D SW-846 6010D SW-846 6010D SW-846 7471B SW-846 6010D SW-846 7471B SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |            |        |                    | SW-846 8015C |         |
| SW-846 9045C  HRP-DUP03-6-8-211013  21J0887-12  Soil  SW-846 6010D  SW-846 7471B  SW-846 8015C  SW-846 8260D  SW-846 9045C  GRP-SB207-16-18-211013  21J0887-13  Soil  Soil  SW-846 6010D  SW-846 9014  SW-846 6010D  SW-846 6010D  SW-846 6010D  SW-846 7471B  SW-846 6010D  SW-846 7471B  SW-846 8015C  SW-846 8015C  SW-846 8015C  SW-846 8015C  SW-846 8260D  SW-846 8260D  SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |            |        |                    | SW-846 8260D |         |
| HRP-DUP03-6-8-211013 21J0887-12 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C  GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 6010D SW-846 7471B SW-846 6010D SW-846 7471B SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |        |                    | SW-846 9014  |         |
| SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8260D SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |            |        |                    | SW-846 9045C |         |
| SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C GRP-SB207-16-18-211013 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 7471B SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HRP-DUP03-6-8-211013   | 21J0887-12 | Soil   |                    | SM 2540G     |         |
| SW-846 8015C SW-846 8260D SW-846 9014 SW-846 9045C GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |            |        |                    | SW-846 6010D |         |
| SW-846 8260D SW-846 9014 SW-846 9045C  GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 8260D SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9014 SW-846 9045C  GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |            |        |                    | SW-846 8015C |         |
| SW-846 9045C  GRP-SB207-16-18-211013  21J0887-13  Soil  SM 2540G  SW-846 6010D  SW-846 7471B  SW-846 8015C  SW-846 8260D  SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |            |        |                    | SW-846 8260D |         |
| GRP-SB207-16-18-211013 21J0887-13 Soil SM 2540G SW-846 6010D SW-846 7471B SW-846 8015C SW-846 8260D SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |        |                    | SW-846 9014  |         |
| SW-846 6010D<br>SW-846 7471B<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |        |                    | SW-846 9045C |         |
| SW-846 7471B<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GRP-SB207-16-18-211013 | 21J0887-13 | Soil   |                    | SM 2540G     |         |
| SW-846 8015C<br>SW-846 8260D<br>SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |        |                    | SW-846 6010D |         |
| SW-846 8260D<br>SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |        |                    | SW-846 7471B |         |
| SW-846 9014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |            |        |                    | SW-846 8015C |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |        |                    | SW-846 8260D |         |
| SW-846 9045C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |            |        |                    | SW-846 9014  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |        |                    | SW-846 9045C |         |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 10/27/2021

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0887

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

 FIELD SAMPLE #
 LAB ID:
 MATRIX
 SAMPLE DESCRIPTION
 TEST
 SUB LAB

 HRP-TB02-211013
 21J0887-14
 Water
 SW-846 8015C
 SW-846 8260D



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 10/27/21- Samples -10, -11 and- 14 IDs revised



#### SW-846 6010D

#### **Qualifications:**

#### MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

#### Analyte & Samples(s) Qualified:

#### Antimony

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### Selenium

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### MS-11

Matrix spike recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

#### Calcium

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### Manganese

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.

#### Analyte & Samples(s) Qualified:

#### Aluminum

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### Magnesium

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### Potassium

21J0887-02[HRP-SB205-0-1-211011], B292559-MS1

#### SW-846 8260D

#### Qualifications:

## L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

#### 1,2,3-Trichlorobenzene

21J0887-14[HRP-TB02-211013], B293177-BLK1, B293177-BS1, B293177-BSD1

## V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

#### 1,1,2-Trichloro-1,2,2-trifluoroethan

21J0887-01[HRP-TB01-211011], B292647-BLK1, B292647-BS1, B292647-BSD1, S064398-CCV1

#### 1,2,3-Trichlorobenzene

21J0887-01[HRP-TB01-211011], 21J0887-14[HRP-TB02-211013], B292647-BLK1, B292647-BS1, B292647-BSD1, B293177-BLK1, B293177-BS1, B293177-BSD1, S064398-CCV1, S064638-CCV1

#### 1.2.4-Trichlorobenzene

21J0887-01[HRP-TB01-211011], 21J0887-14[HRP-TB02-211013], B292647-BLK1, B292647-BS1, B292647-BSD1, B293177-BLK1, B293177-BSD1, B29317-BSD1, B29317-BSD S064398-CCV1, S064638-CCV1

#### Acrylonitrile

21J0887-01[HRP-TB01-211011], B292647-BLK1, B292647-BS1, B292647-BSD1, S064398-CCV1

#### Dichlorodifluoromethane (Freon 12

21J0887-10[HRP-SB207-0-1-211013], 21J0887-11[HRP-SB207-6-8-211013], 21J0887-12[HRP-DUP03-6-8-211013], 21J0887-13[GRP-SB207-16-18-211013], B292672-BLK1, B292672-BS1, B292672-BSD1, S064373-CCV1

#### Naphthalene

21J0887-01[HRP-TB01-211011], 21J0887-14[HRP-TB02-211013], B292647-BLK1, B292647-BS1, B292647-BSD1, B293177-BLK1, B293177-BS1, B293177-BSD1, S064398-CCV1, S064638-CCV1



#### V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

#### **Bromomethane**

B292672-BS1, B292672-BSD1, S064373-CCV1

#### Chloromethane

B293177-BS1, B293177-BSD1, S064638-CCV1

#### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

#### Analyte & Samples(s) Qualified:

21J0887-10[HRP-SB207-0-1-211013], 21J0887-11[HRP-SB207-6-8-211013], 21J0887-12[HRP-DUP03-6-8-211013], 21J0887-13[GRP-SB207-16-18-211013], 21J0887-10[HRP-SB207-0-1-211013], 21B292672-BLK1, B292672-BS1, B292672-BSD1, S064373-CCV1

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

#### Analyte & Samples(s) Qualified:

#### 2-Hexanone (MBK)

B292672-BS1, B292672-BSD1, S064373-CCV1

#### Acetone

B292672-BS1, B292672-BSD1, S064373-CCV1

#### SW-846 8270E

#### Qualifications:

#### R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

## compound. Analyte & Samples(s) Qualified:

#### N-Nitrosodimethylamine

21J0887-02[HRP-SB205-0-1-211011], 21J0887-03[HRP-SB205-13-15-211011], 21J0887-04[HRP-DUP02-13-15-211011], 21J0887-05[HRP-SB203-0-1-211012], 21J0887-06[HRP-SB203-11-13-211012], B292783-BLK1, B292783-BS1, B292783-BSD1

21J0887-02[HRP-SB205-0-1-211011], 21J0887-03[HRP-SB205-13-15-211011], 21J0887-04[HRP-DUP02-13-15-211011], 21J0887-05[HRP-SB203-0-1-211012], 21J0887-06[HRP-SB203-11-13-211012], B292783-BLK1, B292783-BS1, B292783-BSD1

#### V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

#### Analyte & Samples(s) Qualified:

#### 2,4-Dinitrophenol

21J0887-02[HRP-SB205-0-1-211011], 21J0887-03[HRP-SB205-13-15-211011], 21J0887-04[HRP-DUP02-13-15-211011], 21J0887-05[HRP-SB203-0-1-211012], 21J0887-05[HRP-SB203-0-1-211012],21J0887-06[HRP-SB203-11-13-211012], B292783-BLK1, B292783-BS1, B292783-BSD1, S064523-CCV1

21J0887-02[HRP-SB205-0-1-211011], 21J0887-03[HRP-SB205-13-15-211011], 21J0887-04[HRP-DUP02-13-15-211011], 21J0887-05[HRP-SB203-0-1-211012], 21J0887-06[HRP-SB203-11-13-211012], B292783-BLK1, B292783-BS1, B292783-BSD1, S064523-CCV1

#### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

#### 4,6-Dinitro-2-methylphenol

21J0887-02[HRP-SB205-0-1-211011], 21J0887-03[HRP-SB205-13-15-211011], 21J0887-04[HRP-DUP02-13-15-211011], 21J0887-05[HRP-SB203-0-1-211012], 21J0887-05[HRP-SB203-0-1-211012],21J0887-06[HRP-SB203-11-13-211012], B292783-BLK1, B292783-BS1, B292783-BSD1, S064523-CCV1

#### SW-846 9045C

#### Qualifications:

#### H-03

Sample received after recommended holding time was exceeded.

#### Analyte & Samples(s) Qualified:

#### pН

21J0887 - 02[HRP - SB205 - 0 - 1 - 211011], 21J0887 - 03[HRP - SB205 - 1 - 1 - 1011], 21J0887 - 04[HRP - DUP02 - 1 - 1 - 1 - 1 - 1011], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP - SB206 - 0 - 1 - 211012], 21J0887 - 07[HRP21J0887-12[HRP-DUP03-6-8-211013], 21J0887-13[GRP-SB207-16-18-211013]



#### SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard.

Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kaitlyn A. Feliciano Project Manager



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB01-211011** Sampled: 10/11/2021 13:00

Sample ID: 21J0887-01
Sample Matrix: Water

### Volatile Organic Compounds by GC/MS

| Analyte                            | Results  | RL   | DL    | Units        | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|----------|------|-------|--------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND       | 50   | 2.4   | μg/L         | 1        | rag/Quar  | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Acrylonitrile                      | ND       | 5.0  | 0.69  | μg/L<br>μg/L | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.05  | μg/L<br>μg/L | 1        | V-03      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Benzene                            | ND       | 1.0  | 0.13  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Bromobenzene                       | ND<br>ND | 1.0  | 0.13  |              | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Bromochloromethane                 | ND<br>ND | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Bromodichloromethane               | ND<br>ND | 0.50 | 0.14  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Bromoform                          | ND       | 1.0  | 0.29  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Bromomethane                       | ND       | 2.0  | 1.1   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| n-Butylbenzene                     | ND       | 1.0  | 0.14  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090 | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Carbon Disulfide                   | ND       | 5.0  | 1.5   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Chlorobenzene                      | ND       | 1.0  | 0.080 | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Chlorodibromomethane               | ND       | 0.50 | 0.16  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Chloroethane                       | ND       | 2.0  | 0.37  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Chloroform                         | ND       | 2.0  | 0.19  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Chloromethane                      | ND       | 2.0  | 0.38  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090 | μg/L<br>μg/L | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Dibromomethane                     | ND       | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8   | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.18  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,3-Dichloropropane                | ND       | 0.50 | 0.12  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 2,2-Dichloropropane                | ND       | 1.0  | 0.31  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1-Dichloropropene                | ND       | 2.0  | 0.26  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| cis-1,3-Dichloropropene            | ND       | 0.50 | 0.12  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| trans-1,3-Dichloropropene          | ND       | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Diethyl Ether                      | ND       | 2.0  | 0.22  | μg/L         | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
|                                    |          |      |       | . 5          |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB01-211011** Sampled: 10/11/2021 13:00

Sample ID: 21J0887-01
Sample Matrix: Water

### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL       | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|----------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50     | 0.15  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,4-Dioxane                                       | ND      | 50       | 22    | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Ethylbenzene                                      | ND      | 1.0      | 0.090 | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60     | 0.41  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10       | 1.4   | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0      | 0.10  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0      | 0.090 | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Methyl Acetate                                    | ND      | 1.0      | 0.39  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0      | 0.17  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0      | 0.33  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Methylene Chloride                                | ND      | 5.0      | 0.30  | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10       | 1.6   | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Naphthalene                                       | ND      | 2.0      | 0.15  | μg/L            | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| n-Propylbenzene                                   | ND      | 1.0      | 0.080 | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Styrene                                           | ND      | 1.0      | 0.080 | μg/L            | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0      | 0.14  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50     | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Tetrachloroethylene                               | ND      | 1.0      | 0.20  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Tetrahydrofuran                                   | ND      | 10       | 0.58  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Toluene                                           | ND      | 1.0      | 0.11  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0      | 0.14  | $\mu g/L$       | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0      | 0.16  | $\mu g/L$       | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0      | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0      | 0.17  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0      | 0.15  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Trichloroethylene                                 | ND      | 1.0      | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0      | 0.19  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0      | 0.31  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0      | 0.24  | μg/L            | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0      | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0      | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Vinyl Chloride                                    | ND      | 2.0      | 0.20  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| m+p Xylene                                        | ND      | 2.0      | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| o-Xylene                                          | ND      | 1.0      | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 13:22        | MFF     |
| Surrogatos                                        |         | 9/. Dogg |       | Dogovory Limits |          | Flog/Ougl |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 111        | 70-130          |           | 10/18/21 13:22 |
| Toluene-d8            | 103        | 70-130          |           | 10/18/21 13:22 |
| 4-Bromofluorobenzene  | 96.6       | 70-130          |           | 10/18/21 13:22 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB01-211011** Sampled: 10/11/2021 13:00

Sample ID: 21J0887-01
Sample Matrix: Water

#### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 10/20/21         | 10/21/21 3:30         | KMB     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 1        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 103    |        | 70-130          |          |           | _            |                  | 10/21/21 3:30         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB205-0-1-211011 Sampled: 10/11/2021 11:43

Sample ID: 21J0887-02
Sample Matrix: Soil

#### Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Acenaphthylene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Acetophenone                     | ND      | 0.41 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Aniline                          | ND      | 0.41 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Anthracene                       | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzidine                        | ND      | 0.79 | 0.19  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Benzoic Acid                     | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.41 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.41 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.41 | 0.092 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.41 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.41 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Butylbenzylphthalate             | ND      | 0.41 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Carbazole                        | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Chloroaniline                  | ND      | 0.79 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.79 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.41 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Chlorophenol                   | ND      | 0.41 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Chrysene                         | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Dibenzofuran                     | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Di-n-butylphthalate              | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.41 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.41 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.41 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Diethylphthalate                 | ND      | 0.41 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.41 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Dimethylphthalate                | ND      | 0.41 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.41 | 0.27  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.79 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.41 | 0.079 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.41 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Di-n-octylphthalate              | ND      | 0.41 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Fluoranthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Fluorene                         | ND      | 0.20 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
|                                  | .10     | 3.20 |       |           | -        |           | 0.0 0E/0E    | -0.17/21         |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB205-0-1-211011 Sampled: 10/11/2021 11:43

Sample ID: 21J0887-02
Sample Matrix: Soil

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

#### Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.41   | 0.055 | mg/Kg dry       | 1        | -         | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.41   | 0.052 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.41   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Hexachloroethane                     | ND      | 0.41   | 0.048 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.092 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Isophorone                           | ND      | 0.41   | 0.068 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Methylphenol                       | ND      | 0.41   | 0.075 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.41   | 0.065 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Naphthalene                          | ND      | 0.20   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Nitroaniline                       | ND      | 0.41   | 0.086 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 3-Nitroaniline                       | ND      | 0.41   | 0.069 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Nitroaniline                       | ND      | 0.41   | 0.087 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Nitrobenzene                         | ND      | 0.41   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2-Nitrophenol                        | ND      | 0.41   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 4-Nitrophenol                        | ND      | 0.79   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.41   | 0.061 | mg/Kg dry       | 1        | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.41   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.41   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.41   | 0.068 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Pentachlorophenol                    | ND      | 0.41   | 0.18  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Phenanthrene                         | ND      | 0.20   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Phenol                               | ND      | 0.41   | 0.058 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Pyrene                               | ND      | 0.20   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Pyridine                             | ND      | 0.41   | 0.041 | mg/Kg dry       | 1        | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.41   | 0.053 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.41   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.41   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.41   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:29        | IMR     |
| Surrogates                           |         | % Reco | very  | Recovery Limits | <b>i</b> | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 73.4   |       | 30-130          |          |           |              |                  | 10/21/21 17:29        |         |
| Phenol-d6                            |         | 76.1   |       | 30-130          |          |           |              |                  | 10/21/21 17:29        |         |
| Nitrobenzene-d5                      |         | 69.8   |       | 30-130          |          |           |              |                  | 10/21/21 17:29        |         |

30-130

30-130

30-130

75.5

75.5

79.8

10/21/21 17:29

10/21/21 17:29

10/21/21 17:29



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB205-0-1-211011 Sampled: 10/11/2021 11:43

Sample ID: 21J0887-02
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

|                               |         |        |      |                 |          |           |              | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 3.0    | 3.0  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/15/21 | 10/16/21 4:39  | KMB     |
| Diesel Range Organics         | 6.2     | 9.9    | 4.6  | mg/Kg dry       | 1        | J         | SW-846 8015C | 10/18/21 | 10/20/21 14:33 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 1-Chloro-3-fluorobenzene      |         | 87.8   |      | 70-130          |          |           |              |          | 10/16/21 4:39  |         |
| 2-Fluorobiphenyl              |         | 69.9   |      | 40-140          |          |           |              |          | 10/20/21 14:33 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-0-1-211011** Sampled: 10/11/2021 11:43

Sample ID: 21J0887-02
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | Metals Analy | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 9400    | 19    | 7.1   | mg/Kg dry    | 1           | MS-19     | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1           | MS-07     | SW-846 6010D | 10/15/21 | 10/20/21 14:10 | QNW     |
| Arsenic   | 7.6     | 3.9   | 1.4   | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Barium    | 58      | 1.9   | 0.74  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Beryllium | 0.56    | 0.19  | 0.073 | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Cadmium   | ND      | 0.39  | 0.20  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Calcium   | 470     | 19    | 7.5   | mg/Kg dry    | 1           | MS-11     | SW-846 6010D | 10/15/21 | 10/19/21 13:36 | QNW     |
| Chromium  | 15      | 0.77  | 0.44  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Cobalt    | 5.2     | 1.9   | 0.71  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Copper    | 19      | 0.77  | 0.37  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Iron      | 23000   | 97    | 39    | mg/Kg dry    | 5           | MS-19     | SW-846 6010D | 10/15/21 | 10/19/21 14:53 | QNW     |
| Lead      | 11      | 0.58  | 0.28  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Magnesium | 950     | 19    | 6.8   | mg/Kg dry    | 1           | MS-19     | SW-846 6010D | 10/15/21 | 10/19/21 13:36 | QNW     |
| Manganese | 82      | 0.39  | 0.15  | mg/Kg dry    | 1           | MS-11     | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Mercury   | 0.073   | 0.031 | 0.010 | mg/Kg dry    | 1           |           | SW-846 7471B | 10/15/21 | 10/21/21 10:55 | MJH     |
| Nickel    | 12      | 0.77  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Potassium | 670     | 190   | 73    | mg/Kg dry    | 1           | MS-19     | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Selenium  | ND      | 3.9   | 1.4   | mg/Kg dry    | 1           | MS-07     | SW-846 6010D | 10/15/21 | 10/19/21 13:36 | QNW     |
| Silver    | ND      | 0.39  | 0.18  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Sodium    | ND      | 190   | 75    | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Thallium  | ND      | 1.9   | 0.93  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Vanadium  | 25      | 0.77  | 0.39  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
| Zinc      | 33      | 0.77  | 0.49  | mg/Kg dry    | 1           |           | SW-846 6010D | 10/15/21 | 10/17/21 23:20 | MJH     |
|           |         |       |       |              |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-0-1-211011** Sampled: 10/11/2021 11:43

Sample ID: 21J0887-02
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   |         | 83.9    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:28 | AL      |
| Cyanide    |         | 1.4     | 0.58 | 0.41 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| рН @19.1°С |         | 4.1     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-03
Sample Matrix: Soil

#### Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.19 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Acenaphthylene                   | ND      | 0.19 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Acetophenone                     | ND      | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Aniline                          | ND      | 0.37 | 0.077 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Anthracene                       | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzidine                        | ND      | 0.72 | 0.17  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzo(a)anthracene               | ND      | 0.19 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.19 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzo(b)fluoranthene             | ND      | 0.19 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.19 | 0.078 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.19 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Benzoic Acid                     | ND      | 1.1  | 0.44  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.37 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.37 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.37 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.37 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Butylbenzylphthalate             | ND      | 0.37 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Carbazole                        | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 4-Chloroaniline                  | ND      | 0.72 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.72 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.37 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2-Chlorophenol                   | ND      | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Chrysene                         | ND      | 0.19 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.19 | 0.075 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Dibenzofuran                     | ND      | 0.37 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Di-n-butylphthalate              | ND      | 0.37 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.37 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.37 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.37 | 0.039 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.37 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Diethylphthalate                 | ND      | 0.37 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.37 | 0.10  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Dimethylphthalate                | ND      | 0.37 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.37 | 0.25  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.72 | 0.32  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.37 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.37 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Di-n-octylphthalate              | ND      | 0.37 | 0.13  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Fluoranthene                     | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
| Fluorene                         | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 17:56        | IMR     |
|                                  | 1112    | 0.17 | 0.005 |           | -        |           | 5 5.0 02/0E  | 10.17.21         | 10.21.21 17.50        | 1./110  |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-03
Sample Matrix: Soil

p-Terphenyl-d14

| Semivolatile Organic Compounds by GC/ |
|---------------------------------------|
|---------------------------------------|

|                                      |         |        |       |                 |          |           |              | Date     | Date/Time      |         |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Hexachlorobenzene                    | ND      | 0.37   | 0.050 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Hexachlorobutadiene                  | ND      | 0.37   | 0.047 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.37   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Hexachloroethane                     | ND      | 0.37   | 0.044 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.084 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Isophorone                           | ND      | 0.37   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.19   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.19   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2-Methylphenol                       | ND      | 0.37   | 0.069 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 3/4-Methylphenol                     | ND      | 0.37   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Naphthalene                          | ND      | 0.19   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2-Nitroaniline                       | ND      | 0.37   | 0.079 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 3-Nitroaniline                       | ND      | 0.37   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 4-Nitroaniline                       | ND      | 0.37   | 0.080 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Nitrobenzene                         | ND      | 0.37   | 0.054 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2-Nitrophenol                        | ND      | 0.37   | 0.058 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 4-Nitrophenol                        | ND      | 0.72   | 0.15  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.37   | 0.056 | mg/Kg dry       | 1        | R-05      | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.37   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.37   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Pentachloronitrobenzene              | ND      | 0.37   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Pentachlorophenol                    | ND      | 0.37   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Phenanthrene                         | ND      | 0.19   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Phenol                               | ND      | 0.37   | 0.053 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Pyrene                               | ND      | 0.19   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Pyridine                             | ND      | 0.37   | 0.038 | mg/Kg dry       | 1        | R-05      | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.37   | 0.048 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.37   | 0.047 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.37   | 0.058 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.37   | 0.057 | mg/Kg dry       | 1        |           | SW-846 8270E | 10/19/21 | 10/21/21 17:56 | IMR     |
| Surrogates                           |         | % Reco | very  | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 2-Fluorophenol                       |         | 53.9   |       | 30-130          |          |           |              |          | 10/21/21 17:56 |         |
| Phenol-d6                            |         | 55.9   |       | 30-130          |          |           |              |          | 10/21/21 17:56 |         |
| Nitrobenzene-d5                      |         | 50.4   |       | 30-130          |          |           |              |          | 10/21/21 17:56 |         |
| 2-Fluorobiphenyl                     |         | 56.4   |       | 30-130          |          |           |              |          | 10/21/21 17:56 |         |
| 2,4,6-Tribromophenol                 |         | 57.6   |       | 30-130          |          |           |              |          | 10/21/21 17:56 |         |

30-130

64.1

10/21/21 17:56



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB205-13-15-211011 Sampled: 10/11/2021 12:30

Sample ID: 21J0887-03
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

|                               |         |        |      |                 |          |           |              | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 3.0    | 3.0  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/15/21 | 10/16/21 5:18  | KMB     |
| Diesel Range Organics         | ND      | 9.1    | 4.2  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/20/21 12:52 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 1-Chloro-3-fluorobenzene      |         | 94.4   |      | 70-130          |          |           |              |          | 10/16/21 5:18  |         |
| 2-Fluorobiphenyl              |         | 66.2   |      | 40-140          |          |           |              |          | 10/20/21 12:52 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-03
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         | Metals Analyses (10tal) |        |           |          |           |              |          |                |         |
|-----------|---------|-------------------------|--------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           |         |                         |        |           |          |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL                      | DL     | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 6900    | 18                      | 6.5    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Antimony  | ND      | 1.8                     | 0.72   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Arsenic   | 3.1     | 3.6                     | 1.3    | mg/Kg dry | 1        | J         | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Barium    | 44      | 1.8                     | 0.68   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Beryllium | 0.52    | 0.18                    | 0.067  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Cadmium   | ND      | 0.36                    | 0.18   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Calcium   | 650     | 18                      | 6.9    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Chromium  | 21      | 0.71                    | 0.40   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Cobalt    | 6.0     | 1.8                     | 0.65   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Copper    | 8.9     | 0.71                    | 0.34   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Iron      | 14000   | 18                      | 7.2    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Lead      | 6.3     | 0.53                    | 0.26   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Magnesium | 950     | 18                      | 6.2    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/19/21 14:17 | QNW     |
| Manganese | 68      | 0.36                    | 0.14   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Mercury   | ND      | 0.028                   | 0.0097 | mg/Kg dry | 1        |           | SW-846 7471B | 10/15/21 | 10/21/21 10:57 | MJH     |
| Nickel    | 12      | 0.71                    | 0.36   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Potassium | 550     | 180                     | 67     | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Selenium  | ND      | 3.6                     | 1.3    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/19/21 14:17 | MJH     |
| Silver    | ND      | 0.36                    | 0.16   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Sodium    | ND      | 180                     | 69     | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Thallium  | ND      | 1.8                     | 0.85   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Vanadium  | 18      | 0.71                    | 0.35   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
| Zinc      | 27      | 0.71                    | 0.45   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/17/21 23:49 | MJH     |
|           |         |                         |        |           |          |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB205-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-03
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 91.4    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:28 | AL      |
| Cyanide  |         | ND      | 0.54 | 0.38 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| pH @19.  | 5°C     | 7.1     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-DUP02-13-15-211011 Sampled: 10/11/2021 12:30

Sample ID: 21J0887-04
Sample Matrix: Soil

#### Semivolatile Organic Compounds by GC/MS

| Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether | ND N | 0.19<br>0.19<br>0.38<br>0.38<br>0.19<br>0.74<br>0.19<br>0.19<br>0.19<br>0.19<br>1.1<br>0.38 | 0.059<br>0.058<br>0.052<br>0.079<br>0.062<br>0.17<br>0.053<br>0.058<br>0.057<br>0.079<br>0.051 | mg/Kg dry | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E | 10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21 | 10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23 | IMR IMR IMR IMR IMR IMR IMR IMR |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(c)chloroethoxy)methane                                                           | ND N | 0.38<br>0.38<br>0.19<br>0.74<br>0.19<br>0.19<br>0.19<br>0.19                                | 0.052<br>0.079<br>0.062<br>0.17<br>0.053<br>0.058<br>0.057<br>0.079                            | mg/Kg dry                               | 1<br>1<br>1<br>1<br>1<br>1<br>1                | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E                                                 | 10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21                         | 10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23                                                       | IMR IMR IMR IMR IMR             |
| Aniline Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(chloroethoxy)methane                                                                          | ND N | 0.38<br>0.19<br>0.74<br>0.19<br>0.19<br>0.19<br>0.19<br>1.1                                 | 0.079<br>0.062<br>0.17<br>0.053<br>0.058<br>0.057<br>0.079                                     | mg/Kg dry                                         | 1<br>1<br>1<br>1<br>1<br>1                     | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E                                                                 | 10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21                         | 10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23                                                                         | IMR<br>IMR<br>IMR<br>IMR        |
| Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(c)chiduoranthene Benzo(c)chiduoranthene                                                               | ND N | 0.19<br>0.74<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19                                        | 0.062<br>0.17<br>0.053<br>0.058<br>0.057<br>0.079                                              | mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry                                 | 1<br>1<br>1<br>1<br>1                          | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E                                                                                 | 10/19/21<br>10/19/21<br>10/19/21<br>10/19/21<br>10/19/21                                     | 10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23                                                                                           | IMR<br>IMR<br>IMR               |
| Benzidine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane                                                                      | ND      | 0.74<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19                                                | 0.17<br>0.053<br>0.058<br>0.057<br>0.079<br>0.051                                              | mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry                                              | 1<br>1<br>1<br>1                               | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E                                                                                                 | 10/19/21<br>10/19/21<br>10/19/21<br>10/19/21                                                 | 10/21/21 18:23<br>10/21/21 18:23<br>10/21/21 18:23                                                                                                             | IMR<br>IMR<br>IMR               |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane                                                                                | ND ND ND ND ND ND ND ND ND               | 0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>1.1                                                 | 0.053<br>0.058<br>0.057<br>0.079<br>0.051                                                      | mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry                                                           | 1<br>1<br>1                                    | V-04 | SW-846 8270E<br>SW-846 8270E<br>SW-846 8270E                                                                                                                 | 10/19/21<br>10/19/21<br>10/19/21                                                             | 10/21/21 18:23<br>10/21/21 18:23                                                                                                                               | IMR<br>IMR                      |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane                                                                                                   | ND ND ND ND ND ND ND ND                  | 0.19<br>0.19<br>0.19<br>0.19<br>1.1                                                         | 0.058<br>0.057<br>0.079<br>0.051                                                               | mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry                                                                        | 1<br>1<br>1                                    |      | SW-846 8270E<br>SW-846 8270E                                                                                                                                 | 10/19/21<br>10/19/21                                                                         | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane                                                                                                                  | ND ND ND ND ND ND                        | 0.19<br>0.19<br>0.19<br>1.1                                                                 | 0.057<br>0.079<br>0.051                                                                        | mg/Kg dry<br>mg/Kg dry<br>mg/Kg dry                                                                                     | 1<br>1                                         |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     |                                                                                                                                                                |                                 |
| Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane                                                                                                                                       | ND<br>ND<br>ND<br>ND                     | 0.19<br>0.19<br>1.1                                                                         | 0.079<br>0.051                                                                                 | mg/Kg dry<br>mg/Kg dry                                                                                                  | 1                                              |      |                                                                                                                                                              |                                                                                              | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Benzo(k)fluoranthene<br>Benzoic Acid<br>Bis(2-chloroethoxy)methane                                                                                                                                                      | ND<br>ND<br>ND                           | 0.19<br>1.1                                                                                 | 0.051                                                                                          | mg/Kg dry                                                                                                               |                                                |      | SW-846 8270E                                                                                                                                                 | 10/10/01                                                                                     |                                                                                                                                                                |                                 |
| Benzoic Acid Bis(2-chloroethoxy)methane                                                                                                                                                                                 | ND<br>ND<br>ND                           | 1.1                                                                                         |                                                                                                |                                                                                                                         | 1                                              |      |                                                                                                                                                              | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Bis(2-chloroethoxy)methane                                                                                                                                                                                              | ND<br>ND                                 |                                                                                             | 0.45                                                                                           |                                                                                                                         | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
|                                                                                                                                                                                                                         | ND                                       | 0.38                                                                                        |                                                                                                | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Bis(2-chloroethyl)ether                                                                                                                                                                                                 |                                          |                                                                                             | 0.049                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
|                                                                                                                                                                                                                         | ND                                       | 0.38                                                                                        | 0.052                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Bis(2-chloroisopropyl)ether                                                                                                                                                                                             |                                          | 0.38                                                                                        | 0.086                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Bis(2-Ethylhexyl)phthalate                                                                                                                                                                                              | ND                                       | 0.38                                                                                        | 0.064                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 4-Bromophenylphenylether                                                                                                                                                                                                | ND                                       | 0.38                                                                                        | 0.048                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Butylbenzylphthalate                                                                                                                                                                                                    | ND                                       | 0.38                                                                                        | 0.060                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Carbazole                                                                                                                                                                                                               | ND                                       | 0.19                                                                                        | 0.062                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 4-Chloroaniline                                                                                                                                                                                                         | ND                                       | 0.74                                                                                        | 0.050                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                 | ND                                       | 0.74                                                                                        | 0.063                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2-Chloronaphthalene                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.044                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2-Chlorophenol                                                                                                                                                                                                          | ND                                       | 0.38                                                                                        | 0.052                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 4-Chlorophenylphenylether                                                                                                                                                                                               | ND                                       | 0.38                                                                                        | 0.054                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Chrysene                                                                                                                                                                                                                | ND                                       | 0.19                                                                                        | 0.055                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Dibenz(a,h)anthracene                                                                                                                                                                                                   | ND                                       | 0.19                                                                                        | 0.077                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Dibenzofuran                                                                                                                                                                                                            | ND                                       | 0.38                                                                                        | 0.056                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Di-n-butylphthalate                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.053                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 1,2-Dichlorobenzene                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.043                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 1,3-Dichlorobenzene                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.042                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 1,4-Dichlorobenzene                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.040                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 3,3-Dichlorobenzidine                                                                                                                                                                                                   | ND                                       | 0.19                                                                                        | 0.055                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2,4-Dichlorophenol                                                                                                                                                                                                      | ND                                       | 0.38                                                                                        | 0.056                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Diethylphthalate                                                                                                                                                                                                        | ND                                       | 0.38                                                                                        | 0.058                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2,4-Dimethylphenol                                                                                                                                                                                                      | ND                                       | 0.38                                                                                        | 0.10                                                                                           | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Dimethylphthalate                                                                                                                                                                                                       | ND                                       | 0.38                                                                                        | 0.055                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 4,6-Dinitro-2-methylphenol                                                                                                                                                                                              | ND                                       | 0.38                                                                                        | 0.25                                                                                           | mg/Kg dry                                                                                                               | 1                                              | V-05 | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2,4-Dinitrophenol                                                                                                                                                                                                       | ND                                       | 0.74                                                                                        | 0.33                                                                                           | mg/Kg dry                                                                                                               | 1                                              | V-04 | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2,4-Dinitrotoluene                                                                                                                                                                                                      | ND                                       | 0.38                                                                                        | 0.074                                                                                          | mg/Kg dry                                                                                                               | 1                                              | •    | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 2,6-Dinitrotoluene                                                                                                                                                                                                      | ND                                       | 0.38                                                                                        | 0.063                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Di-n-octylphthalate                                                                                                                                                                                                     | ND                                       | 0.38                                                                                        | 0.13                                                                                           | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| 1,2-Diphenylhydrazine/Azobenzene                                                                                                                                                                                        | ND                                       | 0.38                                                                                        | 0.054                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Fluoranthene                                                                                                                                                                                                            | ND                                       | 0.19                                                                                        | 0.060                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |
| Fluorene                                                                                                                                                                                                                | ND                                       | 0.19                                                                                        | 0.064                                                                                          | mg/Kg dry                                                                                                               | 1                                              |      | SW-846 8270E                                                                                                                                                 | 10/19/21                                                                                     | 10/21/21 18:23                                                                                                                                                 | IMR                             |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-DUP02-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-04
Sample Matrix: Soil

| Semivolatile Organic Compounds by GC/MS | Semiv | olatile ( | )roanic | Compounds | hv | GC/MS |
|-----------------------------------------|-------|-----------|---------|-----------|----|-------|
|-----------------------------------------|-------|-----------|---------|-----------|----|-------|

|                                      |         |        | Semivo | Diatile Organic Co | ompounds by | GC/MS     |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|--------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units              | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.38   | 0.051  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.38   | 0.048  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.38   | 0.16   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Hexachloroethane                     | ND      | 0.38   | 0.045  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.086  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Isophorone                           | ND      | 0.38   | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.19   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.19   | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2-Methylphenol                       | ND      | 0.38   | 0.070  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.38   | 0.061  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Naphthalene                          | ND      | 0.19   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2-Nitroaniline                       | ND      | 0.38   | 0.081  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 3-Nitroaniline                       | ND      | 0.38   | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 4-Nitroaniline                       | ND      | 0.38   | 0.081  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Nitrobenzene                         | ND      | 0.38   | 0.055  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2-Nitrophenol                        | ND      | 0.38   | 0.059  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 4-Nitrophenol                        | ND      | 0.74   | 0.15   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.38   | 0.057  | mg/Kg dry          | 1           | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.38   | 0.057  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.38   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.38   | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Pentachlorophenol                    | ND      | 0.38   | 0.17   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Phenanthrene                         | ND      | 0.19   | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Phenol                               | ND      | 0.38   | 0.054  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Pyrene                               | ND      | 0.19   | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Pyridine                             | ND      | 0.38   | 0.039  | mg/Kg dry          | 1           | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.38   | 0.049  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.38   | 0.048  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.38   | 0.059  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.38   | 0.058  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 18:23        | IMR     |
| Surrogates                           |         | % Reco | very   | Recovery Limit     | s           | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 59.4   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |
| Phenol-d6                            |         | 62.6   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |
| Nitrobenzene-d5                      |         | 57.2   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |
| 2-Fluorobiphenyl                     |         | 61.1   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |
| 2,4,6-Tribromophenol                 |         | 52.6   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |
| p-Terphenyl-d14                      |         | 65.4   |        | 30-130             |             |           |              |                  | 10/21/21 18:23        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-DUP02-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-04
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Analyte                       | Results | - KL   | DL   | Cints           | Dilution | r iag/Quai | Method       | Trepareu         | Anaryzeu              | Amaryst |
| Gasoline Range Organics (GRO) | ND      | 3.4    | 3.4  | mg/Kg dry       | 1        |            | SW-846 8015C | 10/15/21         | 10/16/21 5:57         | KMB     |
| Diesel Range Organics         | ND      | 9.3    | 4.3  | mg/Kg dry       | 1        |            | SW-846 8015C | 10/18/21         | 10/20/21 13:12        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | 6        | Flag/Qual  |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 97.6   |      | 70-130          |          |            |              |                  | 10/16/21 5:57         |         |
| 2-Fluorobiphenyl              |         | 76.8   |      | 40-140          |          |            |              |                  | 10/20/21 13:12        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-DUP02-13-15-211011** Sampled: 10/11/2021 12:30

Sample ID: 21J0887-04
Sample Matrix: Soil

|           |         |       |        | Metals Analy | yses (10tal) |           |              |          |                |         |
|-----------|---------|-------|--------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |        |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL     | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 6300    | 18    | 6.7    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Antimony  | ND      | 1.8   | 0.74   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Arsenic   | 3.8     | 3.7   | 1.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Barium    | 39      | 1.8   | 0.70   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Beryllium | 0.50    | 0.18  | 0.069  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Cadmium   | ND      | 0.37  | 0.19   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Calcium   | 640     | 18    | 7.1    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Chromium  | 10      | 0.73  | 0.42   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Cobalt    | 4.8     | 1.8   | 0.67   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Copper    | 8.2     | 0.73  | 0.35   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Iron      | 14000   | 18    | 7.4    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Lead      | 5.7     | 0.55  | 0.27   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Magnesium | 900     | 18    | 6.4    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/19/21 14:24 | QNW     |
| Manganese | 62      | 0.37  | 0.14   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Mercury   | ND      | 0.029 | 0.0098 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/15/21 | 10/21/21 10:58 | MJH     |
| Nickel    | 9.3     | 0.73  | 0.37   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Potassium | 510     | 180   | 69     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Selenium  | ND      | 3.7   | 1.3    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/19/21 14:24 | MJH     |
| Silver    | ND      | 0.37  | 0.17   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Sodium    | ND      | 180   | 71     | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Thallium  | ND      | 1.8   | 0.88   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Vanadium  | 17      | 0.73  | 0.36   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
| Zinc      | 25      | 0.73  | 0.47   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/17/21 23:56 | MJH     |
|           |         |       |        |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-DUP02-13-15-211011 Sam

Sampled: 10/11/2021 12:30

Sample ID: 21J0887-04
Sample Matrix: Soil

|           |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids  |         | 89.8    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:28 | AL      |
| Cyanide   |         | 0.41    | 0.55 | 0.39 | mg/Kg dry | 1        | J         | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| pH @19.4° | °C      | 7.5     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB203-0-1-211012 Sampled: 10/12/2021 07:40

Sample ID: 21J0887-05
Sample Matrix: Soil

### Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Acenaphthylene                   | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Acetophenone                     | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Aniline                          | ND      | 0.40 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzidine                        | ND      | 0.77 | 0.18  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Benzoic Acid                     | ND      | 1.2  | 0.47  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.090 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Carbazole                        | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Chloroaniline                  | ND      | 0.77 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 0.77 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Chrysene                         | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.080 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Dibenzofuran                     | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Diethylphthalate                 | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Dimethylphthalate                | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4-Dinitrophenol                | ND      | 0.77 | 0.34  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.077 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Fluoranthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Fluorene                         | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
|                                  | 112     | 0.20 | 0.000 |           | -        |           | 5 5.0 02/0L  | 10.17.21         | 10.21.21 10.30        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB203-0-1-211012 Sampled: 10/12/2021 07:40

Sample ID: 21J0887-05
Sample Matrix: Soil

### Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.40   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.16  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Hexachloroethane                     | ND      | 0.40   | 0.047 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.089 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Isophorone                           | ND      | 0.40   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1-Methylnaphthalene                  | 0.068   | 0.20   | 0.055 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Methylnaphthalene                  | 0.098   | 0.20   | 0.062 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Methylphenol                       | ND      | 0.40   | 0.073 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Naphthalene                          | 0.076   | 0.20   | 0.054 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.084 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.085 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Nitrobenzene                         | ND      | 0.40   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 4-Nitrophenol                        | ND      | 0.77   | 0.16  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.059 | mg/Kg dry      | 1        | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Pentachlorophenol                    | ND      | 0.40   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Phenanthrene                         | 0.094   | 0.20   | 0.062 | mg/Kg dry      | 1        | J         | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Phenol                               | ND      | 0.40   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Pyrene                               | ND      | 0.20   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Pyridine                             | ND      | 0.40   | 0.040 | mg/Kg dry      | 1        | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 18:50        | IMR     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 55.2   |       | 30-130         |          |           |              |                  | 10/21/21 18:50        |         |
| Phenol-d6                            |         | 61.7   |       | 30-130         |          |           |              |                  | 10/21/21 18:50        |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |                |
|----------------------|------------|-----------------|-----------|----------------|
| 2-Fluorophenol       | 55.2       | 30-130          |           | 10/21/21 18:50 |
| Phenol-d6            | 61.7       | 30-130          |           | 10/21/21 18:50 |
| Nitrobenzene-d5      | 53.8       | 30-130          |           | 10/21/21 18:50 |
| 2-Fluorobiphenyl     | 61.0       | 30-130          |           | 10/21/21 18:50 |
| 2,4,6-Tribromophenol | 62.2       | 30-130          |           | 10/21/21 18:50 |
| p-Terphenyl-d14      | 65.6       | 30-130          |           | 10/21/21 18:50 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB203-0-1-211012** Sampled: 10/12/2021 07:40

Sample ID: 21J0887-05
Sample Matrix: Soil

|           |         |       |       | Mictals Amary | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|---------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |               |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units         | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 5100    | 19    | 7.0   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | МЈН     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Arsenic   | 15      | 3.8   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Barium    | 62      | 1.9   | 0.73  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Beryllium | 0.58    | 0.19  | 0.073 | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Cadmium   | 0.52    | 0.38  | 0.20  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Calcium   | 4600    | 19    | 7.5   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Chromium  | 23      | 0.77  | 0.44  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Cobalt    | 5.3     | 1.9   | 0.71  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Copper    | 51      | 0.77  | 0.37  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Iron      | 13000   | 19    | 7.8   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Lead      | 16      | 0.58  | 0.28  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Magnesium | 2200    | 19    | 6.7   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/19/21 14:31 | QNW     |
| Manganese | 100     | 0.38  | 0.15  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Mercury   | 0.049   | 0.031 | 0.011 | mg/Kg dry     | 1           |           | SW-846 7471B | 10/15/21 | 10/21/21 11:00 | MJH     |
| Nickel    | 25      | 0.77  | 0.39  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Potassium | 550     | 190   | 72    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/19/21 14:31 | MJH     |
| Silver    | ND      | 0.38  | 0.18  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Sodium    | 140     | 190   | 75    | mg/Kg dry     | 1           | J         | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Vanadium  | 19      | 0.77  | 0.38  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
| Zine      | 120     | 0.77  | 0.49  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:03  | MJH     |
|           |         |       |       |               |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB203-0-1-211012** Sampled: 10/12/2021 07:40

Sample ID: 21J0887-05
Sample Matrix: Soil

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 86.1    |    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:28 | AL      |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB203-11-13-211012** Sampled: 10/12/2021 07:57

Sample ID: 21J0887-06
Sample Matrix: Soil

### Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analys |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|--------|
| Acenaphthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Acenaphthylene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Acetophenone                     | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Aniline                          | ND      | 0.40 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzidine                        | ND      | 0.78 | 0.18  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzo(a)anthracene               | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Benzoic Acid                     | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.091 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Butylbenzylphthalate             | ND      | 0.40 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Carbazole                        | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 4-Chloroaniline                  | ND      | 0.78 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 4-Chloro-3-methylphenol          | ND      | 0.78 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2-Chlorophenol                   | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Chrysene                         | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Dibenzofuran                     | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Di-n-butylphthalate              | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Diethylphthalate                 | ND      | 0.40 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Dimethylphthalate                | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2,4-Dinitrophenol                | ND      | 0.78 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.078 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
| Fluoranthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR    |
|                                  | 112     | 0.20 | 0.001 |           | •        |           | 2 0.0 02/01  | 10.17.21         | -5.21.21 17.10        | 227114 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB203-11-13-211012** Sampled: 10/12/2021 07:57

Sample ID: 21J0887-06
Sample Matrix: Soil

### Semivolatile Organic Compounds by GC/MS

|                                      |         |        | Semivo | Diatile Organic Co | ompounds by | GC/MS     |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|--------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units              | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.40   | 0.054  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.051  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Hexachloroethane                     | ND      | 0.40   | 0.048  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.091  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Isophorone                           | ND      | 0.40   | 0.067  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.055  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2-Methylphenol                       | ND      | 0.40   | 0.074  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.065  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Naphthalene                          | ND      | 0.20   | 0.055  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.085  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.068  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.086  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Nitrobenzene                         | ND      | 0.40   | 0.058  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 4-Nitrophenol                        | ND      | 0.78   | 0.16   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.060  | mg/Kg dry          | 1           | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.060  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.055  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.067  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Pentachlorophenol                    | ND      | 0.40   | 0.18   | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Phenanthrene                         | ND      | 0.20   | 0.063  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Phenol                               | ND      | 0.40   | 0.057  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Pyrene                               | ND      | 0.20   | 0.064  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Pyridine                             | ND      | 0.40   | 0.041  | mg/Kg dry          | 1           | R-05      | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.052  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.050  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.062  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.062  | mg/Kg dry          | 1           |           | SW-846 8270E | 10/19/21         | 10/21/21 19:18        | IMR     |
| Surrogates                           |         | % Reco | very   | Recovery Limit     | s           | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 70.3   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |
| Phenol-d6                            |         | 73.9   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |
| Nitrobenzene-d5                      |         | 68.0   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |
| 2-Fluorobiphenyl                     |         | 72.6   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |
| 2,4,6-Tribromophenol                 |         | 75.3   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |
| p-Terphenyl-d14                      |         | 79.4   |        | 30-130             |             |           |              |                  | 10/21/21 19:18        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB203-11-13-211012** Sampled: 10/12/2021 07:57

Sample ID: 21J0887-06
Sample Matrix: Soil

| N / T - 4 - 1 |         |       | (Total)  |  |
|---------------|---------|-------|----------|--|
| vieta         | is Alia | IVSES | i iotai) |  |

|           |         |       |       | 171Ctals / that | yses (Total) |           |              |                  |                       |         |
|-----------|---------|-------|-------|-----------------|--------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL    | DL    | Units           | Dilution     | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 13000   | 20    | 7.1   | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | МЈН     |
| Antimony  | ND      | 2.0   | 0.79  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | МЈН     |
| Arsenic   | 6.5     | 3.9   | 1.4   | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | МЈН     |
| Barium    | 66      | 2.0   | 0.75  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Beryllium | 0.87    | 0.20  | 0.074 | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Cadmium   | ND      | 0.39  | 0.20  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Calcium   | 630     | 20    | 7.6   | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Chromium  | 19      | 0.78  | 0.45  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Cobalt    | 7.6     | 2.0   | 0.72  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Copper    | 18      | 0.78  | 0.38  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Iron      | 64000   | 98    | 39    | mg/Kg dry       | 5            |           | SW-846 6010D | 10/15/21         | 10/19/21 15:31        | QNW     |
| Lead      | 13      | 0.59  | 0.29  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Magnesium | 3100    | 98    | 34    | mg/Kg dry       | 5            |           | SW-846 6010D | 10/15/21         | 10/19/21 15:31        | QNW     |
| Manganese | 140     | 0.39  | 0.15  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Mercury   | ND      | 0.031 | 0.010 | mg/Kg dry       | 1            |           | SW-846 7471B | 10/15/21         | 10/21/21 11:02        | MJH     |
| Nickel    | 16      | 0.78  | 0.40  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Potassium | 810     | 200   | 74    | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Selenium  | ND      | 3.9   | 1.4   | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Silver    | ND      | 0.39  | 0.18  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Sodium    | 100     | 200   | 76    | mg/Kg dry       | 1            | J         | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Thallium  | ND      | 2.0   | 0.94  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Vanadium  | 30      | 0.78  | 0.39  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
| Zinc      | 49      | 0.78  | 0.50  | mg/Kg dry       | 1            |           | SW-846 6010D | 10/15/21         | 10/18/21 0:21         | MJH     |
|           |         |       |       |                 |              |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB203-11-13-211012 Sampled: 10/12/2021 07:57

Sample ID: 21J0887-06
Sample Matrix: Soil

|          |         |         |    |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.8    |    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:29 | AL      |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB206-0-1-211012** Sampled: 10/12/2021 12:43

Sample ID: 21J0887-07
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 8500    | 19    | 7.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Arsenic   | 5.6     | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Barium    | 64      | 1.9   | 0.73  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Beryllium | 0.78    | 0.19  | 0.073 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Cadmium   | ND      | 0.38  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Calcium   | 630     | 19    | 7.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Chromium  | 19      | 0.77  | 0.44  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Cobalt    | 13      | 1.9   | 0.71  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Copper    | 20      | 0.77  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Iron      | 21000   | 96    | 39    | mg/Kg dry    | 5            |           | SW-846 6010D | 10/15/21 | 10/19/21 15:37 | QNW     |
| Lead      | 16      | 0.58  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Magnesium | 1000    | 96    | 34    | mg/Kg dry    | 5            |           | SW-846 6010D | 10/15/21 | 10/19/21 15:37 | QNW     |
| Manganese | 180     | 0.38  | 0.15  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Mercury   | 0.041   | 0.031 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/15/21 | 10/21/21 11:04 | MJH     |
| Nickel    | 15      | 0.77  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Potassium | 720     | 190   | 72    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Selenium  | ND      | 3.8   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Silver    | ND      | 0.38  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Sodium    | 280     | 190   | 75    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Vanadium  | 25      | 0.77  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | MJH     |
| Zinc      | 50      | 0.77  | 0.49  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:28  | МЈН     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB206-0-1-211012** Sampled: 10/12/2021 12:43

Sample ID: 21J0887-07
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | 1       | 86.8    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:29 | AL      |
| Cyanide  |         | ND      | 0.55 | 0.39 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @19.  | .6°C    | 5.9     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB206-5-7-211012** Sampled: 10/12/2021 12:58

Sample ID: 21J0887-08
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 1.1    | 1.1  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21         | 10/19/21 23:56        | KMB     |
| Diesel Range Organics         | 27      | 9.8    | 4.5  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21         | 10/20/21 17:24        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | 5        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 95.4   |      | 70-130          |          |           |              |                  | 10/19/21 23:56        |         |
| 2-Fluorobiphenyl              |         | 69.8   |      | 40-140          |          |           |              |                  | 10/20/21 17:24        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB206-5-7-211012** Sampled: 10/12/2021 12:58

Sample ID: 21J0887-08
Sample Matrix: Soil

|           |         |       |       | Mictals Amaly | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|---------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |               |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units         | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 9400    | 19    | 7.1   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Antimony  | ND      | 1.9   | 0.79  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Arsenic   | 5.2     | 3.9   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Barium    | 74      | 1.9   | 0.74  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Beryllium | 0.72    | 0.19  | 0.074 | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Cadmium   | ND      | 0.39  | 0.20  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Calcium   | 820     | 19    | 7.6   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Chromium  | 14      | 0.78  | 0.44  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Cobalt    | 14      | 1.9   | 0.72  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Copper    | 16      | 0.78  | 0.37  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Iron      | 18000   | 19    | 7.9   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Lead      | 20      | 0.58  | 0.28  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Magnesium | 1200    | 97    | 34    | mg/Kg dry     | 5           |           | SW-846 6010D | 10/15/21 | 10/19/21 15:42 | QNW     |
| Manganese | 120     | 0.39  | 0.15  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Mercury   | 0.049   | 0.030 | 0.010 | mg/Kg dry     | 1           |           | SW-846 7471B | 10/15/21 | 10/21/21 11:05 | MJH     |
| Nickel    | 15      | 0.78  | 0.40  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Potassium | 800     | 190   | 73    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Selenium  | ND      | 3.9   | 1.4   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Silver    | ND      | 0.39  | 0.18  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Sodium    | 720     | 190   | 76    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Thallium  | ND      | 1.9   | 0.94  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
| Vanadium  | 24      | 0.78  | 0.39  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | МЈН     |
| Zinc      | 44      | 0.78  | 0.50  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 0:34  | MJH     |
|           |         |       |       |               |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB206-5-7-211012** Sampled: 10/12/2021 12:58

Sample ID: 21J0887-08
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.3    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:29 | AL      |
| Cyanide  |         | ND      | 0.57 | 0.40 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| pH @19.1 | °C      | 6.1     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HR-SB206-15-17-211012 Sampled: 10/12/2021 13:45

Sample ID: 21J0887-09
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

|                               |         |        |      |                 |          |           |              | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 3.5    | 3.4  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/19/21 20:44 | KMB     |
| Diesel Range Organics         | 39      | 11     | 5.1  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/20/21 18:25 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                | -       |
| 1-Chloro-3-fluorobenzene      |         | 87.3   |      | 70-130          |          |           |              |          | 10/19/21 20:44 |         |
| 2-Fluorobiphenyl              |         | 66.9   |      | 40-140          |          |           |              |          | 10/20/21 18:25 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HR-SB206-15-17-211012** Sampled: 10/12/2021 13:45

Sample ID: 21J0887-09
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 7600    | 21    | 7.6   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Antimony  | ND      | 2.1   | 0.84  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Arsenic   | 6.3     | 4.2   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Barium    | 46      | 2.1   | 0.79  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Beryllium | 0.76    | 0.21  | 0.079 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Cadmium   | ND      | 0.42  | 0.21  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Calcium   | 640     | 21    | 8.1   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Chromium  | 18      | 0.83  | 0.47  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Cobalt    | 7.5     | 2.1   | 0.77  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Copper    | 12      | 0.83  | 0.40  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Iron      | 20000   | 21    | 8.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Lead      | 12      | 0.62  | 0.30  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Magnesium | 930     | 100   | 36    | mg/Kg dry    | 5            |           | SW-846 6010D | 10/15/21 | 10/19/21 15:47 | QNW     |
| Manganese | 120     | 0.42  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Mercury   | 0.042   | 0.033 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/15/21 | 10/21/21 11:07 | MJH     |
| Nickel    | 12      | 0.83  | 0.42  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Potassium | 650     | 210   | 78    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Selenium  | ND      | 4.2   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Silver    | ND      | 0.42  | 0.19  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Sodium    | 670     | 210   | 81    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Thallium  | ND      | 2.1   | 1.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Vanadium  | 23      | 0.83  | 0.41  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
| Zinc      | 35      | 0.83  | 0.53  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:41  | MJH     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HR-SB206-15-17-211012 Sampled: 10/12/2021 13:45

Sample ID: 21J0887-09
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | 3       | 75.4    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:29 | AL      |
| Cyanide  |         | ND      | 0.66 | 0.47 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| pH @18   | .9°C    | 7.2     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-0-1-211013** Sampled: 10/13/2021 08:37

Sample ID: 21J0887-10
Sample Matrix: Soil

# Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|---------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.098   | 0.032   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Acrylonitrile                      | ND      | 0.0059  | 0.00096 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00098 | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Benzene                            | ND      | 0.0020  | 0.00046 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Bromobenzene                       | ND      | 0.0020  | 0.00033 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Bromochloromethane                 | ND      | 0.0020  | 0.00093 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Bromodichloromethane               | ND      | 0.0020  | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Bromoform                          | ND      | 0.0020  | 0.00059 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Bromomethane                       | ND      | 0.0098  | 0.0036  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.039   | 0.012   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.098   | 0.047   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| n-Butylbenzene                     | ND      | 0.0020  | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0020  | 0.00095 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0039  | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00098 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Carbon Disulfide                   | ND      | 0.0098  | 0.0070  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0020  | 0.00076 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Chlorobenzene                      | ND      | 0.0020  | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Chlorodibromomethane               | ND      | 0.00098 | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Chloroethane                       | ND      | 0.020   | 0.0034  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Chloroform                         | ND      | 0.0039  | 0.00098 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Chloromethane                      | ND      | 0.0098  | 0.0032  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0020  | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0020  | 0.00034 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0020  | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00098 | 0.00061 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Dibromomethane                     | ND      | 0.0020  | 0.00072 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0020  | 0.00039 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0020  | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0020  | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0039  | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.020   | 0.0011  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0020  | 0.00049 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0020  | 0.00060 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0039  | 0.0012  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0020  | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.0020  | 0.00055 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0020  | 0.00046 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.00098 | 0.00047 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0020  | 0.00075 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0020  | 0.00077 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00098 | 0.00038 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00098 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Diethyl Ether                      | ND      | 0.020   | 0.0022  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
|                                    |         |         |         |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB207-0-1-211013 Sampled: 10/13/2021 08:37

Sample ID: 21J0887-10
Sample Matrix: Soil

1,2-Dichloroethane-d4

Toluene-d8 4-Bromofluorobenzene

### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00098 | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.098   | 0.022   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Ethylbenzene                                      | ND      | 0.0020  | 0.00044 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0020  | 0.00070 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.020   | 0.0057  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0020  | 0.00070 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0020  | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Methyl Acetate                                    | ND      | 0.0020  | 0.0013  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0039  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0020  | 0.00071 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Methylene Chloride                                | ND      | 0.020   | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.020   | 0.0043  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Naphthalene                                       | ND      | 0.0039  | 0.00051 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0020  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Styrene                                           | ND      | 0.0020  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0020  | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00098 | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0020  | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0098  | 0.0025  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Toluene                                           | ND      | 0.0020  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0020  | 0.00054 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0020  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0020  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0020  | 0.00067 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0020  | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Trichloroethylene                                 | ND      | 0.0020  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0098  | 0.0035  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0020  | 0.00094 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0098  | 0.0026  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0020  | 0.00063 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0020  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Vinyl Chloride                                    | ND      | 0.0098  | 0.0030  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| m+p Xylene                                        | ND      | 0.0039  | 0.00074 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| o-Xylene                                          | ND      | 0.0020  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 7:59         | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

108

100

99.6

70-130

70-130

70-130

10/18/21 7:59

10/18/21 7:59

10/18/21 7:59



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-0-1-211013** Sampled: 10/13/2021 08:37

Sample ID: 21J0887-10
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 2.8    | 2.8  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21         | 10/19/21 21:22        | KMB     |
| Diesel Range Organics         | 64      | 10     | 4.8  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21         | 10/20/21 18:56        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 89.2   |      | 70-130          |          |           |              |                  | 10/19/21 21:22        |         |
| 2-Fluorobiphenyl              |         | 73.4   |      | 40-140          |          |           |              |                  | 10/20/21 18:56        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-0-1-211013** Sampled: 10/13/2021 08:37

Sample ID: 21J0887-10
Sample Matrix: Soil

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |              |              |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 11000   | 20    | 7.3   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | МЈН     |
| Antimony  | ND      | 2.0   | 0.80  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Arsenic   | 5.0     | 4.0   | 1.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Barium    | 79      | 2.0   | 0.76  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Beryllium | 0.85    | 0.20  | 0.076 | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Cadmium   | ND      | 0.40  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Calcium   | 1800    | 20    | 7.8   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Chromium  | 19      | 0.80  | 0.45  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Cobalt    | 14      | 2.0   | 0.73  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Copper    | 20      | 0.80  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Iron      | 21000   | 100   | 40    | mg/Kg dry    | 5            |           | SW-846 6010D | 10/15/21 | 10/19/21 15:52 | QNW     |
| Lead      | 23      | 0.60  | 0.29  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Magnesium | 1700    | 100   | 35    | mg/Kg dry    | 5            |           | SW-846 6010D | 10/15/21 | 10/19/21 15:52 | QNW     |
| Manganese | 370     | 0.40  | 0.16  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Mercury   | 0.053   | 0.032 | 0.011 | mg/Kg dry    | 1            |           | SW-846 7471B | 10/15/21 | 10/21/21 11:13 | DRL     |
| Nickel    | 16      | 0.80  | 0.41  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Potassium | 940     | 200   | 75    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Selenium  | ND      | 4.0   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Silver    | ND      | 0.40  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Sodium    | 410     | 200   | 78    | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Thallium  | ND      | 2.0   | 0.96  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Vanadium  | 30      | 0.80  | 0.40  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
| Zinc      | 54      | 0.80  | 0.51  | mg/Kg dry    | 1            |           | SW-846 6010D | 10/15/21 | 10/18/21 0:48  | MJH     |
|           |         |       |       |              |              |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-0-1-211013** Sampled: 10/13/2021 08:37

Sample ID: 21J0887-10
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 80.5    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:29 | AL      |
| Cyanide  |         | ND      | 0.60 | 0.42 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| pH @19.  | 9°C     | 5.6     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-6-8-211013** Sampled: 10/13/2021 09:15

Sample ID: 21J0887-11
Sample Matrix: Soil

## Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|---------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.087   | 0.028   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Acrylonitrile                      | ND      | 0.0052  | 0.00085 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00087 | 0.00039 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Benzene                            | ND      | 0.0017  | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Bromobenzene                       | ND      | 0.0017  | 0.00029 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Bromochloromethane                 | ND      | 0.0017  | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Bromodichloromethane               | ND      | 0.0017  | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Bromoform                          | ND      | 0.0017  | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Bromomethane                       | ND      | 0.0087  | 0.0032  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.035   | 0.011   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.087   | 0.042   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| n-Butylbenzene                     | ND      | 0.0017  | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0017  | 0.00084 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0035  | 0.00074 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00087 | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Carbon Disulfide                   | ND      | 0.0087  | 0.0062  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0017  | 0.00067 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Chlorobenzene                      | ND      | 0.0017  | 0.00046 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Chlorodibromomethane               | ND      | 0.00087 | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Chloroethane                       | ND      | 0.017   | 0.0031  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Chloroform                         | ND      | 0.0035  | 0.00086 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Chloromethane                      | ND      | 0.0087  | 0.0028  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0017  | 0.00040 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0017  | 0.00030 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0017  | 0.00058 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00087 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Dibromomethane                     | ND      | 0.0017  | 0.00063 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0017  | 0.00035 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0017  | 0.00037 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0017  | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0035  | 0.00049 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.017   | 0.0010  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0017  | 0.00044 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0017  | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0035  | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0017  | 0.00046 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.0017  | 0.00049 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0017  | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.00087 | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0017  | 0.00067 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0017  | 0.00068 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00087 | 0.00034 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00087 | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Diethyl Ether                      | ND      | 0.017   | 0.0019  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
|                                    |         |         |         |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB207-6-8-211013 Sampled: 10/13/2021 09:15

Sample ID: 21J0887-11
Sample Matrix: Soil

1,2-Dichloroethane-d4

Toluene-d8 4-Bromofluorobenzene

### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00087 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.087   | 0.019   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Ethylbenzene                                      | ND      | 0.0017  | 0.00039 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.017   | 0.0050  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0017  | 0.00062 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Methyl Acetate                                    | ND      | 0.0017  | 0.0012  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0035  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0017  | 0.00063 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Methylene Chloride                                | ND      | 0.017   | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.017   | 0.0038  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Naphthalene                                       | ND      | 0.0035  | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0017  | 0.00034 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Styrene                                           | ND      | 0.0017  | 0.00037 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0017  | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00087 | 0.00048 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0087  | 0.0022  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Toluene                                           | ND      | 0.0017  | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0017  | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0017  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0017  | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0017  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Trichloroethylene                                 | ND      | 0.0017  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0087  | 0.0031  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0017  | 0.00083 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0087  | 0.0023  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0017  | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0017  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Vinyl Chloride                                    | ND      | 0.0087  | 0.0026  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| m+p Xylene                                        | ND      | 0.0035  | 0.00066 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| o-Xylene                                          | ND      | 0.0017  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:24         | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

103

95.3

103

70-130

70-130

70-130

10/18/21 8:24

10/18/21 8:24

10/18/21 8:24



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB207-6-8-211013 Sampled: 10/13/2021 09:15

Sample ID: 21J0887-11
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 2.7    | 2.7  | mg/Kg dry       | 1        | 0 -       | SW-846 8015C | 10/18/21         | 10/19/21 22:01        | KMB     |
| Diesel Range Organics         | ND      | 9.6    | 4.5  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21         | 10/20/21 13:33        | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 92.3   |      | 70-130          |          |           |              |                  | 10/19/21 22:01        |         |
| 2-Fluorobiphenyl              |         | 78.3   |      | 40-140          |          |           |              |                  | 10/20/21 13:33        |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-SB207-6-8-211013 Sampled: 10/13/2021 09:15

Sample ID: 21J0887-11
Sample Matrix: Soil

|           |         |       |       | Metals Allaly | yses (Total) |             |              |                  |                       |         |
|-----------|---------|-------|-------|---------------|--------------|-------------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL    | DL    | Units         | Dilution     | Flag/Qual   | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 9800    | 19    | 6.9   | mg/Kg dry     | 1            | r ing/ Quin | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Antimony  | ND      | 1.9   | 0.76  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Arsenic   | 9.4     | 3.8   | 1.4   | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Barium    | 59      | 1.9   | 0.72  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Beryllium | 0.90    | 0.19  | 0.071 | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Cadmium   | ND      | 0.38  | 0.19  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Calcium   | 250     | 19    | 7.3   | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Chromium  | 14      | 0.75  | 0.43  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Cobalt    | 25      | 1.9   | 0.69  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Copper    | 18      | 0.75  | 0.36  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Iron      | 18000   | 19    | 7.6   | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Lead      | 13      | 0.56  | 0.27  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Magnesium | 1400    | 94    | 33    | mg/Kg dry     | 5            |             | SW-846 6010D | 10/15/21         | 10/19/21 15:57        | QNW     |
| Manganese | 84      | 0.38  | 0.15  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | МЈН     |
| Mercury   | 0.019   | 0.031 | 0.011 | mg/Kg dry     | 1            | J           | SW-846 7471B | 10/15/21         | 10/21/21 11:15        | DRL     |
| Nickel    | 18      | 0.75  | 0.38  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Potassium | 690     | 190   | 71    | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Selenium  | ND      | 3.8   | 1.3   | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Silver    | ND      | 0.38  | 0.17  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Sodium    | 2700    | 190   | 73    | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Thallium  | ND      | 1.9   | 0.90  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Vanadium  | 36      | 0.75  | 0.37  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
| Zinc      | 41      | 0.75  | 0.48  | mg/Kg dry     | 1            |             | SW-846 6010D | 10/15/21         | 10/18/21 0:54         | MJH     |
|           |         |       |       |               |              |             |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-SB207-6-8-211013** Sampled: 10/13/2021 09:15

Sample ID: 21J0887-11
Sample Matrix: Soil

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids |         | 86.3    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:29 | AL      |
| Cyanide  |         | ND      | 0.56 | 0.40 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| рН @18°C |         | 9.7     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-DUP03-6-8-211013 Sampled: 10/13/2021 09:25

Sample ID: 21J0887-12
Sample Matrix: Soil

### Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL     | DL      | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|--------|---------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.11   | 0.034   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Acrylonitrile                      | ND      | 0.0063 | 0.0010  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.0011 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Benzene                            | ND      | 0.0021 | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Bromobenzene                       | ND      | 0.0021 | 0.00035 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Bromochloromethane                 | ND      | 0.0021 | 0.0010  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Bromodichloromethane               | ND      | 0.0021 | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Bromoform                          | ND      | 0.0021 | 0.00064 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Bromomethane                       | ND      | 0.011  | 0.0039  | mg/Kg dry | 1        | V-34      | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.042  | 0.013   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.11   | 0.051   | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| n-Butylbenzene                     | ND      | 0.0021 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0021 | 0.0010  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0042 | 0.00090 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.0011 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Carbon Disulfide                   | ND      | 0.011  | 0.0075  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0021 | 0.00082 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Chlorobenzene                      | ND      | 0.0021 | 0.00057 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Chlorodibromomethane               | ND      | 0.0011 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Chloroethane                       | ND      | 0.021  | 0.0037  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Chloroform                         | ND      | 0.0042 | 0.0011  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Chloromethane                      | ND      | 0.011  | 0.0034  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0021 | 0.00048 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0021 | 0.00037 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0021 | 0.00071 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.0011 | 0.00066 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Dibromomethane                     | ND      | 0.0021 | 0.00077 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0021 | 0.00042 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0021 | 0.00045 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0021 | 0.00054 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0042 | 0.00060 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.021  | 0.0012  | mg/Kg dry | 1        | V-05      | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0021 | 0.00053 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0021 | 0.00065 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0042 | 0.0013  | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0021 | 0.00056 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.0021 | 0.00059 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0021 | 0.00050 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.0011 | 0.00051 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0021 | 0.00081 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0021 | 0.00083 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.0011 | 0.00041 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.0011 | 0.00052 | mg/Kg dry | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
|                                    |         |        |         | 2 2 3     |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-DUP03-6-8-211013 Sampled: 10/13/2021 09:25

Sample ID: 21J0887-12
Sample Matrix: Soil

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.0011 | 0.00057 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.11   | 0.023   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Ethylbenzene                                      | ND      | 0.0021 | 0.00047 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0021 | 0.00076 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.021  | 0.0061  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0021 | 0.00076 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0021 | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Methyl Acetate                                    | ND      | 0.0021 | 0.0014  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0042 | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0021 | 0.00077 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Methylene Chloride                                | ND      | 0.021  | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.021  | 0.0047  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Naphthalene                                       | ND      | 0.0042 | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0021 | 0.00041 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Styrene                                           | ND      | 0.0021 | 0.00045 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0021 | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.0011 | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0021 | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.011  | 0.0027  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Toluene                                           | ND      | 0.0021 | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0021 | 0.00058 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0021 | 0.00051 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0021 | 0.00052 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0021 | 0.00072 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0021 | 0.00049 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Trichloroethylene                                 | ND      | 0.0021 | 0.00052 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.011  | 0.0038  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0021 | 0.0010  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.011  | 0.0028  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0021 | 0.00068 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0021 | 0.00046 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Vinyl Chloride                                    | ND      | 0.011  | 0.0032  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| m+p Xylene                                        | ND      | 0.0042 | 0.00080 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| o-Xylene                                          | ND      | 0.0021 | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 8:49         | MFF     |
| Surrogates                                        |         | % Reco | overy l | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

107

98.8

105

70-130

70-130

70-130

10/18/21 8:49

10/18/21 8:49

10/18/21 8:49



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-DUP03-6-8-211013** Sampled: 10/13/2021 09:25

Sample ID: 21J0887-12
Sample Matrix: Soil

### Petroleum Hydrocarbons Analyses

|                               |         |        |      |                 |          |           |              | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 3.1    | 3.1  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/19/21 22:40 | KMB     |
| Diesel Range Organics         | ND      | 10     | 4.7  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/20/21 13:53 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 1-Chloro-3-fluorobenzene      |         | 90.3   |      | 70-130          |          |           |              |          | 10/19/21 22:40 |         |
| 2-Fluorobiphenyl              |         | 75.5   |      | 40-140          |          |           |              |          | 10/20/21 13:53 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: HRP-DUP03-6-8-211013 Sampled: 10/13/2021 09:25

Sample ID: 21J0887-12
Sample Matrix: Soil

|           | Metals Analyses (Total) |       |       |           |          |           |              |          |                |         |
|-----------|-------------------------|-------|-------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           |                         |       |       |           |          |           |              | Date     | Date/Time      |         |
| Analyte   | Results                 | RL    | DL    | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 7300                    | 19    | 7.0   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Antimony  | ND                      | 1.9   | 0.78  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Arsenic   | 7.3                     | 3.8   | 1.4   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Barium    | 52                      | 1.9   | 0.73  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Beryllium | 0.97                    | 0.19  | 0.073 | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Cadmium   | 0.34                    | 0.38  | 0.20  | mg/Kg dry | 1        | J         | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Calcium   | 190                     | 19    | 7.5   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Chromium  | 12                      | 0.77  | 0.44  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Cobalt    | 13                      | 1.9   | 0.71  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Copper    | 14                      | 0.77  | 0.37  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Iron      | 20000                   | 96    | 39    | mg/Kg dry | 5        |           | SW-846 6010D | 10/15/21 | 10/19/21 16:09 | QNW     |
| Lead      | 6.8                     | 0.58  | 0.28  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Magnesium | 1000                    | 96    | 34    | mg/Kg dry | 5        |           | SW-846 6010D | 10/15/21 | 10/19/21 16:09 | QNW     |
| Manganese | 110                     | 0.38  | 0.15  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Mercury   | ND                      | 0.035 | 0.012 | mg/Kg dry | 1        |           | SW-846 7471B | 10/15/21 | 10/21/21 11:17 | DRL     |
| Nickel    | 20                      | 0.77  | 0.39  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Potassium | 560                     | 190   | 72    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Selenium  | ND                      | 3.8   | 1.4   | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Silver    | ND                      | 0.38  | 0.18  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Sodium    | 1600                    | 190   | 75    | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Thallium  | ND                      | 1.9   | 0.92  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Vanadium  | 29                      | 0.77  | 0.38  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | MJH     |
| Zinc      | 53                      | 0.77  | 0.49  | mg/Kg dry | 1        |           | SW-846 6010D | 10/15/21 | 10/18/21 1:01  | МЈН     |
|           |                         |       |       |           |          |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-DUP03-6-8-211013** Sampled: 10/13/2021 09:25

Sample ID: 21J0887-12
Sample Matrix: Soil

|            |            |      |      |           |          |           |              | Date     | Date/Time      |         |
|------------|------------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analy      | te Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids   | 81.4       |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:30 | AL      |
| Cyanide    | 2.2        | 0.60 | 0.42 | mg/Kg dry | 1        |           | SW-846 9014  | 10/18/21 | 10/19/21 21:15 | DJM     |
| рН @19.3°C | 9.6        |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: GRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21J0887-13
Sample Matrix: Soil

### Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL      | DL      | Units      | Dilution | Flag/Qual | Method          | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|---------|---------|------------|----------|-----------|-----------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 0.078   | 0.025   | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Acrylonitrile                      | ND      | 0.0047  | 0.00076 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.00078 | 0.00035 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Benzene                            | ND      | 0.0016  | 0.00036 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Bromobenzene                       | ND      | 0.0016  | 0.00026 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Bromochloromethane                 | ND      | 0.0016  | 0.00074 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Bromodichloromethane               | ND      | 0.0016  | 0.00037 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Bromoform                          | ND      | 0.0016  | 0.00047 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Bromomethane                       | ND      | 0.0078  | 0.0029  | mg/Kg dry  | 1        | V-34      | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 2-Butanone (MEK)                   | ND      | 0.031   | 0.0094  | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 0.078   | 0.038   | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| n-Butylbenzene                     | ND      | 0.0016  | 0.00040 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| sec-Butylbenzene                   | ND      | 0.0016  | 0.00075 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| tert-Butylbenzene                  | ND      | 0.0031  | 0.00066 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.00078 | 0.00040 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Carbon Disulfide                   | ND      | 0.0078  | 0.0055  | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Carbon Tetrachloride               | ND      | 0.0016  | 0.00060 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Chlorobenzene                      | ND      | 0.0016  | 0.00041 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Chlorodibromomethane               | ND      | 0.00078 | 0.00040 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Chloroethane                       | ND      | 0.016   | 0.0027  | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Chloroform                         | ND      | 0.0031  | 0.00077 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Chloromethane                      | ND      | 0.0078  | 0.0025  | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 2-Chlorotoluene                    | ND      | 0.0016  | 0.00035 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 4-Chlorotoluene                    | ND      | 0.0016  | 0.00027 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 0.0016  | 0.00052 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.00078 | 0.00048 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Dibromomethane                     | ND      | 0.0016  | 0.00057 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 0.0016  | 0.00031 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 0.0016  | 0.00033 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 0.0016  | 0.00040 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 0.0031  | 0.00044 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 0.016   | 0.00090 | mg/Kg dry  | 1        | V-05      | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1-Dichloroethane                 | ND      | 0.0016  | 0.00039 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2-Dichloroethane                 | ND      | 0.0016  | 0.00048 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1-Dichloroethylene               | ND      | 0.0031  | 0.00097 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 0.0016  | 0.00041 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 0.0016  | 0.00043 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2-Dichloropropane                | ND      | 0.0016  | 0.00037 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.00078 | 0.00037 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 2,2-Dichloropropane                | ND      | 0.0016  | 0.00060 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1-Dichloropropene                | ND      | 0.0016  | 0.00061 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.00078 | 0.00030 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.00078 | 0.00038 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| Diethyl Ether                      | ND      | 0.016   | 0.00036 | mg/Kg dry  | 1        |           | SW-846 8260D    | 10/18/21         | 10/18/21 9:14         | MFF     |
| y - <del>Love</del> -              | ND      | 0.010   | 0.0017  | mg/rxg ury | 1        |           | 5 11-0-10 02001 | 10/10/21         | 10/10/21 9.14         | 1711 1  |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

Field Sample #: GRP-SB207-16-18-211013 Sampled: 10/13/2021 09:32

Sample ID: 21J0887-13
Sample Matrix: Soil

1,2-Dichloroethane-d4

Toluene-d8 4-Bromofluorobenzene

#### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL      | DL      | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|---------|---------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.00078 | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,4-Dioxane                                       | ND      | 0.078   | 0.017   | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Ethylbenzene                                      | ND      | 0.0016  | 0.00035 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.0016  | 0.00055 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 0.016   | 0.0045  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 0.0016  | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 0.0016  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Methyl Acetate                                    | ND      | 0.0016  | 0.0011  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 0.0031  | 0.00029 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Methyl Cyclohexane                                | ND      | 0.0016  | 0.00056 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Methylene Chloride                                | ND      | 0.016   | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 0.016   | 0.0034  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Naphthalene                                       | ND      | 0.0031  | 0.00040 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| n-Propylbenzene                                   | ND      | 0.0016  | 0.00030 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Styrene                                           | ND      | 0.0016  | 0.00033 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 0.0016  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.00078 | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Tetrachloroethylene                               | ND      | 0.0016  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Tetrahydrofuran                                   | ND      | 0.0078  | 0.0020  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Toluene                                           | ND      | 0.0016  | 0.00043 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 0.0016  | 0.00042 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 0.0016  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 0.0016  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 0.0016  | 0.00053 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 0.0016  | 0.00036 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Trichloroethylene                                 | ND      | 0.0016  | 0.00038 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 0.0078  | 0.0028  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 0.0016  | 0.00074 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 0.0078  | 0.0021  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 0.0016  | 0.00050 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 0.0016  | 0.00034 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Vinyl Chloride                                    | ND      | 0.0078  | 0.0023  | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| m+p Xylene                                        | ND      | 0.0031  | 0.00059 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| o-Xylene                                          | ND      | 0.0016  | 0.00032 | mg/Kg dry      | 1        |           | SW-846 8260D | 10/18/21         | 10/18/21 9:14         | MFF     |
| Surrogates                                        |         | % Reco  | very    | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |

106

99.3

104

70-130

70-130

70-130

10/18/21 9:14

10/18/21 9:14

10/18/21 9:14



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: GRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21J0887-13
Sample Matrix: Soil

#### Petroleum Hydrocarbons Analyses

|                               |         |        |      |                 |          |           |              | Date     | Date/Time      |         |
|-------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|----------|----------------|---------|
| Analyte                       | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Gasoline Range Organics (GRO) | ND      | 2.8    | 2.8  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/19/21 23:19 | KMB     |
| Diesel Range Organics         | ND      | 9.1    | 4.2  | mg/Kg dry       | 1        |           | SW-846 8015C | 10/18/21 | 10/20/21 14:13 | SFM     |
| Surrogates                    |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |          |                |         |
| 1-Chloro-3-fluorobenzene      |         | 86.4   |      | 70-130          |          |           |              |          | 10/19/21 23:19 |         |
| 2-Fluorobiphenyl              |         | 79.6   |      | 40-140          |          |           |              |          | 10/20/21 14:13 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: GRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21J0887-13
Sample Matrix: Soil

#### Metals Analyses (Total)

|           |         |       |       | ivicuis rinar | ses (Total) |           |              |          |                |         |
|-----------|---------|-------|-------|---------------|-------------|-----------|--------------|----------|----------------|---------|
|           |         |       |       |               |             |           |              | Date     | Date/Time      |         |
| Analyte   | Results | RL    | DL    | Units         | Dilution    | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 4400    | 17    | 6.3   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Antimony  | ND      | 1.7   | 0.70  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Arsenic   | 3.5     | 3.4   | 1.3   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Barium    | 36      | 1.7   | 0.66  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Beryllium | 0.48    | 0.17  | 0.065 | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Cadmium   | ND      | 0.34  | 0.18  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Calcium   | 290     | 17    | 6.7   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Chromium  | 16      | 0.69  | 0.39  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Cobalt    | 7.3     | 1.7   | 0.63  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Copper    | 10      | 0.69  | 0.33  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Iron      | 18000   | 86    | 35    | mg/Kg dry     | 5           |           | SW-846 6010D | 10/15/21 | 10/19/21 16:14 | QNW     |
| Lead      | 4.5     | 0.52  | 0.25  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Magnesium | 940     | 86    | 30    | mg/Kg dry     | 5           |           | SW-846 6010D | 10/15/21 | 10/19/21 16:14 | QNW     |
| Manganese | 67      | 0.34  | 0.13  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Mercury   | ND      | 0.030 | 0.010 | mg/Kg dry     | 1           |           | SW-846 7471B | 10/15/21 | 10/21/21 11:19 | DRL     |
| Nickel    | 12      | 0.69  | 0.35  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Potassium | 350     | 170   | 65    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Selenium  | ND      | 3.4   | 1.2   | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Silver    | ND      | 0.34  | 0.16  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Sodium    | 950     | 170   | 67    | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Thallium  | ND      | 1.7   | 0.83  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | MJH     |
| Vanadium  | 24      | 0.69  | 0.34  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | МЈН     |
| Zinc      | 22      | 0.69  | 0.44  | mg/Kg dry     | 1           |           | SW-846 6010D | 10/15/21 | 10/18/21 1:08  | МЈН     |
|           |         |       |       |               |             |           |              |          |                |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: GRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21J0887-13
Sample Matrix: Soil

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |      |      |           |          |           |              | Date     | Date/Time      |         |
|----------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|----------------|---------|
|          | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| % Solids | 3       | 91.6    |      |      | % Wt      | 1        |           | SM 2540G     | 10/19/21 | 10/20/21 13:30 | AL      |
| Cyanide  |         | ND      | 0.50 | 0.35 | mg/Kg dry | 1        |           | SW-846 9014  | 10/19/21 | 10/20/21 17:15 | DJM     |
| pH @19.  | .2°C    | 9.4     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 10/15/21 | 10/15/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB02-211013** Sampled: 10/13/2021 12:35

Sample ID: 21J0887-14
Sample Matrix: Water

# Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L      | 1        |           | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB02-211013** Sampled: 10/13/2021 12:35

Sample ID: 21J0887-14
Sample Matrix: Water

#### Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | μg/L      | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | μg/L      | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | L-04, V-05 | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05       | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |            | SW-846 8260D | 10/25/21         | 10/25/21 14:07        | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 112        | 70-130          |           | 10/25/21 14:07 |
| Toluene-d8            | 109        | 70-130          |           | 10/25/21 14:07 |
| 4-Bromofluorobenzene  | 104        | 70-130          |           | 10/25/21 14:07 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21J0887

Date Received: 10/15/2021

**Field Sample #: HRP-TB02-211013** Sampled: 10/13/2021 12:35

Sample ID: 21J0887-14
Sample Matrix: Water

#### Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 10/25/21         | 10/25/21 14:11        | KMB     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 3        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 99.6   |        | 70-130          |          |           |              |                  | 10/25/21 14:11        |         |



#### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292726 | 10/19/21 |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292726 | 10/19/21 |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292726 | 10/19/21 |
| 21J0887-05 [HRP-SB203-0-1-211012]   | B292726 | 10/19/21 |
| 21J0887-06 [HRP-SB203-11-13-211012] | B292726 | 10/19/21 |
| 21J0887-07 [HRP-SB206-0-1-211012]   | B292726 | 10/19/21 |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292726 | 10/19/21 |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292726 | 10/19/21 |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292726 | 10/19/21 |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292726 | 10/19/21 |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292726 | 10/19/21 |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292726 | 10/19/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292559 | 1.54        | 50.0       | 10/15/21 |  |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292559 | 1.54        | 50.0       | 10/15/21 |  |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292559 | 1.53        | 50.0       | 10/15/21 |  |
| 21J0887-05 [HRP-SB203-0-1-211012]   | B292559 | 1.51        | 50.0       | 10/15/21 |  |
| 21J0887-06 [HRP-SB203-11-13-211012] | B292559 | 1.51        | 50.0       | 10/15/21 |  |
| 21J0887-07 [HRP-SB206-0-1-211012]   | B292559 | 1.50        | 50.0       | 10/15/21 |  |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292559 | 1.50        | 50.0       | 10/15/21 |  |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292559 | 1.59        | 50.0       | 10/15/21 |  |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292559 | 1.56        | 50.0       | 10/15/21 |  |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292559 | 1.54        | 50.0       | 10/15/21 |  |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292559 | 1.60        | 50.0       | 10/15/21 |  |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292559 | 1.59        | 50.0       | 10/15/21 |  |

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292571 | 0.580       | 50.0       | 10/15/21 |  |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292571 | 0.576       | 50.0       | 10/15/21 |  |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292571 | 0.579       | 50.0       | 10/15/21 |  |
| 21J0887-05 [HRP-SB203-0-1-211012]   | B292571 | 0.559       | 50.0       | 10/15/21 |  |
| 21J0887-06 [HRP-SB203-11-13-211012] | B292571 | 0.580       | 50.0       | 10/15/21 |  |
| 21J0887-07 [HRP-SB206-0-1-211012]   | B292571 | 0.558       | 50.0       | 10/15/21 |  |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292571 | 0.587       | 50.0       | 10/15/21 |  |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292571 | 0.600       | 50.0       | 10/15/21 |  |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292571 | 0.585       | 50.0       | 10/15/21 |  |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292571 | 0.557       | 50.0       | 10/15/21 |  |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292571 | 0.530       | 50.0       | 10/15/21 |  |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292571 | 0.550       | 50.0       | 10/15/21 |  |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]               | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------------|---------|--------------|------------|----------|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292550 | 6.41         | 16.0       | 10/15/21 |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292550 | 5.68         | 15.5       | 10/15/21 |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292550 | 5.06         | 15.5       | 10/15/21 |



#### **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]               | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------------|---------|--------------|------------|----------|
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292666 | 6.52         | 5.96       | 10/18/21 |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292666 | 6.33         | 16.6       | 10/18/21 |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292666 | 7.27         | 16.4       | 10/18/21 |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292666 | 6.80         | 15.9       | 10/18/21 |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292666 | 6.41         | 16.2       | 10/18/21 |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292666 | 5.97         | 15.5       | 10/18/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8015C

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292690 | 30.0        | 1.00       | 10/18/21 |  |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292690 | 30.0        | 1.00       | 10/18/21 |  |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0887-01 [HRP-TB01-211011] | B292856 | 5            | 5.00       | 10/20/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0887-14 [HRP-TB02-211013] | B293162 | 5            | 5.00       | 10/25/21 |

Prep Method: SW-846 5035 Analytical Method: SW-846 8260D

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292672 | 6.33        | 10.0       | 10/18/21 |  |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292672 | 6.67        | 10.0       | 10/18/21 |  |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292672 | 5.81        | 10.0       | 10/18/21 |  |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292672 | 7.04        | 10.0       | 10/18/21 |  |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0887-01 [HRP-TB01-211011] | B292647 | 5            | 5.00       | 10/18/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

|  | Lab Number [Field ID] | Batch | Initial [mL] | Final [mL] | Date |
|--|-----------------------|-------|--------------|------------|------|
|--|-----------------------|-------|--------------|------------|------|



#### **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21J0887-14 [HRP-TB02-211013] | B293177 | 5            | 5.00       | 10/25/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292783 | 30.0        | 1.00       | 10/19/21 |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292783 | 30.0        | 1.00       | 10/19/21 |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292783 | 30.0        | 1.00       | 10/19/21 |
| 21J0887-05 [HRP-SB203-0-1-211012]   | B292783 | 30.0        | 1.00       | 10/19/21 |
| 21J0887-06 [HRP-SB203-11-13-211012] | B292783 | 30.0        | 1.00       | 10/19/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292627 | 1.03        | 50.0       | 10/18/21 |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292627 | 1.01        | 50.0       | 10/18/21 |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292627 | 1.01        | 50.0       | 10/18/21 |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292627 | 1.03        | 50.0       | 10/18/21 |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292627 | 1.00        | 50.0       | 10/18/21 |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292627 | 1.04        | 50.0       | 10/18/21 |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292627 | 1.03        | 50.0       | 10/18/21 |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292627 | 1.03        | 50.0       | 10/18/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21J0887-07 [HRP-SB206-0-1-211012]   | B292770 | 1.05        | 50.0       | 10/19/21 |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292770 | 1.10        | 50.0       | 10/19/21 |

#### SW-846 9045C

| Lab Number [Field ID]               | Batch   | Initial [g] | Date     |
|-------------------------------------|---------|-------------|----------|
| 21J0887-02 [HRP-SB205-0-1-211011]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-03 [HRP-SB205-13-15-211011] | B292587 | 20.0        | 10/15/21 |
| 21J0887-04 [HRP-DUP02-13-15-211011] | B292587 | 20.0        | 10/15/21 |
| 21J0887-07 [HRP-SB206-0-1-211012]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-08 [HRP-SB206-5-7-211012]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-09 [HR-SB206-15-17-211012]  | B292587 | 20.0        | 10/15/21 |
| 21J0887-10 [HRP-SB207-0-1-211013]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-11 [HRP-SB207-6-8-211013]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-12 [HRP-DUP03-6-8-211013]   | B292587 | 20.0        | 10/15/21 |
| 21J0887-13 [GRP-SB207-16-18-211013] | B292587 | 20.0        | 10/15/21 |



1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Diethyl Ether

1,4-Dioxane

Ethylbenzene

Methyl Acetate

Hexachlorobutadiene

2-Hexanone (MBK)

Isopropylbenzene (Cumene)

p-Isopropyltoluene (p-Cymene)

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Diisopropyl Ether (DIPE)

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-----|--------------|-------|
| Anaryte                            | Result | Liiilli            | UIIIIS    | Level          | Resuit           | 70KEC  | LIIIIIS        | KrD | LIIIII       | notes |
| Batch B292647 - SW-846 5030B       |        |                    |           |                |                  |        |                |     |              |       |
| Blank (B292647-BLK1)               |        |                    |           | Prepared &     | Analyzed: 10     | /18/21 |                |     |              |       |
| Acetone                            | ND     | 50                 | μg/L      |                |                  |        |                |     |              |       |
| Acrylonitrile                      | ND     | 5.0                | $\mu g/L$ |                |                  |        |                |     |              | V-05  |
| tert-Amyl Methyl Ether (TAME)      | ND     | 0.50               | $\mu g/L$ |                |                  |        |                |     |              |       |
| Benzene                            | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Bromobenzene                       | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Bromochloromethane                 | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Bromodichloromethane               | ND     | 0.50               | $\mu g/L$ |                |                  |        |                |     |              |       |
| Bromoform                          | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Bromomethane                       | ND     | 2.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 2-Butanone (MEK)                   | ND     | 20                 | $\mu g/L$ |                |                  |        |                |     |              |       |
| tert-Butyl Alcohol (TBA)           | ND     | 20                 | $\mu g/L$ |                |                  |        |                |     |              |       |
| n-Butylbenzene                     | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| sec-Butylbenzene                   | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| ert-Butylbenzene                   | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| ert-Butyl Ethyl Ether (TBEE)       | ND     | 0.50               | $\mu g/L$ |                |                  |        |                |     |              |       |
| Carbon Disulfide                   | ND     | 5.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Carbon Tetrachloride               | ND     | 5.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Chlorobenzene                      | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Chlorodibromomethane               | ND     | 0.50               | $\mu g/L$ |                |                  |        |                |     |              |       |
| Chloroethane                       | ND     | 2.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Chloroform                         | ND     | 2.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| Chloromethane                      | ND     | 2.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 2-Chlorotoluene                    | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 1-Chlorotoluene                    | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND     | 5.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 1,2-Dibromoethane (EDB)            | ND     | 0.50               | $\mu g/L$ |                |                  |        |                |     |              |       |
| Dibromomethane                     | ND     | 1.0                | μg/L      |                |                  |        |                |     |              |       |
| ,2-Dichlorobenzene                 | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 1,3-Dichlorobenzene                | ND     | 1.0                | $\mu g/L$ |                |                  |        |                |     |              |       |
| 1,4-Dichlorobenzene                | ND     | 1.0                | μg/L      |                |                  |        |                |     |              |       |
| trans-1,4-Dichloro-2-butene        | ND     | 2.0                | μg/L      |                |                  |        |                |     |              |       |
| Dichlorodifluoromethane (Freon 12) | ND     | 2.0                | μg/L      |                |                  |        |                |     |              |       |
| =                                  | _      |                    |           |                |                  |        |                |     |              |       |

1.0

1.0

1.0

1.0

1.0

1.0

0.50

1.0

2.0

0.50

0.50

2.0

0.50

50

1.0

0.60

10

1.0

1.0

1.0

 $\mu g/L$ 

 $\mu g \! / \! L$ 

 $\mu g/L$ 

 $\mu g \! / \! L$ 

 $\mu g/L$ 

 $\mu g/L$ 

ND



# QUALITY CONTROL

| Analyte                                          | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit | Notes        |
|--------------------------------------------------|--------------|--------------------|--------------|----------------|------------------|--------------|------------------|-----|--------------|--------------|
| Batch B292647 - SW-846 5030B                     |              |                    |              |                |                  |              |                  |     |              |              |
| Blank (B292647-BLK1)                             |              |                    |              | Prepared &     | Analyzed: 10     | /18/21       |                  |     |              |              |
| Methyl tert-Butyl Ether (MTBE)                   | ND           | 1.0                | $\mu g/L$    |                |                  |              |                  |     |              |              |
| Methyl Cyclohexane                               | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| Methylene Chloride                               | ND           | 5.0                | μg/L         |                |                  |              |                  |     |              |              |
| -Methyl-2-pentanone (MIBK)                       | ND           | 10                 | μg/L         |                |                  |              |                  |     |              |              |
| Naphthalene                                      | ND           | 2.0                | μg/L         |                |                  |              |                  |     |              | V-05         |
| -Propylbenzene                                   | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| Styrene                                          | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| ,1,1,2-Tetrachloroethane                         | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| ,1,2,2-Tetrachloroethane<br>etrachloroethylene   | ND           | 0.50<br>1.0        | μg/L         |                |                  |              |                  |     |              |              |
| etracmoroethylene                                | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| oluene                                           | ND           | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              |              |
| ,2,3-Trichlorobenzene                            | ND<br>ND     | 5.0                | μg/L<br>μg/L |                |                  |              |                  |     |              | V-05         |
| ,2,4-Trichlorobenzene                            | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              | V-05<br>V-05 |
| ,3,5-Trichlorobenzene                            | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              | ¥-03         |
| ,1,1-Trichloroethane                             | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              |              |
| ,1,2-Trichloroethane                             | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              |              |
| richloroethylene                                 | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |              |                  |     |              |              |
| richlorofluoromethane (Freon 11)                 | ND           | 2.0                | μg/L         |                |                  |              |                  |     |              |              |
| ,2,3-Trichloropropane                            | ND           | 2.0                | μg/L         |                |                  |              |                  |     |              |              |
| 1,2-Trichloro-1,2,2-trifluoroethane (Freon       | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              | V-05         |
| 13)                                              | 1,2          |                    |              |                |                  |              |                  |     |              |              |
| ,2,4-Trimethylbenzene                            | ND           | 1.0                | $\mu g/L$    |                |                  |              |                  |     |              |              |
| ,3,5-Trimethylbenzene                            | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| 'inyl Chloride                                   | ND           | 2.0                | μg/L         |                |                  |              |                  |     |              |              |
| n+p Xylene                                       | ND           | 2.0                | μg/L         |                |                  |              |                  |     |              |              |
| -Xylene                                          | ND           | 1.0                | μg/L         |                |                  |              |                  |     |              |              |
| urrogate: 1,2-Dichloroethane-d4                  | 27.9         |                    | $\mu g/L$    | 25.0           |                  | 112          | 70-130           |     |              |              |
| urrogate: Toluene-d8                             | 25.7         |                    | $\mu g/L$    | 25.0           |                  | 103          | 70-130           |     |              |              |
| urrogate: 4-Bromofluorobenzene                   | 25.1         |                    | μg/L         | 25.0           |                  | 100          | 70-130           |     |              |              |
| CS (B292647-BS1)                                 |              |                    |              | Prepared &     | Analyzed: 10     | /18/21       |                  |     |              |              |
| cetone                                           | 84.3         | 50                 | μg/L         | 100            |                  | 84.3         | 70-160           |     |              |              |
| crylonitrile                                     | 7.77         | 5.0                | μg/L         | 10.0           |                  | 77.7         | 70-130           |     |              | V-05         |
| ert-Amyl Methyl Ether (TAME)                     | 10.9         | 0.50               | μg/L         | 10.0           |                  | 109          | 70-130           |     |              |              |
| Benzene                                          | 10.9         | 1.0                | μg/L         | 10.0           |                  | 109          | 70-130           |     |              |              |
| Bromobenzene                                     | 10.0         | 1.0                | μg/L         | 10.0           |                  | 100          | 70-130           |     |              |              |
| Bromochloromethane                               | 11.6         | 1.0                | μg/L         | 10.0           |                  | 116          | 70-130           |     |              |              |
| Bromodichloromethane                             | 11.3         | 0.50               | μg/L         | 10.0           |                  | 113          | 70-130           |     |              |              |
| Bromoform                                        | 10.2         | 1.0                | μg/L         | 10.0           |                  | 102          | 70-130           |     |              |              |
| Fromomethane -Butanone (MEK)                     | 8.97         | 2.0                | μg/L         | 10.0           |                  | 89.7         | 40-160           |     |              |              |
| ert-Butyl Alcohol (TBA)                          | 102          | 20<br>20           | μg/L<br>μg/I | 100            |                  | 102<br>80.8  | 40-160<br>40-160 |     |              |              |
| -Butyl Alconol (1 BA)<br>-Butylbenzene           | 80.8         | 1.0                | μg/L<br>μg/L | 100<br>10.0    |                  | 80.8<br>94.8 | 70-130           |     |              |              |
| ec-Butylbenzene                                  | 9.48         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 94.8<br>100  | 70-130<br>70-130 |     |              |              |
| ert-Butylbenzene                                 | 10.0         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 100          | 70-130<br>70-130 |     |              |              |
| ert-Butylbenzene<br>ert-Butyl Ethyl Ether (TBEE) | 10.5         | 0.50               | μg/L<br>μg/L | 10.0           |                  | 110          | 70-130           |     |              |              |
| Carbon Disulfide                                 | 11.0<br>92.3 | 5.0                | μg/L<br>μg/L | 10.0           |                  | 92.3         | 70-130           |     |              |              |
| Carbon Tetrachloride                             |              | 5.0                | μg/L<br>μg/L | 10.0           |                  | 92.3<br>116  | 70-130           |     |              |              |
| Chlorobenzene                                    | 11.6<br>10.4 | 1.0                | μg/L<br>μg/L | 10.0           |                  | 104          | 70-130           |     |              |              |
| Chlorodibromomethane                             | 10.4         | 0.50               | μg/L<br>μg/L | 10.0           |                  | 112          | 70-130           |     |              |              |
| Chloroethane                                     | 8.93         | 2.0                | μg/L<br>μg/L | 10.0           |                  | 89.3         | 70-130           |     |              |              |
|                                                  |              |                    |              |                |                  |              |                  |     |              |              |



# QUALITY CONTROL

Spike

Source

%REC

RPD

# Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                           | Result | Limit | Units     | Level      | Result         | %REC | Limits | RPD | Limit | Notes |
|-----------------------------------|--------|-------|-----------|------------|----------------|------|--------|-----|-------|-------|
| Batch B292647 - SW-846 5030B      |        |       |           |            |                |      |        |     |       |       |
| .CS (B292647-BS1)                 |        |       |           | Prepared & | Analyzed: 10/1 | 8/21 |        |     |       |       |
| Chloromethane                     | 12.0   | 2.0   | $\mu g/L$ | 10.0       |                | 120  | 40-160 |     |       |       |
| -Chlorotoluene                    | 9.93   | 1.0   | μg/L      | 10.0       |                | 99.3 | 70-130 |     |       |       |
| -Chlorotoluene                    | 9.99   | 1.0   | μg/L      | 10.0       |                | 99.9 | 70-130 |     |       |       |
| ,2-Dibromo-3-chloropropane (DBCP) | 9.77   | 5.0   | μg/L      | 10.0       |                | 97.7 | 70-130 |     |       |       |
| 2-Dibromoethane (EDB)             | 10.7   | 0.50  | μg/L      | 10.0       |                | 107  | 70-130 |     |       |       |
| ibromomethane                     | 10.9   | 1.0   | μg/L      | 10.0       |                | 109  | 70-130 |     |       |       |
| 2-Dichlorobenzene                 | 10.6   | 1.0   | μg/L      | 10.0       |                | 106  | 70-130 |     |       |       |
| 3-Dichlorobenzene                 | 10.6   | 1.0   | μg/L      | 10.0       |                | 106  | 70-130 |     |       |       |
| 4-Dichlorobenzene                 | 10.3   | 1.0   | μg/L      | 10.0       |                | 103  | 70-130 |     |       |       |
| ans-1,4-Dichloro-2-butene         | 9.80   | 2.0   | μg/L      | 10.0       |                | 98.0 | 70-130 |     |       |       |
| ichlorodifluoromethane (Freon 12) | 12.5   | 2.0   | μg/L      | 10.0       |                | 125  | 40-160 |     |       |       |
| 1-Dichloroethane                  | 11.4   | 1.0   | μg/L      | 10.0       |                | 114  | 70-130 |     |       |       |
| 2-Dichloroethane                  | 11.6   | 1.0   | $\mu g/L$ | 10.0       |                | 116  | 70-130 |     |       |       |
| 1-Dichloroethylene                | 9.31   | 1.0   | $\mu g/L$ | 10.0       |                | 93.1 | 70-130 |     |       |       |
| s-1,2-Dichloroethylene            | 11.2   | 1.0   | $\mu g/L$ | 10.0       |                | 112  | 70-130 |     |       |       |
| ans-1,2-Dichloroethylene          | 9.77   | 1.0   | $\mu g/L$ | 10.0       |                | 97.7 | 70-130 |     |       |       |
| 2-Dichloropropane                 | 11.0   | 1.0   | $\mu g/L$ | 10.0       |                | 110  | 70-130 |     |       |       |
| 3-Dichloropropane                 | 10.8   | 0.50  | $\mu g/L$ | 10.0       |                | 108  | 70-130 |     |       |       |
| 2-Dichloropropane                 | 11.6   | 1.0   | μg/L      | 10.0       |                | 116  | 40-130 |     |       |       |
| 1-Dichloropropene                 | 11.2   | 2.0   | $\mu g/L$ | 10.0       |                | 112  | 70-130 |     |       |       |
| -1,3-Dichloropropene              | 11.7   | 0.50  | $\mu g/L$ | 10.0       |                | 117  | 70-130 |     |       |       |
| ns-1,3-Dichloropropene            | 11.0   | 0.50  | μg/L      | 10.0       |                | 110  | 70-130 |     |       |       |
| ethyl Ether                       | 8.45   | 2.0   | $\mu g/L$ | 10.0       |                | 84.5 | 70-130 |     |       |       |
| isopropyl Ether (DIPE)            | 11.2   | 0.50  | μg/L      | 10.0       |                | 112  | 70-130 |     |       |       |
| 4-Dioxane                         | 86.1   | 50    | $\mu g/L$ | 100        |                | 86.1 | 40-130 |     |       |       |
| hylbenzene                        | 10.2   | 1.0   | $\mu g/L$ | 10.0       |                | 102  | 70-130 |     |       |       |
| exachlorobutadiene                | 10.6   | 0.60  | μg/L      | 10.0       |                | 106  | 70-130 |     |       |       |
| Hexanone (MBK)                    | 96.9   | 10    | μg/L      | 100        |                | 96.9 | 70-160 |     |       |       |
| opropylbenzene (Cumene)           | 10.1   | 1.0   | $\mu g/L$ | 10.0       |                | 101  | 70-130 |     |       |       |
| Isopropyltoluene (p-Cymene)       | 10.1   | 1.0   | μg/L      | 10.0       |                | 101  | 70-130 |     |       |       |
| ethyl Acetate                     | 9.73   | 1.0   | $\mu g/L$ | 10.0       |                | 97.3 | 70-130 |     |       |       |
| ethyl tert-Butyl Ether (MTBE)     | 9.45   | 1.0   | $\mu g/L$ | 10.0       |                | 94.5 | 70-130 |     |       |       |
| ethyl Cyclohexane                 | 9.99   | 1.0   | $\mu g/L$ | 10.0       |                | 99.9 | 70-130 |     |       |       |
| lethylene Chloride                | 8.85   | 5.0   | $\mu g/L$ | 10.0       |                | 88.5 | 70-130 |     |       |       |
| Methyl-2-pentanone (MIBK)         | 104    | 10    | $\mu g/L$ | 100        |                | 104  | 70-160 |     |       |       |
| aphthalene                        | 5.78   | 2.0   | $\mu g/L$ | 10.0       |                | 57.8 | 40-130 |     |       | V-05  |
| Propylbenzene                     | 9.75   | 1.0   | $\mu g/L$ | 10.0       |                | 97.5 | 70-130 |     |       |       |
| yrene                             | 10.6   | 1.0   | $\mu g/L$ | 10.0       |                | 106  | 70-130 |     |       |       |
| 1,1,2-Tetrachloroethane           | 11.4   | 1.0   | $\mu g/L$ | 10.0       |                | 114  | 70-130 |     |       |       |
| 1,2,2-Tetrachloroethane           | 10.6   | 0.50  | $\mu g/L$ | 10.0       |                | 106  | 70-130 |     |       |       |
| etrachloroethylene                | 11.2   | 1.0   | $\mu g/L$ | 10.0       |                | 112  | 70-130 |     |       |       |
| etrahydrofuran                    | 10.3   | 10    | $\mu g/L$ | 10.0       |                | 103  | 70-130 |     |       |       |
| bluene                            | 10.8   | 1.0   | $\mu g/L$ | 10.0       |                | 108  | 70-130 |     |       |       |
| 2,3-Trichlorobenzene              | 7.12   | 5.0   | $\mu g/L$ | 10.0       |                | 71.2 | 70-130 |     |       | V-05  |
| 2,4-Trichlorobenzene              | 7.92   | 1.0   | $\mu g/L$ | 10.0       |                | 79.2 | 70-130 |     |       | V-05  |
| 3,5-Trichlorobenzene              | 9.37   | 1.0   | $\mu g/L$ | 10.0       |                | 93.7 | 70-130 |     |       |       |
| 1,1-Trichloroethane               | 11.1   | 1.0   | $\mu g/L$ | 10.0       |                | 111  | 70-130 |     |       |       |
| 1,2-Trichloroethane               | 11.0   | 1.0   | $\mu g/L$ | 10.0       |                | 110  | 70-130 |     |       |       |
| richloroethylene                  | 11.6   | 1.0   | μg/L      | 10.0       |                | 116  | 70-130 |     |       |       |
| richlorofluoromethane (Freon 11)  | 8.70   | 2.0   | μg/L      | 10.0       |                | 87.0 | 70-130 |     |       |       |
| 2,3-Trichloropropane              | 9.59   | 2.0   | μg/L      | 10.0       |                | 95.9 | 70-130 |     |       |       |



# QUALITY CONTROL

| Analyte                                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|----------------------------------------------|--------|--------------------|-----------|----------------|------------------|------|----------------|-------|--------------|-------|---|
| Batch B292647 - SW-846 5030B                 |        |                    |           |                |                  |      |                |       |              |       |   |
| LCS (B292647-BS1)                            |        |                    |           | Prepared &     | Analyzed: 10/1   | 8/21 |                |       |              |       | _ |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 8.99   | 1.0                | μg/L      | 10.0           |                  | 89.9 | 70-130         |       |              | V-05  | — |
| 113)                                         | 6.97   |                    | r-6-      | 10.0           |                  | 07.7 | 70 130         |       |              | * 03  |   |
| 1,2,4-Trimethylbenzene                       | 10.5   | 1.0                | $\mu g/L$ | 10.0           |                  | 105  | 70-130         |       |              |       |   |
| 1,3,5-Trimethylbenzene                       | 10.1   | 1.0                | $\mu g/L$ | 10.0           |                  | 101  | 70-130         |       |              |       |   |
| Vinyl Chloride                               | 12.4   | 2.0                | $\mu g/L$ | 10.0           |                  | 124  | 40-160         |       |              |       |   |
| m+p Xylene                                   | 20.5   | 2.0                | $\mu g/L$ | 20.0           |                  | 102  | 70-130         |       |              |       |   |
| o-Xylene                                     | 10.6   | 1.0                | $\mu g/L$ | 10.0           |                  | 106  | 70-130         |       |              |       |   |
| Surrogate: 1,2-Dichloroethane-d4             | 28.0   |                    | μg/L      | 25.0           |                  | 112  | 70-130         |       |              |       |   |
| Surrogate: Toluene-d8                        | 26.4   |                    | $\mu g/L$ | 25.0           |                  | 106  | 70-130         |       |              |       |   |
| Surrogate: 4-Bromofluorobenzene              | 25.1   |                    | $\mu g/L$ | 25.0           |                  | 100  | 70-130         |       |              |       |   |
| LCS Dup (B292647-BSD1)                       |        |                    |           | Prepared &     | Analyzed: 10/1   | 8/21 |                |       |              |       |   |
| Acetone                                      | 85.7   | 50                 | μg/L      | 100            |                  | 85.7 | 70-160         | 1.64  | 25           |       |   |
| Acrylonitrile                                | 8.17   | 5.0                | μg/L      | 10.0           |                  | 81.7 | 70-130         | 5.02  | 25           | V-05  |   |
| tert-Amyl Methyl Ether (TAME)                | 10.2   | 0.50               | $\mu g/L$ | 10.0           |                  | 102  | 70-130         | 6.81  | 25           |       |   |
| Benzene                                      | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102  | 70-130         | 7.30  | 25           |       |   |
| Bromobenzene                                 | 9.89   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.9 | 70-130         | 1.51  | 25           |       |   |
| Bromochloromethane                           | 10.9   | 1.0                | $\mu g/L$ | 10.0           |                  | 109  | 70-130         | 5.52  | 25           |       |   |
| Bromodichloromethane                         | 11.7   | 0.50               | $\mu g/L$ | 10.0           |                  | 117  | 70-130         | 2.96  | 25           |       |   |
| Bromoform                                    | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102  | 70-130         | 0.391 | 25           |       |   |
| Bromomethane                                 | 8.52   | 2.0                | $\mu g/L$ | 10.0           |                  | 85.2 | 40-160         | 5.15  | 25           |       |   |
| 2-Butanone (MEK)                             | 105    | 20                 | μg/L      | 100            |                  | 105  | 40-160         | 2.90  | 25           |       |   |
| tert-Butyl Alcohol (TBA)                     | 86.4   | 20                 | $\mu g/L$ | 100            |                  | 86.4 | 40-160         | 6.69  | 25           |       |   |
| n-Butylbenzene                               | 8.73   | 1.0                | μg/L      | 10.0           |                  | 87.3 | 70-130         | 8.24  | 25           |       |   |
| sec-Butylbenzene                             | 9.42   | 1.0                | μg/L      | 10.0           |                  | 94.2 | 70-130         | 6.17  | 25           |       |   |
| tert-Butylbenzene                            | 9.73   | 1.0                | μg/L      | 10.0           |                  | 97.3 | 70-130         | 7.99  | 25           |       |   |
| tert-Butyl Ethyl Ether (TBEE)                | 10.7   | 0.50               | μg/L      | 10.0           |                  | 107  | 70-130         | 3.13  | 25           |       |   |
| Carbon Disulfide                             | 82.7   | 5.0                | $\mu g/L$ | 100            |                  | 82.7 | 70-130         | 11.0  | 25           |       |   |
| Carbon Tetrachloride                         | 10.8   | 5.0                | μg/L      | 10.0           |                  | 108  | 70-130         | 7.30  | 25           |       |   |
| Chlorobenzene                                | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102  | 70-130         | 2.43  | 25           |       |   |
| Chlorodibromomethane                         | 11.5   | 0.50               | μg/L      | 10.0           |                  | 115  | 70-130         | 2.73  | 25           |       |   |
| Chloroethane                                 | 8.60   | 2.0                | μg/L      | 10.0           |                  | 86.0 | 70-130         | 3.76  | 25           |       |   |
| Chloroform                                   | 10.7   | 2.0                | $\mu g/L$ | 10.0           |                  | 107  | 70-130         | 5.21  | 25           |       |   |
| Chloromethane                                | 11.4   | 2.0                | $\mu g/L$ | 10.0           |                  | 114  | 40-160         | 5.05  | 25           |       |   |
| 2-Chlorotoluene                              | 9.75   | 1.0                | $\mu g/L$ | 10.0           |                  | 97.5 | 70-130         | 1.83  | 25           |       |   |
| 4-Chlorotoluene                              | 9.49   | 1.0                | μg/L      | 10.0           |                  | 94.9 | 70-130         | 5.13  | 25           |       |   |
| 1,2-Dibromo-3-chloropropane (DBCP)           | 9.75   | 5.0                | μg/L      | 10.0           |                  | 97.5 | 70-130         | 0.205 | 25           |       |   |
| 1,2-Dibromoethane (EDB)                      | 11.4   | 0.50               | $\mu g/L$ | 10.0           |                  | 114  | 70-130         | 5.70  | 25           |       |   |
| Dibromomethane                               | 10.8   | 1.0                | $\mu g/L$ | 10.0           |                  | 108  | 70-130         | 1.01  | 25           |       |   |
| 1,2-Dichlorobenzene                          | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102  | 70-130         | 3.64  | 25           |       |   |
| 1,3-Dichlorobenzene                          | 9.97   | 1.0                | $\mu g/L$ | 10.0           |                  | 99.7 | 70-130         | 6.22  | 25           |       |   |
| 1,4-Dichlorobenzene                          | 9.95   | 1.0                | $\mu g/L$ | 10.0           |                  | 99.5 | 70-130         | 3.36  | 25           |       |   |
| trans-1,4-Dichloro-2-butene                  | 10.2   | 2.0                | $\mu g/L$ | 10.0           |                  | 102  | 70-130         | 4.20  | 25           |       |   |
| Dichlorodifluoromethane (Freon 12)           | 11.2   | 2.0                | μg/L      | 10.0           |                  | 112  | 40-160         | 10.9  | 25           |       |   |
| 1,1-Dichloroethane                           | 10.7   | 1.0                | μg/L      | 10.0           |                  | 107  | 70-130         | 5.80  | 25           |       |   |
| 1,2-Dichloroethane                           | 11.4   | 1.0                | μg/L      | 10.0           |                  | 114  | 70-130         | 1.56  | 25           |       |   |
| 1,1-Dichloroethylene                         | 8.34   | 1.0                | μg/L      | 10.0           |                  | 83.4 | 70-130         | 11.0  | 25           |       |   |
| cis-1,2-Dichloroethylene                     | 10.8   | 1.0                | μg/L      | 10.0           |                  | 108  | 70-130         | 4.28  | 25           |       |   |
| trans-1,2-Dichloroethylene                   | 9.25   | 1.0                | μg/L      | 10.0           |                  | 92.5 | 70-130         | 5.47  | 25           |       |   |
| 1,2-Dichloropropane                          | 11.0   | 1.0                | μg/L      | 10.0           |                  | 110  | 70-130         | 0.456 | 25           |       |   |
| 1,3-Dichloropropane                          | 11.0   | 0.50               | μg/L      | 10.0           |                  | 110  | 70-130         | 1.47  | 25           |       |   |
| 2,2-Dichloropropane                          | 10.8   | 1.0                | μg/L      | 10.0           |                  | 108  | 40-130         | 6.53  | 25           |       |   |
| 1,1-Dichloropropene                          | 10.3   | 2.0                | μg/L      | 10.0           |                  | 103  | 70-130         | 7.81  | 25           |       |   |



# QUALITY CONTROL

‡

| Analyte                                      | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |   |
|----------------------------------------------|--------|--------------------|--------------|----------------|------------------|--------|----------------|------|--------------|-------|---|
| Batch B292647 - SW-846 5030B                 |        |                    |              |                |                  |        |                |      |              |       |   |
| LCS Dup (B292647-BSD1)                       |        |                    |              | Prepared &     | Analyzed: 10     | /18/21 |                |      |              |       |   |
| cis-1,3-Dichloropropene                      | 11.7   | 0.50               | μg/L         | 10.0           |                  | 117    | 70-130         | 0.00 | 25           |       |   |
| trans-1,3-Dichloropropene                    | 11.2   | 0.50               | $\mu g/L$    | 10.0           |                  | 112    | 70-130         | 1.63 | 25           |       |   |
| Diethyl Ether                                | 8.13   | 2.0                | $\mu g/L$    | 10.0           |                  | 81.3   | 70-130         | 3.86 | 25           |       |   |
| Diisopropyl Ether (DIPE)                     | 10.7   | 0.50               | $\mu g/L$    | 10.0           |                  | 107    | 70-130         | 4.40 | 25           |       |   |
| 1,4-Dioxane                                  | 101    | 50                 | $\mu g/L$    | 100            |                  | 101    | 40-130         | 15.6 | 50           |       | i |
| Ethylbenzene                                 | 9.78   | 1.0                | $\mu g/L$    | 10.0           |                  | 97.8   | 70-130         | 4.50 | 25           |       |   |
| Hexachlorobutadiene                          | 9.10   | 0.60               | $\mu g/L$    | 10.0           |                  | 91.0   | 70-130         | 15.6 | 25           |       |   |
| 2-Hexanone (MBK)                             | 103    | 10                 | $\mu g/L$    | 100            |                  | 103    | 70-160         | 6.44 | 25           |       | i |
| Isopropylbenzene (Cumene)                    | 9.71   | 1.0                | $\mu g/L$    | 10.0           |                  | 97.1   | 70-130         | 4.23 | 25           |       |   |
| p-Isopropyltoluene (p-Cymene)                | 9.22   | 1.0                | $\mu g/L$    | 10.0           |                  | 92.2   | 70-130         | 9.50 | 25           |       |   |
| Methyl Acetate                               | 9.38   | 1.0                | $\mu g/L$    | 10.0           |                  | 93.8   | 70-130         | 3.66 | 25           |       |   |
| Methyl tert-Butyl Ether (MTBE)               | 9.72   | 1.0                | $\mu g/L$    | 10.0           |                  | 97.2   | 70-130         | 2.82 | 25           |       |   |
| Methyl Cyclohexane                           | 9.62   | 1.0                | $\mu g/L$    | 10.0           |                  | 96.2   | 70-130         | 3.77 | 25           |       |   |
| Methylene Chloride                           | 8.38   | 5.0                | μg/L         | 10.0           |                  | 83.8   | 70-130         | 5.46 | 25           |       |   |
| 4-Methyl-2-pentanone (MIBK)                  | 109    | 10                 | μg/L         | 100            |                  | 109    | 70-160         | 5.30 | 25           |       | † |
| Naphthalene                                  | 5.93   | 2.0                | μg/L         | 10.0           |                  | 59.3   | 40-130         | 2.56 | 25           | V-05  | † |
| n-Propylbenzene                              | 9.39   | 1.0                | μg/L         | 10.0           |                  | 93.9   | 70-130         | 3.76 | 25           |       |   |
| Styrene                                      | 10.5   | 1.0                | μg/L         | 10.0           |                  | 105    | 70-130         | 1.61 | 25           |       |   |
| 1,1,2-Tetrachloroethane                      | 11.1   | 1.0                | μg/L         | 10.0           |                  | 111    | 70-130         | 1.96 | 25           |       |   |
| 1,1,2,2-Tetrachloroethane                    | 10.8   | 0.50               | μg/L         | 10.0           |                  | 108    | 70-130         | 1.78 | 25           |       |   |
| Tetrachloroethylene                          | 10.8   | 1.0                | μg/L         | 10.0           |                  | 108    | 70-130         | 3.56 | 25           |       |   |
| Tetrahydrofuran                              | 10.6   | 10                 | μg/L         | 10.0           |                  | 106    | 70-130         | 2.29 | 25           |       |   |
| Toluene                                      | 10.5   | 1.0                | μg/L         | 10.0           |                  | 105    | 70-130         | 3.19 | 25           |       |   |
| 1,2,3-Trichlorobenzene                       | 7.12   | 5.0                | μg/L         | 10.0           |                  | 71.2   | 70-130         | 0.00 | 25           | V-05  |   |
| 1,2,4-Trichlorobenzene                       | 7.12   | 1.0                | μg/L         | 10.0           |                  | 74.1   | 70-130         | 6.65 | 25           | V-05  |   |
| 1,3,5-Trichlorobenzene                       | 9.03   | 1.0                | μg/L         | 10.0           |                  | 90.3   | 70-130         | 3.70 | 25           | ¥-03  |   |
| 1,1,1-Trichloroethane                        | 10.7   | 1.0                | μg/L         | 10.0           |                  | 107    | 70-130         | 3.49 | 25           |       |   |
| 1,1,2-Trichloroethane                        | 10.7   | 1.0                | μg/L         | 10.0           |                  | 109    | 70-130         | 1.00 | 25           |       |   |
| Trichloroethylene                            | 11.4   | 1.0                | μg/L         | 10.0           |                  | 114    | 70-130         | 1.65 | 25           |       |   |
| Trichlorofluoromethane (Freon 11)            | 8.16   | 2.0                | μg/L         | 10.0           |                  | 81.6   | 70-130         | 6.41 | 25           |       |   |
| 1,2,3-Trichloropropane                       |        | 2.0                | μg/L<br>μg/L | 10.0           |                  | 106    | 70-130         | 9.91 | 25           |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 10.6   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 75.1   | 70-130         | 17.9 | 25           | V-05  |   |
| 113)                                         | 7.51   | 1.0                | μg/L         | 10.0           |                  | 73.1   | /0-130         | 17.9 | 23           | V-03  |   |
| 1,2,4-Trimethylbenzene                       | 9.94   | 1.0                | $\mu g/L$    | 10.0           |                  | 99.4   | 70-130         | 5.19 | 25           |       |   |
| 1,3,5-Trimethylbenzene                       | 9.66   | 1.0                | $\mu g/L$    | 10.0           |                  | 96.6   | 70-130         | 4.65 | 25           |       |   |
| Vinyl Chloride                               | 11.3   | 2.0                | $\mu g/L$    | 10.0           |                  | 113    | 40-160         | 9.72 | 25           |       | † |
| m+p Xylene                                   | 19.6   | 2.0                | $\mu g/L$    | 20.0           |                  | 98.2   | 70-130         | 4.09 | 25           |       |   |
| o-Xylene                                     | 10.1   | 1.0                | $\mu g/L$    | 10.0           |                  | 101    | 70-130         | 4.92 | 25           |       |   |
| Surrogate: 1,2-Dichloroethane-d4             | 27.8   |                    | μg/L         | 25.0           |                  | 111    | 70-130         |      |              |       |   |
| Surrogate: Toluene-d8                        | 26.7   |                    | μg/L         | 25.0           |                  | 107    | 70-130         |      |              |       |   |
| Surrogate: 4-Bromofluorobenzene              | 25.3   |                    | μg/L         | 25.0           |                  | 101    | 70-130         |      |              |       |   |
| Batch B292672 - SW-846 5035                  |        |                    |              |                |                  |        |                |      |              |       |   |
| Blank (B292672-BLK1)                         |        |                    |              | Propagad &     | Analyzed: 10     | /18/21 |                |      |              |       | _ |
|                                              |        | 0.10               | mg/Kg wet    | rrepared &     | Anaryzeu: 10     | /10/21 |                |      |              |       |   |
| Acetone                                      | ND     | 0.10               |              |                |                  |        |                |      |              |       |   |
| Acrylonitrile                                | ND     | 0.0060             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| tert-Amyl Methyl Ether (TAME)                | ND     | 0.0010             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| Benzene                                      | ND     | 0.0020             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| Bromobenzene                                 | ND     | 0.0020             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| Bromochloromethane                           | ND     | 0.0020             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| Bromodichloromethane                         | ND     | 0.0020             | mg/Kg wet    |                |                  |        |                |      |              |       |   |
| Bromoform                                    | ND     | 0.0020             | mg/Kg wet    |                |                  |        |                |      |              |       |   |



1,1,1,2-Tetrachloroethane

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                    | Volati   | le Organic Con     | npounds by G  | C/MS - Qua     | lity Control     |        |                |     |              |       |
|------------------------------------|----------|--------------------|---------------|----------------|------------------|--------|----------------|-----|--------------|-------|
| Analyte                            | Result   | Reporting<br>Limit | Units         | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch B292672 - SW-846 5035        |          |                    |               |                |                  |        |                |     |              |       |
| Blank (B292672-BLK1)               |          |                    |               | Prepared & .   | Analyzed: 10     | /18/21 |                |     |              |       |
| Bromomethane                       | ND       | 0.010              | mg/Kg wet     | 1              |                  |        |                |     |              | V-34  |
| 2-Butanone (MEK)                   | ND       | 0.040              | mg/Kg wet     |                |                  |        |                |     |              |       |
| tert-Butyl Alcohol (TBA)           | ND       | 0.10               | mg/Kg wet     |                |                  |        |                |     |              |       |
| n-Butylbenzene                     | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| sec-Butylbenzene                   | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| tert-Butylbenzene                  | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Carbon Disulfide                   | ND       | 0.010              | mg/Kg wet     |                |                  |        |                |     |              |       |
| Carbon Tetrachloride               | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Chlorobenzene                      | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Chlorodibromomethane               | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Chloroethane                       | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              |       |
| Chloroform                         | ND       | 0.0040             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Chloromethane                      | ND<br>ND | 0.010              | mg/Kg wet     |                |                  |        |                |     |              |       |
| 2-Chlorotoluene                    | ND<br>ND | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 4-Chlorotoluene                    |          | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,2-Dibromoethane (EDB)            | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Dibromomethane                     | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,2-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,3-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
|                                    | ND       |                    |               |                |                  |        |                |     |              |       |
| 1,4-Dichlorobenzene                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| trans-1,4-Dichloro-2-butene        | ND       | 0.0040             | mg/Kg wet     |                |                  |        |                |     |              | ****  |
| Dichlorodifluoromethane (Freon 12) | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              | V-05  |
| 1,1-Dichloroethane                 | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,2-Dichloroethane                 | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,1-Dichloroethylene               | ND       | 0.0040             | mg/Kg wet     |                |                  |        |                |     |              |       |
| cis-1,2-Dichloroethylene           | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| trans-1,2-Dichloroethylene         | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,2-Dichloropropane                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,3-Dichloropropane                | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 2,2-Dichloropropane                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,1-Dichloropropene                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| cis-1,3-Dichloropropene            | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| trans-1,3-Dichloropropene          | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Diethyl Ether                      | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              |       |
| Diisopropyl Ether (DIPE)           | ND       | 0.0010             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1,4-Dioxane                        | ND       | 0.10               | mg/Kg wet     |                |                  |        |                |     |              |       |
| Ethylbenzene                       | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Hexachlorobutadiene                | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 2-Hexanone (MBK)                   | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              |       |
| Isopropylbenzene (Cumene)          | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| p-Isopropyltoluene (p-Cymene)      | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Methyl Acetate                     | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Methyl tert-Butyl Ether (MTBE)     | ND       | 0.0040             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Methyl Cyclohexane                 | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Methylene Chloride                 | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              |       |
| 4-Methyl-2-pentanone (MIBK)        | ND       | 0.020              | mg/Kg wet     |                |                  |        |                |     |              |       |
| Naphthalene                        | ND       | 0.0040             | mg/Kg wet     |                |                  |        |                |     |              |       |
| n-Propylbenzene                    | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| Styrene                            | ND       | 0.0020             | mg/Kg wet     |                |                  |        |                |     |              |       |
| 1 1 1 2 Totacobloro othoro         |          | 0.0020             | m ~/V ~ xx:-+ |                |                  |        |                |     |              |       |

ND

 $0.0020 \quad mg/Kg \ wet$ 



# QUALITY CONTROL

Spike

Source

%REC

RPD

# Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                                      | Result | Limit  | Units     | Level        | Result       | %REC   | Limits        | RPD | Limit | Notes      |
|----------------------------------------------|--------|--------|-----------|--------------|--------------|--------|---------------|-----|-------|------------|
| Batch B292672 - SW-846 5035                  |        |        |           |              |              |        |               |     |       |            |
| Blank (B292672-BLK1)                         |        |        |           | Prepared & A | Analyzed: 10 | /18/21 |               |     |       |            |
| 1,1,2,2-Tetrachloroethane                    | ND     | 0.0010 | mg/Kg wet |              |              |        |               |     |       |            |
| Tetrachloroethylene                          | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| Tetrahydrofuran                              | ND     | 0.010  | mg/Kg wet |              |              |        |               |     |       |            |
| Toluene                                      | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,2,3-Trichlorobenzene                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,2,4-Trichlorobenzene                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,3,5-Trichlorobenzene                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,1,1-Trichloroethane                        | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,1,2-Trichloroethane                        | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| Trichloroethylene                            | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| Trichlorofluoromethane (Freon 11)            | ND     | 0.010  | mg/Kg wet |              |              |        |               |     |       |            |
| 1,2,3-Trichloropropane                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND     | 0.010  | mg/Kg wet |              |              |        |               |     |       |            |
| 113)                                         | ND     | 0.010  |           |              |              |        |               |     |       |            |
| 1,2,4-Trimethylbenzene                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| 1,3,5-Trimethylbenzene                       | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| Vinyl Chloride                               | ND     | 0.010  | mg/Kg wet |              |              |        |               |     |       |            |
| m+p Xylene                                   | ND     | 0.0040 | mg/Kg wet |              |              |        |               |     |       |            |
| o-Xylene                                     | ND     | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
| <u> </u>                                     |        |        |           | 0.0500       |              | 100    | <b>70.130</b> |     |       |            |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0511 |        | mg/Kg wet | 0.0500       |              | 102    | 70-130        |     |       |            |
| Surrogate: Toluene-d8                        | 0.0526 |        | mg/Kg wet | 0.0500       |              | 105    | 70-130        |     |       |            |
| Surrogate: 4-Bromofluorobenzene              | 0.0496 |        | mg/Kg wet | 0.0500       |              | 99.2   | 70-130        |     |       |            |
| LCS (B292672-BS1)                            |        |        |           |              | Analyzed: 10 |        |               |     |       |            |
| Acetone                                      | 0.183  | 0.10   | mg/Kg wet | 0.200        |              | 91.7   | 70-160        |     |       | V-36       |
| Acrylonitrile                                | 0.0210 | 0.0060 | mg/Kg wet | 0.0200       |              | 105    | 70-130        |     |       |            |
| ert-Amyl Methyl Ether (TAME)                 | 0.0185 | 0.0010 | mg/Kg wet | 0.0200       |              | 92.7   | 70-130        |     |       |            |
| Benzene                                      | 0.0201 | 0.0020 | mg/Kg wet | 0.0200       |              | 100    | 70-130        |     |       |            |
| Bromobenzene                                 | 0.0194 | 0.0020 | mg/Kg wet | 0.0200       |              | 96.9   | 70-130        |     |       |            |
| Bromochloromethane                           | 0.0210 | 0.0020 | mg/Kg wet | 0.0200       |              | 105    | 70-130        |     |       |            |
| Bromodichloromethane                         | 0.0214 | 0.0020 | mg/Kg wet | 0.0200       |              | 107    | 70-130        |     |       |            |
| Bromoform                                    | 0.0212 | 0.0020 | mg/Kg wet | 0.0200       |              | 106    | 70-130        |     |       |            |
| Bromomethane                                 | 0.0237 | 0.010  | mg/Kg wet | 0.0200       |              | 119    | 40-130        |     |       | V-20, V-34 |
| 2-Butanone (MEK)                             | 0.196  | 0.040  | mg/Kg wet | 0.200        |              | 97.9   | 70-160        |     |       |            |
| ert-Butyl Alcohol (TBA)                      | 0.171  | 0.10   | mg/Kg wet | 0.200        |              | 85.7   | 40-130        |     |       |            |
| n-Butylbenzene                               | 0.0206 | 0.0020 | mg/Kg wet | 0.0200       |              | 103    | 70-130        |     |       |            |
| sec-Butylbenzene                             | 0.0199 | 0.0020 | mg/Kg wet | 0.0200       |              | 99.6   | 70-130        |     |       |            |
| tert-Butylbenzene                            | 0.0194 | 0.0020 | mg/Kg wet | 0.0200       |              | 97.1   | 70-160        |     |       |            |
| tert-Butyl Ethyl Ether (TBEE)                | 0.0182 | 0.0010 | mg/Kg wet | 0.0200       |              | 91.0   | 70-130        |     |       |            |
| Carbon Disulfide                             | 0.194  | 0.010  | mg/Kg wet | 0.200        |              | 96.9   | 70-130        |     |       |            |
| Carbon Tetrachloride                         | 0.0204 | 0.0020 | mg/Kg wet | 0.0200       |              | 102    | 70-130        |     |       |            |
| Chlorobenzene                                | 0.0205 | 0.0020 | mg/Kg wet | 0.0200       |              | 103    | 70-130        |     |       |            |
| Chlorodibromomethane                         | 0.0221 | 0.0010 | mg/Kg wet | 0.0200       |              | 111    | 70-130        |     |       |            |
| Chloroethane                                 | 0.0221 | 0.020  | mg/Kg wet | 0.0200       |              | 110    | 70-130        |     |       |            |
| Chloroform                                   | 0.0220 | 0.0040 | mg/Kg wet | 0.0200       |              | 104    | 70-130        |     |       |            |
| Chloromethane                                | 0.0208 | 0.010  | mg/Kg wet | 0.0200       |              | 83.3   | 70-130        |     |       |            |
| 2-Chlorotoluene                              | 0.0107 | 0.0020 | mg/Kg wet | 0.0200       |              | 106    | 70-130        |     |       |            |
| 4-Chlorotoluene                              |        | 0.0020 | mg/Kg wet | 0.0200       |              | 113    | 70-130        |     |       |            |
| 1,2-Dibromo-3-chloropropane (DBCP)           | 0.0225 | 0.0020 | mg/Kg wet |              |              |        |               |     |       |            |
|                                              | 0.0185 |        |           | 0.0200       |              | 92.5   | 70-130        |     |       |            |
| 1,2-Dibromoethane (EDB)                      | 0.0222 | 0.0010 | mg/Kg wet | 0.0200       |              | 111    | 70-130        |     |       |            |
| Dibromomethane                               | 0.0219 | 0.0020 | mg/Kg wet | 0.0200       |              | 109    | 70-130        |     |       |            |
| 1,2-Dichlorobenzene                          | 0.0214 | 0.0020 | mg/Kg wet | 0.0200       |              | 107    | 70-130        |     |       |            |
| 1,3-Dichlorobenzene                          | 0.0205 | 0.0020 | mg/Kg wet | 0.0200       |              | 102    | 70-130        |     |       |            |



# QUALITY CONTROL

| Analyte                                           | Result           | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD | RPD<br>Limit | Notes   |   |
|---------------------------------------------------|------------------|--------------------|-----------|----------------|------------------|-------|----------------|-----|--------------|---------|---|
| Batch B292672 - SW-846 5035                       |                  |                    |           |                |                  |       |                |     |              |         | _ |
| LCS (B292672-BS1)                                 |                  |                    |           | Prepared & A   | Analyzed: 10/    | 18/21 |                |     |              |         |   |
| 1,4-Dichlorobenzene                               | 0.0199           | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.5  | 70-130         |     |              |         |   |
| trans-1,4-Dichloro-2-butene                       | 0.0208           | 0.0040             | mg/Kg wet | 0.0200         |                  | 104   | 70-130         |     |              |         |   |
| Dichlorodifluoromethane (Freon 12)                | 0.0146           | 0.020              | mg/Kg wet | 0.0200         |                  | 72.9  | 40-160         |     |              | V-05, J | Ť |
| 1,1-Dichloroethane                                | 0.0203           | 0.0020             | mg/Kg wet | 0.0200         |                  | 102   | 70-130         |     |              |         |   |
| 1,2-Dichloroethane                                | 0.0210           | 0.0020             | mg/Kg wet | 0.0200         |                  | 105   | 70-130         |     |              |         |   |
| 1,1-Dichloroethylene                              | 0.0197           | 0.0040             | mg/Kg wet | 0.0200         |                  | 98.3  | 70-130         |     |              |         |   |
| cis-1,2-Dichloroethylene                          | 0.0214           | 0.0020             | mg/Kg wet | 0.0200         |                  | 107   | 70-130         |     |              |         |   |
| rans-1,2-Dichloroethylene                         | 0.0204           | 0.0020             | mg/Kg wet | 0.0200         |                  | 102   | 70-130         |     |              |         |   |
| 1,2-Dichloropropane                               | 0.0210           | 0.0020             | mg/Kg wet | 0.0200         |                  | 105   | 70-130         |     |              |         |   |
| 1,3-Dichloropropane                               | 0.0225           | 0.0010             | mg/Kg wet | 0.0200         |                  | 113   | 70-130         |     |              |         |   |
| 2,2-Dichloropropane                               | 0.0202           | 0.0020             | mg/Kg wet | 0.0200         |                  | 101   | 70-130         |     |              |         |   |
| 1,1-Dichloropropene                               | 0.0201           | 0.0020             | mg/Kg wet | 0.0200         |                  | 100   | 70-130         |     |              |         |   |
| cis-1,3-Dichloropropene                           | 0.0221           | 0.0010             | mg/Kg wet | 0.0200         |                  | 110   | 70-130         |     |              |         |   |
| rans-1,3-Dichloropropene                          | 0.0187           | 0.0010             | mg/Kg wet | 0.0200         |                  | 93.3  | 70-130         |     |              |         |   |
| Diethyl Ether                                     | 0.0217           | 0.020              | mg/Kg wet | 0.0200         |                  | 108   | 70-130         |     |              |         |   |
| Diisopropyl Ether (DIPE)                          | 0.0217           | 0.0010             | mg/Kg wet | 0.0200         |                  | 110   | 70-130         |     |              |         |   |
| 1,4-Dioxane                                       | 0.0219           | 0.10               | mg/Kg wet | 0.200          |                  | 86.6  | 40-160         |     |              |         | † |
| Ethylbenzene                                      |                  | 0.0020             | mg/Kg wet | 0.0200         |                  | 109   | 70-130         |     |              |         | 1 |
| Hexachlorobutadiene                               | 0.0218<br>0.0202 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101   | 70-150         |     |              |         |   |
| 2-Hexanone (MBK)                                  |                  | 0.020              | mg/Kg wet | 0.0200         |                  | 101   | 70-160         |     |              | V-36    | † |
| (sopropylbenzene (Cumene)                         | 0.215            | 0.0020             | mg/Kg wet |                |                  |       |                |     |              | V-30    | 1 |
| * **                                              | 0.0213           | 0.0020             |           | 0.0200         |                  | 106   | 70-130         |     |              |         |   |
| o-Isopropyltoluene (p-Cymene)                     | 0.0211           | 0.0020             | mg/Kg wet | 0.0200         |                  | 106   | 70-130         |     |              |         |   |
| Methyl Acetate                                    | 0.0187           |                    | mg/Kg wet | 0.0200         |                  | 93.5  | 70-130         |     |              |         |   |
| Methyl tert-Butyl Ether (MTBE)                    | 0.0216           | 0.0040             | mg/Kg wet | 0.0200         |                  | 108   | 70-130         |     |              |         |   |
| Methyl Cyclohexane                                | 0.0214           | 0.0020             | mg/Kg wet | 0.0200         |                  | 107   | 70-130         |     |              |         |   |
| Methylene Chloride                                | 0.0201           | 0.020              | mg/Kg wet | 0.0200         |                  | 100   | 40-160         |     |              |         | † |
| 4-Methyl-2-pentanone (MIBK)                       | 0.219            | 0.020              | mg/Kg wet | 0.200          |                  | 110   | 70-160         |     |              |         | † |
| Naphthalene                                       | 0.0199           | 0.0040             | mg/Kg wet | 0.0200         |                  | 99.5  | 40-130         |     |              |         | Ť |
| n-Propylbenzene                                   | 0.0226           | 0.0020             | mg/Kg wet | 0.0200         |                  | 113   | 70-130         |     |              |         |   |
| Styrene                                           | 0.0231           | 0.0020             | mg/Kg wet | 0.0200         |                  | 116   | 70-130         |     |              |         |   |
| 1,1,1,2-Tetrachloroethane                         | 0.0217           | 0.0020             | mg/Kg wet | 0.0200         |                  | 108   | 70-130         |     |              |         |   |
| 1,1,2,2-Tetrachloroethane                         | 0.0219           | 0.0010             | mg/Kg wet | 0.0200         |                  | 110   | 70-130         |     |              |         |   |
| Tetrachloroethylene                               | 0.0209           | 0.0020             | mg/Kg wet | 0.0200         |                  | 105   | 70-130         |     |              |         |   |
| Tetrahydrofuran                                   | 0.0183           | 0.010              | mg/Kg wet | 0.0200         |                  | 91.6  | 70-130         |     |              |         |   |
| Toluene                                           | 0.0196           | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.0  | 70-130         |     |              |         |   |
| 1,2,3-Trichlorobenzene                            | 0.0213           | 0.0020             | mg/Kg wet | 0.0200         |                  | 107   | 70-130         |     |              |         |   |
| 1,2,4-Trichlorobenzene                            | 0.0204           | 0.0020             | mg/Kg wet | 0.0200         |                  | 102   | 70-130         |     |              |         |   |
| 1,3,5-Trichlorobenzene                            | 0.0197           | 0.0020             | mg/Kg wet | 0.0200         |                  | 98.5  | 70-130         |     |              |         |   |
| 1,1,1-Trichloroethane                             | 0.0203           | 0.0020             | mg/Kg wet | 0.0200         |                  | 102   | 70-130         |     |              |         |   |
| 1,1,2-Trichloroethane                             | 0.0218           | 0.0020             | mg/Kg wet | 0.0200         |                  | 109   | 70-130         |     |              |         |   |
| Trichloroethylene                                 | 0.0204           | 0.0020             | mg/Kg wet | 0.0200         |                  | 102   | 70-130         |     |              |         |   |
| Trichlorofluoromethane (Freon 11)                 | 0.0213           | 0.010              | mg/Kg wet | 0.0200         |                  | 107   | 70-130         |     |              |         |   |
| 1,2,3-Trichloropropane                            | 0.0187           | 0.0020             | mg/Kg wet | 0.0200         |                  | 93.5  | 70-130         |     |              |         |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 0.0202           | 0.010              | mg/Kg wet | 0.0200         |                  | 101   | 70-130         |     |              |         |   |
| 1,2,4-Trimethylbenzene                            | 0.0202           | 0.0020             | mg/Kg wet | 0.0200         |                  | 101   | 70-130         |     |              |         |   |
| ,3,5-Trimethylbenzene                             | 0.0226           | 0.0020             | mg/Kg wet | 0.0200         |                  | 113   | 70-130         |     |              |         |   |
| Vinyl Chloride                                    | 0.0196           | 0.010              | mg/Kg wet | 0.0200         |                  | 98.0  | 40-130         |     |              |         | † |
| n+p Xylene                                        | 0.0452           | 0.0040             | mg/Kg wet | 0.0400         |                  | 113   | 70-130         |     |              |         |   |
| o-Xylene                                          | 0.0226           | 0.0020             | mg/Kg wet | 0.0200         |                  | 113   | 70-130         |     |              |         |   |
| Surrogate: 1,2-Dichloroethane-d4                  | 0.0502           |                    | mg/Kg wet | 0.0500         |                  | 100   | 70-130         |     |              |         | _ |
| Surrogate: Toluene-d8                             | 0.0506           |                    | mg/Kg wet | 0.0500         |                  | 101   | 70-130         |     |              |         |   |



# QUALITY CONTROL

| Analyte                                                       | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD          | RPD<br>Limit | Notes      |   |
|---------------------------------------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|--------------|--------------|------------|---|
| Batch B292672 - SW-846 5035                                   |        |                    |           |                |                  |             |                |              |              |            | _ |
| LCS (B292672-BS1)                                             |        |                    |           | Prepared & A   | Analyzed: 10     | /18/21      |                |              |              |            |   |
| Surrogate: 4-Bromofluorobenzene                               | 0.0511 |                    | mg/Kg wet | 0.0500         |                  | 102         | 70-130         |              |              |            |   |
| LCS Dup (B292672-BSD1)                                        |        |                    |           | Prepared & A   | Analyzed: 10     | /18/21      |                |              |              |            |   |
| Acetone                                                       | 0.183  | 0.10               | mg/Kg wet | 0.200          |                  | 91.6        | 70-160         | 0.0655       | 25           | V-36       |   |
| Acrylonitrile                                                 | 0.0221 | 0.0060             | mg/Kg wet | 0.0200         |                  | 110         | 70-130         | 4.92         | 25           |            |   |
| tert-Amyl Methyl Ether (TAME)                                 | 0.0183 | 0.0010             | mg/Kg wet | 0.0200         |                  | 91.4        | 70-130         | 1.41         | 25           |            |   |
| Benzene                                                       | 0.0207 | 0.0020             | mg/Kg wet | 0.0200         |                  | 104         | 70-130         | 3.04         | 25           |            |   |
| Bromobenzene                                                  | 0.0234 | 0.0020             | mg/Kg wet | 0.0200         |                  | 117         | 70-130         | 19.0         | 25           |            |   |
| Bromochloromethane                                            | 0.0221 | 0.0020             | mg/Kg wet | 0.0200         |                  | 111         | 70-130         | 5.00         | 25           |            |   |
| Bromodichloromethane                                          | 0.0218 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109         | 70-130         | 1.67         | 25           |            |   |
| Bromoform                                                     | 0.0211 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105         | 70-130         | 0.473        | 25           |            |   |
| Bromomethane                                                  | 0.0242 | 0.010              | mg/Kg wet | 0.0200         |                  | 121         | 40-130         | 1.75         | 25           | V-20, V-34 |   |
| 2-Butanone (MEK)                                              | 0.190  | 0.040              | mg/Kg wet | 0.200          |                  | 95.0        | 70-160         | 3.03         | 25           |            |   |
| ert-Butyl Alcohol (TBA)                                       | 0.165  | 0.10               | mg/Kg wet | 0.200          |                  | 82.6        | 40-130         | 3.62         | 25           |            |   |
| n-Butylbenzene                                                | 0.0204 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102         | 70-130         | 1.17         | 25           |            |   |
| ec-Butylbenzene                                               | 0.0199 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.5        | 70-130         | 0.100        | 25           |            |   |
| ert-Butylbenzene                                              | 0.0194 | 0.0020             | mg/Kg wet | 0.0200         |                  | 96.9        | 70-160         | 0.206        | 25           |            |   |
| ert-Butyl Ethyl Ether (TBEE)                                  | 0.0181 | 0.0010             | mg/Kg wet | 0.0200         |                  | 90.7        | 70-130         | 0.330        | 25           |            |   |
| Carbon Disulfide                                              | 0.198  | 0.010              | mg/Kg wet | 0.200          |                  | 99.1        | 70-130         | 2.22         | 25           |            |   |
| Carbon Tetrachloride                                          | 0.0210 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105         | 70-130         | 2.90         | 25           |            |   |
| Chlorobenzene                                                 | 0.0216 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102         | 70-130         | 0.293        | 25           |            |   |
| Chlorodibromomethane                                          | 0.0221 | 0.0010             | mg/Kg wet | 0.0200         |                  | 111         | 70-130         | 0.0904       | 25           |            |   |
| Chloroethane                                                  | 0.0232 | 0.020              | mg/Kg wet | 0.0200         |                  | 116         | 70-130         | 5.48         | 25           |            |   |
| Chloroform                                                    | 0.0232 | 0.0040             | mg/Kg wet | 0.0200         |                  | 108         | 70-130         | 3.67         | 25           |            |   |
| Chloromethane                                                 |        | 0.010              | mg/Kg wet | 0.0200         |                  | 86.6        | 70-130         | 3.88         | 25           |            |   |
| -Chlorotoluene                                                | 0.0173 | 0.0020             | mg/Kg wet | 0.0200         |                  | 110         | 70-130         | 3.89         | 25           |            |   |
| -Chlorotoluene                                                | 0.0220 | 0.0020             | mg/Kg wet | 0.0200         |                  |             | 70-130         |              | 25           |            |   |
| ,2-Dibromo-3-chloropropane (DBCP)                             | 0.0231 | 0.0020             | mg/Kg wet | 0.0200         |                  | 115<br>91.5 | 70-130         | 2.46<br>1.09 | 25           |            |   |
| ,2-Dibromoethane (EDB)                                        | 0.0183 | 0.0020             | mg/Kg wet |                |                  |             |                |              |              |            |   |
| Dibromomethane                                                | 0.0219 | 0.0010             | mg/Kg wet | 0.0200         |                  | 109         | 70-130         | 1.63         | 25<br>25     |            |   |
| .2-Dichlorobenzene                                            | 0.0225 | 0.0020             | mg/Kg wet | 0.0200         |                  | 112         | 70-130         | 2.62         | 25<br>25     |            |   |
| ,                                                             | 0.0213 |                    |           | 0.0200         |                  | 106         | 70-130         | 0.656        | 25           |            |   |
| ,3-Dichlorobenzene                                            | 0.0205 | 0.0020             | mg/Kg wet | 0.0200         |                  | 102         | 70-130         | 0.195        | 25           |            |   |
| ,4-Dichlorobenzene<br>rans-1,4-Dichloro-2-butene              | 0.0196 | 0.0020<br>0.0040   | mg/Kg wet | 0.0200         |                  | 98.2        | 70-130         | 1.32         | 25<br>25     |            |   |
| rans-1,4-Dichloro-2-butene Dichlorodifluoromethane (Freon 12) | 0.0199 |                    | mg/Kg wet | 0.0200         |                  | 99.5        | 70-130         | 4.61         | 25<br>25     | V/05 T     |   |
| ,                                                             | 0.0149 | 0.020              | mg/Kg wet | 0.0200         |                  | 74.4        | 40-160         | 2.04         | 25<br>25     | V-05, J    |   |
| ,1-Dichloroethane                                             | 0.0210 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105         | 70-130         | 3.19         | 25           |            |   |
| ,2-Dichloroethane                                             | 0.0213 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106         | 70-130         | 1.23         | 25           |            |   |
| ,1-Dichloroethylene                                           | 0.0201 | 0.0040             | mg/Kg wet | 0.0200         |                  | 101         | 70-130         | 2.41         | 25           |            |   |
| is-1,2-Dichloroethylene                                       | 0.0218 | 0.0020             | mg/Kg wet | 0.0200         |                  | 109         | 70-130         | 1.85         | 25           |            |   |
| rans-1,2-Dichloroethylene                                     | 0.0210 | 0.0020             | mg/Kg wet | 0.0200         |                  | 105         | 70-130         | 2.99         | 25           |            |   |
| ,2-Dichloropropane                                            | 0.0211 | 0.0020             | mg/Kg wet | 0.0200         |                  | 106         | 70-130         | 0.569        | 25           |            |   |
| ,3-Dichloropropane                                            | 0.0229 | 0.0010             | mg/Kg wet | 0.0200         |                  | 114         | 70-130         | 1.50         | 25           |            |   |
| ,2-Dichloropropane                                            | 0.0207 | 0.0020             | mg/Kg wet | 0.0200         |                  | 103         | 70-130         | 2.15         | 25           |            |   |
| ,1-Dichloropropene                                            | 0.0202 | 0.0020             | mg/Kg wet | 0.0200         |                  | 101         | 70-130         | 0.497        | 25           |            |   |
| is-1,3-Dichloropropene                                        | 0.0221 | 0.0010             | mg/Kg wet | 0.0200         |                  | 111         | 70-130         | 0.271        | 25           |            |   |
| rans-1,3-Dichloropropene                                      | 0.0188 | 0.0010             | mg/Kg wet | 0.0200         |                  | 94.0        | 70-130         | 0.747        | 25           |            |   |
| Diethyl Ether                                                 | 0.0223 | 0.020              | mg/Kg wet | 0.0200         |                  | 112         | 70-130         | 3.09         | 25           |            |   |
| Diisopropyl Ether (DIPE)                                      | 0.0220 | 0.0010             | mg/Kg wet | 0.0200         |                  | 110         | 70-130         | 0.455        | 25           |            |   |
| ,4-Dioxane                                                    | 0.161  | 0.10               | mg/Kg wet | 0.200          |                  | 80.7        | 40-160         | 7.12         | 50           |            |   |
| Ethylbenzene                                                  | 0.0221 | 0.0020             | mg/Kg wet | 0.0200         |                  | 110         | 70-130         | 1.18         | 25           |            |   |
| Hexachlorobutadiene                                           | 0.0199 | 0.0020             | mg/Kg wet | 0.0200         |                  | 99.5        | 70-160         | 1.50         | 25           |            |   |
| -Hexanone (MBK)                                               | 0.204  | 0.020              | mg/Kg wet | 0.200          |                  | 102         | 70-160         | 5.49         | 25           | V-36       |   |



# QUALITY CONTROL

| Analyte                                      | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |   |
|----------------------------------------------|----------|--------------------|--------------|----------------|------------------|-------|----------------|--------|--------------|-------|---|
| Batch B292672 - SW-846 5035                  |          |                    |              |                |                  |       |                |        |              |       | _ |
| LCS Dup (B292672-BSD1)                       |          |                    |              | Prepared & A   | Analyzed: 10/    | 18/21 |                |        |              |       | _ |
| sopropylbenzene (Cumene)                     | 0.0222   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 111   | 70-130         | 4.23   | 25           |       | _ |
| p-Isopropyltoluene (p-Cymene)                | 0.0209   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 104   | 70-130         | 1.14   | 25           |       |   |
| Methyl Acetate                               | 0.0198   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 99.1  | 70-130         | 5.82   | 25           |       |   |
| Methyl tert-Butyl Ether (MTBE)               | 0.0218   | 0.0040             | mg/Kg wet    | 0.0200         |                  | 109   | 70-130         | 0.738  | 25           |       |   |
| Methyl Cyclohexane                           | 0.0204   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 102   | 70-130         | 4.78   | 25           |       |   |
| Methylene Chloride                           | 0.0210   | 0.020              | mg/Kg wet    | 0.0200         |                  | 105   | 40-160         | 4.19   | 25           |       |   |
| 4-Methyl-2-pentanone (MIBK)                  | 0.204    | 0.020              | mg/Kg wet    | 0.200          |                  | 102   | 70-160         | 7.18   | 25           |       |   |
| Naphthalene                                  | 0.0195   | 0.0040             | mg/Kg wet    | 0.0200         |                  | 97.5  | 40-130         | 2.03   | 25           |       | Ť |
| n-Propylbenzene                              | 0.0233   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 116   | 70-130         | 3.23   | 25           |       |   |
| Styrene                                      | 0.0240   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 120   | 70-130         | 3.82   | 25           |       |   |
| 1,1,1,2-Tetrachloroethane                    | 0.0213   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 106   | 70-130         | 1.86   | 25           |       |   |
| ,1,2,2-Tetrachloroethane                     | 0.0207   | 0.0010             | mg/Kg wet    | 0.0200         |                  | 104   | 70-130         | 5.54   | 25           |       |   |
| [etrachloroethylene                          | 0.0204   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 102   | 70-130         | 2.52   | 25           |       |   |
| Tetrahydrofuran                              | 0.0204   | 0.010              | mg/Kg wet    | 0.0200         |                  | 92.4  | 70-130         | 0.870  | 25           |       |   |
| Toluene                                      | 0.0183   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 98.8  | 70-130         | 0.813  | 25           |       |   |
| ,2,3-Trichlorobenzene                        | 0.0198   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 106   | 70-130         | 0.0939 | 25           |       |   |
| ,2,4-Trichlorobenzene                        | 0.0213   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 100   | 70-130         | 1.28   | 25           |       |   |
| ,3,5-Trichlorobenzene                        | 0.0202   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 96.9  | 70-130         | 1.64   | 25           |       |   |
| 1,1,1-Trichloroethane                        | 0.0194   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 104   | 70-130         | 2.34   | 25           |       |   |
| 1,1,2-Trichloroethane                        |          | 0.0020             | mg/Kg wet    | 0.0200         |                  | 104   | 70-130         | 0.550  | 25           |       |   |
| Frichloroethylene                            | 0.0219   | 0.0020             | mg/Kg wet    |                |                  |       |                |        | 25           |       |   |
| Trichlorofluoromethane (Freon 11)            | 0.0207   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 104   | 70-130         | 1.46   |              |       |   |
| ,2,3-Trichloropropane                        | 0.0217   | 0.010              |              | 0.0200         |                  | 109   | 70-130         | 1.86   | 25           |       |   |
| • •                                          | 0.0176   |                    | mg/Kg wet    | 0.0200         |                  | 87.8  | 70-130         | 6.29   | 25           |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 0.0211   | 0.010              | mg/Kg wet    | 0.0200         |                  | 106   | 70-130         | 4.55   | 25           |       |   |
| ,2,4-Trimethylbenzene                        | 0.0198   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 99.0  | 70-130         | 2.20   | 25           |       |   |
| ,3,5-Trimethylbenzene                        | 0.0232   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 116   | 70-130         | 2.80   | 25           |       |   |
| Vinyl Chloride                               | 0.0200   | 0.010              | mg/Kg wet    | 0.0200         |                  | 100   | 40-130         | 2.02   | 25           |       | i |
| n+p Xylene                                   | 0.0461   | 0.0040             | mg/Kg wet    | 0.0400         |                  | 115   | 70-130         | 2.02   | 25           |       |   |
| o-Xylene                                     | 0.0235   | 0.0020             | mg/Kg wet    | 0.0200         |                  | 117   | 70-130         | 3.91   | 25           |       |   |
| Surrogate: 1,2-Dichloroethane-d4             | 0.0515   |                    | mg/Kg wet    | 0.0500         |                  | 103   | 70-130         |        |              |       | _ |
| Surrogate: Toluene-d8                        | 0.0516   |                    | mg/Kg wet    | 0.0500         |                  | 103   | 70-130         |        |              |       |   |
| Surrogate: 4-Bromofluorobenzene              | 0.0525   |                    | mg/Kg wet    | 0.0500         |                  | 105   | 70-130         |        |              |       |   |
| Batch B293177 - SW-846 5030B                 |          |                    |              |                |                  |       |                |        |              |       |   |
| Blank (B293177-BLK1)                         |          |                    |              | Prepared & A   | Analyzed: 10/    | 25/21 |                |        |              |       |   |
| Acetone                                      | ND       | 50                 | μg/L         |                |                  |       |                |        |              |       |   |
| Acrylonitrile                                | ND       | 5.0                | $\mu g/L$    |                |                  |       |                |        |              |       |   |
| ert-Amyl Methyl Ether (TAME)                 | ND       | 0.50               | $\mu g/L$    |                |                  |       |                |        |              |       |   |
| Benzene                                      | ND       | 1.0                | $\mu g/L$    |                |                  |       |                |        |              |       |   |
| Bromobenzene                                 | ND       | 1.0                | μg/L         |                |                  |       |                |        |              |       |   |
| Bromochloromethane                           | ND       | 1.0                | μg/L         |                |                  |       |                |        |              |       |   |
| Bromodichloromethane                         | ND       | 0.50               | μg/L         |                |                  |       |                |        |              |       |   |
| Bromoform                                    | ND       | 1.0                | μg/L         |                |                  |       |                |        |              |       |   |
| Bromomethane                                 | ND       | 2.0                | μg/L         |                |                  |       |                |        |              |       |   |
| 2-Butanone (MEK)                             | ND       | 20                 | μg/L         |                |                  |       |                |        |              |       |   |
| ert-Butyl Alcohol (TBA)                      | ND       | 20                 | μg/L         |                |                  |       |                |        |              |       |   |
| n-Butylbenzene                               | ND       | 1.0                | μg/L         |                |                  |       |                |        |              |       |   |
| sec-Butylbenzene                             | ND       | 1.0                | μg/L         |                |                  |       |                |        |              |       |   |
| ert-Butylbenzene                             | ND<br>ND | 1.0                | μg/L<br>μg/L |                |                  |       |                |        |              |       |   |
|                                              | ND       | 1.0                | ro ~         |                |                  |       |                |        |              |       |   |
| ert-Butyl Ethyl Ether (TBEE)                 | ND       | 0.50               | μg/L         |                |                  |       |                |        |              |       |   |



1,1,1-Trichloroethane

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                               | Result   | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Notes              |
|---------------------------------------|----------|--------------------|-------------------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch B293177 - SW-846 5030B          |          |                    |                   |                |                  |         |                |     |              |                    |
| Blank (B293177-BLK1)                  |          |                    |                   | Prepared &     | Analyzed: 10     | )/25/21 |                |     |              |                    |
| Carbon Tetrachloride                  | ND       | 5.0                | μg/L              |                |                  |         |                |     |              |                    |
| Chlorobenzene                         | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Chlorodibromomethane                  | ND       | 0.50               | μg/L              |                |                  |         |                |     |              |                    |
| Chloroethane                          | ND       | 2.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| Chloroform                            | ND       | 2.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| Chloromethane                         | ND       | 2.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 2-Chlorotoluene                       | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 4-Chlorotoluene                       | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,2-Dibromo-3-chloropropane (DBCP)    | ND       | 5.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,2-Dibromoethane (EDB)               | ND       | 0.50               | $\mu g/L$         |                |                  |         |                |     |              |                    |
| Dibromomethane                        | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,2-Dichlorobenzene                   | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,3-Dichlorobenzene                   | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,4-Dichlorobenzene                   | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| trans-1,4-Dichloro-2-butene           | ND       | 2.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| Dichlorodifluoromethane (Freon 12)    | ND       | 2.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,1-Dichloroethane                    | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,2-Dichloroethane                    | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,1-Dichloroethylene                  | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| cis-1,2-Dichloroethylene              | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| trans-1,2-Dichloroethylene            | ND       | 1.0                | $\mu g \! / \! L$ |                |                  |         |                |     |              |                    |
| 1,2-Dichloropropane                   | ND       | 1.0                | $\mu g \! / \! L$ |                |                  |         |                |     |              |                    |
| 1,3-Dichloropropane                   | ND       | 0.50               | μg/L              |                |                  |         |                |     |              |                    |
| 2,2-Dichloropropane                   | ND       | 1.0                | $\mu g/L$         |                |                  |         |                |     |              |                    |
| 1,1-Dichloropropene                   | ND       | 2.0                | μg/L              |                |                  |         |                |     |              |                    |
| cis-1,3-Dichloropropene               | ND       | 0.50               | μg/L              |                |                  |         |                |     |              |                    |
| trans-1,3-Dichloropropene             | ND       | 0.50               | μg/L              |                |                  |         |                |     |              |                    |
| Diethyl Ether                         | ND       | 2.0                | μg/L              |                |                  |         |                |     |              |                    |
| Diisopropyl Ether (DIPE)              | ND       | 0.50               | μg/L              |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                           | ND       | 50                 | μg/L              |                |                  |         |                |     |              |                    |
| Ethylbenzene                          | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Hexachlorobutadiene                   | ND       | 0.60               | μg/L              |                |                  |         |                |     |              |                    |
| 2-Hexanone (MBK)                      | ND       | 10                 | μg/L              |                |                  |         |                |     |              |                    |
| Isopropylbenzene (Cumene)             | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| p-Isopropyltoluene (p-Cymene)         | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Methyl Acetate  Methyl Acetate (MTDE) | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Methyl tert-Butyl Ether (MTBE)        | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Methyl Cyclohexane                    | ND       | 1.0                | μg/L              |                |                  |         |                |     |              |                    |
| Methylene Chloride                    | ND       | 5.0                | μg/L              |                |                  |         |                |     |              |                    |
| 4-Methyl-2-pentanone (MIBK)           | ND       | 10                 | μg/L              |                |                  |         |                |     |              | 17.05              |
| Naphthalene<br>n-Propylbenzene        | ND<br>ND | 2.0<br>1.0         | μg/L<br>μg/L      |                |                  |         |                |     |              | V-05               |
| Styrene                               | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| 1,1,1,2-Tetrachloroethane             | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| 1,1,2,2-Tetrachloroethane             | ND<br>ND | 0.50               | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| Tetrachloroethylene                   | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| Tetrahydrofuran                       | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| Toluene                               | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              |                    |
| 1,2,3-Trichlorobenzene                | ND<br>ND | 5.0                | μg/L<br>μg/L      |                |                  |         |                |     |              | V-05, L-04         |
| 1,2,4-Trichlorobenzene                | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              | V-05, L-04<br>V-05 |
| 1,3,5-Trichlorobenzene                | ND<br>ND | 1.0                | μg/L<br>μg/L      |                |                  |         |                |     |              | v-U3               |
| 1.1.1 Trichloroathana                 | ND       | 1.0                | μg/L<br>ug/I      |                |                  |         |                |     |              |                    |

 $\mu g/L$ 

1.0

ND



# QUALITY CONTROL

| Analyte                                      | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
|----------------------------------------------|--------|--------------------|--------------|----------------|------------------|--------|----------------|-----|--------------|-------|--|
| Batch B293177 - SW-846 5030B                 |        |                    |              |                |                  |        |                |     |              |       |  |
| Blank (B293177-BLK1)                         |        |                    |              | Prepared &     | Analyzed: 10     | /25/21 |                |     |              |       |  |
| 1,1,2-Trichloroethane                        | ND     | 1.0                | μg/L         |                |                  |        |                |     |              |       |  |
| Trichloroethylene                            | ND     | 1.0                | $\mu g/L$    |                |                  |        |                |     |              |       |  |
| Trichlorofluoromethane (Freon 11)            | ND     | 2.0                | μg/L         |                |                  |        |                |     |              |       |  |
| 1,2,3-Trichloropropane                       | ND     | 2.0                | $\mu g/L$    |                |                  |        |                |     |              |       |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND     | 1.0                | $\mu g/L$    |                |                  |        |                |     |              |       |  |
| 113)                                         |        |                    |              |                |                  |        |                |     |              |       |  |
| 1,2,4-Trimethylbenzene                       | ND     | 1.0                | μg/L         |                |                  |        |                |     |              |       |  |
| 1,3,5-Trimethylbenzene                       | ND     | 1.0                | μg/L         |                |                  |        |                |     |              |       |  |
| Vinyl Chloride                               | ND     | 2.0                | μg/L         |                |                  |        |                |     |              |       |  |
| m+p Xylene                                   | ND     | 2.0                | μg/L         |                |                  |        |                |     |              |       |  |
| o-Xylene                                     | ND     | 1.0                | μg/L         |                |                  |        |                |     |              |       |  |
| Surrogate: 1,2-Dichloroethane-d4             | 28.3   |                    | $\mu g/L$    | 25.0           |                  | 113    | 70-130         |     |              |       |  |
| Surrogate: Toluene-d8                        | 27.7   |                    | $\mu g/L$    | 25.0           |                  | 111    | 70-130         |     |              |       |  |
| Surrogate: 4-Bromofluorobenzene              | 25.9   |                    | $\mu g/L$    | 25.0           |                  | 104    | 70-130         |     |              |       |  |
| LCS (B293177-BS1)                            |        |                    |              | Prepared &     | Analyzed: 10     | /25/21 |                |     |              |       |  |
| Acetone                                      | 89.6   | 50                 | μg/L         | 100            |                  | 89.6   | 70-160         |     |              |       |  |
| Acrylonitrile                                | 8.11   | 5.0                | μg/L         | 10.0           |                  | 81.1   | 70-130         |     |              |       |  |
| tert-Amyl Methyl Ether (TAME)                | 9.88   | 0.50               | μg/L         | 10.0           |                  | 98.8   | 70-130         |     |              |       |  |
| Benzene                                      | 10.2   | 1.0                | μg/L         | 10.0           |                  | 102    | 70-130         |     |              |       |  |
| Bromobenzene                                 | 9.72   | 1.0                | μg/L         | 10.0           |                  | 97.2   | 70-130         |     |              |       |  |
| Bromochloromethane                           | 10.8   | 1.0                | μg/L         | 10.0           |                  | 108    | 70-130         |     |              |       |  |
| Bromodichloromethane                         | 10.4   | 0.50               | μg/L         | 10.0           |                  | 104    | 70-130         |     |              |       |  |
| Bromoform                                    | 9.19   | 1.0                | μg/L         | 10.0           |                  | 91.9   | 70-130         |     |              |       |  |
| Bromomethane                                 | 11.3   | 2.0                | μg/L         | 10.0           |                  | 113    | 40-160         |     |              |       |  |
| 2-Butanone (MEK)                             | 87.2   | 20                 | μg/L         | 100            |                  | 87.2   | 40-160         |     |              |       |  |
| tert-Butyl Alcohol (TBA)                     | 78.2   | 20                 | μg/L         | 100            |                  | 78.2   | 40-160         |     |              |       |  |
| n-Butylbenzene                               | 8.46   | 1.0                | μg/L         | 10.0           |                  | 84.6   | 70-130         |     |              |       |  |
| sec-Butylbenzene                             | 9.26   | 1.0                | μg/L         | 10.0           |                  | 92.6   | 70-130         |     |              |       |  |
| tert-Butylbenzene                            | 9.74   | 1.0                | μg/L         | 10.0           |                  | 97.4   | 70-130         |     |              |       |  |
| tert-Butyl Ethyl Ether (TBEE)                | 10.0   | 0.50               | μg/L         | 10.0           |                  | 100    | 70-130         |     |              |       |  |
| Carbon Disulfide                             | 102    | 5.0                | μg/L         | 100            |                  | 102    | 70-130         |     |              |       |  |
| Carbon Tetrachloride                         | 9.83   | 5.0                | μg/L         | 10.0           |                  | 98.3   | 70-130         |     |              |       |  |
| Chlorobenzene                                | 10.1   | 1.0                | μg/L         | 10.0           |                  | 101    | 70-130         |     |              |       |  |
| Chlorodibromomethane                         | 10.6   | 0.50               | μg/L         | 10.0           |                  | 106    | 70-130         |     |              |       |  |
| Chloroethane                                 | 11.8   | 2.0                | μg/L         | 10.0           |                  | 118    | 70-130         |     |              |       |  |
| Chloroform                                   | 10.2   | 2.0                | μg/L         | 10.0           |                  | 102    | 70-130         |     |              |       |  |
| Chloromethane                                | 13.3   | 2.0                | μg/L         | 10.0           |                  | 133    | 40-160         |     |              | V-20  |  |
| 2-Chlorotoluene                              | 9.53   | 1.0                | μg/L         | 10.0           |                  | 95.3   | 70-130         |     |              |       |  |
| 4-Chlorotoluene                              | 9.55   | 1.0                | μg/L         | 10.0           |                  | 95.5   | 70-130         |     |              |       |  |
| 1,2-Dibromo-3-chloropropane (DBCP)           | 7.97   | 5.0                | μg/L         | 10.0           |                  | 79.7   | 70-130         |     |              |       |  |
| 1,2-Dibromoethane (EDB)                      | 9.98   | 0.50               | μg/L         | 10.0           |                  | 99.8   | 70-130         |     |              |       |  |
| Dibromomethane                               | 10.4   | 1.0                | μg/L         | 10.0           |                  | 104    | 70-130         |     |              |       |  |
| 1,2-Dichlorobenzene                          | 10.0   | 1.0                | μg/L         | 10.0           |                  | 100    | 70-130         |     |              |       |  |
| 1,3-Dichlorobenzene                          | 10.0   | 1.0                | μg/L         | 10.0           |                  | 100    | 70-130         |     |              |       |  |
| 1,4-Dichlorobenzene                          | 9.63   | 1.0                | μg/L         | 10.0           |                  | 96.3   | 70-130         |     |              |       |  |
| trans-1,4-Dichloro-2-butene                  | 8.79   | 2.0                | μg/L         | 10.0           |                  | 87.9   | 70-130         |     |              |       |  |
| Dichlorodifluoromethane (Freon 12)           | 10.2   | 2.0                | μg/L         | 10.0           |                  | 102    | 40-160         |     |              |       |  |
| 1,1-Dichloroethane                           | 10.3   | 1.0                | μg/L         | 10.0           |                  | 103    | 70-130         |     |              |       |  |
| 1,2-Dichloroethane                           | 9.81   | 1.0                | μg/L         | 10.0           |                  | 98.1   | 70-130         |     |              |       |  |
| 1,1-Dichloroethylene                         | 10.2   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 102    | 70-130         |     |              |       |  |
| cis-1,2-Dichloroethylene                     | 10.2   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 102    | 70-130         |     |              |       |  |
| trans-1,2-Dichloroethylene                   | 9.79   | 1.0                | μg/L<br>μg/L | 10.0           |                  | 97.9   | 70-130         |     |              |       |  |



# QUALITY CONTROL

| Analyte                                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |   |
|----------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-----|--------------|------------|---|
| Batch B293177 - SW-846 5030B                 |        |                    |           |                |                  |        |                |     |              |            | _ |
| LCS (B293177-BS1)                            |        |                    |           | Prepared & A   | Analyzed: 10     | /25/21 |                |     |              |            |   |
| 1,2-Dichloropropane                          | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |   |
| 1,3-Dichloropropane                          | 10.0   | 0.50               | $\mu g/L$ | 10.0           |                  | 100    | 70-130         |     |              |            |   |
| 2,2-Dichloropropane                          | 9.82   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.2   | 40-130         |     |              |            | † |
| 1,1-Dichloropropene                          | 9.57   | 2.0                | $\mu g/L$ | 10.0           |                  | 95.7   | 70-130         |     |              |            |   |
| cis-1,3-Dichloropropene                      | 10.7   | 0.50               | $\mu g/L$ | 10.0           |                  | 107    | 70-130         |     |              |            |   |
| trans-1,3-Dichloropropene                    | 9.73   | 0.50               | $\mu g/L$ | 10.0           |                  | 97.3   | 70-130         |     |              |            |   |
| Diethyl Ether                                | 9.71   | 2.0                | $\mu g/L$ | 10.0           |                  | 97.1   | 70-130         |     |              |            |   |
| Diisopropyl Ether (DIPE)                     | 9.99   | 0.50               | $\mu g/L$ | 10.0           |                  | 99.9   | 70-130         |     |              |            |   |
| 1,4-Dioxane                                  | 78.0   | 50                 | $\mu g/L$ | 100            |                  | 78.0   | 40-130         |     |              |            | † |
| Ethylbenzene                                 | 9.62   | 1.0                | $\mu g/L$ | 10.0           |                  | 96.2   | 70-130         |     |              |            |   |
| Hexachlorobutadiene                          | 9.04   | 0.60               | $\mu g/L$ | 10.0           |                  | 90.4   | 70-130         |     |              |            |   |
| 2-Hexanone (MBK)                             | 84.8   | 10                 | $\mu g/L$ | 100            |                  | 84.8   | 70-160         |     |              |            | † |
| Isopropylbenzene (Cumene)                    | 9.62   | 1.0                | $\mu g/L$ | 10.0           |                  | 96.2   | 70-130         |     |              |            |   |
| p-Isopropyltoluene (p-Cymene)                | 9.13   | 1.0                | $\mu g/L$ | 10.0           |                  | 91.3   | 70-130         |     |              |            |   |
| Methyl Acetate                               | 10.1   | 1.0                | $\mu g/L$ | 10.0           |                  | 101    | 70-130         |     |              |            |   |
| Methyl tert-Butyl Ether (MTBE)               | 9.28   | 1.0                | $\mu g/L$ | 10.0           |                  | 92.8   | 70-130         |     |              |            |   |
| Methyl Cyclohexane                           | 8.50   | 1.0                | $\mu g/L$ | 10.0           |                  | 85.0   | 70-130         |     |              |            |   |
| Methylene Chloride                           | 10.8   | 5.0                | $\mu g/L$ | 10.0           |                  | 108    | 70-130         |     |              |            |   |
| 4-Methyl-2-pentanone (MIBK)                  | 91.8   | 10                 | $\mu g/L$ | 100            |                  | 91.8   | 70-160         |     |              |            | † |
| Naphthalene                                  | 4.91   | 2.0                | $\mu g/L$ | 10.0           |                  | 49.1   | 40-130         |     |              | V-05       | † |
| n-Propylbenzene                              | 9.38   | 1.0                | $\mu g/L$ | 10.0           |                  | 93.8   | 70-130         |     |              |            |   |
| Styrene                                      | 10.1   | 1.0                | $\mu g/L$ | 10.0           |                  | 101    | 70-130         |     |              |            |   |
| 1,1,1,2-Tetrachloroethane                    | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         |     |              |            |   |
| 1,1,2,2-Tetrachloroethane                    | 9.61   | 0.50               | $\mu g/L$ | 10.0           |                  | 96.1   | 70-130         |     |              |            |   |
| Tetrachloroethylene                          | 10.5   | 1.0                | $\mu g/L$ | 10.0           |                  | 105    | 70-130         |     |              |            |   |
| Tetrahydrofuran                              | 8.76   | 10                 | $\mu g/L$ | 10.0           |                  | 87.6   | 70-130         |     |              | J          |   |
| Toluene                                      | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         |     |              |            |   |
| 1,2,3-Trichlorobenzene                       | 6.39   | 5.0                | $\mu g/L$ | 10.0           |                  | 63.9 * | 70-130         |     |              | L-04, V-05 |   |
| 1,2,4-Trichlorobenzene                       | 7.02   | 1.0                | $\mu g/L$ | 10.0           |                  | 70.2   | 70-130         |     |              | V-05       |   |
| 1,3,5-Trichlorobenzene                       | 8.40   | 1.0                | $\mu g/L$ | 10.0           |                  | 84.0   | 70-130         |     |              |            |   |
| 1,1,1-Trichloroethane                        | 9.63   | 1.0                | $\mu g/L$ | 10.0           |                  | 96.3   | 70-130         |     |              |            |   |
| 1,1,2-Trichloroethane                        | 10.4   | 1.0                | $\mu g/L$ | 10.0           |                  | 104    | 70-130         |     |              |            |   |
| Trichloroethylene                            | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         |     |              |            |   |
| Trichlorofluoromethane (Freon 11)            | 9.68   | 2.0                | $\mu g/L$ | 10.0           |                  | 96.8   | 70-130         |     |              |            |   |
| 1,2,3-Trichloropropane                       | 8.79   | 2.0                | $\mu g/L$ | 10.0           |                  | 87.9   | 70-130         |     |              |            |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 8.84   | 1.0                | μg/L      | 10.0           |                  | 88.4   | 70-130         |     |              |            |   |
| 113)                                         |        |                    |           |                |                  |        |                |     |              |            |   |
| 1,2,4-Trimethylbenzene                       | 9.66   | 1.0                | μg/L      | 10.0           |                  | 96.6   | 70-130         |     |              |            |   |
| 1,3,5-Trimethylbenzene                       | 9.45   | 1.0                | μg/L      | 10.0           |                  | 94.5   | 70-130         |     |              |            |   |
| Vinyl Chloride                               | 11.4   | 2.0                | μg/L      | 10.0           |                  | 114    | 40-160         |     |              |            | † |
| m+p Xylene                                   | 19.2   | 2.0                | μg/L      | 20.0           |                  | 95.9   | 70-130         |     |              |            |   |
| o-Xylene                                     | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |   |
| Surrogate: 1,2-Dichloroethane-d4             | 27.6   |                    | μg/L      | 25.0           |                  | 110    | 70-130         |     |              |            | _ |
| Surrogate: Toluene-d8                        | 28.2   |                    | μg/L      | 25.0           |                  | 113    | 70-130         |     |              |            |   |
| Surrogate: 4-Bromofluorobenzene              | 27.2   |                    | μg/L      | 25.0           |                  | 109    | 70-130         |     |              |            |   |



# QUALITY CONTROL

| Analyte                               | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |  |
|---------------------------------------|--------|--------------------|-------------------|----------------|------------------|--------|----------------|-------|--------------|-------|--|
| Batch B293177 - SW-846 5030B          |        |                    |                   |                |                  |        |                |       |              |       |  |
| .CS Dup (B293177-BSD1)                |        |                    |                   | Prepared &     | Analyzed: 10     | /25/21 |                |       |              |       |  |
| Acetone                               | 95.3   | 50                 | μg/L              | 100            |                  | 95.3   | 70-160         | 6.17  | 25           |       |  |
| Acrylonitrile                         | 8.42   | 5.0                | $\mu g/L$         | 10.0           |                  | 84.2   | 70-130         | 3.75  | 25           |       |  |
| ert-Amyl Methyl Ether (TAME)          | 10.5   | 0.50               | $\mu g/L$         | 10.0           |                  | 105    | 70-130         | 5.80  | 25           |       |  |
| Benzene                               | 11.0   | 1.0                | $\mu g/L$         | 10.0           |                  | 110    | 70-130         | 8.22  | 25           |       |  |
| Bromobenzene                          | 9.90   | 1.0                | $\mu g/L$         | 10.0           |                  | 99.0   | 70-130         | 1.83  | 25           |       |  |
| Bromochloromethane                    | 11.5   | 1.0                | $\mu g/L$         | 10.0           |                  | 115    | 70-130         | 5.65  | 25           |       |  |
| Bromodichloromethane                  | 10.9   | 0.50               | $\mu g/L$         | 10.0           |                  | 109    | 70-130         | 4.22  | 25           |       |  |
| Bromoform                             | 9.86   | 1.0                | μg/L              | 10.0           |                  | 98.6   | 70-130         | 7.03  | 25           |       |  |
| Bromomethane                          | 12.2   | 2.0                | μg/L              | 10.0           |                  | 122    | 40-160         | 7.34  | 25           |       |  |
| 2-Butanone (MEK)                      | 96.2   | 20                 | μg/L              | 100            |                  | 96.2   | 40-160         | 9.82  | 25           |       |  |
| ert-Butyl Alcohol (TBA)               | 90.1   | 20                 | μg/L              | 100            |                  | 90.1   | 40-160         | 14.1  | 25           |       |  |
| -Butylbenzene                         | 9.31   | 1.0                | μg/L              | 10.0           |                  | 93.1   | 70-130         | 9.57  | 25           |       |  |
| ec-Butylbenzene                       | 10.2   | 1.0                | μg/L              | 10.0           |                  | 102    | 70-130         | 10.1  | 25           |       |  |
| ert-Butylbenzene                      | 10.4   | 1.0                | μg/L              | 10.0           |                  | 104    | 70-130         | 6.55  | 25           |       |  |
| ert-Butyl Ethyl Ether (TBEE)          | 10.4   | 0.50               | μg/L              | 10.0           |                  | 106    | 70-130         | 5.64  | 25           |       |  |
| Carbon Disulfide                      | 113    | 5.0                | μg/L              | 100            |                  | 113    | 70-130         | 9.83  | 25           |       |  |
| Carbon Tetrachloride                  | 10.7   | 5.0                | μg/L<br>μg/L      | 10.0           |                  | 107    | 70-130         | 8.66  | 25           |       |  |
| Chlorobenzene                         | 10.7   | 1.0                | μg/L              | 10.0           |                  | 107    | 70-130         | 6.16  | 25           |       |  |
| Chlorodibromomethane                  | 10.7   | 0.50               | μg/L<br>μg/L      | 10.0           |                  | 108    | 70-130         | 2.43  | 25           |       |  |
| Chloroethane                          | 13.0   | 2.0                | μg/L              | 10.0           |                  | 130    | 70-130         | 8.96  | 25           |       |  |
| Chloroform                            | 10.9   | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 109    | 70-130         | 6.42  | 25           |       |  |
| Chloromethane                         |        | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 134    | 40-160         | 0.42  | 25           | V-20  |  |
| -Chlorotoluene                        | 13.4   | 1.0                | μg/L<br>μg/L      | 10.0           |                  |        |                |       |              | V-20  |  |
| -Chlorotoluene                        | 10.2   | 1.0                |                   | 10.0           |                  | 102    | 70-130         | 6.50  | 25           |       |  |
| ,2-Dibromo-3-chloropropane (DBCP)     | 9.98   | 5.0                | μg/L              |                |                  | 99.8   | 70-130         | 4.40  | 25           |       |  |
| • • • •                               | 8.75   |                    | μg/L<br>/I        | 10.0           |                  | 87.5   | 70-130         | 9.33  | 25           |       |  |
| ,2-Dibromoethane (EDB) Dibromomethane | 10.8   | 0.50               | μg/L<br>α/I       | 10.0           |                  | 108    | 70-130         | 7.43  | 25           |       |  |
|                                       | 10.9   | 1.0                | μg/L              | 10.0           |                  | 109    | 70-130         | 4.77  | 25           |       |  |
| ,2-Dichlorobenzene                    | 10.5   | 1.0                | μg/L              | 10.0           |                  | 105    | 70-130         | 4.38  | 25           |       |  |
| ,3-Dichlorobenzene                    | 10.6   | 1.0                | μg/L              | 10.0           |                  | 106    | 70-130         | 6.20  | 25           |       |  |
| ,4-Dichlorobenzene                    | 10.0   | 1.0                | μg/L              | 10.0           |                  | 100    | 70-130         | 3.77  | 25           |       |  |
| rans-1,4-Dichloro-2-butene            | 9.06   | 2.0                | μg/L              | 10.0           |                  | 90.6   | 70-130         | 3.03  | 25           |       |  |
| Dichlorodifluoromethane (Freon 12)    | 11.4   | 2.0                | μg/L              | 10.0           |                  | 114    | 40-160         | 10.9  | 25           |       |  |
| 1-Dichloroethane                      | 10.8   | 1.0                | μg/L              | 10.0           |                  | 108    | 70-130         | 4.63  | 25           |       |  |
| ,2-Dichloroethane                     | 10.3   | 1.0                | μg/L              | 10.0           |                  | 103    | 70-130         | 4.87  | 25           |       |  |
| ,1-Dichloroethylene                   | 11.3   | 1.0                | μg/L              | 10.0           |                  | 113    | 70-130         | 10.2  | 25           |       |  |
| is-1,2-Dichloroethylene               | 11.0   | 1.0                | μg/L              | 10.0           |                  | 110    | 70-130         | 7.64  | 25           |       |  |
| rans-1,2-Dichloroethylene             | 10.8   | 1.0                | μg/L              | 10.0           |                  | 108    | 70-130         | 9.35  | 25           |       |  |
| ,2-Dichloropropane                    | 11.0   | 1.0                | μg/L              | 10.0           |                  | 110    | 70-130         | 6.65  | 25           |       |  |
| ,3-Dichloropropane                    | 10.5   | 0.50               | μg/L              | 10.0           |                  | 105    | 70-130         | 4.96  | 25           |       |  |
| ,2-Dichloropropane                    | 10.4   | 1.0                | $\mu g/L$         | 10.0           |                  | 104    | 40-130         | 5.45  | 25           |       |  |
| 1-Dichloropropene                     | 10.4   | 2.0                | $\mu g/L$         | 10.0           |                  | 104    | 70-130         | 8.22  | 25           |       |  |
| is-1,3-Dichloropropene                | 10.8   | 0.50               | $\mu g/L$         | 10.0           |                  | 108    | 70-130         | 0.836 | 25           |       |  |
| ans-1,3-Dichloropropene               | 10.4   | 0.50               | $\mu g/L$         | 10.0           |                  | 104    | 70-130         | 6.46  | 25           |       |  |
| iethyl Ether                          | 10.4   | 2.0                | $\mu g/L$         | 10.0           |                  | 104    | 70-130         | 6.86  | 25           |       |  |
| hisopropyl Ether (DIPE)               | 10.4   | 0.50               | $\mu g/L$         | 10.0           |                  | 104    | 70-130         | 4.31  | 25           |       |  |
| 4-Dioxane                             | 84.6   | 50                 | $\mu g/L$         | 100            |                  | 84.6   | 40-130         | 8.22  | 50           |       |  |
| thylbenzene                           | 10.1   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 101    | 70-130         | 4.57  | 25           |       |  |
| exachlorobutadiene                    | 9.95   | 0.60               | $\mu g/L$         | 10.0           |                  | 99.5   | 70-130         | 9.58  | 25           |       |  |
| -Hexanone (MBK)                       | 96.1   | 10                 | $\mu g/L$         | 100            |                  | 96.1   | 70-160         | 12.5  | 25           |       |  |
| sopropylbenzene (Cumene)              | 10.5   | 1.0                | $\mu g/L$         | 10.0           |                  | 105    | 70-130         | 8.37  | 25           |       |  |
| -Isopropyltoluene (p-Cymene)          | 9.85   | 1.0                | μg/L              | 10.0           |                  | 98.5   | 70-130         | 7.59  | 25           |       |  |
| Methyl Acetate                        | 10.5   | 1.0                | μg/L              | 10.0           |                  | 105    | 70-130         | 3.98  | 25           |       |  |



# QUALITY CONTROL

| Analist                                      | D <sup>1</sup> | Reporting | II        | Spike      | Source       | 0/DEC  | %REC   | DDD  | RPD   | Nata       |   |
|----------------------------------------------|----------------|-----------|-----------|------------|--------------|--------|--------|------|-------|------------|---|
| Analyte                                      | Result         | Limit     | Units     | Level      | Result       | %REC   | Limits | RPD  | Limit | Notes      |   |
| Batch B293177 - SW-846 5030B                 |                |           |           |            |              |        |        |      |       |            |   |
| LCS Dup (B293177-BSD1)                       |                |           |           | Prepared & | Analyzed: 10 | /25/21 |        |      |       |            |   |
| Methyl tert-Butyl Ether (MTBE)               | 9.84           | 1.0       | μg/L      | 10.0       |              | 98.4   | 70-130 | 5.86 | 25    |            |   |
| Methyl Cyclohexane                           | 9.58           | 1.0       | $\mu g/L$ | 10.0       |              | 95.8   | 70-130 | 11.9 | 25    |            |   |
| Methylene Chloride                           | 11.0           | 5.0       | $\mu g/L$ | 10.0       |              | 110    | 70-130 | 2.66 | 25    |            |   |
| 4-Methyl-2-pentanone (MIBK)                  | 101            | 10        | $\mu g/L$ | 100        |              | 101    | 70-160 | 9.68 | 25    |            | † |
| Naphthalene                                  | 5.79           | 2.0       | $\mu g/L$ | 10.0       |              | 57.9   | 40-130 | 16.4 | 25    | V-05       | † |
| n-Propylbenzene                              | 10.0           | 1.0       | $\mu g/L$ | 10.0       |              | 100    | 70-130 | 6.90 | 25    |            |   |
| Styrene                                      | 10.8           | 1.0       | $\mu g/L$ | 10.0       |              | 108    | 70-130 | 6.40 | 25    |            |   |
| 1,1,1,2-Tetrachloroethane                    | 10.7           | 1.0       | $\mu g/L$ | 10.0       |              | 107    | 70-130 | 4.77 | 25    |            |   |
| 1,1,2,2-Tetrachloroethane                    | 10.3           | 0.50      | $\mu g/L$ | 10.0       |              | 103    | 70-130 | 7.22 | 25    |            |   |
| Tetrachloroethylene                          | 11.5           | 1.0       | $\mu g/L$ | 10.0       |              | 115    | 70-130 | 8.81 | 25    |            |   |
| Tetrahydrofuran                              | 9.55           | 10        | $\mu g/L$ | 10.0       |              | 95.5   | 70-130 | 8.63 | 25    | J          |   |
| Toluene                                      | 10.9           | 1.0       | $\mu g/L$ | 10.0       |              | 109    | 70-130 | 6.54 | 25    |            |   |
| 1,2,3-Trichlorobenzene                       | 6.92           | 5.0       | $\mu g/L$ | 10.0       |              | 69.2 * | 70-130 | 7.96 | 25    | L-04, V-05 |   |
| 1,2,4-Trichlorobenzene                       | 7.79           | 1.0       | $\mu g/L$ | 10.0       |              | 77.9   | 70-130 | 10.4 | 25    | V-05       |   |
| 1,3,5-Trichlorobenzene                       | 9.18           | 1.0       | $\mu g/L$ | 10.0       |              | 91.8   | 70-130 | 8.87 | 25    |            |   |
| 1,1,1-Trichloroethane                        | 10.8           | 1.0       | μg/L      | 10.0       |              | 108    | 70-130 | 11.8 | 25    |            |   |
| 1,1,2-Trichloroethane                        | 10.9           | 1.0       | μg/L      | 10.0       |              | 109    | 70-130 | 4.50 | 25    |            |   |
| Trichloroethylene                            | 10.9           | 1.0       | μg/L      | 10.0       |              | 109    | 70-130 | 7.54 | 25    |            |   |
| Trichlorofluoromethane (Freon 11)            | 10.7           | 2.0       | μg/L      | 10.0       |              | 107    | 70-130 | 9.73 | 25    |            |   |
| 1,2,3-Trichloropropane                       | 9.20           | 2.0       | μg/L      | 10.0       |              | 92.0   | 70-130 | 4.56 | 25    |            |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 9.82           | 1.0       | μg/L      | 10.0       |              | 98.2   | 70-130 | 10.5 | 25    |            |   |
| 113)                                         |                |           |           |            |              |        |        |      |       |            |   |
| 1,2,4-Trimethylbenzene                       | 10.2           | 1.0       | μg/L      | 10.0       |              | 102    | 70-130 | 5.54 | 25    |            |   |
| 1,3,5-Trimethylbenzene                       | 9.99           | 1.0       | μg/L      | 10.0       |              | 99.9   | 70-130 | 5.56 | 25    |            |   |
| Vinyl Chloride                               | 12.7           | 2.0       | μg/L      | 10.0       |              | 127    | 40-160 | 10.9 | 25    |            | † |
| m+p Xylene                                   | 20.6           | 2.0       | μg/L      | 20.0       |              | 103    | 70-130 | 7.19 | 25    |            |   |
| o-Xylene                                     | 10.6           | 1.0       | μg/L      | 10.0       |              | 106    | 70-130 | 4.62 | 25    |            |   |
| Surrogate: 1,2-Dichloroethane-d4             | 27.6           |           | $\mu g/L$ | 25.0       |              | 110    | 70-130 |      |       |            |   |
| Surrogate: Toluene-d8                        | 28.3           |           | $\mu g/L$ | 25.0       |              | 113    | 70-130 |      |       |            |   |
| Surrogate: 4-Bromofluorobenzene              | 27.0           |           | $\mu g/L$ | 25.0       |              | 108    | 70-130 |      |       |            |   |



# QUALITY CONTROL

| Analyte                        | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-----|--------------|-------|
| atch B292783 - SW-846 3546     |        |                    |           |                |                  |               |                |     |              |       |
| lank (B292783-BLK1)            |        |                    |           | Prepared: 10   | )/19/21 Anal     | yzed: 10/21/2 | 21             |     |              |       |
| cenaphthene                    | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| cenaphthylene                  | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| cetophenone                    | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| niline                         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| nthracene                      | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzidine                       | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-04  |
| enzo(a)anthracene              | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzo(a)pyrene                  | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzo(b)fluoranthene            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzo(g,h,i)perylene            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzo(k)fluoranthene            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzoic Acid                    | ND     | 1.0                | mg/Kg wet |                |                  |               |                |     |              |       |
| is(2-chloroethoxy)methane      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| is(2-chloroethyl)ether         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| is(2-chloroisopropyl)ether     | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| is(2-Ethylhexyl)phthalate      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Bromophenylphenylether        | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| utylbenzylphthalate            | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| arbazole                       | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chloroaniline                 | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chloro-3-methylphenol         | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chloronaphthalene             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chlorophenol                  | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chlorophenylphenylether       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| hrysene                        | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| ibenz(a,h)anthracene           | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| ibenzofuran                    | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| i-n-butylphthalate             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| 2-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| 3-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,4-Dichlorobenzene             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| 3-Dichlorobenzidine            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| 4-Dichlorophenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| hiethylphthalate               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| 4-Dimethylphenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| bimethylphthalate              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,6-Dinitro-2-methylphenol      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              | V-05  |
| 4-Dinitrophenol                | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-04  |
| 4-Dinitrotoluene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,6-Dinitrotoluene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| i-n-octylphthalate             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| 2-Diphenylhydrazine/Azobenzene | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| luoranthene                    | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| luorene                        | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| exachlorobenzene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| [exachlorobutadiene            | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| (exachlorocyclopentadiene      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| exachloroethane                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ndeno(1,2,3-cd)pyrene          | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| ophorone<br>-Methylnaphthalene | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Mathylinaphthalana             | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |



# QUALITY CONTROL

| Analyte                                           | Result        | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD | RPD<br>Limit | Notes |
|---------------------------------------------------|---------------|--------------------|------------------------|----------------|------------------|---------------|------------------|-----|--------------|-------|
| Batch B292783 - SW-846 3546                       |               |                    |                        |                |                  |               |                  |     |              |       |
| Blank (B292783-BLK1)                              |               |                    | :                      | Prepared: 10   | /19/21 Analy     | yzed: 10/21/2 | 1                |     |              |       |
| 2-Methylphenol                                    | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 3/4-Methylphenol                                  | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Naphthalene                                       | ND            | 0.17               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 2-Nitroaniline                                    | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 3-Nitroaniline                                    | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 4-Nitroaniline                                    | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Nitrobenzene                                      | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 2-Nitrophenol                                     | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 4-Nitrophenol                                     | ND            | 0.66               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| N-Nitrosodimethylamine                            | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              | R-05  |
| N-Nitrosodiphenylamine/Diphenylamine              | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| N-Nitrosodi-n-propylamine                         | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Pentachloronitrobenzene                           | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Pentachlorophenol                                 | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Phenanthrene<br>Phonal                            | ND            | 0.17               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Phenol<br>Pyrana                                  | ND            | 0.34               | mg/Kg wet<br>mg/Kg wet |                |                  |               |                  |     |              |       |
| Pyrene<br>Pyridine                                | ND            | 0.17<br>0.34       | mg/Kg wet              |                |                  |               |                  |     |              | R-05  |
| 1,2,4,5-Tetrachlorobenzene                        | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              | K-03  |
| 1,2,4-Trichlorobenzene                            | ND            | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 2,4,5-Trichlorophenol                             | ND<br>ND      | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| 2,4,6-Trichlorophenol                             | ND<br>ND      | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
|                                                   |               | 0.0.               |                        | 6.67           |                  | (0.0          | 20.120           |     |              |       |
| Surrogate: 2-Fluorophenol<br>Surrogate: Phenol-d6 | 4.66<br>4.87  |                    | mg/Kg wet              | 6.67<br>6.67   |                  | 69.9<br>73.1  | 30-130<br>30-130 |     |              |       |
| Surrogate: Pitenoi-do Surrogate: Nitrobenzene-d5  | 2.20          |                    | mg/Kg wet<br>mg/Kg wet | 3.33           |                  | 66.1          | 30-130           |     |              |       |
| Surrogate: 2-Fluorobiphenyl                       | 2.39          |                    | mg/Kg wet              | 3.33           |                  | 71.6          | 30-130           |     |              |       |
| Surrogate: 2,4,6-Tribromophenol                   | 4.76          |                    | mg/Kg wet              | 6.67           |                  | 71.4          | 30-130           |     |              |       |
| Surrogate: p-Terphenyl-d14                        | 2.75          |                    | mg/Kg wet              | 3.33           |                  | 82.6          | 30-130           |     |              |       |
|                                                   |               |                    |                        |                |                  |               |                  |     |              |       |
| LCS (B292783-BS1)                                 |               | 0.17               |                        |                | /19/21 Analy     |               |                  |     |              |       |
| Acenaphthene<br>Acenaphthylene                    | 1.17          | 0.17               | mg/Kg wet<br>mg/Kg wet | 1.67           |                  | 70.1          | 40-140           |     |              |       |
| Acetophenone                                      | 1.23          | 0.17<br>0.34       | mg/Kg wet              | 1.67           |                  | 73.8          | 40-140           |     |              |       |
| Aniline                                           | 1.03          | 0.34               | mg/Kg wet              | 1.67<br>1.67   |                  | 62.0<br>62.2  | 40-140<br>10-140 |     |              |       |
| Anthracene                                        | 1.04          | 0.17               | mg/Kg wet              | 1.67           |                  | 76.3          | 40-140           |     |              |       |
| Benzidine                                         | 1.27<br>0.897 | 0.66               | mg/Kg wet              | 1.67           |                  | 53.8          | 40-140           |     |              | V-04  |
| Benzo(a)anthracene                                | 1.19          | 0.17               | mg/Kg wet              | 1.67           |                  | 71.4          | 40-140           |     |              | V-0-4 |
| Benzo(a)pyrene                                    | 1.35          | 0.17               | mg/Kg wet              | 1.67           |                  | 80.8          | 40-140           |     |              |       |
| Benzo(b)fluoranthene                              | 1.26          | 0.17               | mg/Kg wet              | 1.67           |                  | 75.8          | 40-140           |     |              |       |
| Benzo(g,h,i)perylene                              | 1.32          | 0.17               | mg/Kg wet              | 1.67           |                  | 79.0          | 40-140           |     |              |       |
| Benzo(k)fluoranthene                              | 1.36          | 0.17               | mg/Kg wet              | 1.67           |                  | 81.6          | 40-140           |     |              |       |
| Benzoic Acid                                      | 1.28          | 1.0                | mg/Kg wet              | 1.67           |                  | 77.0          | 30-130           |     |              |       |
| Bis(2-chloroethoxy)methane                        | 1.11          | 0.34               | mg/Kg wet              | 1.67           |                  | 66.6          | 40-140           |     |              |       |
| Bis(2-chloroethyl)ether                           | 0.974         | 0.34               | mg/Kg wet              | 1.67           |                  | 58.4          | 40-140           |     |              |       |
| Bis(2-chloroisopropyl)ether                       | 1.12          | 0.34               | mg/Kg wet              | 1.67           |                  | 67.3          | 40-140           |     |              |       |
| Bis(2-Ethylhexyl)phthalate                        | 1.36          | 0.34               | mg/Kg wet              | 1.67           |                  | 81.6          | 40-140           |     |              |       |
| 4-Bromophenylphenylether                          | 1.21          | 0.34               | mg/Kg wet              | 1.67           |                  | 72.5          | 40-140           |     |              |       |
| Butylbenzylphthalate                              | 1.32          | 0.34               | mg/Kg wet              | 1.67           |                  | 79.3          | 40-140           |     |              |       |
| Carbazole                                         | 1.28          | 0.17               | mg/Kg wet              | 1.67           |                  | 77.0          | 40-140           |     |              |       |
| 4-Chloroaniline                                   | 0.907         | 0.66               | mg/Kg wet              | 1.67           |                  | 54.4          | 10-140           |     |              |       |
| 4-Chloro-3-methylphenol                           | 1.22          | 0.66               | mg/Kg wet              | 1.67           |                  | 73.3          | 30-130           |     |              |       |
|                                                   |               |                    |                        |                |                  |               |                  |     |              |       |



# QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|-----|--------------|-------|--|
| Batch B292783 - SW-846 3546          |        |                    |           |                |                  |              |                |     |              |       |  |
| LCS (B292783-BS1)                    |        |                    |           | Prepared: 10   | )/19/21 Analyz   | zed: 10/21/2 | :1             |     |              |       |  |
| 2-Chlorophenol                       | 0.993  | 0.34               | mg/Kg wet | 1.67           |                  | 59.6         | 30-130         |     |              |       |  |
| 4-Chlorophenylphenylether            | 1.16   | 0.34               | mg/Kg wet | 1.67           |                  | 69.7         | 40-140         |     |              |       |  |
| Chrysene                             | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.3         | 40-140         |     |              |       |  |
| Dibenz(a,h)anthracene                | 1.30   | 0.17               | mg/Kg wet | 1.67           |                  | 77.8         | 40-140         |     |              |       |  |
| Dibenzofuran                         | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 74.8         | 40-140         |     |              |       |  |
| Di-n-butylphthalate                  | 1.30   | 0.34               | mg/Kg wet | 1.67           |                  | 77.8         | 40-140         |     |              |       |  |
| 1,2-Dichlorobenzene                  | 0.842  | 0.34               | mg/Kg wet | 1.67           |                  | 50.5         | 40-140         |     |              |       |  |
| 1,3-Dichlorobenzene                  | 0.782  | 0.34               | mg/Kg wet | 1.67           |                  | 46.9         | 40-140         |     |              |       |  |
| 1,4-Dichlorobenzene                  | 0.800  | 0.34               | mg/Kg wet | 1.67           |                  | 48.0         | 40-140         |     |              |       |  |
| 3,3-Dichlorobenzidine                | 1.02   | 0.17               | mg/Kg wet | 1.67           |                  | 61.0         | 20-140         |     |              |       |  |
| 2,4-Dichlorophenol                   | 1.13   | 0.34               | mg/Kg wet | 1.67           |                  | 67.7         | 30-130         |     |              |       |  |
| Diethylphthalate                     | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 75.0         | 40-140         |     |              |       |  |
| 2,4-Dimethylphenol                   | 1.09   | 0.34               | mg/Kg wet | 1.67           |                  | 65.1         | 30-130         |     |              |       |  |
| Dimethylphthalate                    | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.5         | 40-140         |     |              |       |  |
| 4,6-Dinitro-2-methylphenol           | 1.11   | 0.34               | mg/Kg wet | 1.67           |                  | 66.4         | 30-130         |     |              | V-05  |  |
| 2,4-Dinitrophenol                    | 1.19   | 0.66               | mg/Kg wet | 1.67           |                  | 71.4         | 30-130         |     |              | V-04  |  |
| 2,4-Dinitrotoluene                   | 1.44   | 0.34               | mg/Kg wet | 1.67           |                  | 86.5         | 40-140         |     |              |       |  |
| 2,6-Dinitrotoluene                   | 1.44   | 0.34               | mg/Kg wet | 1.67           |                  | 86.2         | 40-140         |     |              |       |  |
| Di-n-octylphthalate                  | 1.30   | 0.34               | mg/Kg wet | 1.67           |                  | 78.0         | 40-140         |     |              |       |  |
| 1,2-Diphenylhydrazine/Azobenzene     | 1.28   | 0.34               | mg/Kg wet | 1.67           |                  | 76.9         | 40-140         |     |              |       |  |
| Fluoranthene                         | 1.26   | 0.17               | mg/Kg wet | 1.67           |                  | 75.6         | 40-140         |     |              |       |  |
| Fluorene                             | 1.26   | 0.17               | mg/Kg wet | 1.67           |                  | 75.6         | 40-140         |     |              |       |  |
| Hexachlorobenzene                    | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.4         | 40-140         |     |              |       |  |
| Hexachlorobutadiene                  | 0.851  | 0.34               | mg/Kg wet | 1.67           |                  | 51.0         | 40-140         |     |              |       |  |
| Hexachlorocyclopentadiene            | 1.01   | 0.34               | mg/Kg wet | 1.67           |                  | 60.7         | 40-140         |     |              |       |  |
| Hexachloroethane                     | 0.824  | 0.34               | mg/Kg wet | 1.67           |                  | 49.4         | 40-140         |     |              |       |  |
| Indeno(1,2,3-cd)pyrene               | 1.30   | 0.17               | mg/Kg wet | 1.67           |                  | 78.1         | 40-140         |     |              |       |  |
| Isophorone                           | 1.17   | 0.34               | mg/Kg wet | 1.67           |                  | 70.0         | 40-140         |     |              |       |  |
| 1-Methylnaphthalene                  | 1.01   | 0.17               | mg/Kg wet | 1.67           |                  | 60.6         | 40-140         |     |              |       |  |
| 2-Methylnaphthalene                  | 1.20   | 0.17               | mg/Kg wet | 1.67           |                  | 72.3         | 40-140         |     |              |       |  |
| 2-Methylphenol                       | 1.16   | 0.34               | mg/Kg wet | 1.67           |                  | 69.6         | 30-130         |     |              |       |  |
| 3/4-Methylphenol                     | 1.10   | 0.34               | mg/Kg wet | 1.67           |                  | 73.0         | 30-130         |     |              |       |  |
| Naphthalene                          | 1.07   | 0.17               | mg/Kg wet | 1.67           |                  | 64.0         | 40-140         |     |              |       |  |
| 2-Nitroaniline                       | 1.56   | 0.34               | mg/Kg wet | 1.67           |                  | 93.3         | 40-140         |     |              |       |  |
| 3-Nitroaniline                       | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.2         | 30-140         |     |              |       |  |
| 4-Nitroaniline                       | 1.42   | 0.34               | mg/Kg wet | 1.67           |                  | 85.3         | 40-140         |     |              |       |  |
| Nitrobenzene                         | 1.02   | 0.34               | mg/Kg wet | 1.67           |                  | 61.0         | 40-140         |     |              |       |  |
| 2-Nitrophenol                        | 1.02   | 0.34               | mg/Kg wet | 1.67           |                  | 61.9         | 30-130         |     |              |       |  |
| 4-Nitrophenol                        | 1.03   | 0.66               | mg/Kg wet | 1.67           |                  | 77.0         | 30-130         |     |              |       |  |
| N-Nitrosodimethylamine               | 0.800  | 0.34               | mg/Kg wet | 1.67           |                  | 48.0         | 40-140         |     |              | R-05  |  |
| N-Nitrosodiphenylamine/Diphenylamine | 1.32   | 0.34               | mg/Kg wet | 1.67           |                  | 79.1         | 40-140         |     |              | 10-00 |  |
| N-Nitrosodi-n-propylamine            | 1.32   | 0.34               | mg/Kg wet | 1.67           |                  | 65.5         | 40-140         |     |              |       |  |
| Pentachloronitrobenzene              | 1.09   | 0.34               | mg/Kg wet | 1.67           |                  | 75.0         | 40-140         |     |              |       |  |
| Pentachlorophenol                    | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 72.9         | 30-130         |     |              |       |  |
| Phenanthrene                         | 1.22   | 0.17               | mg/Kg wet | 1.67           |                  | 76.0         | 40-140         |     |              |       |  |
| Phenol                               | 1.27   | 0.34               | mg/Kg wet | 1.67           |                  | 64.6         | 30-130         |     |              |       |  |
| Pyrene                               | 1.08   | 0.17               | mg/Kg wet | 1.67           |                  | 76.6         | 40-140         |     |              |       |  |
| Pyridine                             |        | 0.17               | mg/Kg wet | 1.67           |                  | 31.1         | 30-140         |     |              | R-05  |  |
| 1,2,4,5-Tetrachlorobenzene           | 0.518  | 0.34               | mg/Kg wet | 1.67           |                  | 61.4         | 40-140         |     |              | 13-03 |  |
| 1,2,4-Trichlorobenzene               | 1.02   | 0.34               | mg/Kg wet |                |                  |              | 40-140         |     |              |       |  |
| 2,4,5-Trichlorophenol                | 0.920  | 0.34               | mg/Kg wet | 1.67           |                  | 55.2         |                |     |              |       |  |
| 2, <del>4</del> ,5-111011010piicii01 | 1.23   | 0.34               | mg/kg wet | 1.67           |                  | 73.9         | 30-130         |     |              |       |  |



#### QUALITY CONTROL

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |     |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|-----|
| Batch B292783 - SW-846 3546         |        |                    |           |                |                  |               |                |       |              |       |     |
| LCS (B292783-BS1)                   |        |                    |           | Prepared: 10   | )/19/21 Anal     | yzed: 10/21/2 | 21             |       |              |       |     |
| Surrogate: 2-Fluorophenol           | 4.11   |                    | mg/Kg wet | 6.67           |                  | 61.6          | 30-130         |       |              |       |     |
| Surrogate: Phenol-d6                | 4.51   |                    | mg/Kg wet | 6.67           |                  | 67.7          | 30-130         |       |              |       |     |
| Surrogate: Nitrobenzene-d5          | 2.08   |                    | mg/Kg wet | 3.33           |                  | 62.5          | 30-130         |       |              |       |     |
| Surrogate: 2-Fluorobiphenyl         | 2.40   |                    | mg/Kg wet | 3.33           |                  | 72.1          | 30-130         |       |              |       |     |
| Surrogate: 2,4,6-Tribromophenol     | 5.44   |                    | mg/Kg wet | 6.67           |                  | 81.6          | 30-130         |       |              |       |     |
| Surrogate: p-Terphenyl-d14          | 2.75   |                    | mg/Kg wet | 3.33           |                  | 82.5          | 30-130         |       |              |       |     |
| LCS Dup (B292783-BSD1)              |        |                    |           | Prepared: 10   | )/19/21 Anal     | yzed: 10/21/2 | 21             |       |              |       |     |
| Acenaphthene                        | 1.20   | 0.17               | mg/Kg wet | 1.67           |                  | 72.3          | 40-140         | 3.06  | 30           |       |     |
| Acenaphthylene                      | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.4          | 40-140         | 0.891 | 30           |       |     |
| Acetophenone                        | 1.24   | 0.34               | mg/Kg wet | 1.67           |                  | 74.5          | 40-140         | 18.3  | 30           |       |     |
| Aniline                             | 1.11   | 0.34               | mg/Kg wet | 1.67           |                  | 66.3          | 10-140         | 6.38  | 50           |       | † ‡ |
| Anthracene                          | 1.26   | 0.17               | mg/Kg wet | 1.67           |                  | 75.4          | 40-140         | 1.24  | 30           |       |     |
| Benzidine                           | 0.817  | 0.66               | mg/Kg wet | 1.67           |                  | 49.0          | 40-140         | 9.33  | 30           | V-04  |     |
| Benzo(a)anthracene                  | 1.16   | 0.17               | mg/Kg wet | 1.67           |                  | 69.5          | 40-140         | 2.72  | 30           |       |     |
| Benzo(a)pyrene                      | 1.30   | 0.17               | mg/Kg wet | 1.67           |                  | 77.8          | 40-140         | 3.83  | 30           |       |     |
| Benzo(b)fluoranthene                | 1.20   | 0.17               | mg/Kg wet | 1.67           |                  | 72.1          | 40-140         | 4.97  | 30           |       |     |
| Benzo(g,h,i)perylene                | 1.23   | 0.17               | mg/Kg wet | 1.67           |                  | 73.8          | 40-140         | 6.80  | 30           |       |     |
| Benzo(k)fluoranthene                | 1.33   | 0.17               | mg/Kg wet | 1.67           |                  | 79.5          | 40-140         | 2.51  | 30           |       |     |
| Benzoic Acid                        | 1.35   | 1.0                | mg/Kg wet | 1.67           |                  | 81.2          | 30-130         | 5.26  | 50           |       | ‡   |
| Bis(2-chloroethoxy)methane          | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.5          | 40-140         | 12.5  | 30           |       | •   |
| Bis(2-chloroethyl)ether             | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 72.1          | 40-140         | 20.9  | 30           |       |     |
| Bis(2-chloroisopropyl)ether         | 1.39   | 0.34               | mg/Kg wet | 1.67           |                  | 83.1          | 40-140         | 21.1  | 30           |       |     |
| Bis(2-Ethylhexyl)phthalate          | 1.33   | 0.34               | mg/Kg wet | 1.67           |                  | 79.7          | 40-140         | 2.33  | 30           |       |     |
| 4-Bromophenylphenylether            | 1.13   | 0.34               | mg/Kg wet | 1.67           |                  | 67.8          | 40-140         | 6.64  | 30           |       |     |
| Butylbenzylphthalate                |        | 0.34               | mg/Kg wet | 1.67           |                  | 77.7          | 40-140         | 1.99  | 30           |       |     |
| Carbazole                           | 1.30   | 0.17               | mg/Kg wet | 1.67           |                  | 73.6          | 40-140         | 4.54  | 30           |       |     |
| 4-Chloroaniline                     | 1.23   | 0.66               | mg/Kg wet | 1.67           |                  | 47.5          | 10-140         | 13.6  | 30           |       | †   |
| 4-Chloro-3-methylphenol             | 0.791  | 0.66               | mg/Kg wet | 1.67           |                  |               |                |       |              |       | Ī   |
| 2-Chloronaphthalene                 | 1.22   | 0.34               | mg/Kg wet |                |                  | 73.1          | 30-130         | 0.328 | 30           |       |     |
| 2-Chlorophenol                      | 1.02   | 0.34               | mg/Kg wet | 1.67<br>1.67   |                  | 61.0          | 40-140         | 3.33  | 30<br>30     |       |     |
| 4-Chlorophenylphenylether           | 1.20   | 0.34               | mg/Kg wet |                |                  | 72.0          | 30-130         | 18.8  |              |       |     |
|                                     | 1.15   |                    | mg/Kg wet | 1.67           |                  | 69.1          | 40-140         | 0.922 | 30           |       |     |
| Chrysene  Dibour(a b) and an annual | 1.21   | 0.17               |           | 1.67           |                  | 72.7          | 40-140         | 2.20  | 30           |       |     |
| Dibenz(a,h)anthracene               | 1.22   | 0.17               | mg/Kg wet | 1.67           |                  | 73.1          | 40-140         | 6.28  | 30           |       |     |
| Dibenzofuran                        | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 73.8          | 40-140         | 1.35  | 30           |       |     |
| Di-n-butylphthalate                 | 1.24   | 0.34               | mg/Kg wet | 1.67           |                  | 74.3          | 40-140         | 4.58  | 30           |       |     |
| 1,2-Dichlorobenzene                 | 1.10   | 0.34               | mg/Kg wet | 1.67           |                  | 65.8          | 40-140         | 26.2  | 30           |       |     |
| 1,3-Dichlorobenzene                 | 1.05   | 0.34               | mg/Kg wet | 1.67           |                  | 62.9          | 40-140         | 29.0  | 30           |       |     |
| 1,4-Dichlorobenzene                 | 1.06   | 0.34               | mg/Kg wet | 1.67           |                  | 63.8          | 40-140         | 28.3  | 30           |       |     |
| 3,3-Dichlorobenzidine               | 0.954  | 0.17               | mg/Kg wet | 1.67           |                  | 57.2          | 20-140         | 6.29  | 50           |       | † ‡ |
| 2,4-Dichlorophenol                  | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 72.1          | 30-130         | 6.38  | 30           |       |     |
| Diethylphthalate                    | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.3          | 40-140         | 2.21  | 30           |       |     |
| 2,4-Dimethylphenol                  | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.2          | 30-130         | 8.89  | 30           |       |     |
| Dimethylphthalate                   | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 72.0          | 40-140         | 1.98  | 30           |       |     |
| 4,6-Dinitro-2-methylphenol          | 1.10   | 0.34               | mg/Kg wet | 1.67           |                  | 65.7          | 30-130         | 0.969 | 30           | V-05  |     |
| 2,4-Dinitrophenol                   | 1.24   | 0.66               | mg/Kg wet | 1.67           |                  | 74.2          | 30-130         | 3.93  | 30           | V-04  |     |
| 2,4-Dinitrotoluene                  | 1.34   | 0.34               | mg/Kg wet | 1.67           |                  | 80.7          | 40-140         | 6.96  | 30           |       |     |
| 2,6-Dinitrotoluene                  | 1.39   | 0.34               | mg/Kg wet | 1.67           |                  | 83.5          | 40-140         | 3.23  | 30           |       |     |
| Di-n-octylphthalate                 | 1.28   | 0.34               | mg/Kg wet | 1.67           |                  | 76.7          | 40-140         | 1.63  | 30           |       |     |
| 1,2-Diphenylhydrazine/Azobenzene    | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.9          | 40-140         | 1.28  | 30           |       |     |
| Fluoranthene                        | 1.19   | 0.17               | mg/Kg wet | 1.67           |                  | 71.3          | 40-140         | 5.88  | 30           |       |     |
| Fluorene                            | 1.26   | 0.17               | mg/Kg wet | 1.67           |                  | 75.6          | 40-140         | 0.00  | 30           |       |     |



#### QUALITY CONTROL

|                                      |        | Reporting |           | Spike        | Source       |               | %REC   |       |   | RPD   |       |  |
|--------------------------------------|--------|-----------|-----------|--------------|--------------|---------------|--------|-------|---|-------|-------|--|
| Analyte                              | Result | Limit     | Units     | Level        | Result       | %REC          | Limits | RPD   |   | Limit | Notes |  |
| Batch B292783 - SW-846 3546          |        |           |           |              |              |               |        |       |   |       |       |  |
| LCS Dup (B292783-BSD1)               |        |           | 1         | Prepared: 10 | )/19/21 Anal | yzed: 10/21/2 | 21     |       |   |       |       |  |
| Hexachlorobenzene                    | 1.19   | 0.34      | mg/Kg wet | 1.67         |              | 71.3          | 40-140 | 5.59  |   | 30    |       |  |
| Hexachlorobutadiene                  | 1.10   | 0.34      | mg/Kg wet | 1.67         |              | 66.3          | 40-140 | 26.0  |   | 30    |       |  |
| Hexachlorocyclopentadiene            | 1.20   | 0.34      | mg/Kg wet | 1.67         |              | 71.9          | 40-140 | 16.8  |   | 30    |       |  |
| Hexachloroethane                     | 1.11   | 0.34      | mg/Kg wet | 1.67         |              | 66.7          | 40-140 | 29.8  |   | 30    |       |  |
| Indeno(1,2,3-cd)pyrene               | 1.27   | 0.17      | mg/Kg wet | 1.67         |              | 76.5          | 40-140 | 2.15  |   | 30    |       |  |
| Isophorone                           | 1.30   | 0.34      | mg/Kg wet | 1.67         |              | 77.9          | 40-140 | 10.7  |   | 30    |       |  |
| 1-Methylnaphthalene                  | 1.11   | 0.17      | mg/Kg wet | 1.67         |              | 66.6          | 40-140 | 9.46  |   | 30    |       |  |
| 2-Methylnaphthalene                  | 1.32   | 0.17      | mg/Kg wet | 1.67         |              | 79.5          | 40-140 | 9.52  |   | 30    |       |  |
| 2-Methylphenol                       | 1.28   | 0.34      | mg/Kg wet | 1.67         |              | 77.1          | 30-130 | 10.2  |   | 30    |       |  |
| 3/4-Methylphenol                     | 1.30   | 0.34      | mg/Kg wet | 1.67         |              | 77.9          | 30-130 | 6.44  |   | 30    |       |  |
| Naphthalene                          | 1.22   | 0.17      | mg/Kg wet | 1.67         |              | 72.9          | 40-140 | 13.1  |   | 30    |       |  |
| 2-Nitroaniline                       | 1.57   | 0.34      | mg/Kg wet | 1.67         |              | 94.2          | 40-140 | 0.917 |   | 30    |       |  |
| 3-Nitroaniline                       | 1.13   | 0.34      | mg/Kg wet | 1.67         |              | 67.8          | 30-140 | 7.66  |   | 30    |       |  |
| 4-Nitroaniline                       | 1.33   | 0.34      | mg/Kg wet | 1.67         |              | 79.9          | 40-140 | 6.56  |   | 30    |       |  |
| Nitrobenzene                         | 1.19   | 0.34      | mg/Kg wet | 1.67         |              | 71.3          | 40-140 | 15.5  |   | 30    |       |  |
| 2-Nitrophenol                        | 1.22   | 0.34      | mg/Kg wet | 1.67         |              | 73.0          | 30-130 | 16.4  |   | 30    |       |  |
| 4-Nitrophenol                        | 1.25   | 0.66      | mg/Kg wet | 1.67         |              | 75.3          | 30-130 | 2.28  |   | 50    |       |  |
| N-Nitrosodimethylamine               | 1.15   | 0.34      | mg/Kg wet | 1.67         |              | 69.2          | 40-140 | 36.2  | * | 30    | R-05  |  |
| N-Nitrosodiphenylamine/Diphenylamine | 1.26   | 0.34      | mg/Kg wet | 1.67         |              | 75.5          | 40-140 | 4.68  |   | 30    |       |  |
| N-Nitrosodi-n-propylamine            | 1.28   | 0.34      | mg/Kg wet | 1.67         |              | 76.7          | 40-140 | 15.7  |   | 30    |       |  |
| Pentachloronitrobenzene              | 1.18   | 0.34      | mg/Kg wet | 1.67         |              | 70.8          | 40-140 | 5.81  |   | 30    |       |  |
| Pentachlorophenol                    | 1.14   | 0.34      | mg/Kg wet | 1.67         |              | 68.3          | 30-130 | 6.60  |   | 30    |       |  |
| Phenanthrene                         | 1.23   | 0.17      | mg/Kg wet | 1.67         |              | 73.6          | 40-140 | 3.24  |   | 30    |       |  |
| Phenol                               | 1.18   | 0.34      | mg/Kg wet | 1.67         |              | 71.1          | 30-130 | 9.58  |   | 30    |       |  |
| Pyrene                               | 1.25   | 0.17      | mg/Kg wet | 1.67         |              | 74.8          | 40-140 | 2.40  |   | 30    |       |  |
| Pyridine                             | 0.715  | 0.34      | mg/Kg wet | 1.67         |              | 42.9          | 30-140 | 31.9  | * | 30    | R-05  |  |
| 1,2,4,5-Tetrachlorobenzene           | 1.16   | 0.34      | mg/Kg wet | 1.67         |              | 69.4          | 40-140 | 12.3  |   | 30    |       |  |
| 1,2,4-Trichlorobenzene               | 1.14   | 0.34      | mg/Kg wet | 1.67         |              | 68.3          | 40-140 | 21.2  |   | 30    |       |  |
| 2,4,5-Trichlorophenol                | 1.27   | 0.34      | mg/Kg wet | 1.67         |              | 76.0          | 30-130 | 2.78  |   | 30    |       |  |
| 2,4,6-Trichlorophenol                | 1.22   | 0.34      | mg/Kg wet | 1.67         |              | 73.4          | 30-130 | 3.27  |   | 30    |       |  |
| Surrogate: 2-Fluorophenol            | 4.95   |           | mg/Kg wet | 6.67         |              | 74.2          | 30-130 |       |   |       |       |  |
| Surrogate: Phenol-d6                 | 4.92   |           | mg/Kg wet | 6.67         |              | 73.9          | 30-130 |       |   |       |       |  |
| Surrogate: Nitrobenzene-d5           | 2.44   |           | mg/Kg wet | 3.33         |              | 73.1          | 30-130 |       |   |       |       |  |
| Surrogate: 2-Fluorobiphenyl          | 2.52   |           | mg/Kg wet | 3.33         |              | 75.7          | 30-130 |       |   |       |       |  |
| Surrogate: 2,4,6-Tribromophenol      | 5.18   |           | mg/Kg wet | 6.67         |              | 77.7          | 30-130 |       |   |       |       |  |
| Surrogate: p-Terphenyl-d14           | 2.66   |           | mg/Kg wet | 3.33         |              | 79.8          | 30-130 |       |   |       |       |  |



#### QUALITY CONTROL

#### Petroleum Hydrocarbons Analyses - Quality Control

| Analysis                            | D14    | Reporting | 11-14-    | Spike        | Source        | 0/DEC         | %REC   | DDD   | RPD   | Notes |
|-------------------------------------|--------|-----------|-----------|--------------|---------------|---------------|--------|-------|-------|-------|
| Analyte                             | Result | Limit     | Units     | Level        | Result        | %REC          | Limits | RPD   | Limit | Notes |
| Batch B292550 - SW-846 5030B        |        |           |           |              |               |               |        |       |       |       |
| Blank (B292550-BLK1)                |        |           |           | Prepared: 10 | )/15/21 Analy | yzed: 10/16/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | ND     | 1.0       | mg/Kg wet |              |               |               |        |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.8   |           | $\mu g/L$ | 15.0         |               | 112           | 70-130 |       |       |       |
| LCS (B292550-BS1)                   |        |           |           | Prepared &   | Analyzed: 10  | /15/21        |        |       |       |       |
| Gasoline Range Organics (GRO)       | 24.5   | 1.0       | mg/Kg wet | 25.0         |               | 98.0          | 80-120 |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.8   |           | μg/L      | 15.0         |               | 112           | 70-130 |       |       |       |
| LCS Dup (B292550-BSD1)              |        |           |           | Prepared &   | Analyzed: 10  | /15/21        |        |       |       |       |
| Gasoline Range Organics (GRO)       | 25.1   | 1.0       | mg/Kg wet | 25.0         |               | 101           | 80-120 | 2.57  | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.7   |           | μg/L      | 15.0         |               | 104           | 70-130 |       |       |       |
| Batch B292666 - SW-846 5030B        |        |           |           |              |               |               |        |       |       |       |
| Blank (B292666-BLK1)                |        |           |           | Prepared: 10 | )/18/21 Analy | yzed: 10/19/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | ND     | 1.0       | mg/Kg wet |              |               |               |        |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.9   |           | μg/L      | 15.0         |               | 106           | 70-130 |       |       |       |
| LCS (B292666-BS1)                   |        |           |           | Prepared: 10 | )/18/21 Analy | yzed: 10/19/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | 24.3   | 1.0       | mg/Kg wet | 25.0         |               | 97.3          | 80-120 |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.6   |           | μg/L      | 15.0         |               | 104           | 70-130 |       |       |       |
| LCS Dup (B292666-BSD1)              |        |           |           | Prepared: 10 | )/18/21 Analy | yzed: 10/19/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | 24.5   | 1.0       | mg/Kg wet | 25.0         |               | 97.8          | 80-120 | 0.490 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.5   |           | μg/L      | 15.0         |               | 103           | 70-130 |       |       |       |
| Batch B292690 - SW-846 3546         |        |           |           |              |               |               |        |       |       |       |
| Blank (B292690-BLK1)                |        |           |           | Prepared: 10 | )/18/21 Analy | yzed: 10/20/2 | 21     |       |       |       |
| Diesel Range Organics               | ND     | 8.3       | mg/Kg wet |              |               |               |        |       |       |       |
| Surrogate: 2-Fluorobiphenyl         | 2.26   |           | mg/Kg wet | 3.33         |               | 67.7          | 40-140 |       |       |       |
| LCS (B292690-BS1)                   |        |           |           | Prepared: 10 | 0/18/21 Analy | yzed: 10/20/2 | 21     |       |       |       |
| Diesel Range Organics               | 23.9   | 8.3       | mg/Kg wet | 33.3         |               | 71.6          | 40-140 |       |       |       |
| Surrogate: 2-Fluorobiphenyl         | 2.49   |           | mg/Kg wet | 3.33         |               | 74.6          | 40-140 |       |       |       |
| LCS Dup (B292690-BSD1)              |        |           |           | Prepared: 10 | 0/18/21 Analy | yzed: 10/20/2 | 21     |       |       |       |
| Diesel Range Organics               | 24.6   | 8.3       | mg/Kg wet | 33.3         |               | 73.9          | 40-140 | 3.24  | 30    |       |
| Surrogate: 2-Fluorobiphenyl         | 2.44   |           | mg/Kg wet | 3.33         |               | 73.3          | 40-140 |       |       |       |
| Batch B292856 - SW-846 5030B        |        |           |           |              |               |               |        |       |       |       |
| Blank (B292856-BLK1)                |        |           |           | Prepared: 10 | )/20/21 Analy | yzed: 10/21/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | ND     | 0.010     | mg/L      | -            |               |               |        |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.9   |           | μg/L      | 15.0         |               | 113           | 70-130 |       |       |       |
|                                     |        |           |           |              |               |               |        |       |       |       |



#### QUALITY CONTROL

#### Petroleum Hydrocarbons Analyses - Quality Control

|                                     |        | Reporting |       | Spike        | Source       |               | %REC   |      | RPD   |       |
|-------------------------------------|--------|-----------|-------|--------------|--------------|---------------|--------|------|-------|-------|
| Analyte                             | Result | Limit     | Units | Level        | Result       | %REC          | Limits | RPD  | Limit | Notes |
| Batch B292856 - SW-846 5030B        |        |           |       |              |              |               |        |      |       |       |
| LCS (B292856-BS1)                   |        |           |       | Prepared: 10 | /20/21 Anal  | yzed: 10/21/2 | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 0.242  | 0.010     | mg/L  | 0.250        |              | 96.7          | 80-120 |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.1   |           | μg/L  | 15.0         |              | 107           | 70-130 |      |       |       |
| LCS Dup (B292856-BSD1)              |        |           |       | Prepared: 10 | /20/21 Anal  | yzed: 10/21/2 | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 0.245  | 0.010     | mg/L  | 0.250        |              | 98.1          | 80-120 | 1.52 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.4   |           | μg/L  | 15.0         |              | 110           | 70-130 |      |       |       |
| Batch B293162 - SW-846 5030B        |        |           |       |              |              |               |        |      |       |       |
| Blank (B293162-BLK1)                |        |           |       | Prepared & A | Analyzed: 10 | /25/21        |        |      |       |       |
| Gasoline Range Organics (GRO)       | ND     | 0.010     | mg/L  |              |              |               |        |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.7   |           | μg/L  | 15.0         |              | 97.8          | 70-130 |      |       |       |
| LCS (B293162-BS1)                   |        |           |       | Prepared & A | Analyzed: 10 | /25/21        |        |      |       |       |
| Gasoline Range Organics (GRO)       | 0.244  | 0.010     | mg/L  | 0.250        |              | 97.7          | 80-120 |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.3   |           | μg/L  | 15.0         |              | 102           | 70-130 |      |       |       |
| LCS Dup (B293162-BSD1)              |        |           |       | Prepared & A | Analyzed: 10 | /25/21        |        |      |       |       |
| Gasoline Range Organics (GRO)       | 0.241  | 0.010     | mg/L  | 0.250        |              | 96.5          | 80-120 | 1.23 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.4   |           | μg/L  | 15.0         |              | 95.7          | 70-130 |      |       |       |



# QUALITY CONTROL

#### Metals Analyses (Total) - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Batch B292559 - SW-846 3050B |        |                    |           |                |                  |              |                |     |              |       |
| Blank (B292559-BLK1)         |        |                    |           | Prepared: 10   | )/15/21 Analy    | yzed: 10/17/ | 21             |     |              |       |
| luminum                      | ND     | 17                 | mg/Kg wet |                |                  |              |                |     |              |       |
| ntimony                      | ND     | 1.7                | mg/Kg wet |                |                  |              |                |     |              |       |
| rsenic                       | ND     | 3.3                | mg/Kg wet |                |                  |              |                |     |              |       |
| arium                        | ND     | 1.7                | mg/Kg wet |                |                  |              |                |     |              |       |
| eryllium                     | ND     | 0.17               | mg/Kg wet |                |                  |              |                |     |              |       |
| admium                       | ND     | 0.33               | mg/Kg wet |                |                  |              |                |     |              |       |
| ılcium                       | ND     | 17                 | mg/Kg wet |                |                  |              |                |     |              |       |
| nromium                      | ND     | 0.66               | mg/Kg wet |                |                  |              |                |     |              |       |
| bbalt                        | ND     | 1.7                | mg/Kg wet |                |                  |              |                |     |              |       |
| opper                        | ND     | 0.66               | mg/Kg wet |                |                  |              |                |     |              |       |
| on                           | ND     | 17                 | mg/Kg wet |                |                  |              |                |     |              |       |
| ad                           | ND     | 0.50               | mg/Kg wet |                |                  |              |                |     |              |       |
| agnesium                     | ND     | 17                 | mg/Kg wet |                |                  |              |                |     |              |       |
| anganese                     | ND     | 0.33               | mg/Kg wet |                |                  |              |                |     |              |       |
| ckel                         | ND     | 0.66               | mg/Kg wet |                |                  |              |                |     |              |       |
| tassium                      | ND     | 170                | mg/Kg wet |                |                  |              |                |     |              |       |
| lenium                       | ND     | 3.3                | mg/Kg wet |                |                  |              |                |     |              |       |
| lver                         | ND     | 0.33               | mg/Kg wet |                |                  |              |                |     |              |       |
| odium                        | ND     | 170                | mg/Kg wet |                |                  |              |                |     |              |       |
| allium                       | ND     | 1.7                | mg/Kg wet |                |                  |              |                |     |              |       |
| nadium                       | ND     | 0.66               | mg/Kg wet |                |                  |              |                |     |              |       |
| nc                           | ND     | 0.66               | mg/Kg wet |                |                  |              |                |     |              |       |
| CS (B292559-BS1)             |        |                    |           | Prepared: 10   | )/15/21 Analy    | yzed: 10/17/ | 21             |     |              |       |
| luminum                      | 7330   | 50                 | mg/Kg wet | 8110           |                  | 90.4         | 48.1-151.7     |     |              |       |
| ntimony                      | 114    | 5.0                | mg/Kg wet | 134            |                  | 85.1         | 1.9-200.7      |     |              |       |
| rsenic                       | 157    | 10                 | mg/Kg wet | 170            |                  | 92.3         | 82.9-117.6     |     |              |       |
| nrium                        | 184    | 5.0                | mg/Kg wet | 183            |                  | 101          | 82.5-117.5     |     |              |       |
| ryllium                      | 117    | 0.50               | mg/Kg wet | 116            |                  | 101          | 83.4-116.4     |     |              |       |
| dmium                        | 89.9   | 1.0                | mg/Kg wet | 89.5           |                  | 100          | 82.8-117.3     |     |              |       |
| ılcium                       | 4590   | 50                 | mg/Kg wet | 4810           |                  | 95.3         | 81.7-118.1     |     |              |       |
| nromium                      | 99.4   | 2.0                | mg/Kg wet | 101            |                  | 98.4         | 82.1-117.8     |     |              |       |
| obalt                        | 85.9   | 5.0                | mg/Kg wet | 84.8           |                  | 101          | 83.5-116.5     |     |              |       |
| opper                        | 152    | 2.0                | mg/Kg wet | 149            |                  | 102          | 83.9-116.1     |     |              |       |
| on                           | 11900  | 50                 |           | 14100          |                  | 84.2         | 60-139.7       |     |              |       |
| ead                          | 135    | 1.5                | mg/Kg wet | 140            |                  | 96.2         | 82.9-117.1     |     |              |       |
| agnesium                     | 2290   | 50                 | mg/Kg wet | 2350           |                  | 97.3         | 76.2-123.8     |     |              |       |
| anganese                     | 653    | 1.0                | mg/Kg wet | 648            |                  | 101          | 81.8-118.2     |     |              |       |
| ckel                         | 69.1   | 2.0                | mg/Kg wet | 68.3           |                  | 101          | 82.1-117.7     |     |              |       |
| tassium                      | 1960   | 500                | mg/Kg wet | 2050           |                  | 95.5         | 69.8-129.8     |     |              |       |
| lenium                       | 162    | 10                 | mg/Kg wet | 182            |                  | 89.0         | 79.7-120.3     |     |              |       |
| lver                         | 49.0   | 1.0                | mg/Kg wet | 50.1           |                  | 97.7         | 80.2-120       |     |              |       |
| dium                         | 121    | 500                | mg/Kg wet | 136            |                  | 89.3         | 71.6-127.9     |     |              | J     |
| nallium                      | 94.9   | 5.0                | mg/Kg wet | 87.7           |                  | 108          | 81.1-118.6     |     |              |       |
| nadium                       | 152    | 2.0                | mg/Kg wet | 153            |                  | 99.6         | 79.1-120.9     |     |              |       |
|                              |        |                    |           |                |                  |              |                |     |              |       |



#### QUALITY CONTROL

#### Metals Analyses (Total) - Quality Control

|                              |        | Reporting    |           | Spike        | Source       |             | %REC       |       | RPD   |       |
|------------------------------|--------|--------------|-----------|--------------|--------------|-------------|------------|-------|-------|-------|
| Analyte                      | Result | Limit        | Units     | Level        | Result       | %REC        | Limits     | RPD   | Limit | Notes |
| Batch B292559 - SW-846 3050B |        |              |           |              |              |             |            |       |       |       |
| LCS Dup (B292559-BSD1)       |        |              |           | Prepared: 10 | /15/21 Analy | zed: 10/17/ | 21         |       |       |       |
| Aluminum                     | 7590   | 50           | mg/Kg wet | 8110         |              | 93.6        | 48.1-151.7 | 3.40  | 30    |       |
| Antimony                     | 118    | 5.0          | mg/Kg wet | 134          |              | 88.2        | 1.9-200.7  | 3.49  | 30    |       |
| Arsenic                      | 160    | 10           | mg/Kg wet | 170          |              | 94.3        | 82.9-117.6 | 2.16  | 30    |       |
| Barium                       | 182    | 5.0          | mg/Kg wet | 183          |              | 99.2        | 82.5-117.5 | 1.56  | 20    |       |
| Beryllium                    | 119    | 0.50         | mg/Kg wet | 116          |              | 103         | 83.4-116.4 | 1.69  | 30    |       |
| Cadmium                      | 91.6   | 1.0          | mg/Kg wet | 89.5         |              | 102         | 82.8-117.3 | 1.77  | 20    |       |
| alcium                       | 4760   | 50           | mg/Kg wet | 4810         |              | 98.9        | 81.7-118.1 | 3.69  | 30    |       |
| Chromium                     | 103    | 2.0          | mg/Kg wet | 101          |              | 102         | 82.1-117.8 | 3.39  | 30    |       |
| obalt                        | 87.7   | 5.0          | mg/Kg wet | 84.8         |              | 103         | 83.5-116.5 | 2.07  | 20    |       |
| opper                        | 155    | 2.0          | mg/Kg wet | 149          |              | 104         | 83.9-116.1 | 2.06  | 30    |       |
| on                           | 12400  | 50           | mg/Kg wet | 14100        |              | 87.8        | 60-139.7   | 4.10  | 30    |       |
| ead<br>-                     | 154    | 1.5          | mg/Kg wet | 140          |              | 110         | 82.9-117.1 | 13.7  | 30    |       |
| lagnesium                    | 2370   | 50           | mg/Kg wet | 2350         |              | 101         | 76.2-123.8 | 3.40  | 30    |       |
| langanese                    | 646    | 1.0          | mg/Kg wet | 648          |              | 99.6        | 81.8-118.2 | 1.11  | 30    |       |
| ickel                        | 71.2   | 2.0          | mg/Kg wet | 68.3         |              | 104         | 82.1-117.7 | 3.03  | 30    |       |
| otassium                     | 2010   | 500          | mg/Kg wet | 2050         |              | 98.0        | 69.8-129.8 | 2.61  | 30    |       |
| elenium                      | 172    | 10           | mg/Kg wet | 182          |              | 94.3        | 79.7-120.3 | 5.78  | 30    |       |
| ilver                        | 49.6   | 1.0          | mg/Kg wet | 50.1         |              | 99.0        | 80.2-120   | 1.27  | 30    |       |
| odium                        | 129    | 500          | mg/Kg wet | 136          |              | 94.5        | 71.6-127.9 | 5.64  | 30    | J     |
| nallium                      | 97.2   | 5.0          | mg/Kg wet | 87.7         |              | 111         | 81.1-118.6 | 2.43  | 30    |       |
| anadium                      | 157    | 2.0          | mg/Kg wet | 153          |              | 102         | 79.1-120.9 | 2.90  | 30    |       |
| nc                           | 223    | 2.0          | mg/Kg wet | 228          |              | 97.7        | 80.7-118.9 | 2.01  | 30    |       |
| puplicate (B292559-DUP1)     |        | ce: 21J0887- |           | Prepared: 10 | /15/21 Analy | zed: 10/17/ | 21         |       |       |       |
| luminum                      | 9660   | 20           | mg/Kg dry |              | 9440         |             |            | 2.34  | 35    |       |
| ntimony                      | ND     | 2.0          | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| rsenic                       | 6.67   | 3.9          | mg/Kg dry |              | 7.57         |             |            | 12.7  | 35    |       |
| arium                        | 65.2   | 2.0          | mg/Kg dry |              | 58.4         |             |            | 11.0  | 35    |       |
| eryllium                     | 0.580  | 0.20         | mg/Kg dry |              | 0.558        |             |            | 3.72  | 35    |       |
| admium                       | ND     | 0.39         | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| alcium                       | 483    | 20           | mg/Kg dry |              | 473          |             |            | 2.19  | 35    |       |
| hromium                      | 14.9   | 0.78         | mg/Kg dry |              | 14.8         |             |            | 1.07  | 35    |       |
| obalt                        | 5.43   | 2.0          | mg/Kg dry |              | 5.23         |             |            | 3.68  | 35    |       |
| opper                        | 18.9   | 0.78         | mg/Kg dry |              | 19.0         |             |            | 0.636 | 35    |       |
| on .                         | 22100  | 98           | mg/Kg dry |              | 23100        |             |            | 4.13  | 35    |       |
| ead                          | 10.9   | 0.59         | mg/Kg dry |              | 10.8         |             |            | 0.556 | 35    |       |
| agnesium                     | 992    | 20           | mg/Kg dry |              | 952          |             |            | 4.09  | 35    |       |
| anganese                     | 96.4   | 0.39         | mg/Kg dry |              | 81.7         |             |            | 16.5  | 35    |       |
| ickel                        | 12.2   | 0.78         | mg/Kg dry |              | 11.7         |             |            | 4.13  | 35    |       |
| otassium                     | 752    | 200          | mg/Kg dry |              | 668          |             |            | 11.8  | 35    |       |
| elenium                      | ND     | 3.9          | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| ilver                        | ND     | 0.39         | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| odium                        | ND     | 200          | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| hallium                      | ND     | 2.0          | mg/Kg dry |              | ND           |             |            | NC    | 35    |       |
| anadium                      | 25.0   | 0.78         | mg/Kg dry |              | 24.8         |             |            | 0.887 | 35    |       |
| inc                          | 34.1   | 0.78         | mg/Kg dry |              | 33.5         |             |            | 1.74  | 35    |       |



#### QUALITY CONTROL

#### Metals Analyses (Total) - Quality Control

| Analyte                            | Result                                | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|------------------------------------|---------------------------------------|--------------------|-----------|----------------|------------------|------------|----------------|------|--------------|-------|
| Batch B292559 - SW-846 3050B       |                                       |                    |           |                |                  |            |                |      |              |       |
| Matrix Spike (B292559-MS1)         | Source: 21J0887-02                    |                    |           | Prepared: 10   | )/15/21 Analyz   | zed: 10/17 | //21           |      |              |       |
| Aluminum                           | 10600                                 | 20                 | mg/Kg dry | 19.8           | 9440             | 6110       | * 75-125       |      |              | MS-19 |
| Antimony                           | 6.87                                  | 2.0                | mg/Kg dry | 19.8           | ND               | 34.7       | * 75-125       |      |              | MS-07 |
| Arsenic                            | 23.4                                  | 4.0                | mg/Kg dry | 19.8           | 7.57             | 79.7       | 75-125         |      |              |       |
| Barium                             | 81.8                                  | 2.0                | mg/Kg dry | 19.8           | 58.4             | 118        | 75-125         |      |              |       |
| Beryllium                          | 20.3                                  | 0.20               | mg/Kg dry | 19.8           | 0.558            | 99.7       | 75-125         |      |              |       |
| Cadmium                            | 18.8                                  | 0.40               | mg/Kg dry | 19.8           | ND               | 95.1       | 75-125         |      |              |       |
| Calcium                            | 756                                   | 20                 | mg/Kg dry | 159            | 473              | 179        | * 75-125       |      |              | MS-11 |
| Chromium                           | 33.5                                  | 0.79               | mg/Kg dry | 19.8           | 14.8             | 94.5       | 75-125         |      |              |       |
| Cobalt                             | 23.9                                  | 2.0                | mg/Kg dry | 19.8           | 5.23             | 94.0       | 75-125         |      |              |       |
| Copper                             | 58.8                                  | 0.79               | mg/Kg dry | 39.6           | 19.0             | 101        | 75-125         |      |              |       |
| Iron                               | 21000                                 | 99                 | mg/Kg dry | 159            | 23100            | -1270      | * 75-125       |      |              | MS-19 |
| Lead                               | 29.2                                  | 0.59               | mg/Kg dry | 19.8           | 10.8             | 92.6       | 75-125         |      |              |       |
| Magnesium                          | 1180                                  | 20                 | mg/Kg dry | 159            | 952              | 144        | * 75-125       |      |              | MS-19 |
| Manganese                          | 109                                   | 0.40               | mg/Kg dry | 19.8           | 81.7             | 138        | * 75-125       |      |              | MS-11 |
| Nickel                             | 31.1                                  | 0.79               | mg/Kg dry | 19.8           | 11.7             | 97.9       | 75-125         |      |              |       |
| Potassium                          | 783                                   | 200                | mg/Kg dry | 159            | 668              | 72.8       | * 75-125       |      |              | MS-19 |
| Selenium                           | 14.3                                  | 4.0                | mg/Kg dry | 19.8           | ND               | 72.0       | * 75-125       |      |              | MS-07 |
| Silver                             | 17.8                                  | 0.40               | mg/Kg dry | 19.8           | ND               | 90.0       | 75-125         |      |              |       |
| Sodium                             | 197                                   | 200                | mg/Kg dry | 159            | ND               | 124        | 75-125         |      |              | J     |
| Thallium                           | 21.0                                  | 2.0                | mg/Kg dry | 19.8           | ND               | 106        | 75-125         |      |              |       |
| Vanadium                           | 44.1                                  | 0.79               | mg/Kg dry | 19.8           | 24.8             | 97.2       | 75-125         |      |              |       |
| Zinc                               | 71.0                                  | 0.79               | mg/Kg dry | 39.6           | 33.5             | 94.7       | 75-125         |      |              |       |
| Reference (B292559-SRM1) MRL CHECK |                                       |                    |           | Prepared: 10   | 0/15/21 Analyz   | zed: 10/17 | //21           |      |              |       |
| Lead                               | 0.462                                 | 0.50               | mg/Kg wet | 0.498          |                  | 92.9       | 80-120         |      |              | J     |
| Batch B292571 - SW-846 7471        |                                       |                    |           |                |                  |            |                |      |              |       |
| Blank (B292571-BLK1)               | Prepared: 10/15/21 Analyzed: 10/21/21 |                    |           |                |                  |            |                |      |              |       |
| Mercury                            | ND                                    | 0.025              | mg/Kg wet |                |                  |            |                |      |              |       |
| LCS (B292571-BS1)                  |                                       |                    |           | Prepared: 10   | )/15/21 Analyz   | zed: 10/21 | /21            |      |              |       |
| Mercury                            | 20.2                                  | 0.75               | mg/Kg wet | 15.6           |                  | 129        | 59.3-140.4     |      |              |       |
| LCS Dup (B292571-BSD1)             | Prepared: 10/15/21 Analyzed: 10/21/21 |                    |           |                |                  |            |                |      |              |       |
| Mercury                            | 19.8                                  | 0.75               | mg/Kg wet | 15.6           |                  | 127        | 59.3-140.4     | 1.66 | 20           |       |



#### QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

|                                 |                               |                                                         |               | ~ "                                   |                  |              | 0/856          |       | 222          |        |  |
|---------------------------------|-------------------------------|---------------------------------------------------------|---------------|---------------------------------------|------------------|--------------|----------------|-------|--------------|--------|--|
| Analyte                         | Result                        | Reporting<br>Limit                                      | Units         | Spike<br>Level                        | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes  |  |
| Amaryce                         | Result                        | Dillit                                                  | Omts          | Level                                 | Result           | 70KEC        | Limits         | МЪ    | Limit        | 110103 |  |
| Batch B292587 - SW-846 9045C    |                               |                                                         |               |                                       |                  |              |                |       |              |        |  |
| LCS (B292587-BS1)               | Prepared & Analyzed: 10/15/21 |                                                         |               |                                       |                  |              |                |       |              |        |  |
| pH                              | 6.01                          |                                                         | pH Units      | 6.00                                  |                  | 100          | 90-110         |       |              |        |  |
| LCS (B292587-BS2)               |                               | Prepared & Analyzed: 10/15/21                           |               |                                       |                  |              |                |       |              |        |  |
| pH                              | 5.99                          |                                                         | pH Units      | 6.00                                  |                  | 99.8         | 90-110         |       |              |        |  |
| Duplicate (B292587-DUP1)        | Som                           | <b>Source: 21J0887-10</b> Prepared & Analyzed: 10/15/21 |               |                                       |                  |              |                |       |              |        |  |
| рН                              | 5.9                           | 2100007                                                 | pH Units      | 5.6                                   |                  |              | 4.50           | 10    |              |        |  |
| D 4 1 D202/27 CW 04/ 0010/      |                               |                                                         |               |                                       |                  |              |                |       |              |        |  |
| Batch B292627 - SW-846 9010C    |                               |                                                         |               |                                       |                  |              |                |       |              |        |  |
| Blank (B292627-BLK1)            |                               |                                                         | 0/18/21 Analy | zed: 10/19/2                          |                  |              |                |       |              |        |  |
| Cyanide                         | ND                            | 0.50                                                    | mg/Kg wet     |                                       |                  |              |                |       |              |        |  |
| LCS (B292627-BS1)               |                               |                                                         |               | Prepared: 10                          | 0/18/21 Analy    | zed: 10/19/2 | 21             |       |              |        |  |
| Cyanide                         | 79                            | 2.5                                                     | mg/Kg wet     | 70.0                                  |                  | 113          | 80-120         |       |              |        |  |
| LCS Dup (B292627-BSD1)          |                               |                                                         |               | Prepared: 10                          | 0/18/21 Analy    | zed: 10/19/2 | 21             |       |              |        |  |
| Cyanide                         | 78                            | 2.5                                                     | mg/Kg wet     | 69.8                                  |                  | 112          | 80-120         | 0.667 | 20           |        |  |
| Matrix Spike (B292627-MS2)      | Source: 21J0887-10            |                                                         |               | Prepared: 10/18/21 Analyzed: 10/19/21 |                  |              |                |       |              |        |  |
| Cyanide                         | 21                            | 0.61                                                    | mg/Kg dry     | 22.9                                  | ND               | 91.9         | 75-125         |       |              |        |  |
| Matrix Spike Dup (B292627-MSD2) | Source: 21J0887-10            |                                                         |               | Prepared: 10                          | )/18/21 Analy    | zed: 10/19/2 |                |       |              |        |  |
| Cyanide                         | 21                            | 0.61                                                    | mg/Kg dry     | 22.8                                  | ND               | 94.0         | 75-125         | 1.69  | 35           |        |  |
| Batch B292770 - SW-846 9010C    |                               |                                                         |               |                                       |                  |              |                |       |              |        |  |
| Blank (B292770-BLK1)            |                               | Prepared: 10                                            | )/19/21 Anal  | vzed: 10/20/2                         |                  |              |                |       |              |        |  |
| Cyanide                         | ND                            | 0.43                                                    | mg/Kg wet     |                                       |                  | ,            |                |       |              |        |  |
| LCS (B292770-BS1)               |                               |                                                         |               | Prepared: 10                          | )/19/21 Anal     | zed: 10/20/2 | 21             |       |              |        |  |
| Cyanide                         | 74                            | 2.4                                                     | mg/Kg wet     | •                                     |                  | 108          | 80-120         |       |              |        |  |
| LCS Dup (B292770-BSD1)          |                               | Prepared: 10/19/21 Analyzed: 10/20/21                   |               |                                       |                  |              |                |       |              |        |  |
| Cyanide                         | 72                            | 2.4                                                     | mg/Kg wet     | •                                     |                  |              |                |       |              |        |  |
| - y                             | 12                            | 2.7                                                     |               | 00.1                                  |                  | 103          | 00-120         | 2.11  | 20           |        |  |



# FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                                                        |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                                                             |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                                                            |
| ND    | Not Detected                                                                                                                                                                                                                                                    |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                           |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                                     |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                                                       |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                                          |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                           |
| H-03  | Sample received after recommended holding time was exceeded.                                                                                                                                                                                                    |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                             |
| L-04  | Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits<br>Reported value for this compound is likely to be biased on the low side.                                                                  |
| MS-07 | Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. |
| MS-11 | Matrix spike recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.                                                                     |
| MS-19 | Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.                                                                       |
| R-05  | Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.                                                                                                               |
| V-04  | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                                                                       |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                                                  |
| V-20  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                                                        |
| V-34  | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                                                       |
| V-36  | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.                                                            |
|       |                                                                                                                                                                                                                                                                 |



# CERTIFICATIONS

| Analyte                       | Certifications         |
|-------------------------------|------------------------|
| SW-846 6010D in Soil          |                        |
| Aluminum                      | CT,NH,NY,ME,VA,NC      |
| Antimony                      | CT,NH,NY,ME,VA,NC      |
| Arsenic                       | CT,NH,NY,ME,VA,NC      |
| Barium                        | CT,NH,NY,ME,VA,NC      |
| Beryllium                     | CT,NH,NY,ME,VA,NC      |
| Cadmium                       | CT,NH,NY,ME,VA,NC      |
| Calcium                       | CT,NH,NY,ME,VA,NC      |
| Chromium                      | CT,NH,NY,ME,VA,NC      |
| Cobalt                        | CT,NH,NY,ME,VA,NC      |
| Copper                        | CT,NH,NY,ME,VA,NC      |
| Iron                          | CT,NH,NY,ME,VA,NC      |
| Lead                          | CT,NH,NY,AIHA,ME,VA,NC |
| Magnesium                     | CT,NH,NY,ME,VA,NC      |
| Manganese                     | CT,NH,NY,ME,VA,NC      |
| Nickel                        | CT,NH,NY,ME,VA,NC      |
| Potassium                     | CT,NH,NY,ME,VA,NC      |
| Selenium                      | CT,NH,NY,ME,VA,NC      |
| Silver                        | CT,NH,NY,ME,VA,NC      |
| Sodium                        | CT,NH,NY,ME,VA,NC      |
| Thallium                      | CT,NH,NY,ME,VA,NC      |
| Vanadium                      | CT,NH,NY,ME,VA,NC      |
| Zinc                          | CT,NH,NY,ME,VA,NC      |
| SW-846 7471B in Soil          |                        |
| Mercury                       | CT,NH,NY,NC,ME,VA      |
| SW-846 8015C in Soil          |                        |
| Gasoline Range Organics (GRO) | NY,VA,NH,NC            |
| Diesel Range Organics         | NY,VA,NH,NC            |
| SW-846 8015C in Water         |                        |
| Gasoline Range Organics (GRO) | NY,VA,NH,NC            |
| Diesel Range Organics         | NY,VA,NH,NC            |
| SW-846 8260D in Soil          |                        |
| Acetone                       | CT,NH,NY,ME,VA         |
| Acrylonitrile                 | CT,NH,NY,ME,VA         |
| Benzene                       | CT,NH,NY,ME,VA         |
| Bromobenzene                  | NH,NY,ME,VA            |
| Bromochloromethane            | NH,NY,ME,VA            |
| Bromodichloromethane          | CT,NH,NY,ME,VA         |
| Bromoform                     | CT,NH,NY,ME,VA         |
| Bromomethane                  | CT,NH,NY,ME,VA         |
| 2-Butanone (MEK)              | CT,NH,NY,ME,VA         |
| tert-Butyl Alcohol (TBA)      | NY,ME                  |
| n-Butylbenzene                | CT,NH,NY,ME,VA         |
| sec-Butylbenzene              | CT,NH,NY,ME,VA         |
| tert-Butylbenzene             | CT,NH,NY,ME,VA         |
| Carbon Disulfide              | CT,NH,NY,ME,VA         |
|                               |                        |



# CERTIFICATIONS

| Analyte                                    | Certifications                   |
|--------------------------------------------|----------------------------------|
| SW-846 8260D in Soil                       |                                  |
| Carbon Tetrachloride                       | CT,NH,NY,ME,VA                   |
| Chlorobenzene                              | CT,NH,NY,ME,VA                   |
| Chlorodibromomethane                       | CT,NH,NY,ME,VA                   |
| Chloroethane                               |                                  |
| Chloroform                                 | CT,NH,NY,ME,VA                   |
| Chloromethane                              | CT,NH,NY,ME,VA<br>CT,NH,NY,ME,VA |
| 2-Chlorotoluene                            | CT,NH,NY,ME,VA                   |
| 4-Chlorotoluene                            | CT,NH,NY,ME,VA                   |
| 1,2-Dibromo-3-chloropropane (DBCP)         | NY,ME                            |
|                                            | NH,NY                            |
| 1,2-Dibromoethane (EDB)  Dibromomethane    |                                  |
| 1,2-Dichlorobenzene                        | NH,NY,ME,VA                      |
| 1,3-Dichlorobenzene                        | CT,NH,NY,ME,VA<br>CT,NH,NY,ME,VA |
| 1,4-Dichlorobenzene                        | CT,NH,NY,ME,VA                   |
| trans-1,4-Dichloro-2-butene                |                                  |
| Dichlorodifluoromethane (Freon 12)         | NY,ME                            |
|                                            | NH,NY,ME,VA                      |
| 1,1-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,2-Dichloroethane                         | CT,NH,NY,ME,VA                   |
| 1,1-Dichloroethylene                       | CT,NH,NY,ME,VA                   |
| cis-1,2-Dichloroethylene                   | CT,NH,NY,ME,VA                   |
| trans-1,2-Dichloroethylene                 | CT,NH,NY,ME,VA                   |
| 1,2-Dichloropropane                        | CT,NH,NY,ME,VA                   |
| 1,3-Dichloropropane                        | NH,NY,ME,VA                      |
| 2,2-Dichloropropane                        | NH,NY,ME,VA                      |
| 1,1-Dichloropropene                        | NH,NY,ME,VA                      |
| cis-1,3-Dichloropropene                    | CT,NH,NY,ME,VA                   |
| trans-1,3-Dichloropropene                  | CT,NH,NY,ME,VA                   |
| Diethyl Ether                              | ME<br>NYAME                      |
| 1,4-Dioxane                                | NY,ME                            |
| Ethylbenzene  Haysahlanahutadiana          | CT,NH,NY,ME,VA                   |
| Hexachlorobutadiene                        | NH,NY,ME,VA                      |
| 2-Hexanone (MBK) Isopropylbenzene (Cumene) | CT,NH,NY,ME,VA                   |
|                                            | CT,NH,NY,ME,VA                   |
| p-Isopropyltoluene (p-Cymene)              | NH,NY                            |
| Methyl Acetate                             | NY,ME                            |
| Methyl Cookshamer                          | NY,ME,VA                         |
| Methyl Cyclohexane                         | NY CTABLADVME VA                 |
| Methylene Chloride                         | CT,NH,NY,ME,VA                   |
| 4-Methyl-2-pentanone (MIBK)                | CT,NH,NY,ME,VA                   |
| Naphthalene                                | NH,NY,ME,VA                      |
| n-Propylbenzene                            | NH,NY,ME                         |
| Styrene                                    | CT,NH,NY,ME,VA                   |
| 1,1,2.2 Tetrachloroethane                  | CT,NH,NY,ME,VA                   |
| 1,1,2,2-Tetrachloroethane                  | CT,NH,NY,ME,VA                   |
| Tetrachloroethylene                        | CT,NH,NY,ME,VA                   |
| Toluene                                    | CT,NH,NY,ME,VA                   |
| 1,2,3-Trichlorobenzene                     | NY,ME                            |



# CERTIFICATIONS

| Analyte                            | Certifications |
|------------------------------------|----------------|
| SW-846 8260D in Soil               |                |
| 1,2,4-Trichlorobenzene             | NH,NY,ME,VA    |
| 1,3,5-Trichlorobenzene             | ME             |
|                                    |                |
| 1,1,1-Trichloroethane              | CT,NH,NY,ME,VA |
| 1,1,2-Trichloroethane              | CT,NH,NY,ME,VA |
| Trichloroethylene                  | CT,NH,NY,ME,VA |
| Trichlorofluoromethane (Freon 11)  | CT,NH,NY,ME,VA |
| 1,2,3-Trichloropropane             | NH,NY,ME,VA    |
| 1,2,4-Trimethylbenzene             | CT,NH,NY,ME,VA |
| 1,3,5-Trimethylbenzene             | CT,NH,NY,ME,VA |
| Vinyl Chloride                     | CT,NH,NY,ME,VA |
| m+p Xylene                         | CT,NH,NY,ME,VA |
| o-Xylene                           | CT,NH,NY,ME,VA |
| SW-846 8260D in Water              |                |
| Acetone                            | CT,ME,NH,VA,NY |
| Acrylonitrile                      | CT,ME,NH,VA,NY |
| tert-Amyl Methyl Ether (TAME)      | ME,NH,VA,NY    |
| Benzene                            | CT,ME,NH,VA,NY |
| Bromobenzene                       | ME,NY          |
| Bromochloromethane                 | ME,NH,VA,NY    |
| Bromodichloromethane               | CT,ME,NH,VA,NY |
| Bromoform                          | CT,ME,NH,VA,NY |
| Bromomethane                       | CT,ME,NH,VA,NY |
| 2-Butanone (MEK)                   | CT,ME,NH,VA,NY |
| tert-Butyl Alcohol (TBA)           | ME,NH,VA,NY    |
| n-Butylbenzene                     | ME,VA,NY       |
| sec-Butylbenzene                   | ME,VA,NY       |
| tert-Butylbenzene                  | ME,VA,NY       |
| tert-Butyl Ethyl Ether (TBEE)      | ME,NH,VA,NY    |
| Carbon Disulfide                   | CT,ME,NH,VA,NY |
| Carbon Tetrachloride               | CT,ME,NH,VA,NY |
| Chlorobenzene                      | CT,ME,NH,VA,NY |
| Chlorodibromomethane               | CT,ME,NH,VA,NY |
| Chloroethane                       | CT,ME,NH,VA,NY |
| Chloroform                         | CT,ME,NH,VA,NY |
| Chloromethane                      | CT,ME,NH,VA,NY |
| 2-Chlorotoluene                    | ME,NH,VA,NY    |
| 4-Chlorotoluene                    | ME,NH,VA,NY    |
| 1,2-Dibromo-3-chloropropane (DBCP) | ME,NY          |
| 1,2-Dibromoethane (EDB)            | ME,NY          |
| Dibromomethane                     | ME,NH,VA,NY    |
| 1,2-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,3-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,4-Dichlorobenzene                | CT,ME,NH,VA,NY |
| trans-1,4-Dichloro-2-butene        | ME,NH,VA,NY    |
| Dichlorodifluoromethane (Freon 12) | ME,NH,VA,NY    |
| 1,1-Dichloroethane                 | CT,ME,NH,VA,NY |



# CERTIFICATIONS

# Certified Analyses included in this Report

Acenaphthene

| Analyte                                                                  | Certifications       |
|--------------------------------------------------------------------------|----------------------|
| SW-846 8260D in Water                                                    |                      |
| 1,2-Dichloroethane                                                       | CT,ME,NH,VA,NY       |
| 1,1-Dichloroethylene                                                     | CT,ME,NH,VA,NY       |
| cis-1,2-Dichloroethylene                                                 | ME,NY                |
| trans-1,2-Dichloroethylene                                               | CT,ME,NH,VA,NY       |
| 1,2-Dichloropropane                                                      | CT,ME,NH,VA,NY       |
| 1,3-Dichloropropane                                                      | ME,VA,NY             |
| 2,2-Dichloropropane                                                      | ME,NH,VA,NY          |
| 1,1-Dichloropropene                                                      | ME,NH,VA,NY          |
| cis-1,3-Dichloropropene                                                  | CT,ME,NH,VA,NY       |
| trans-1,3-Dichloropropene                                                | CT,ME,NH,VA,NY       |
| Diethyl Ether                                                            | ME,NY                |
| Diisopropyl Ether (DIPE)                                                 | ME,NH,VA,NY          |
| 1,4-Dioxane                                                              | ME,NY                |
| Ethylbenzene                                                             | CT,ME,NH,VA,NY       |
| Hexachlorobutadiene                                                      | CT,ME,NH,VA,NY       |
| 2-Hexanone (MBK)                                                         | CT,ME,NH,VA,NY       |
| Isopropylbenzene (Cumene)                                                | ME,VA,NY             |
| p-Isopropyltoluene (p-Cymene)                                            | CT,ME,NH,VA,NY       |
| Methyl Acetate                                                           | ME,NY                |
| Methyl tert-Butyl Ether (MTBE)                                           | CT,ME,NH,VA,NY       |
| Methyl Cyclohexane                                                       | NY                   |
| Methylene Chloride                                                       | CT,ME,NH,VA,NY       |
| 4-Methyl-2-pentanone (MIBK)                                              | CT,ME,NH,VA,NY       |
| Naphthalene                                                              | ME,NH,VA,NY          |
| n-Propylbenzene                                                          | CT,ME,NH,VA,NY       |
| Styrene                                                                  | CT,ME,NH,VA,NY       |
| 1,1,1,2-Tetrachloroethane                                                | CT,ME,NH,VA,NY       |
| 1,1,2,2-Tetrachloroethane                                                | CT,ME,NH,VA,NY       |
| Tetrachloroethylene                                                      | CT,ME,NH,VA,NY       |
| Toluene                                                                  | CT,ME,NH,VA,NY       |
| 1,2,3-Trichlorobenzene                                                   | ME,NH,VA,NY          |
| 1,2,4-Trichlorobenzene                                                   | CT,ME,NH,VA,NY       |
| 1,3,5-Trichlorobenzene                                                   | ME CTANTANIA ANA     |
| 1,1,1-Trichloroethane                                                    | CT,ME,NH,VA,NY       |
| 1,1,2-Trichloroethane                                                    | CT,ME,NH,VA,NY       |
| Trichler flagger with an (Town 11)                                       | CT,ME,NH,VA,NY       |
| Trichlorofluoromethane (Freon 11)                                        | CT,ME,NH,VA,NY       |
| 1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ME,NH,VA,NY<br>VA,NY |
|                                                                          |                      |
| 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene                            | ME,VA,NY<br>ME,VA,NY |
| Vinyl Chloride                                                           | CT,ME,NH,VA,NY       |
| m+p Xylene                                                               | CT,ME,NH,VA,NY       |
| o-Xylene                                                                 | CT,ME,NH,VA,NY       |
| SW-846 8270E in Soil                                                     |                      |
| 5 5.5 02/02 H 50H                                                        |                      |

CT,NY,NH,ME,NC,VA



# CERTIFICATIONS

| Accomplishigner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                          | Certifications    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|--|
| Accitoplecation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SW-846 8270E in Soil             |                   |  |
| Aniline NYNHMENCVA Anilanecoes CTNNNMENCVA Anilanecoes CTNNNMENCVA Beaudoluminareae CTNNNMENCVA Beaudoluminareaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acenaphthylene                   | CT,NY,NH,ME,NC,VA |  |
| Anilaracene CTAYANIAMENCAA Benville CAMPONIAMENCAA Bis Ca-deborsopyopyo ther CTAYANIAMENCAA Bis Ca-deborsopyopyo ther CTAYANIAMENCAA Bis Ca-deborsopyopyo ther CTAYANIAMENCAA Bis Ca-deborsopyopyo ther CTAYANIAMENCAA Bis Ca-deborsopyophonyo thera CTAYANIAMENCAA Bis Ca-deborsopyophonyophonyophonyo thera CTAYANIAMENCAA Bis Ca-deborsopyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyophonyoph | Acetophenone                     | NY,NH,ME,NC,VA    |  |
| Bentridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aniline                          | NY,NH,ME,NC,VA    |  |
| Bezzo(s)mufuracone Bezzo(physycae CTNYNHMENC,VA Bezzo(physycae CTNYNHMENC,VA Bezzo(physycae CTNYNHMENC,VA Bezzo(physycae CTNYNHMENC,VA Bezzo(physycae CTNYNHMENC,VA Bezzo(physzone CTNYNHMENC,VA Bezzo(physzone CTNYNHMENC,VA Bezzo(physzone Bezzo(physzone CTNYNHMENC,VA Bezzo(physzone Bezzo(phys | Anthracene                       | CT,NY,NH,ME,NC,VA |  |
| Benus(a)psyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzidine                        |                   |  |
| Benozéphikammikene   CTNYNHIMENCVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(a)anthracene               | CT,NY,NH,ME,NC,VA |  |
| Berzoz (g.h. i)psrylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(a)pyrene                   | CT,NY,NH,ME,NC,VA |  |
| Berzock Acid   NYALIME.NC.VA     Bierzock Acid   NYALIME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Bietz-chloroschytyhether   CTAYY.H.ME.NC.VA     Buopenyhethalite   CTAYY.H.ME.NC.VA     Buopenyhethalite   CTAYY.H.ME.NC.VA     Carbasole   NC     4 Chloros-amelylphenol   CTAYY.H.ME.NC.VA     4 Chloros-amelylphenol   CTAYY.H.ME.NC.VA     4 Chloros-amelylphenol   CTAYY.H.ME.NC.VA     4 Chloros-bentylphenol   CTAYY.H.ME.NC.VA     4 Chlorosphenyhether   CTAYY.H.ME.NC.VA     4 Chlorosphenyhether   CTAYY.H.ME.NC.VA     5 Chlorosphenyhether   CTAYY.H.ME.NC.VA     6 Chrysen   CTAYY.H.ME.NC.VA     6 Chrysen   CTAYY.H.ME.NC.VA     7 Chrysen   CTAYY.H.ME.NC.VA     7 Chrysen   CTAYY.H.ME.NC.VA     7 Chrysen   CTAYY.H.ME.NC.VA     8 Chrysen   CTAYY.H.ME.NC.VA     9 Chrysen   CTAYY.H.ME.NC.VA     1 Chrysen   CTAYY.H.ME.NC.VA     2 Chrysen   CTAYY.H.ME.NC.VA     3 Chrysen   CTAYY.H.ME.NC.VA     3 Chrysen   CTAYY.H.ME.NC.VA     4 Chlorosphenol   CTAYY.H.ME.NC.VA     5 Choristochure   CTAYY.H.ME.NC.VA     6 Choristochure   CTAYY.H.ME.NC.VA     6 Choristochure   CTAYY.H.ME.NC.VA     6 Choristochure   CTAYY.H.ME.NC.VA     7 Chorosphenol   CTAYY.H.ME.NC.VA     7 Chorosphenol   CTAYY.H.ME.NC.VA     7 Chorosphenol   CTAYY.H.ME.NC.VA     7 Chorosphenol   CTA   | Benzo(b)fluoranthene             | CT,NY,NH,ME,NC,VA |  |
| Benzoic Acid   NY,NILME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(g,h,i)perylene             | CT,NY,NH,ME,NC,VA |  |
| Bis(2-chloroethoxy)methane Bis(2-chloroethy)futher CTNYNHME.NC,VA Bis(2-chloroethy)futher CTNYNHME.NC,VA Bis(2-chloroethy)ty)ther CTNYNHME.NC,VA Bis(2-chloroethy)ty)ther CTNYNHME.NC,VA 4-Bromophery phenylether CTNYNHME.NC,VA Buty berx/phthalate CTNYNHME.NC,VA Carbazole NC 4-Chloro-3-methy phenol CTNYNHME.NC,VA 4-Chlorophery phenylether CTNYNHME.NC,VA Chrysene CTNYNHME.NC,VA Dibenzofaran CTNYNHME.NC,VA Dibenzofaran CTNYNHME.NC,VA Dibenzofaran CTNYNHME.NC,VA 1-3-Dichlorobenzene NYMHME.NC,VA 1-3-Dichlorobenzene NYMHME.NC,VA 1-3-Dichlorobenzene NYMHME.NC,VA 1-4-Dichlorobenzene NYMHME.NC,VA 1-4-Dichlorobenzene NYMHME.NC,VA 2-4-Dichlorobenzene NYMHME.NC,VA Dichlorobenzene NYMHME.NC,VA 2-4-Dichlorobenzene CTNYNHME.NC,VA 4-4-Dichlorobenzene CTNYNHME.NC,VA 4-4-Dichlorobenzene CTNYNHME.NC,VA CTNYNHM | Benzo(k)fluoranthene             | CT,NY,NH,ME,NC,VA |  |
| Bist2-chlorosepty) Jether Bist2-chlorosepty) Jether Bist2-chlorosepty) Jether CTN/NHAME.NC,VA Bist2-Ethylacy-plathatac CTN/NHAME.NC,VA Bist3-Ethylacy-plathatac CTN/NHAME.NC,VA Bist3-Ethylacy-plathatac CTN/NHAME.NC,VA Bist3-Ethylacy-plathatac CTN/NHAME.NC,VA Carbazole NC 4-Chlorosaptitac CTN/NHAME.NC,VA 4-Chlorosaptitac CTN/NHAME.NC,VA 4-Chlorosaptitac CTN/NHAME.NC,VA 4-Chloropaptitac CTN/NHAME.NC,VA 4-Chloropaptitac CTN/NHAME.NC,VA 4-Chloropaptitac CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA 4-Chlorophenyl-placyl-ether CTN/NHAME.NC,VA Di-benz(alpanthace CTN/NHAME.NC,VA Di-benz(alpanthace NYAME.NC,VA 1-2-Dichlorobenzee NYAME.NC,VA 1-3-Dichlorobenzee NYAME.NC,VA 1-3-Dichlorobenzee NYAME.NC,VA Dictoly-plathatac CTN/NHAME.NC,VA 4-Distincobenzee CTN/NHAME.NC,VA Plorore NNHAME.NC,VA Plorore CTN/NHAME.NC,VA Plorore NNHAME.NC,VA Plorore NNHAME.NC,VA Plorore NNHAME.NC,VA Plorore CTN/NHAME.NC,VA Plorore NNHAME.NC,VA                                                                        | Benzoic Acid                     | NY,NH,ME,NC,VA    |  |
| Bis(2-Ehr)besylpsthalate         CTNYNHME.NC,VA           4Bromopherylphtrylpther         CTNYNHME.NC,VA           4Bromopherylphtrylpther         CTNYNHME.NC,VA           Brughenzylpthralate         CTNYNHME.NC,VA           Cutazzole         NC           4-Chlorosaniline         CTNYNHME.NC,VA           4-Chlorosanethylpthenol         CTNYNHME.NC,VA           2-Chlorophenol         CTNYNHME.NC,VA           2-Chlorophenylpherylpther         CTNYNHME.NC,VA           4-Chlorophenylphenylpther         CTNYNHME.NC,VA           4-Chlorophenylphenylpther         CTNYNHME.NC,VA           bibenz(a,h)smitracene         CTNYNHME.NC,VA           Dibenz(a,h)smitracene         CTNYNHME.NC,VA           Dibenz(a,h)smitracene         CTNYNHME.NC,VA           1,2-Dichlorobenzene         NYNHME.NC,VA           1,3-Dichlorobenzene         NYNHME.NC,VA           1,4-Dishlorobenzene         NYNHME.NC,VA           2,4-Dishlorobenzene         NYNHME.NC,VA           2,4-Dinchlylphenol         CTNYNHME.NC,VA           2,4-Dinchlylphenol         CTNYNHME.NC,VA           2,4-Dinchlylphenol         CTNYNHME.NC,VA           2,4-Dinchlylphenol         CTNYNHME.NC,VA           2,4-Dinitrophenol         CTNYNHME.NC,VA           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bis(2-chloroethoxy)methane       | CT,NY,NH,ME,NC,VA |  |
| Bis(2-Ethylnexyl)phthalate 4-Bromophenylphenylether 6 CTN/NH,ME,NC,VA Butylbenylphthalate CTN/NH,ME,NC,VA Carbazole NC 4-Chloroamiline CTN/NH,ME,NC,VA 4-Chloro-3-methylphenol CTN/NH,ME,NC,VA 2-Chloroapthalene CTN/NH,ME,NC,VA 2-Chloroapthalene CTN/NH,ME,NC,VA 4-Chlorophenylphenylether CTN,NH,ME,NC,VA 4-Chlorophenylphenylether CTN,NH,ME,NC,VA 4-Chlorophenylphenylether CTN,NH,ME,NC,VA 4-Chlorophenylether CTN,NH,ME,NC,VA 4-Chlorophenylether CTN,NH,ME,NC,VA 4-Chlorophenylether CTN,NH,ME,NC,VA 4-Chlorophenylethelate CTN,NH,ME,NC,VA 4-Chlorophenylethelate CTN,NH,ME,NC,VA 4-Chlorophenylethelate CTN,NH,ME,NC,VA 4-Chlorophenylethelate CTN,NH,ME,NC,VA 4-Chlorophenylphenol CTN,NH,ME,NC,VA 4-Chlorophenol CTN,NH,ME,NC,VA 4-Chlorophen | Bis(2-chloroethyl)ether          | CT,NY,NH,ME,NC,VA |  |
| Bromophenylphenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroisopropyl)ether      | CT,NY,NH,ME,NC,VA |  |
| Butylbenzylphthalate         CT.NYNH,ME.NC,VA           4-Chloroaniline         CT.NYNH,ME.NC,VA           4-Chloroanithylphenol         CT.NYNH,ME.NC,VA           2-Chloronaphthalene         CT.NYNH,ME.NC,VA           2-Chlorophenol         CT.NYNH,ME.NC,VA           4-Chlorophenylphenylphenylether         CT.NYNH,ME.NC,VA           4-Chlorophenylphenylether         CT.NYNH,ME.NC,VA           Dibenz(a,h)anthracene         CT.NYNH,ME.NC,VA           Dibenz(a,h)anthracene         CT.NYNH,ME.NC,VA           Di-n-butylphthalate         CT.NYNH,ME.NC,VA           1,3-p-bulorobenzene         NYNH,ME.NC,VA           1,3-Dichlorobenzene         NYNH,ME.NC,VA           1,4-Dichlorobenzene         NYNH,ME.NC,VA           1,4-Dichlorobenzene         NYNH,ME.NC,VA           1,4-Dichlorobenzene         NYNH,ME.NC,VA           2,4-Dinitroblurate         CT.NYNH,ME.NC,VA           Diethylphthalate         CT.NYNH,ME.NC,VA           2,4-Dinitrobluene         CT.NYNH,ME.NC,VA           2,4-Dinitrobluene         CT.NYNH,ME.NC,VA           2,4-Dinitrobluene         CT.NYNH,ME.NC,VA           2,4-Dinitrobluene         CT.NYNH,ME.NC,VA           2,1-Dinitrobluene         CT.NYNH,ME.NC,VA           2,0-Dinectylphthalate         CT.NYNH,ME.NC,VA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |  |
| Carbazole         NC           4-Chloroaniline         CT,NY,NH,ME,NC,VA           4-Chloroanpithalene         CT,NY,NH,ME,NC,VA           2-Chlorophenol         CT,NY,NH,ME,NC,VA           4-Chlorophenylether         CT,NY,NH,ME,NC,VA           4-Chlorophenylether         CT,NY,NH,ME,NC,VA           Chysene         CT,NY,NH,ME,NC,VA           Dibenz(furan         CT,NY,NH,ME,NC,VA           Di-n-bruylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           2,4-Dichlorobenzene         NY,NH,ME,NC,VA           2,4-Dichlorobenzene         NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dinitrobluene         CT,NY,NH,ME,NC,VA           2,6-Dinitrobluene         CT,NY,NH,ME,NC,VA           1,2-Diphenyllytdrazine/Azobenzene         NY,NH,ME,NC,VA           1-Dien-octylphthalate         CT,NY,NH,ME,NC,VA           1,2-Diphenyllytdrazine/Azobenzene         NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |  |
| 4-Chloroaniline CT,NY,NH,ME,NC,VA 4-Chloroanilythenol CT,NY,NH,ME,NC,VA 2-Chlorophenol CT,NY,NH,ME,NC,VA 4-Chlorophenylphenylpherylether CT,NY,NH,ME,NC,VA 4-Chlorophenylphenylpherylether CT,NY,NH,ME,NC,VA 4-Chlorophenol CT,NY,NH,ME,NC,VA Dibenzofuran CT,NY,NH,ME,NC,VA Dibenzofuran CT,NY,NH,ME,NC,VA Dibenzofuran CT,NY,NH,ME,NC,VA Dibenzofuran CT,NY,NH,ME,NC,VA 1,2-Dichlorobenzene NY,NH,ME,NC,VA 1,3-Dichlorobenzene NY,NH,ME,NC,VA 1,4-Dichlorobenzene NY,NH,ME,NC,VA 1,4-Dichlorobenzene NY,NH,ME,NC,VA 1,4-Dichlorobenzene NY,NH,ME,NC,VA 2,4-Dinitrobluene CT,NY,NH,ME,NC,VA 2,4-Dinitrobluene CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrobluene CT,NY,NH,ME,NC,VA 2,4-Dinitrobluene CT,NY,NH,ME,NC,VA 2,4-Dinitrobluene CT,NY,NH,ME,NC,VA 1,2-Diphenyllyhthalate CT,NY,NH,ME,NC,VA 1,2-Diphenyllyhthalate CT,NY,NH,ME,NC,VA 1,2-Diphenyllyhthalate CT,NY,NH,ME,NC,VA 1,2-Diphenyllyhthalate CT,NY,NH,ME,NC,VA 1,2-Diphenyllyhthalate CT,NY,NH,ME,NC,VA 1,2-Diphenyllydrazine/Azobenzene NY,NH,ME,NC,VA 1,2-Diphenyllydrazine/Azobenzene NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA 1-Rexachlorobenzene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |  |
| 4-Chloro-3-methylphenol         CT,NY,NH,ME,NC,VA           2-Chloropaphthalene         CT,NY,NH,ME,NC,VA           2-Chlorophenol         CT,NY,NH,ME,NC,VA           4-Chlorophenylphenylether         CT,NY,NH,ME,NC,VA           Chrysene         CT,NY,NH,ME,NC,VA           Dibenz(a,h)anthracene         CT,NY,NH,ME,NC,VA           Dibenzofuran         CT,NY,NH,ME,NC,VA           Di-n-butylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzene         NY,NH,ME,NC,VA           2,4-Dichlorobenzene         NY,NH,ME,NC,VA           2,4-Dichlorobenzene         CT,NY,NH,ME,NC,VA           2,4-Dinethylphenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dimitroblene         CT,NY,NH,ME,NC,VA           2,4-Dimitroblene         CT,NY,NH,ME,NC,VA           Di-n-oetylphthalate         CT,NY,NH,ME,NC,VA           1,2-Diphenylhydrazine/Azobenzene         NY,NH,ME,NC,VA           Fluorene         CT,NY,NH,ME,NC,VA           Hozachlorobenzene         CT,NY,NH,ME,NC,V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbazole                        | NC                |  |
| 2-Chlorophenol         CT,NY,NH,NC,VA           4-Chlorophenylphenylether         CT,NY,NH,ME,NC,VA           4-Chlorophenylphenylether         CT,NY,NH,ME,NC,VA           Chrysene         CT,NY,NH,ME,NC,VA           Dibenz(a,h)anthracene         CT,NY,NH,ME,NC,VA           Dibenzofuran         CT,NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorobenol         CT,NY,NH,ME,NC,VA           2,4-Dindrophenol         CT,NY,NH,ME,NC,VA           2,4-Dindrophenol         CT,NY,NH,ME,NC,VA           2,4-Dindro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dindrooluene         CT,NY,NH,ME,NC,VA           2,4-Dindrooluene         CT,NY,NH,ME,NC,VA           2,4-Dindrooluene         CT,NY,NH,ME,NC,VA           2,6-Dindrotoluene         CT,NY,NH,ME,NC,VA           2,6-Dindrotoluene         CT,NY,NH,ME,NC,VA           Pluorene         NY,NH,ME,NC,VA           Pluorene         NY,NH,ME,NC,VA           Hexachlorobrozene         CT,NY,NH,ME,NC,VA           Hexachloroeyelopentadiene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |  |
| 2-Chlorophenol         CT,NY,NH,ME,NC,VA           4-Chlorophenylphenylether         CT,NY,NH,ME,NC,VA           Chrysne         CT,NY,NH,ME,NC,VA           Dibenz(a,h)anthracene         CT,NY,NH,ME,NC,VA           Dibenzofuran         CT,NY,NH,ME,NC,VA           Di-n-butylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           2,4-Dinitrolynenol         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dinitrolbuene         CT,NY,NH,ME,NC,VA           2,4-Dinitrolbuene         CT,NY,NH,ME,NC,VA           2,6-Dinitrolbuene         CT,NY,NH,ME,NC,VA           1,2-Diphenyllydrazine/Azobenzene         NY,NH,ME,NC,VA           Fluorente         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |  |
| 4-Chlorophenylphenylether         CT,NY,NH,ME,NC,VA           Chrysene         CT,NY,NH,ME,NC,VA           Dibenz(a,l)anthracene         CT,NY,NH,ME,NC,VA           Dibenzbylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           2,4-Dimethylphenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrophenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrophenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrophenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrotoluene         CT,NY,NH,ME,NC,VA           2,6-Dimitrotoluene         CT,NY,NH,ME,NC,VA           Di-n-octylphthalate         CT,NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorocyclopentadiene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |  |
| Chrysene         CT,NY,NH,ME,NC,VA           Dibenz(a,h)anthracene         CT,NY,NH,ME,NC,VA           Di-n-butylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,3-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           2,4-Dimethylphthalate         CT,NY,NH,ME,NC,VA           2,4-Dimethylphthalate         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dinitrophenol         CT,NY,NH,ME,NC,VA           2,4-Dinitrophenol         CT,NY,NH,ME,NC,VA           2,4-Dinitrotoluene         CT,NY,NH,ME,NC,VA           2,6-Dinitrotoluene         CT,NY,NH,ME,NC,VA           2,6-Dinitrotoluene         CT,NY,NH,ME,NC,VA           Di-n-octylphthalate         CT,NY,NH,ME,NC,VA           Fluoranthene         NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |  |
| Dibenzofuran         CT,NY,NH,ME,NC,VA           Dibenzofuran         CT,NY,NH,ME,NC,VA           Di-n-butylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           2,4-Dimethylphenol         CT,NY,NH,ME,NC,VA           4,6-Dimitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrobluene         CT,NY,NH,ME,NC,VA           2,4-Dimitrobluene         CT,NY,NH,ME,NC,VA           2,6-Dimitrobluene         CT,NY,NH,ME,NC,VA           Di-n-octylphthalate         CT,NY,NH,ME,NC,VA           1,2-Diphenylhydrazine/Azobenzene         NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |  |
| Dibenzofuran         CT,NY,NH,ME,NC,VA           Di-n-butylphthalate         CT,NY,NH,ME,NC,VA           1,2-Dichlorobenzene         NY,NH,ME,NC,VA           1,4-Dichlorobenzene         NY,NH,ME,NC,VA           3,3-Dichlorobenzidine         CT,NY,NH,ME,NC,VA           2,4-Dichlorophenol         CT,NY,NH,ME,NC,VA           Diethylphthalate         CT,NY,NH,ME,NC,VA           2,4-Dimethylphenol         CT,NY,NH,ME,NC,VA           4,6-Dinitro-2-methylphenol         CT,NY,NH,ME,NC,VA           2,4-Dimitrobluene         CT,NY,NH,ME,NC,VA           2,4-Dimitrobluene         CT,NY,NH,ME,NC,VA           2,6-Dinitrotoluene         CT,NY,NH,ME,NC,VA           Di-n-octylphthalate         CT,NY,NH,ME,NC,VA           1,2-Diphenyllydrazine/Azobenzene         NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Fluoranthene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA           Hexachlorobenzene         CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chrysene                         | CT,NY,NH,ME,NC,VA |  |
| Di-n-butylphthalate CT,NY,NH,ME,NC,VA  1,3-Dichlorobenzene NY,NH,ME,NC,VA  1,4-Dichlorobenzene NY,NH,ME,NC,VA  3,3-Dichlorobenzidine CT,NY,NH,ME,NC,VA  2,4-Dichlorophenol CT,NY,NH,ME,NC,VA  2,4-Dimethylphthalate CT,NY,NH,ME,NC,VA  2,4-Dimethylphthalate CT,NY,NH,ME,NC,VA  2,4-Dimethylphthalate CT,NY,NH,ME,NC,VA  2,4-Dimitro-2-methylphenol CT,NY,NH,ME,NC,VA  4,6-Dimitro-2-methylphenol CT,NY,NH,ME,NC,VA  2,4-Dimitrobluene CT,NY,NH,ME,NC,VA  2,4-Dimitrobluene CT,NY,NH,ME,NC,VA  1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA  I,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA  Fluorene NY,NH,ME,NC,VA  Fluorene NY,NH,ME,NC,VA  Hexachlorobutadiene CT,NY,NH,ME,NC,VA  Hexachlorobevyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |  |
| 1.2-Dichlorobenzene NY,NH,ME,NC,VA 1.3-Dichlorobenzene NY,NH,ME,NC,VA 1.4-Dichlorobenzene NY,NH,ME,NC,VA 3.3-Dichlorobenzidine CT,NY,NH,ME,NC,VA 2.4-Dichlorophenol CT,NY,NH,ME,NC,VA 2.4-Dimethylphthalate CT,NY,NH,ME,NC,VA 2.4-Dimethylphthalate CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4.6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2.4-Dinitrophenol CT,NY,NH,ME,NC,VA 2.4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2.6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1.2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibenzofuran                     | CT,NY,NH,ME,NC,VA |  |
| 1.3-Dichlorobenzene NY,NH,ME,NC,VA 1.4-Dichlorobenzidine CT,NY,NH,ME,NC,VA 2.4-Dichlorophenol CT,NY,NH,ME,NC,VA 2.4-Dichlorophenol CT,NY,NH,ME,NC,VA 2.4-Dimethylphthalate CT,NY,NH,ME,NC,VA 2.4-Dimethylphthalate CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4.6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2.4-Dinitrophenol CT,NY,NH,ME,NC,VA 2.4-Dinitrophenol CT,NY,NH,ME,NC,VA 2.4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2.6-Dinitrotoluene CT,NY,NH,ME,NC,VA 1.2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |  |
| 1,4-Dichlorobenzene NY,NH,ME,NC,VA 3,3-Dichlorobenzidine CT,NY,NH,ME,NC,VA 2,4-Dichlorophenol CT,NY,NH,ME,NC,VA Diethylphthalate CT,NY,NH,ME,NC,VA 2,4-Dimethylphthalate CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |  |
| 3,3-Dichlorobenzidine CT,NY,NH,ME,NC,VA 2,4-Dichlorophenol CT,NY,NH,ME,NC,VA Diethylphthalate CT,NY,NH,ME,NC,VA 2,4-Dimethylphenol CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |  |
| 2,4-Dichlorophenol CT,NY,NH,ME,NC,VA Diethylphthalate CT,NY,NH,ME,NC,VA 2,4-Dimethylphthalate CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |  |
| Diethylphthalate CT,NY,NH,ME,NC,VA 2,4-Dimethylphenol CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |  |
| 2,4-Dimethylphenol CT,NY,NH,ME,NC,VA Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dimitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |  |
| Dimethylphthalate CT,NY,NH,ME,NC,VA 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrophenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diethylphthalate                 | CT,NY,NH,ME,NC,VA |  |
| 4,6-Dinitro-2-methylphenol CT,NY,NH,ME,NC,VA 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |  |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dimethylphthalate                | CT,NY,NH,ME,NC,VA |  |
| 2,4-Dinitrotoluene CT,NY,NH,ME,NC,VA 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |  |
| 2,6-Dinitrotoluene CT,NY,NH,ME,NC,VA Di-n-octylphthalate CT,NY,NH,ME,NC,VA 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |  |
| Di-n-octylphthalate CT,NY,NH,ME,NC,VA  1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA  Fluoranthene CT,NY,NH,ME,NC,VA  Fluorene NY,NH,ME,NC,VA  Hexachlorobenzene CT,NY,NH,ME,NC,VA  Hexachlorobutadiene CT,NY,NH,ME,NC,VA  Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |  |
| 1,2-Diphenylhydrazine/Azobenzene NY,NH,ME,NC,VA Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA CT,NY,NH,ME,NC,VA CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |  |
| Fluoranthene CT,NY,NH,ME,NC,VA Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |  |
| Fluorene NY,NH,ME,NC,VA Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |  |
| Hexachlorobenzene CT,NY,NH,ME,NC,VA Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluoranthene                     | CT,NY,NH,ME,NC,VA |  |
| Hexachlorobutadiene CT,NY,NH,ME,NC,VA Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                   |  |
| Hexachlorocyclopentadiene CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |  |
| Hexachloroethane CT,NY,NH,ME,NC,VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                              |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachloroethane                 | CT,NY,NH,ME,NC,VA |  |



# CERTIFICATIONS

| Analyte                     | Certifications    |
|-----------------------------|-------------------|
| SW-846 8270E in Soil        |                   |
| Indeno(1,2,3-cd)pyrene      | CT,NY,NH,ME,NC,VA |
| Isophorone                  | CT,NY,NH,ME,NC,VA |
| 1-Methylnaphthalene         | NC                |
| 2-Methylnaphthalene         | CT,NY,NH,ME,NC,VA |
| 2-Methylphenol              | CT,NY,NH,ME,NC,VA |
| 3/4-Methylphenol            | CT,NY,NH,ME,NC,VA |
| Naphthalene                 | CT,NY,NH,ME,NC,VA |
| 2-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| 3-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| 4-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| Nitrobenzene                | CT,NY,NH,ME,NC,VA |
| 2-Nitrophenol               | CT,NY,NH,ME,NC,VA |
| 4-Nitrophenol               | CT,NY,NH,ME,NC,VA |
| N-Nitrosodimethylamine      | CT,NY,NH,ME,NC,VA |
| N-Nitrosodi-n-propylamine   | CT,NY,NH,ME,NC,VA |
| Pentachloronitrobenzene     | NY,NC             |
| Pentachlorophenol           | CT,NY,NH,ME,NC,VA |
| Phenanthrene                | CT,NY,NH,ME,NC,VA |
| Phenol                      | CT,NY,NH,ME,NC,VA |
| Pyrene                      | CT,NY,NH,ME,NC,VA |
| Pyridine                    | CT,NY,NH,ME,NC,VA |
| 1,2,4,5-Tetrachlorobenzene  | NY,NC             |
| 1,2,4-Trichlorobenzene      | CT,NY,NH,ME,NC,VA |
| 2,4,5-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2,4,6-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2-Fluorophenol              | NC                |
| SW-846 8270E in Water       |                   |
| Acenaphthene                | CT,NY,NC,ME,NH,VA |
| Acenaphthylene              | CT,NY,NC,ME,NH,VA |
| Acetophenone                | NY,NC             |
| Aniline                     | CT,NY,NC,ME,VA    |
| Anthracene                  | CT,NY,NC,ME,NH,VA |
| Benzidine                   | CT,NY,NC,ME,NH,VA |
| Benzo(a)anthracene          | CT,NY,NC,ME,NH,VA |
| Benzo(a)pyrene              | CT,NY,NC,ME,NH,VA |
| Benzo(b)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzo(g,h,i)perylene        | CT,NY,NC,ME,NH,VA |
| Benzo(k)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzoic Acid                | NY,NC,ME,NH,VA    |
| Bis(2-chloroethoxy)methane  | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroethyl)ether     | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroisopropyl)ether | CT,NY,NC,ME,NH,VA |
| Bis(2-Ethylhexyl)phthalate  | CT,NY,NC,ME,NH,VA |
| 4-Bromophenylphenylether    | CT,NY,NC,ME,NH,VA |
| Butylbenzylphthalate        | CT,NY,NC,ME,NH,VA |
| Carbazole                   | NC                |



# CERTIFICATIONS

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Water            |                   |
| 4-Chloroaniline                  | CT,NY,NC,ME,NH,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NC,ME,NH,VA |
| 2-Chloronaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Chlorophenol                   | CT,NY,NC,ME,NH,VA |
| 4-Chlorophenylphenylether        | CT,NY,NC,ME,NH,VA |
| Chrysene                         | CT,NY,NC,ME,NH,VA |
| Dibenz(a,h)anthracene            | CT,NY,NC,ME,NH,VA |
| Dibenzofuran                     | CT,NY,NC,ME,NH,VA |
| Di-n-butylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,3-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,4-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 3,3-Dichlorobenzidine            | CT,NY,NC,ME,NH,VA |
| 2,4-Dichlorophenol               | CT,NY,NC,ME,NH,VA |
| Diethylphthalate                 | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol               | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate                | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol                | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |
| Fluorene                         | NY,NC,ME,NH,VA    |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |
| Isophorone                       | CT,NY,NC,ME,NH,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |
| Pentachloronitrobenzene          | NC                |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |
| Phenanthrene                     | CT,NY,NC,ME,NH,VA |
|                                  |                   |



# CERTIFICATIONS

# Certified Analyses included in this Report

Analyte Certifications

SW-846 8270E in Water

Phenol CT,NY,NC,ME,NH,VA
Pyrene CT,NY,NC,ME,NH,VA
Pyridine CT,NY,NC,ME,NH,VA
1,2,4,5-Tetrachlorobenzene NY,NC
1,2,4-Trichlorobenzene CT,NY,NC,ME,NH,VA
2,4,5-Trichlorophenol CT,NY,NC,ME,NH,VA
2,4,6-Trichlorophenol CT,NY,NC,ME,NH,VA

2-Fluorophenol NC

SW-846 9014 in Soil

Cyanide NY,CT,NC,ME,NH,VA

SW-846 9014 in Water

Cyanide NY,CT,NH,NC,ME,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

7388J

Phone: 413-525-2332

Pace Analytical "

http://www.pacelabs.com

CHAIN OF CUSTODY RECORD

39 Spruce Street East Longmeadow, MA 01028

Doc # 381 Rev 5\_07/13/2021

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? from prepacked coolers \*Pace Analytical is not ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water Preservation Codes: Total Number Of: X = Sodium Hydroxide A = Air S = Soil SL = Sludge SOL = Solid O = Other (please Courier Use Only B = Sodium Bisulfate O = Other (please define) S = Sulfuric Acid <sup>2</sup> Preservation Code N = Nitric Acid BACTERIA M = Methanol PLASTIC ENCORE GLASS YIÉLS. T = Sodium Thiosulfate define) H = HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AHA-LAP, LLC Accredited Chromatogram AIHA-LAP,LLC not be held accountable. Code column above: 又 ANALYSIS REQUESTED メメ 7 Cyanide × × TAL MUTAN 7 MAT 7 57005 5201 × CPH-080 又 DED × CT RCP Required RCP Certification Form Required -HdL X MA MCP Required MCP Certification Form Required WRTA MA State DW Required TPH-6AD X × ٤ Ą C to Je ra BACTERIA Field Filtered Field Filtered PCB ONL) Lab to Filter Lab to Filter VIALS GLASS PLASTIC 3 School MWRA SOSTECTUS OF MINDS OF THE SOXHLET <u>~</u> ۲ N 4 d S SOXHLET 1 J 0 0 0 0 10-Day (1) Conc Code J Ú ۷ × Municipality Brownfield \*Matrix Code PDF X EXCEL # QISMd 3-Day 4-Day Ś CLP Like Data Pkg Required: COMP/GRAB [78] Vins Vinina DEQ ৬ 9 Φ ৩ 9 P P PFAS 10-Day (std) TBOI = Trip Blank Ending Date/Time Government Email To: 128-58203-0-1-211612 10.12-4 0740 125% 345 HRP-5B203-11-13-211012 10-124 0757 1243 464 111.9 10.11.9 1300 1230 10-11-21 1143 Fax To #: Format: Federal Other: 7-Day -Day ¿-Day Client Comments: City Project Entity Beginning Date/Time 11.0 HRP-5B205-13-15-21104 10-11-21 10-(2-2) 1271.0) HRP. 00802-13-15-211011 10-11-21 Access COC's and Support Requests 1240 #RP-56206-15-17-21104 HRP. SB206-0-1-211012 HAP-SBIDG-5-7-211012 12.5 イグラ 1406 A. Ray of St. Mewander, UP 0-16-21 0-16-21 Client Sample ID / Description HEP-S&205-0-1-24011 12/21/21 invoice Recipient: Sostertua (O fumbel .com Fax: 413-525-6405 0.13.21 Date/Time: Date/Time Date/Time: 210 Date/Time: Date/Time: MRP 1965 SZR 4350 N Farrfax Dr. Ste 200 12/10 6200 Sampled By: Surah Osfert Surrand Grey Grost **Trinung** nquished by: (signature) signature) Pace Quote Name/Number nature) B Pace Work Order# S ろう প্ত Í 5 9 Project Location: Project Manager: Received by: (sign Project Number: Relinquished by: Lab Comments: Address;

Page of 2

J380016

http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021

responsible for missing samples from prepacked coolers Glassware in freezer? Y / N Prepackaged Cooler? Y / N Glassware in the fridge? <sup>1</sup> Matrix Codes; GW = Ground Water WW = Waste Water \*Pace Analytical is not Total Number Of <sup>2</sup> Preservation Codes: DW = Drinking Water X = Sodium Hydroxide \$ = Soil SL = Studge SOL = Soild O = Other (please Courter Use Only B = Sodium Bisulfate 0 = Other (please define) S = Sulfuric Acid Preservation Code N = Nitric Acid BACTERIA M = Methanol PLASTIC ENCORE GLASS T ≠ Sodium Thiosulfate VIALS A = Air define) H # HCL possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AHA-LAP, LLC Accredited Chromatogram

AIHA-LAP, LLC Code column above; ANALYSIS REQUESTED MRS I NOT 1 1 1 1 <u>ত্যত</u> CT RCP Required RCP Certification Form Required MA MCP Required MCP Certification Form Required MA State DW Required × 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL VIALS GLASS PLASTIC School Sostertagaramba Non SOXHLET m 3 m SOXHLET CHAIN OF CUSTODY RECORD Trip Bland 0 0 0 0 Conc Code Municipality Brownfield Matrix Code # GISMA 3-Day 4-Day (1) S  $\mathcal{O}$ **(**) Laminot COMP/GRAB CLP Like Data Pkg Required Sab الم لاهم والغالج Grab CTBOSIGN IN DECO PFAS 10-Day (std) Government Ending Date/Time Email To: 10.13.21 10.1235 -ax To #: Federal ormat: Other: -Day Client Comments: -Day -Day City Project Entity 10/13/21 10/13/21 10/13/21 Beginning Date/Time SOStertus (Dramboll.com St. Heyandrin Access COC's and Support Requests 1500 Date/Time: 10-14-2 Date/Time: [D-13-2 51100 VIND Date/Time; 12 ( HRP-MWB0 7-6-8-211013 41RP-MU307-16-18-211013 HAP-bypeg-6-1-211013 HRP-MW207-0-1-211013 HP-TB62-21013 Date/Time:/0/1 Client Sample ID / Description Phone: 413-525-2332 10.13.21 Fairfax Drive 700 Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: Des sca Vecs/10-13-21 מעוניונל Project Manager: 6. Grose Pace Analytical " 4350 N 1,60 403516 ANAR (Signature) Pace Quote Name/Number; Received by: (signature) Work Order# 2 Q Project Location: nvoice Recipient: 3 = Relinquished by: Project Number: Lab Comments: Sampled By: ived by: Address:

Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable.

Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The

ہ 4



# TRACK ANOTHER SHIPMENT

284893953793

ADD NICKNAME



Delivered Friday, October 15, 2021 at 10:22 am



# **DELIVERED**

Signed for by: R.PIETRIAS

GET STATUS UPDATES

OBTAIN PROOF OF DELIVERY

FROM TO

Mechanicsville, VA US EAST LONGMEADOW, MA US

# Travel History

| TIME ZONE       |
|-----------------|
| Local Scan Time |

# Friday, October 15, 2021

| 10:22 AM                   | EAST LONGMEADOW, MA | Delivered                     |  |
|----------------------------|---------------------|-------------------------------|--|
| 8:44 AM                    | WINDSOR LOCKS, CT   | On FedEx vehicle for delivery |  |
| 8:35 AM                    | WINDSOR LOCKS, CT   | At local FedEx facility       |  |
| 7:33 AM                    | EAST GRANBY, CT     | At destination sort facility  |  |
| 4:30 AM                    | MEMPHIS, TN         | Departed FedEx hub            |  |
| Thursday, October 14, 2021 |                     |                               |  |

| 10:21 PM | MEMPHIS, IN        | Arrived at FedEx hub               |
|----------|--------------------|------------------------------------|
| 8:01 PM  | MECHANICSVILLE, VA | Left FedEx origin facility         |
| 4:24 PM  | MECHANICSVILLE, VA | Picked up                          |
| 11:49 AM |                    | Shipment information sent to FedEx |

# Shipment Facts

# I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client                                                                                                                    | Rar     | Hccan                                                                                                                                                                 |                |                                                                                                       |                                                                                                                                                   |              |                                                                                    |                                                                                         |             |
|---------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|
| Receive                                                                                                                   |         | RIF                                                                                                                                                                   |                | Date                                                                                                  | 10/15/                                                                                                                                            | <u> </u>     | Time                                                                               | 1099                                                                                    |             |
| How were the                                                                                                              | samples | In Cooler                                                                                                                                                             |                | No Cooler                                                                                             | C                                                                                                                                                 | n Ice T      |                                                                                    | No Ice                                                                                  |             |
| receive                                                                                                                   | ed?     | Direct from Samp                                                                                                                                                      | olina          | •                                                                                                     | <br>Aı                                                                                                                                            | mbient —     |                                                                                    | Melted Ice                                                                              |             |
|                                                                                                                           | *** *   |                                                                                                                                                                       | By Gun #       | ~                                                                                                     |                                                                                                                                                   | –<br>al Temp | - 4.3                                                                              | <u> </u>                                                                                |             |
| Were sample                                                                                                               |         |                                                                                                                                                                       | By Blank #     |                                                                                                       |                                                                                                                                                   | ual Temp     |                                                                                    |                                                                                         |             |
| Temperature                                                                                                               |         |                                                                                                                                                                       | <del>-</del> - |                                                                                                       | re Samples Ta                                                                                                                                     | -            |                                                                                    | 1.0                                                                                     |             |
|                                                                                                                           | •       | eal Intact?<br>iquished ?                                                                                                                                             | <u> </u>       |                                                                                                       | s Chain Agree \                                                                                                                                   | •            |                                                                                    |                                                                                         |             |
|                                                                                                                           |         | eaking/loose caps                                                                                                                                                     | on any sam     |                                                                                                       |                                                                                                                                                   | With Sam     | pies:                                                                              |                                                                                         |             |
| Is COC in ink                                                                                                             |         | -                                                                                                                                                                     | on any sam     |                                                                                                       | nples received                                                                                                                                    | within hole  | dina time?                                                                         | F PH                                                                                    | hala<br>LCA |
| Did COC inc                                                                                                               | _       | Client                                                                                                                                                                |                | Analysis                                                                                              | T                                                                                                                                                 | Sampler      | _                                                                                  | <del></del>                                                                             | VICE        |
| pertinent Info                                                                                                            |         | Project                                                                                                                                                               |                | ID's                                                                                                  |                                                                                                                                                   | -            | ates/Time                                                                          | s <del>-</del>                                                                          |             |
| •                                                                                                                         |         | d out and legible?                                                                                                                                                    |                |                                                                                                       |                                                                                                                                                   |              |                                                                                    |                                                                                         |             |
| Are there Lab                                                                                                             |         | =                                                                                                                                                                     | <del></del>    |                                                                                                       | Who was no                                                                                                                                        | tified?      |                                                                                    |                                                                                         |             |
| Are there Rus                                                                                                             |         | •                                                                                                                                                                     | E              |                                                                                                       | Who was no                                                                                                                                        |              |                                                                                    |                                                                                         |             |
| Are there Sho                                                                                                             |         |                                                                                                                                                                       | <del></del>    |                                                                                                       | Who was no                                                                                                                                        | tified? (    | رباكلا                                                                             | ***************************************                                                 |             |
| Is there enoug                                                                                                            | •       | ?                                                                                                                                                                     |                |                                                                                                       |                                                                                                                                                   |              |                                                                                    |                                                                                         |             |
| _                                                                                                                         | _       | ere applicable?                                                                                                                                                       | TH             |                                                                                                       | MS/MSD? T                                                                                                                                         | _            |                                                                                    |                                                                                         |             |
| Proper Media/                                                                                                             | •       |                                                                                                                                                                       |                |                                                                                                       | Is splitting sam                                                                                                                                  |              | ired?                                                                              | F                                                                                       |             |
| Were trip blan                                                                                                            |         |                                                                                                                                                                       | <del></del>    |                                                                                                       | On COC? T                                                                                                                                         |              |                                                                                    |                                                                                         |             |
| Do all sample                                                                                                             |         |                                                                                                                                                                       |                | Acid                                                                                                  | M                                                                                                                                                 |              | Base                                                                               | VA                                                                                      |             |
| _                                                                                                                         |         |                                                                                                                                                                       |                | _                                                                                                     |                                                                                                                                                   |              |                                                                                    |                                                                                         |             |
| Vials                                                                                                                     | #       | Containers:                                                                                                                                                           | 1              |                                                                                                       |                                                                                                                                                   | #            |                                                                                    |                                                                                         | #           |
| <b>Vials</b><br>Unp-                                                                                                      | #       | Containers:<br>1 Liter Amb.                                                                                                                                           | #              | 1 Liter                                                                                               | Plastic                                                                                                                                           | #            | 16 o                                                                               | z Amb.                                                                                  | *           |
|                                                                                                                           | 4       |                                                                                                                                                                       | *              | 1 Liter<br>500 mL                                                                                     |                                                                                                                                                   | i.           | 8oz Æ                                                                              | nb/Clear                                                                                | 13          |
| Unp-<br>HCL-<br>Meoh-                                                                                                     | #<br>15 | 1 Liter Amb.                                                                                                                                                          | #              |                                                                                                       | Plastic                                                                                                                                           | #            | 8oz (4)<br>4oz (4)                                                                 | กิb/Clear<br>ที่b/Clear                                                                 | 13 5        |
| Unp-<br>HCL-<br>Meoh-<br>Bisulfate-                                                                                       |         | 1 Liter Amb.<br>500 mL Amb.                                                                                                                                           | #              | 500 mL<br>250 mL<br>Col./Ba                                                                           | Plastic Plastic acteria                                                                                                                           |              | 8oz (4)<br>4oz (4)<br>2oz (4)                                                      | mb/Clear<br>ที่b/Clear<br>mb/Clear                                                      |             |
| Unp-<br>HCL-<br>Meoh-<br>Bisulfate-<br>DI-                                                                                | 15      | 1 Liter Amb.<br>500 mL Amb.<br>250 mL Amb.<br>Flashpoint<br>Other Glass                                                                                               | #              | 500 mL<br>250 mL<br>Col./Ba<br>Other I                                                                | Plastic Plastic acteria Plastic                                                                                                                   | *            | 80z (40<br>40z A(<br>20z A(<br>Er                                                  | กิb/Clear<br>ที่b/Clear                                                                 |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-                                                                               | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit                                                                                                   | #              | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic                                                     | Plastic Plastic acteria Plastic c Bag                                                                                                             | # F          | 8oz (4)<br>4oz (4)<br>2oz (4)                                                      | mb/Clear<br>ที่b/Clear<br>mb/Clear                                                      |             |
| Unp-<br>HCL-<br>Meoh-<br>Bisulfate-<br>DI-                                                                                | 15      | 1 Liter Amb.<br>500 mL Amb.<br>250 mL Amb.<br>Flashpoint<br>Other Glass                                                                                               | -              | 500 mL<br>250 mL<br>Col./Ba<br>Other I                                                                | Plastic Plastic acteria Plastic c Bag                                                                                                             | F            | 80z (40<br>40z A(<br>20z A(<br>Er                                                  | mb/Clear<br>ที่b/Clear<br>mb/Clear                                                      |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-                                                                     | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate                                                                                       | *              | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic                                                     | Plastic Plastic acteria Plastic c Bag ock                                                                                                         |              | 80z (40<br>40z A(<br>20z A(<br>Er                                                  | mb/Clear<br>ที่b/Clear<br>mb/Clear                                                      |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-                                                                     | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers:                                                                          |                | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic<br>Zipl                                             | Plastic Plastic acteria Plastic c Bag ock  Media                                                                                                  | F            | 8oz (A)<br>4oz A)<br>2oz A)<br>Er<br>Frozen:                                       | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore                                               |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp-                                                         | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb.                                                             | #              | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic<br>Zipl<br>Unused I                                 | Plastic Plastic acteria Plastic c Bag ock  Media                                                                                                  |              | 8oz (A)<br>4oz A)<br>2oz A)<br>Er<br>Frozen:                                       | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.                                     |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL-                                                    | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb.                                                 | #              | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic<br>Ziple<br>Unused I<br>1 Liter<br>500 mL           | Plastic Plastic acteria Plastic c Bag ock Media Plastic Plastic                                                                                   |              | 8oz (A)<br>4oz A)<br>2oz A)<br>Er<br>rozen:<br>16 o<br>8oz A)                      | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear                         |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh-                                              | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.                                     | #              | 500 mL<br>250 mL<br>Col./Ba<br>Other I<br>Plastic<br>Ziple<br>Unused I<br>1 Liter<br>500 mL<br>250 mL | Plastic Plastic acteria Plastic c Bag ock Wedia Plastic Plastic Plastic Plastic                                                                   |              | 80z (A)<br>40z A)<br>20z A)<br>Er<br>rozen:<br>16 o<br>80z A)<br>40z A)            | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear             |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate-                                   | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria                       |                | 500 mL 250 mL Col./Ba Other I Plastic Zipl Unused I  1 Liter 500 mL 250 mL Flash                      | Plastic Plastic acteria Plastic c Bag ock  Media  Plastic Plastic Plastic Plastic Plastic point                                                   |              | 8oz (A)<br>4oz A)<br>2oz A)<br>Er<br>Trozen:<br>16 o<br>8oz A)<br>4oz A)<br>2oz A) | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI-                               | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         |                | 500 mL 250 mL Col./Ba Other I Plastic Zipl Unused I  1 Liter 500 mL 250 mL Flash Other                | Plastic Plastic acteria Plastic c Bag ock  Media  Plastic | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear             |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- DI- Thiosulfate- | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 8oz (A)<br>4oz A)<br>2oz A)<br>Er<br>Trozen:<br>16 o<br>8oz A)<br>4oz A)<br>2oz A) | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-        | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         |                | 500 mL 250 mL Col./Ba Other I Plastic Zipl Unused I  1 Liter 500 mL 250 mL Flash Other                | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-        | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-        | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-        | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- DI- Thiosulfate- | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |
| Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-        | 15      | 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit |                | 500 mL 250 mL Col./Ba Other I Plastic Ziple  1 Liter 500 mL 250 mL Plastic Plastic                    | Plastic Plastic acteria Plastic c Bag ock  Viedia  Plastic Plastic Plastic Plastic Plastic Plastic Glass c Bag                                    | #            | 80z (A) 40z A) 20z A) Er  rozen:  16 o 80z A) 40z A) 20z A) Er                     | mb/Clear<br>mb/Clear<br>mb/Clear<br>ncore<br>z Amb.<br>mb/Clear<br>mb/Clear<br>mb/Clear |             |

November 12, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St, Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21J1856

Enclosed are results of analyses for samples as received by the laboratory on October 29, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# **Table of Contents**

| Sample Summary                          | 4   |
|-----------------------------------------|-----|
| Case Narrative                          | 6   |
| Sample Results                          | 10  |
| 21J1856-01                              | 10  |
| 21J1856-02                              | 18  |
| 21J1856-03                              | 26  |
| 21J1856-04                              | 34  |
| 21J1856-05                              | 36  |
| 21J1856-06                              | 41  |
| 21J1856-07                              | 49  |
| 21J1856-08                              | 57  |
| 21J1856-09                              | 65  |
| 21J1856-10                              | 73  |
| 21J1856-11                              | 81  |
| 21J1856-12                              | 83  |
| 21J1856-13                              | 91  |
| 21J1856-14                              | 93  |
| Sample Preparation Information          | 96  |
| QC Data                                 | 100 |
| Volatile Organic Compounds by GC/MS     | 100 |
| B293683                                 | 100 |
| B293865                                 | 104 |
| Semivolatile Organic Compounds by GC/MS | 110 |
| B293672                                 | 110 |
| B293790                                 | 114 |

# Table of Contents (continued)

| B293858                                                              | 119 |
|----------------------------------------------------------------------|-----|
| Polychlorinated Biphenyls By GC/ECD                                  | 125 |
| B293652                                                              | 125 |
| Semivolatile Organic Compounds by GC                                 | 126 |
| B293612                                                              | 126 |
| Petroleum Hydrocarbons Analyses                                      | 127 |
| B293763                                                              | 127 |
| B293804                                                              | 127 |
| Metals Analyses (Total)                                              | 128 |
| B293657                                                              | 128 |
| B293658                                                              | 129 |
| B293728                                                              | 129 |
| Metals Analyses (Dissolved)                                          | 131 |
| B293655                                                              | 131 |
| B293656                                                              | 132 |
| B293727                                                              | 133 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 135 |
| B293753                                                              | 135 |
| B293898                                                              | 135 |
| B294057                                                              | 135 |
| B294542                                                              | 136 |
| Flag/Qualifier Summary                                               | 137 |
| Certifications                                                       | 138 |
| Chain of Custody/Sample Receipt                                      | 144 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 11/12/2021

TOROTH ISE ORBER NUMBER

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1856

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

| FIELD SAMPLE #   | LAB ID:    | MATRIX       | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------|------------|--------------|--------------------|--------------|---------|
| HRP-MW214-211026 | 21J1856-01 | Ground Water |                    | ASTM D516-16 |         |
|                  |            |              |                    | SW-846 6010D |         |
|                  |            |              |                    | SW-846 6020B |         |
|                  |            |              |                    | SW-846 7470A |         |
|                  |            |              |                    | SW-846 8015C |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
| HRP-MW208-211026 | 21J1856-02 | Ground Water |                    | ASTM D516-16 |         |
|                  |            |              |                    | SW-846 6010D |         |
|                  |            |              |                    | SW-846 6020B |         |
|                  |            |              |                    | SW-846 7470A |         |
|                  |            |              |                    | SW-846 8015C |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
| HRP-MW207-211026 | 21J1856-03 | Ground Water |                    | ASTM D516-16 |         |
| 11101 1111120    |            |              |                    | SW-846 6010D |         |
|                  |            |              |                    | SW-846 6020B |         |
|                  |            |              |                    | SW-846 7470A |         |
|                  |            |              |                    | SW-846 8015C |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
| HRP-TB11-211026  | 21J1856-04 | Ground Water |                    | SW-846 8260D |         |
| HRP-MW221-211027 | 21J1856-05 | Ground Water |                    | SW-846 8082A |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
| HRP-MW201-211025 | 21J1856-06 | Ground Water |                    | ASTM D516-16 |         |
|                  |            |              |                    | EPA 350.1    |         |
|                  |            |              |                    | SW-846 6010D |         |
|                  |            |              |                    | SW-846 6020B |         |
|                  |            |              |                    | SW-846 7470A |         |
|                  |            |              |                    | SW-846 8015C |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
| HRP-MW202-211026 | 21J1856-07 | Ground Water |                    | ASTM D516-16 |         |
|                  |            |              |                    | EPA 350.1    |         |
|                  |            |              |                    | SW-846 6010D |         |
|                  |            |              |                    | SW-846 6020B |         |
|                  |            |              |                    | SW-846 7470A |         |
|                  |            |              |                    | SW-846 8015C |         |
|                  |            |              |                    | SW-846 8260D |         |
|                  |            |              |                    | SW-846 8270E |         |
|                  |            |              |                    | 5 010 02/0E  |         |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 11/12/2021

PROJECT NUMBER:

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J1856

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

| HRP-DUP05-211026 | 21J1856-08 | Ground Water | ASTM D516-16 |  |
|------------------|------------|--------------|--------------|--|
|                  |            |              | EPA 350.1    |  |
|                  |            |              | SW-846 6010D |  |
|                  |            |              | SW-846 6020B |  |
|                  |            |              | SW-846 7470A |  |
|                  |            |              | SW-846 8015C |  |
|                  |            |              | SW-846 8260D |  |
|                  |            |              | SW-846 8270E |  |
| HRP-MW205-211026 | 21J1856-09 | Ground Water | ASTM D516-16 |  |
|                  |            |              | EPA 350.1    |  |
|                  |            |              | SW-846 6010D |  |
|                  |            |              | SW-846 6020B |  |
|                  |            |              | SW-846 7470A |  |
|                  |            |              | SW-846 8015C |  |
|                  |            |              | SW-846 8260D |  |
|                  |            |              | SW-846 8270E |  |
| HRP-MW206-211026 | 21J1856-10 | Ground Water | ASTM D516-16 |  |
|                  |            |              | SW-846 6010D |  |
|                  |            |              | SW-846 6020B |  |
|                  |            |              | SW-846 7470A |  |
|                  |            |              | SW-846 8015C |  |
|                  |            |              | SW-846 8260D |  |
|                  |            |              | SW-846 8270E |  |
| HRP-TB07-211025  | 21J1856-11 | Ground Water | SW-846 8260D |  |
| HRP-MW102-211027 | 21J1856-12 | Ground Water | ASTM D516-16 |  |
|                  |            |              | EPA 350.1    |  |
|                  |            |              | SW-846 6010D |  |
|                  |            |              | SW-846 6020B |  |
|                  |            |              | SW-846 7470A |  |
|                  |            |              | SW-846 8015C |  |
|                  |            |              | SW-846 8260D |  |
|                  |            |              | SW-846 8270E |  |
| HRP-TB09-211025  | 21J1856-13 | Ground Water | SW-846 8260D |  |
| Trip Blank       | 21J1856-14 | Ground Water | SW-846 8015C |  |
|                  |            |              | SW-846 8260D |  |

## CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 11/10/21- Sample -09 ammonia added per coc



#### EPA 350.1

#### **Qualifications:**

#### L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

# Analyte & Samples(s) Qualified:

#### Ammonia as N

B293898-BS1, B293898-BSD1

#### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

#### Ammonia as N

21J1856-09[HRP-MW205-211026]

#### SW-846 6020B

#### Qualifications:

# MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.

#### Analyte & Samples(s) Qualified:

#### Manganasa

21J1856-01[HRP-MW214-211026], B293655-MS1

#### SW-846 7470A

#### Qualifications:

#### DL-03

Elevated reporting limit due to matrix interference.

#### Analyte & Samples(s) Qualified:

#### Mercury

21J1856-01[HRP-MW214-211026], B293727-DUP1

#### SW-846 8260D

#### Qualifications:

#### L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

#### Analyte & Samples(s) Qualified:

# 1,2,3-Trichlorobenzene

B293683-BS1

## V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

# Analyte & Samples(s) Qualified:

#### 1,2,3-Trichlorobenzene

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-04[HRP-TB11-211026], 21J1856-04[HRP-TB11-211026], 21J1856-05[HRP-MW207-211026], 21J1856-05[HRP-TB11-211026], 21J1856-05

21J1856-05[HRP-MW221-211027], 21J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1

21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-11[HRP-TB07-211025], 21J1856-12[HRP-MW102-211027],

21J1856-13[HRP-TB09-211025], 21J1856-14[Trip Blank], B293683-BLK1, B293683-BSD1, B293683-BSD1, B293865-BLK1, B293865-BSD1

#### 1,2,4-Trichlorobenzene

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-04[HRP-TB11-211026], 21J1856-04[

21J1856-05[HRP-MW221-211027], 21J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-11[HRP-TB07-211025], 21J1856-12[HRP-MW102-211027],

 $21J1856-13[HRP-TB09-211025], 21J1856-14[Trip\ Blank], B293683-BLK1, B293683-BSD1, B293683-BSD1, B293865-BLK1, B293865-BSD1, B2$ 

## Naphthalene

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-04[HRP-TB11-211026],

21J1856-05[HRP-MW221-211027], 21J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1

21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-11[HRP-TB07-211025], 21J1856-12[HRP-MW102-211027], 21J18

 $21J1856-13[HRP-TB09-211025], 21J1856-14[Trip\ Blank], B293683-BLK1, B293683-BSD1, B293683-BSD1, B293865-BLK1, B293865-BSD1, B2$ 



#### V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

#### Bromomethane

B293865-BS1, B293865-BSD1

#### Chloroethane

B293865-BS1, B293865-BSD1

#### SW-846 8270E

#### Qualifications:

#### B-05

Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".

#### Analyte & Samples(s) Qualified:

#### Phenanthrene

B293858-BLK1

#### H-10

Analysis was requested after the recommended holding time had passed.

#### Analyte & Samples(s) Qualified:

#### 21J1856-06[HRP-MW201-211025]

#### L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

#### N-Nitrosodimethylamine

B293858-BSD1

# V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

#### 2,4-Dinitrophenol

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-05[HRP-MW2121-211027], 21J1856-05[HRP-MW2121027], 21J1856-05[HRP-MW2121-211027], 21J1821J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-12[HRP-MW102-211027], B293672-BLK1, B293672-BS1, B293672-BSD1, B293790-BLK1, B293790-BS1, B293790-BSD1, B293790-BSD1

# B293858-BLK1, B293858-BS1, B293858-BSD1

## Benzidine

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-05[HRP-MW207-211026], 21J1856-05[HRP-MW208-211026], 21J1

21J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1856-09[HRP-MW205-211026], 21J1856-09[HRP-MW205-21006], 21J1856-09[HRP-

21J1856-10[HRP-MW206-211026], 21J1856-12[HRP-MW102-211027], B293672-BLK1, B293672-BS1, B293672-BSD1, B293790-BLK1, B293790-BSD1, B293790-BSD1

# V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

# Analyte & Samples(s) Qualified:

#### Benzidine

B293858-BLK1, B293858-BS1, B293858-BSD1

#### Hexachlorocyclopentadiene

B293858-BLK1, B293858-BS1, B293858-BSD1



#### V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

#### Analyte & Samples(s) Qualified:

#### 2,4-Dinitrophenol

B293672-BS1, B293672-BSD1, B293790-BS1, B293790-BSD1, B293858-BS1, B293858-BSD1

#### 2.4-Dinitrotoluene

B293672-BS1, B293672-BSD1, B293790-BS1, B293790-BSD1

#### 3-Nitroaniline

B293672-BS1, B293672-BSD1

#### 4-Nitroaniline

B293672-BS1, B293672-BSD1, B293790-BS1, B293790-BSD1

#### Benzidine

B293672-BS1, B293672-BSD1

#### V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

#### Analyte & Samples(s) Qualified:

#### 2,4-Dinitrophenol

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-05[HRP-MW21-211027], 21J1856-06[HRP-MW201-211025], 21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856

#### 2.4-Dinitrotoluene

21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-08[HRP-DUP05-211026], B293790-BLK1

#### 2-Nitroaniline

21J1856-05[HRP-MW221-211027], 21J1856-07[HRP-MW202-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-12[HRP-MW102-211027]

#### 3-Nitroaniline

B293672-BLK1

#### 4-Nitroaniline

 $21J1856-01[HRP-MW214-211026], 21J1856-02[HRP-MW208-211026], 21J1856-03[HRP-MW207-211026], 21J1856-05[HRP-MW221-211027], \\21J1856-07[HRP-MW202-211026], 21J1856-08[HRP-DUP05-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], \\21J1856-12[HRP-MW102-211027], B293672-BLK1, B293790-BLK1$ 

## Aniline

21J1856-05[HRP-MW221-211027], 21J1856-07[HRP-MW202-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-12[HRP-MW102-211027]

## Benzidine

21J1856-05[HRP-MW221-211027], 21J1856-07[HRP-MW202-211026], 21J1856-09[HRP-MW205-211026], 21J1856-10[HRP-MW206-211026], 21J1856-12[HRP-MW102-211027], B293672-BLK1

#### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

# Analyte & Samples(s) Qualified:

#### 4-Chloroaniline

B293858-BLK1, B293858-BS1, B293858-BSD1

#### SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard. Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

10pghml

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW214-211026 Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

| Volatile ( | Organic | Compounds | by | GC/MS |
|------------|---------|-----------|----|-------|
|------------|---------|-----------|----|-------|

|                                    |         | Volatile Organic Compounds by GC/MS |       |              |          |           |                 |                  |                       |         |  |
|------------------------------------|---------|-------------------------------------|-------|--------------|----------|-----------|-----------------|------------------|-----------------------|---------|--|
| Analyte                            | Results | RL                                  | DL    | Units        | Dilution | Flag/Qual | Method          | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |
| Acetone                            | 3.4     | 50                                  | 2.4   | μg/L         | 1        | J         | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Acrylonitrile                      | ND      | 5.0                                 | 0.69  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50                                | 0.15  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Benzene                            | ND      | 1.0                                 | 0.13  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Bromobenzene                       | ND      | 1.0                                 | 0.13  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Bromochloromethane                 | ND      | 1.0                                 | 0.36  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Bromodichloromethane               | ND      | 0.50                                | 0.14  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Bromoform                          | ND      | 1.0                                 | 0.29  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Bromomethane                       | ND      | 2.0                                 | 1.1   | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 2-Butanone (MEK)                   | ND      | 20                                  | 1.9   | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| tert-Butyl Alcohol (TBA)           | ND      | 20                                  | 5.3   | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| n-Butylbenzene                     | ND      | 1.0                                 | 0.14  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| sec-Butylbenzene                   | ND      | 1.0                                 | 0.10  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| tert-Butylbenzene                  | ND      | 1.0                                 | 0.090 | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50                                | 0.11  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Carbon Disulfide                   | ND      | 5.0                                 | 1.5   | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Carbon Tetrachloride               | ND      | 5.0                                 | 0.17  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Chlorobenzene                      | ND      | 1.0                                 | 0.080 | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Chlorodibromomethane               | ND      | 0.50                                | 0.16  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Chloroethane                       | ND      | 2.0                                 | 0.37  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Chloroform                         | ND      | 2.0                                 | 0.19  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Chloromethane                      | ND      | 2.0                                 | 0.38  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 2-Chlorotoluene                    | ND      | 1.0                                 | 0.090 | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 4-Chlorotoluene                    | ND      | 1.0                                 | 0.10  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0                                 | 0.72  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50                                | 0.15  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Dibromomethane                     | ND      | 1.0                                 | 0.29  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,2-Dichlorobenzene                | ND      | 1.0                                 | 0.10  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,3-Dichlorobenzene                | ND      | 1.0                                 | 0.090 | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,4-Dichlorobenzene                | ND      | 1.0                                 | 0.11  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0                                 | 1.8   | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0                                 | 0.20  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,1-Dichloroethane                 | ND      | 1.0                                 | 0.16  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,2-Dichloroethane                 | ND      | 1.0                                 | 0.32  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,1-Dichloroethylene               | ND      | 1.0                                 | 0.16  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| cis-1,2-Dichloroethylene           | ND      | 1.0                                 | 0.15  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| trans-1,2-Dichloroethylene         | ND      | 1.0                                 | 0.17  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,2-Dichloropropane                | ND      | 1.0                                 | 0.18  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,3-Dichloropropane                | ND      | 0.50                                | 0.12  | μg/L         | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 2,2-Dichloropropane                | ND      | 1.0                                 | 0.31  | μg/L<br>μg/L | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| 1,1-Dichloropropene                | ND      | 2.0                                 | 0.26  | μg/L<br>μg/L | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| cis-1,3-Dichloropropene            | ND      | 0.50                                | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| trans-1,3-Dichloropropene          | ND      | 0.50                                | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| Diethyl Ether                      | ND      | 2.0                                 | 0.22  | μg/L<br>μg/L | 1        |           | SW-846 8260D    | 11/1/21          | 11/1/21 14:19         | MFF     |  |
| y                                  | 1112    | 2.0                                 | 0.22  | ME/I         | 1        |           | 5.1. 0.10 0200D | ΙΙ/1/21          | Page 10 (             |         |  |

Page 10 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW214-211026** Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

| Volatile | Organic Con | ipounds by | GC/MS |
|----------|-------------|------------|-------|
|          |             |            |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        | -         | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:19         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 106        | 70-130          |           | 11/1/21 14:19 |
| Toluene-d8            | 104        | 70-130          |           | 11/1/21 14:19 |
| 4-Bromofluorobenzene  | 102        | 70-130          |           | 11/1/21 14:19 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW214-211026 Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

| Semivo | latile | Organic | Compounds | hv | GC/MS |
|--------|--------|---------|-----------|----|-------|
|        |        |         |           |    |       |

| Analyte                          | Results  | RL  | DL   | Units        | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|----------|-----|------|--------------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 4.8 | 0.32 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Acenaphthylene                   | ND       | 4.8 | 0.31 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Acetophenone                     | ND       | 9.6 | 0.43 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Aniline                          | ND       | 4.8 | 0.79 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Anthracene                       | ND       | 4.8 | 0.38 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzidine                        | ND       | 19  | 9.6  | μg/L         | 1        | V-04       | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzo(a)anthracene               | ND       | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzo(a)pyrene                   | ND       | 4.8 | 0.46 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzo(b)fluoranthene             | ND       | 4.8 | 0.40 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzo(g,h,i)perylene             | ND       | 4.8 | 0.62 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzo(k)fluoranthene             | ND       | 4.8 | 0.35 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Benzoic Acid                     | ND       | 9.6 | 8.9  | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 9.6 | 0.42 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 9.6 | 0.50 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 9.6 | 0.57 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 9.6 | 0.89 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Bromophenylphenylether         | ND       | 9.6 | 0.37 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Butylbenzylphthalate             | ND       | 9.6 | 0.67 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Carbazole                        | ND       | 9.6 | 0.40 | μg/L<br>μg/L | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Chloroaniline                  | ND<br>ND | 9.6 | 0.40 |              | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Chloro-3-methylphenol          | ND<br>ND | 9.6 |      | μg/L         | 1        |            |              |                  |                       | BGL     |
| 2-Chloronaphthalene              |          |     | 0.52 | μg/L         |          |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         |         |
| 2-Chlorophenol                   | ND<br>ND | 9.6 | 0.25 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| •                                | ND       | 9.6 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Chlorophenylphenylether        | ND       | 9.6 | 0.32 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Chrysene                         | ND       | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Dibenz(a,h)anthracene            | ND       | 4.8 | 0.68 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Dibenzofuran                     | ND       | 4.8 | 0.33 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Di-n-butylphthalate              | ND       | 9.6 | 0.48 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,2-Dichlorobenzene              | ND       | 4.8 | 0.22 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,3-Dichlorobenzene              | ND       | 4.8 | 0.23 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,4-Dichlorobenzene              | ND       | 4.8 | 0.25 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 9.6 | 0.60 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4-Dichlorophenol               | ND       | 9.6 | 0.35 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Diethylphthalate                 | ND       | 9.6 | 0.46 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4-Dimethylphenol               | ND       | 9.6 | 0.93 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Dimethylphthalate                | ND       | 9.6 | 0.39 | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 9.6 | 6.3  | μg/L         | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4-Dinitrophenol                | ND       | 9.6 | 7.7  | μg/L         | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4-Dinitrotoluene               | ND       | 9.6 | 0.59 | μg/L         | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,6-Dinitrotoluene               | ND       | 9.6 | 0.48 | $\mu g/L$    | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Di-n-octylphthalate              | ND       | 9.6 | 5.4  | $\mu g/L$    | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 9.6 | 0.51 | $\mu g/L$    | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Fluoranthene                     | ND       | 4.8 | 0.36 | $\mu g/L$    | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Fluorene                         | ND       | 4.8 | 0.40 | $\mu g/L$    | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |

Page 12 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW214-211026 Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

p-Terphenyl-d14

| Semivolatile Organic | Compounds by GC/MS |
|----------------------|--------------------|
|----------------------|--------------------|

| Analyte                              | Results | RL     | DL   | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.6    | 0.35 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Hexachlorobutadiene                  | ND      | 9.6    | 0.26 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 9.6    | 4.1  | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Hexachloroethane                     | ND      | 9.6    | 0.30 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.76 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Isophorone                           | ND      | 9.6    | 0.47 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2-Methylphenol                       | ND      | 9.6    | 0.35 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 3/4-Methylphenol                     | ND      | 9.6    | 0.37 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Naphthalene                          | ND      | 4.8    | 0.28 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2-Nitroaniline                       | ND      | 9.6    | 0.72 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 3-Nitroaniline                       | ND      | 9.6    | 0.49 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Nitroaniline                       | ND      | 9.6    | 0.47 | $\mu g/L$      | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Nitrobenzene                         | ND      | 9.6    | 0.51 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2-Nitrophenol                        | ND      | 9.6    | 0.45 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 4-Nitrophenol                        | ND      | 9.6    | 2.0  | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| N-Nitrosodimethylamine               | ND      | 9.6    | 0.79 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.6    | 0.38 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 9.6    | 0.51 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Pentachloronitrobenzene              | ND      | 9.6    | 0.61 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Pentachlorophenol                    | ND      | 9.6    | 3.6  | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Phenanthrene                         | ND      | 4.8    | 0.38 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Phenol                               | ND      | 9.6    | 0.24 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Pyrene                               | ND      | 4.8    | 0.45 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Pyridine                             | ND      | 4.8    | 2.5  | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.6    | 0.26 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.24 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 9.6    | 0.45 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 9.6    | 0.39 | μg/L           | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:31         | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 45.4   |      | 15-110         |          |           |              |                  | 11/3/21 17:31         |         |
| Phenol-d6                            |         | 33.8   |      | 15-110         |          |           |              |                  | 11/3/21 17:31         |         |
| Nitrobenzene-d5                      |         | 56.2   |      | 30-130         |          |           |              |                  | 11/3/21 17:31         |         |
| 2-Fluorobiphenyl                     |         | 58.7   |      | 30-130         |          |           |              |                  | 11/3/21 17:31         |         |
| 2,4,6-Tribromophenol                 |         | 77.0   |      | 15-110         |          |           |              |                  | 11/3/21 17:31         |         |

93.2

30-130

11/3/21 17:31



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW214-211026** Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

# Petroleum Hydrocarbons Analyses

|                               |         |        |        |                 |          |           |              | Date     | Date/Time     |         |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|----------|---------------|---------|
| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/2/21  | 11/3/21 2:10  | KMB     |
| Diesel Range Organics         | 0.37    | 0.19   | 0.081  | mg/L            | 1        |           | SW-846 8015C | 11/2/21  | 11/3/21 13:38 | SFM     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | i        | Flag/Qual |              |          |               |         |
| 1-Chloro-3-fluorobenzene      |         | 106    |        | 70-130          |          |           |              |          | 11/3/21 2:10  |         |
| 2-Fluorobiphenyl              |         | 73.1   |        | 40-140          |          |           |              |          | 11/3/21 13:38 |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW214-211026 Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

|           |         |         |         |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|---------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 2.2     | 0.050   | 0.049   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Antimony  | ND      | 1.0     | 0.20    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Arsenic   | 5.1     | 0.80    | 0.46    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Barium    | 42      | 10      | 1.2     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Beryllium | 1.6     | 0.40    | 0.066   | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Cadmium   | 7.2     | 0.20    | 0.027   | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Calcium   | 52      | 0.50    | 0.11    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Chromium  | 1.4     | 1.0     | 0.92    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Cobalt    | 780     | 10      | 1.4     | $\mu g/L$ | 10       |           | SW-846 6020B | 10/31/21 | 11/1/21 13:09  | QNW     |
| Copper    | 12      | 1.0     | 0.27    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Iron      | 0.73    | 0.050   | 0.032   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Lead      | 1.7     | 0.50    | 0.14    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Magnesium | 31      | 0.050   | 0.023   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Manganese | 26000   | 100     | 24      | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 13:13  | QNW     |
| Mercury   | 0.00033 | 0.00020 | 0.00010 | mg/L      | 2        |           | SW-846 7470A | 11/1/21  | 11/2/21 10:27  | DRL     |
| Nickel    | 190     | 5.0     | 0.52    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Potassium | 9.9     | 2.0     | 0.40    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Selenium  | 18      | 5.0     | 0.78    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Silver    | 0.043   | 0.20    | 0.026   | μg/L      | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Sodium    | 27      | 2.0     | 0.56    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:27 | QNW     |
| Thallium  | 0.097   | 0.20    | 0.067   | μg/L      | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |
| Zinc      | 380     | 10      | 3.4     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:15 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW214-211026** Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

|           |         |         |         |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|---------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL      | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 2.0     | 0.050   | 0.049   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Antimony  | ND      | 1.0     | 0.20    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Arsenic   | 5.4     | 0.80    | 0.46    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:34  | QNW     |
| Barium    | 40      | 10      | 1.2     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Beryllium | 1.7     | 0.40    | 0.066   | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:34  | QNW     |
| Cadmium   | 7.7     | 0.20    | 0.027   | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Calcium   | 52      | 0.50    | 0.11    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Chromium  | ND      | 1.0     | 0.92    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Cobalt    | 830     | 100     | 14      | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 13:48  | QNW     |
| Copper    | 16      | 1.0     | 0.27    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:34  | QNW     |
| Iron      | 0.31    | 0.050   | 0.032   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Lead      | 1.5     | 0.50    | 0.14    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Magnesium | 32      | 0.050   | 0.023   | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Manganese | 26000   | 100     | 24      | $\mu g/L$ | 100      | MS-19     | SW-846 6020B | 10/31/21 | 11/1/21 13:48  | QNW     |
| Mercury   | 0.00011 | 0.00020 | 0.00010 | mg/L      | 2        | DL-03, J  | SW-846 7470A | 11/1/21  | 11/2/21 10:01  | DRL     |
| Nickel    | 190     | 5.0     | 0.52    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Potassium | 10      | 2.0     | 0.40    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Selenium  | 18      | 5.0     | 0.78    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:34  | QNW     |
| Silver    | ND      | 0.20    | 0.026   | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Sodium    | 27      | 2.0     | 0.56    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:15 | QNW     |
| Thallium  | 0.088   | 0.20    | 0.067   | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:34  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |
| Zinc      | 350     | 10      | 3.4     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:40  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW214-211026

Sampled: 10/26/2021 10:10

Sample ID: 21J1856-01
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |    |    |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|----|----|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL | DL | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | 320     | 25 | 15 | mg/L  | 25       |           | ASTM D516-16 | 11/2/21  | 11/2/21 10:59 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

|                                    |         |      | Volatile | Organic Co   | mpounds by G | C/MS      |                 |                     |                       |         |
|------------------------------------|---------|------|----------|--------------|--------------|-----------|-----------------|---------------------|-----------------------|---------|
| Analyte                            | Results | RL   | DL       | Units        | Dilution     | Flag/Qual | Method          | Date<br>Prepared    | Date/Time<br>Analyzed | Analyst |
| Acetone                            | ND      | 50   | 2.4      | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1      | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9      | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3      | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5      | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080    | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8      | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12     | μg/L         | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.12     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.13     | μg/L<br>μg/L | 1            |           | SW-846 8260D    | 11/1/21             | 11/1/21 14:43         | MFF     |
|                                    | ND      | 2.0  | 0.22     | µg/L         | 1            |           | 5 11-0-10 0200D | 11/1/21<br><b>Г</b> | Page 18 (             |         |

Page 18 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

| Volatile Organic | Compounds by GC/MS |
|------------------|--------------------|
|------------------|--------------------|

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | 0.46    | 0.50 | 0.15  | μg/L      | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 14:43         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 106        | 70-130          |           | 11/1/21 14:43 |
| Toluene-d8            | 106        | 70-130          |           | 11/1/21 14:43 |
| 4-Bromofluorobenzene  | 102        | 70-130          |           | 11/1/21 14:43 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

| Semivolatile | Organic | Compounds | by GC/MS |
|--------------|---------|-----------|----------|
|              |         |           |          |

| Analyte                          | Results | RL  | DL   | Units        | Dilution | Flag/Qual  | Method         | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|--------------|----------|------------|----------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 4.8 | 0.32 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Acenaphthylene                   | ND      | 4.8 | 0.31 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Acetophenone                     | ND      | 9.7 | 0.43 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Aniline                          | ND      | 4.8 | 0.79 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Anthracene                       | ND      | 4.8 | 0.38 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzidine                        | ND      | 19  | 9.6  | μg/L         | 1        | V-04       | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzo(a)anthracene               | ND      | 4.8 | 0.37 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzo(a)pyrene                   | ND      | 4.8 | 0.46 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzo(b)fluoranthene             | ND      | 4.8 | 0.40 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 4.8 | 0.62 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzo(k)fluoranthene             | ND      | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Benzoic Acid                     | ND      | 9.7 | 8.9  | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 9.7 | 0.42 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 9.7 | 0.50 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 9.7 | 0.58 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 9.7 | 0.89 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Bromophenylphenylether         | ND      | 9.7 | 0.37 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Butylbenzylphthalate             | ND      | 9.7 | 0.67 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Carbazole                        | ND      | 9.7 | 0.40 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Chloroaniline                  | ND      | 9.7 | 0.42 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 9.7 | 0.52 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Chloronaphthalene              | ND      | 9.7 | 0.26 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Chlorophenol                   | ND      | 9.7 | 0.36 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 9.7 | 0.32 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Chrysene                         | ND      | 4.8 | 0.36 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 4.8 | 0.69 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Dibenzofuran                     | ND      | 4.8 | 0.33 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Di-n-butylphthalate              | ND      | 9.7 | 0.48 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 4.8 | 0.26 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 9.7 | 0.60 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4-Dichlorophenol               | ND      | 9.7 | 0.35 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Diethylphthalate                 | ND      | 9.7 | 0.46 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4-Dimethylphenol               | ND      | 9.7 | 0.93 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Dimethylphthalate                | ND      | 9.7 | 0.39 | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 9.7 | 6.3  | μg/L         | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4-Dinitrophenol                | ND      | 9.7 | 7.7  | μg/L         | 1        | V-04, V-20 | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 9.7 | 0.59 | μg/L<br>μg/L | 1        | V-20       | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 9.7 | 0.48 | μg/L<br>μg/L | 1        | . 20       | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Di-n-octylphthalate              | ND      | 9.7 | 5.4  | μg/L<br>μg/L | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 9.7 | 0.51 | μg/L<br>μg/L | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Fluoranthene                     | ND      | 4.8 | 0.36 | μg/L<br>μg/L | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
| Fluorene                         | ND      | 4.8 | 0.40 | μg/L<br>μg/L | 1        |            | SW-846 8270E   | 11/2/21          | 11/3/21 13:19         | BGL     |
|                                  | MD      | 7.0 | 0.70 | μg/L         | 1        |            | 5 11-040 02/UE | 11/2/21<br>F     | Page 20 (             |         |

Page 20 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW208-211026 Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

p-Terphenyl-d14

| Semivolatile Organic | Compounds by GC/MS |
|----------------------|--------------------|
|----------------------|--------------------|

| Analyte                              | Results | RL     | DL   | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.7    | 0.35 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Hexachlorobutadiene                  | ND      | 9.7    | 0.26 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 9.7    | 4.1  | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Hexachloroethane                     | ND      | 9.7    | 0.30 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.76 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Isophorone                           | ND      | 9.7    | 0.47 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Methylphenol                       | ND      | 9.7    | 0.35 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 3/4-Methylphenol                     | ND      | 9.7    | 0.37 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Naphthalene                          | ND      | 4.8    | 0.29 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Nitroaniline                       | ND      | 9.7    | 0.73 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 3-Nitroaniline                       | ND      | 9.7    | 0.49 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Nitroaniline                       | ND      | 9.7    | 0.47 | $\mu g/L$      | 1        | V-20      | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Nitrobenzene                         | ND      | 9.7    | 0.51 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2-Nitrophenol                        | ND      | 9.7    | 0.46 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 4-Nitrophenol                        | ND      | 9.7    | 2.0  | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| N-Nitrosodimethylamine               | ND      | 9.7    | 0.79 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.7    | 0.38 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 9.7    | 0.51 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Pentachloronitrobenzene              | ND      | 9.7    | 0.62 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Pentachlorophenol                    | ND      | 9.7    | 3.6  | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Phenanthrene                         | ND      | 4.8    | 0.38 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Phenol                               | ND      | 9.7    | 0.24 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Pyrene                               | ND      | 4.8    | 0.46 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Pyridine                             | ND      | 4.8    | 2.5  | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.7    | 0.26 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.24 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 9.7    | 0.45 | μg/L           | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 9.7    | 0.39 | $\mu g/L$      | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:19         | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 62.4   |      | 15-110         |          |           |              |                  | 11/3/21 13:19         |         |
| Phenol-d6                            |         | 44.0   |      | 15-110         |          |           |              |                  | 11/3/21 13:19         |         |
| Nitrobenzene-d5                      |         | 76.3   |      | 30-130         |          |           |              |                  | 11/3/21 13:19         |         |
| 2-Fluorobiphenyl                     |         | 75.8   |      | 30-130         |          |           |              |                  | 11/3/21 13:19         |         |
| 2,4,6-Tribromophenol                 |         | 90.9   |      | 15-110         |          |           |              |                  | 11/3/21 13:19         |         |

110

30-130

11/3/21 13:19



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

# Petroleum Hydrocarbons Analyses

|                               |         |        |        |                |          |           |              | Date     | Date/Time     |         |
|-------------------------------|---------|--------|--------|----------------|----------|-----------|--------------|----------|---------------|---------|
| Analyte                       | Results | RL     | DL     | Units          | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L           | 1        |           | SW-846 8015C | 11/2/21  | 11/3/21 3:48  | KMB     |
| Diesel Range Organics         | 0.17    | 0.19   | 0.081  | mg/L           | 1        | J         | SW-846 8015C | 11/2/21  | 11/3/21 13:58 | SFM     |
| Surrogates                    |         | % Reco | very   | Recovery Limit | s        | Flag/Qual |              |          |               |         |
| 1-Chloro-3-fluorobenzene      |         | 105    |        | 70-130         |          |           |              |          | 11/3/21 3:48  |         |
| 2-Fluorobiphenyl              |         | 82.1   |        | 40-140         |          |           |              |          | 11/3/21 13:58 |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

|           |         |         |          |           | • • •    |           |              |                  |                       |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|           |         |         |          |           |          | riag/Quai |              |                  |                       |         |
| Aluminum  | 0.085   | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Arsenic   | 4.9     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Barium    | 27      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:41         | QNW     |
| Cadmium   | 1.6     | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Calcium   | 100     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Chromium  | 0.96    | 1.0     | 0.92     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21         | 11/1/21 11:41         | QNW     |
| Cobalt    | 210     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Copper    | 6.7     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Iron      | 51      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Magnesium | 69      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Manganese | 16000   | 100     | 24       | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21         | 11/1/21 13:16         | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21          | 11/2/21 9:16          | DRL     |
| Nickel    | 110     | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Potassium | 4.4     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Selenium  | 5.0     | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Silver    | 0.027   | 0.20    | 0.026    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Sodium    | 320     | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:35        | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
| Zinc      | 41      | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:18        | QNW     |
|           |         |         |          |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW208-211026** Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Arsenic   | 3.6     | 0.80    | 0.46     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Barium    | 23      | 10      | 1.2      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Beryllium | 0.067   | 0.40    | 0.066    | μg/L      | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:37  | QNW     |
| Cadmium   | 1.6     | 0.20    | 0.027    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Calcium   | 97      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Cobalt    | 200     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Copper    | 8.0     | 1.0     | 0.27     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:37  | QNW     |
| Iron      | 49      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Magnesium | 69      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Manganese | 16000   | 100     | 24       | μg/L      | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 14:08  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:42   | DRL     |
| Nickel    | 100     | 5.0     | 0.52     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Potassium | 4.4     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Selenium  | 6.0     | 5.0     | 0.78     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:37  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Sodium    | 320     | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:22 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |
| Zinc      | 37      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:42  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW208-211026

Sampled: 10/26/2021 13:10

Sample ID: 21J1856-02
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |     |    |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|-----|----|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL  | DL | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | 1200    | 100 | 60 | mg/L  | 100      |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:52 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

| Volatile Organic Compounds by GC/MS |          |      |       |              |          |           |                              |                     |                            |         |  |
|-------------------------------------|----------|------|-------|--------------|----------|-----------|------------------------------|---------------------|----------------------------|---------|--|
| Analyte                             | Results  | RL   | DL    | Units        | Dilution | Flag/Qual | Method                       | Date<br>Prepared    | Date/Time<br>Analyzed      | Analyst |  |
| Acetone                             | ND       | 50   | 2.4   | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Acrylonitrile                       | ND       | 5.0  | 0.69  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| tert-Amyl Methyl Ether (TAME)       | ND       | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Benzene                             | ND       | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Bromobenzene                        | ND       | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Bromochloromethane                  | ND       | 1.0  | 0.36  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Bromodichloromethane                | ND       | 0.50 | 0.14  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Bromoform                           | ND       | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Bromomethane                        | ND       | 2.0  | 1.1   | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 2-Butanone (MEK)                    | ND       | 20   | 1.9   | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| tert-Butyl Alcohol (TBA)            | ND       | 20   | 5.3   | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| n-Butylbenzene                      | ND       | 1.0  | 0.14  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| sec-Butylbenzene                    | ND       | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| tert-Butylbenzene                   | ND       | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| tert-Butyl Ethyl Ether (TBEE)       | ND       | 0.50 | 0.11  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Carbon Disulfide                    | ND       | 5.0  | 1.5   | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Carbon Tetrachloride                | ND       | 5.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Chlorobenzene                       | ND       | 1.0  | 0.080 | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Chlorodibromomethane                | ND       | 0.50 | 0.16  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Chloroethane                        | ND       | 2.0  | 0.37  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Chloroform                          | ND       | 2.0  | 0.19  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Chloromethane                       | ND       | 2.0  | 0.38  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 2-Chlorotoluene                     | ND       | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 4-Chlorotoluene                     | ND       | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,2-Dibromo-3-chloropropane (DBCP)  | ND       | 5.0  | 0.72  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,2-Dibromoethane (EDB)             | ND       | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Dibromomethane                      | ND       | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,2-Dichlorobenzene                 | ND       | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,3-Dichlorobenzene                 | ND       | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,4-Dichlorobenzene                 | ND       | 1.0  | 0.11  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| trans-1,4-Dichloro-2-butene         | ND       | 2.0  | 1.8   | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| Dichlorodifluoromethane (Freon 12)  | ND       | 2.0  | 0.20  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,1-Dichloroethane                  | ND       | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,2-Dichloroethane                  | ND       | 1.0  | 0.32  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,1-Dichloroethylene                | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| cis-1,2-Dichloroethylene            | ND       | 1.0  | 0.15  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| trans-1,2-Dichloroethylene          | ND       | 1.0  | 0.17  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,2-Dichloropropane                 | ND       | 1.0  | 0.18  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,3-Dichloropropane                 | ND       | 0.50 | 0.13  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 2,2-Dichloropropane                 | ND       | 1.0  | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| 1,1-Dichloropropene                 | ND       | 2.0  | 0.26  | μg/L<br>μg/L | 1        |           | SW-846 8260D                 | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| cis-1,3-Dichloropropene             | ND<br>ND | 0.50 | 0.20  | μg/L<br>μg/L | 1        |           | SW-846 8260D<br>SW-846 8260D | 11/1/21             | 11/1/21 15:07              | MFF     |  |
| trans-1,3-Dichloropropene           | ND<br>ND | 0.50 |       |              | 1        |           |                              | 11/1/21             |                            | MFF     |  |
| Diethyl Ether                       |          |      | 0.15  | μg/L<br>uα/I |          |           | SW-846 8260D                 |                     | 11/1/21 15:07              |         |  |
| Diethyl Ether                       | ND       | 2.0  | 0.22  | μg/L         | 1        |           | SW-846 8260D                 | 11/1/21<br><b>Г</b> | 11/1/21 15:07<br>Page 26 ( | MFF     |  |

Page 26 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50   | 0.15  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,4-Dioxane                                       | ND      | 50     | 22    | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Ethylbenzene                                      | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60   | 0.41  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10     | 1.4   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0    | 0.10  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Methyl Acetate                                    | ND      | 1.0    | 0.39  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0    | 0.17  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0    | 0.33  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Methylene Chloride                                | ND      | 5.0    | 0.30  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10     | 1.6   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Naphthalene                                       | ND      | 2.0    | 0.15  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Styrene                                           | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0    | 0.14  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50   | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Tetrachloroethylene                               | 0.25    | 1.0    | 0.20  | μg/L            | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Tetrahydrofuran                                   | ND      | 10     | 0.58  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Toluene                                           | ND      | 1.0    | 0.11  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0    | 0.14  | $\mu g/L$       | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0    | 0.16  | $\mu g/L$       | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0    | 0.17  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0    | 0.15  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Trichloroethylene                                 | ND      | 1.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0    | 0.19  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0    | 0.31  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0    | 0.24  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0    | 0.10  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0    | 0.20  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| m+p Xylene                                        | ND      | 2.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| o-Xylene                                          | ND      | 1.0    | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:07         | MFF     |
| Surrogates                                        |         | % Reco | very  | Recovery Limits | 3        | Flag/Qual |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

| Semivolatile | Organic | Compounds | by GC/MS |
|--------------|---------|-----------|----------|
|              |         |           |          |

| Analyte                          | Results | RL  | DL   | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 4.8 | 0.32 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Acenaphthylene                   | ND      | 4.8 | 0.31 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Acetophenone                     | ND      | 9.6 | 0.43 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Aniline                          | ND      | 4.8 | 0.79 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Anthracene                       | ND      | 4.8 | 0.38 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzidine                        | ND      | 19  | 9.6  | μg/L      | 1        | V-04       | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzo(a)anthracene               | ND      | 4.8 | 0.36 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzo(a)pyrene                   | ND      | 4.8 | 0.46 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzo(b)fluoranthene             | ND      | 4.8 | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 4.8 | 0.62 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzo(k)fluoranthene             | ND      | 4.8 | 0.35 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Benzoic Acid                     | ND      | 9.6 | 8.9  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 9.6 | 0.42 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 9.6 | 0.50 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 9.6 | 0.57 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 9.6 | 0.89 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Bromophenylphenylether         | ND      | 9.6 | 0.37 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Butylbenzylphthalate             | ND      | 9.6 | 0.67 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Carbazole                        | ND      | 9.6 | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Chloroaniline                  | ND      | 9.6 | 0.42 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 9.6 | 0.52 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Chloronaphthalene              | ND      | 9.6 | 0.25 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Chlorophenol                   | ND      | 9.6 | 0.36 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 9.6 | 0.32 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Chrysene                         | ND      | 4.8 | 0.36 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 4.8 | 0.68 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Dibenzofuran                     | ND      | 4.8 | 0.33 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Di-n-butylphthalate              | ND      | 9.6 | 0.48 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 4.8 | 0.22 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 4.8 | 0.25 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 9.6 | 0.60 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4-Dichlorophenol               | ND      | 9.6 | 0.35 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Diethylphthalate                 | ND      | 9.6 | 0.46 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4-Dimethylphenol               | ND      | 9.6 | 0.93 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Dimethylphthalate                | ND      | 9.6 | 0.39 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 9.6 | 6.3  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4-Dinitrophenol                | ND      | 9.6 | 7.7  | μg/L      | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 9.6 | 0.59 | $\mu g/L$ | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 9.6 | 0.48 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Di-n-octylphthalate              | ND      | 9.6 | 5.4  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 9.6 | 0.51 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Fluoranthene                     | ND      | 4.8 | 0.36 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Fluorene                         | ND      | 4.8 | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |

Page 28 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

2,4,6-Tribromophenol

p-Terphenyl-d14

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.6    | 0.35  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Hexachlorobutadiene                  | ND      | 9.6    | 0.26  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 9.6    | 4.1   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Hexachloroethane                     | ND      | 9.6    | 0.30  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.76  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Isophorone                           | ND      | 9.6    | 0.47  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Methylphenol                       | ND      | 9.6    | 0.35  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 3/4-Methylphenol                     | ND      | 9.6    | 0.37  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Naphthalene                          | ND      | 4.8    | 0.28  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Nitroaniline                       | ND      | 9.6    | 0.72  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 3-Nitroaniline                       | ND      | 9.6    | 0.49  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Nitroaniline                       | ND      | 9.6    | 0.47  | $\mu g/L$       | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Nitrobenzene                         | ND      | 9.6    | 0.51  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2-Nitrophenol                        | ND      | 9.6    | 0.45  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 4-Nitrophenol                        | ND      | 9.6    | 2.0   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| N-Nitrosodimethylamine               | ND      | 9.6    | 0.79  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.6    | 0.38  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 9.6    | 0.51  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Pentachloronitrobenzene              | ND      | 9.6    | 0.61  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Pentachlorophenol                    | ND      | 9.6    | 3.6   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Phenanthrene                         | ND      | 4.8    | 0.38  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Phenol                               | ND      | 9.6    | 0.24  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Pyrene                               | ND      | 4.8    | 0.45  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Pyridine                             | ND      | 4.8    | 2.5   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.6    | 0.26  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.24  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 9.6    | 0.45  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 9.6    | 0.39  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/3/21 17:59         | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limits |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 44.3   |       | 15-110          |          |           |              |                  | 11/3/21 17:59         |         |
| Phenol-d6                            |         | 33.3   |       | 15-110          |          |           |              |                  | 11/3/21 17:59         |         |
| Nitrobenzene-d5                      |         | 57.8   |       | 30-130          |          |           |              |                  | 11/3/21 17:59         |         |
| 2-Fluorobiphenyl                     |         | 58.0   |       | 30-130          |          |           |              |                  | 11/3/21 17:59         |         |

77.2

89.5

15-110

30-130

11/3/21 17:59

11/3/21 17:59



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L           | 1        |           | SW-846 8015C | 11/2/21          | 11/3/21 4:25          | KMB     |
| Diesel Range Organics         | 0.11    | 0.20   | 0.082  | mg/L           | 1        | J         | SW-846 8015C | 11/2/21          | 11/4/21 8:30          | SFM     |
| Surrogates                    |         | % Reco | overy  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 106    |        | 70-130         |          |           |              |                  | 11/3/21 4:25          |         |
| 2-Fluorobiphenyl              |         | 92.3   |        | 40-140         |          |           |              |                  | 11/4/21 8:30          |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Metals Analyses (Total)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.48    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:42 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Arsenic   | 8.0     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Barium    | 28      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:43  | QNW     |
| Cadmium   | 0.44    | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Calcium   | 120     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:42 | QNW     |
| Chromium  | 2.1     | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:43  | QNW     |
| Cobalt    | 25      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Copper    | 31      | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Iron      | 1.7     | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:42 | QNW     |
| Lead      | 0.35    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Magnesium | 84      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:42 | QNW     |
| Manganese | 16000   | 100     | 24       | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 13:19  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 9:18   | DRL     |
| Nickel    | 62      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Potassium | 10      | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:42 | QNW     |
| Selenium  | 10      | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Silver    | 0.033   | 0.20    | 0.026    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Sodium    | 1600    | 20      | 5.6      | mg/L      | 10       |           | SW-846 6010D | 10/31/21 | 11/1/21 13:56  | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |
| Zinc      | 13      | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:21 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:30 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Arsenic   | 5.2     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Barium    | 23      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:40  | QNW     |
| Cadmium   | 0.56    | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Calcium   | 120     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:30 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Cobalt    | 23      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Copper    | 39      | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:40  | QNW     |
| Iron      | 1.1     | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:30 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Magnesium | 85      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:30 | QNW     |
| Manganese | 16000   | 100     | 24       | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 13:53  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:44   | DRL     |
| Nickel    | 54      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Potassium | 10      | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:30 | QNW     |
| Selenium  | 9.7     | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:40  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Sodium    | 1600    | 20      | 5.6      | mg/L      | 10       |           | SW-846 6010D | 10/31/21 | 11/1/21 13:44  | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |
| Zinc      | 11      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:45  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW207-211026

Sampled: 10/26/2021 16:55

Sample ID: 21J1856-03
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |     |     |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|-----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL  | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | 2500    | 500 | 300 | mg/L  | 500      |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:58 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-TB11-211026** Sampled: 10/26/2021 16:55

Sample ID: 21J1856-04
Sample Matrix: Ground Water

| Volatile Organic Compounds by G | C/MS |
|---------------------------------|------|
|---------------------------------|------|

|                                    |          |      | Volatile | Organic Co    | mpounds by G | C/MS      |                              |          |                            |         |
|------------------------------------|----------|------|----------|---------------|--------------|-----------|------------------------------|----------|----------------------------|---------|
|                                    | D 1/     | DI   | DI       | <b>T</b> T ** | D3. 4        | FI /O I   | M.d. I                       | Date     | Date/Time                  |         |
| Analyte                            | Results  | RL   | DL       | Units         | Dilution     | Flag/Qual | Method                       | Prepared | Analyzed                   | Analyst |
| Acetone                            | ND       | 50   | 2.4      | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Acrylonitrile                      | ND       | 5.0  | 0.69     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Benzene                            | ND       | 1.0  | 0.13     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Bromobenzene                       | ND       | 1.0  | 0.13     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Bromochloromethane                 | ND       | 1.0  | 0.36     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Bromodichloromethane               | ND       | 0.50 | 0.14     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Bromoform                          | ND       | 1.0  | 0.29     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Bromomethane                       | ND       | 2.0  | 1.1      | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9      | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3      | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| n-Butylbenzene                     | ND       | 1.0  | 0.14     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090    | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11     | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Carbon Disulfide                   | ND       | 5.0  | 1.5      | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17     | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Chlorobenzene                      | ND       | 1.0  | 0.080    | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Chlorodibromomethane               | ND       | 0.50 | 0.16     | $\mu g/L$     | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Chloroethane                       | ND       | 2.0  | 0.37     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Chloroform                         | ND       | 2.0  | 0.19     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Chloromethane                      | ND       | 2.0  | 0.38     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090    | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Dibromomethane                     | ND       | 1.0  | 0.29     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090    | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8      | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.17     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.18     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,3-Dichloropropane                | ND       | 0.50 | 0.12     | μg/L<br>μg/L  | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 2,2-Dichloropropane                | ND       | 1.0  | 0.31     | μg/L<br>μg/L  | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| 1,1-Dichloropropene                | ND       | 2.0  | 0.26     | μg/L<br>μg/L  | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| cis-1,3-Dichloropropene            | ND<br>ND | 0.50 | 0.20     |               | 1            |           | SW-846 8260D<br>SW-846 8260D | 11/1/21  | 11/1/21 12:19              | MFF     |
| trans-1,3-Dichloropropene          |          |      |          | μg/L          |              |           |                              |          |                            |         |
| Diethyl Ether                      | ND<br>ND | 0.50 | 0.15     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19              | MFF     |
| Diemyi Eulei                       | ND       | 2.0  | 0.22     | μg/L          | 1            |           | SW-846 8260D                 | 11/1/21  | 11/1/21 12:19<br>Page 34 ( | MFF     |

Page 34 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-TB11-211026** Sampled: 10/26/2021 16:55

Sample ID: 21J1856-04
Sample Matrix: Ground Water

| Volatile Organic Compounds by GC/MS |  |
|-------------------------------------|--|
|-------------------------------------|--|

| Analyte                                           | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50   | 0.15  | μg/L            | 1        | 0 -       | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,4-Dioxane                                       | ND      | 50     | 22    | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Ethylbenzene                                      | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60   | 0.41  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10     | 1.4   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0    | 0.10  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Methyl Acetate                                    | ND      | 1.0    | 0.39  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0    | 0.17  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0    | 0.33  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Methylene Chloride                                | ND      | 5.0    | 0.30  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10     | 1.6   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Naphthalene                                       | ND      | 2.0    | 0.15  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Styrene                                           | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0    | 0.14  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50   | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0    | 0.20  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Tetrahydrofuran                                   | ND      | 10     | 0.58  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Toluene                                           | ND      | 1.0    | 0.11  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0    | 0.14  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0    | 0.16  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0    | 0.18  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0    | 0.17  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0    | 0.15  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Trichloroethylene                                 | ND      | 1.0    | 0.18  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0    | 0.19  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0    | 0.31  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0    | 0.24  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0    | 0.20  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| m+p Xylene                                        | ND      | 2.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| o-Xylene                                          | ND      | 1.0    | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:19         | MFF     |
| Surrogates                                        |         | % Reco | very  | Recovery Limits | 5        | Flag/Qual |              |                  |                       |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 103        | 70-130          |           | 11/1/21 12:19 |
| Toluene-d8            | 105        | 70-130          |           | 11/1/21 12:19 |
| 4-Bromofluorobenzene  | 104        | 70-130          |           | 11/1/21 12:19 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW221-211027 Sampled: 10/27/2021 10:10

Sample ID: 21J1856-05
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

|                                    |          |      | voiatile | Organic Co   | mpounds by G | C/MS      |                              |                    |                            |         |
|------------------------------------|----------|------|----------|--------------|--------------|-----------|------------------------------|--------------------|----------------------------|---------|
| Analyte                            | Results  | RL   | DL       | Units        | Dilution     | Flag/Qual | Method                       | Date<br>Prepared   | Date/Time<br>Analyzed      | Analyst |
| Acetone                            | ND       | 50   | 2.4      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Acrylonitrile                      | ND       | 5.0  | 0.69     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Benzene                            | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Bromobenzene                       | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Bromochloromethane                 | ND       | 1.0  | 0.36     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Bromodichloromethane               | ND       | 0.50 | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Bromoform                          | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Bromomethane                       | ND       | 2.0  | 1.1      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| n-Butylbenzene                     | ND       | 1.0  | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Carbon Disulfide                   | ND       | 5.0  | 1.5      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Chlorobenzene                      | ND       | 1.0  | 0.080    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Chlorodibromomethane               | ND       | 0.50 | 0.16     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Chloroethane                       | ND       | 2.0  | 0.37     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Chloroform                         | ND       | 2.0  | 0.19     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Chloromethane                      | ND       | 2.0  | 0.38     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090    | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Dibromomethane                     | ND       | 1.0  | 0.29     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090    | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.090    |              | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| trans-1,4-Dichloro-2-butene        | ND<br>ND | 2.0  | 1.8      | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,2-Dichloroethane                 | ND<br>ND | 1.0  | 0.10     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,1-Dichloroethylene               | 0.37     | 1.0  |          | μg/L<br>μg/L | 1            | J         | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.16     |              | 1            | J         | SW-846 8260D                 |                    | 11/1/21 15:31              | MFF     |
| trans-1,2-Dichloroethylene         |          |      | 0.15     | μg/L         |              |           | SW-846 8260D<br>SW-846 8260D | 11/1/21<br>11/1/21 |                            |         |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.17     | μg/L<br>/I   | 1            |           |                              |                    | 11/1/21 15:31              | MFF     |
| 1,3-Dichloropropane                | ND<br>ND | 1.0  | 0.18     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 2,2-Dichloropropane                | ND       | 0.50 | 0.12     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| • •                                | ND       | 1.0  | 0.31     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| 1,1-Dichloropropene                | ND       | 2.0  | 0.26     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| cis-1,3-Dichloropropene            | ND       | 0.50 | 0.12     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| trans-1,3-Dichloropropene          | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31              | MFF     |
| Diethyl Ether                      | ND       | 2.0  | 0.22     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21            | 11/1/21 15:31<br>Page 36 ( | MFF     |

Page 36 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW221-211027 Sampled: 10/27/2021 10:10

Sample ID: 21J1856-05
Sample Matrix: Ground Water

| Volatile O | rganic Co | mpounds I | by G | C/MS |
|------------|-----------|-----------|------|------|
|------------|-----------|-----------|------|------|

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        | -         | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | 2.2     | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:31         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 108        | 70-130          |           | 11/1/21 15:31 |
| Toluene-d8            | 107        | 70-130          |           | 11/1/21 15:31 |
| 4-Bromofluorobenzene  | 104        | 70-130          |           | 11/1/21 15:31 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW221-211027 Sampled: 10/27/2021 10:10

Sample ID: 21J1856-05
Sample Matrix: Ground Water

| Analyte                          | Results | RL  | DL   | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | 0.78    | 5.3 | 0.35 | μg/L      | 1        | J          | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Acenaphthylene                   | ND      | 5.3 | 0.34 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Acetophenone                     | ND      | 11  | 0.48 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Aniline                          | ND      | 5.3 | 0.87 | μg/L      | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Anthracene                       | ND      | 5.3 | 0.42 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzidine                        | ND      | 21  | 11   | μg/L      | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzo(a)anthracene               | ND      | 5.3 | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzo(a)pyrene                   | ND      | 5.3 | 0.51 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzo(b)fluoranthene             | ND      | 5.3 | 0.44 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzo(g,h,i)perylene             | ND      | 5.3 | 0.68 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzo(k)fluoranthene             | ND      | 5.3 | 0.39 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Benzoic Acid                     | ND      | 11  | 9.8  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 11  | 0.46 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 11  | 0.55 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 11  | 0.63 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 11  | 0.98 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Bromophenylphenylether         | ND      | 11  | 0.41 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Butylbenzylphthalate             | ND      | 11  | 0.74 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Carbazole                        | ND      | 11  | 0.43 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Chloroaniline                  | ND      | 11  | 0.46 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 11  | 0.57 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Chloronaphthalene              | ND      | 11  | 0.28 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Chlorophenol                   | ND      | 11  | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Chlorophenylphenylether        | ND      | 11  | 0.35 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Chrysene                         | ND      | 5.3 | 0.40 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Dibenz(a,h)anthracene            | ND      | 5.3 | 0.75 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Dibenzofuran                     | ND      | 5.3 | 0.36 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Di-n-butylphthalate              | ND      | 11  | 0.53 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,2-Dichlorobenzene              | ND      | 5.3 | 0.25 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,3-Dichlorobenzene              | ND      | 5.3 | 0.25 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,4-Dichlorobenzene              | ND      | 5.3 | 0.28 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 11  | 0.66 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4-Dichlorophenol               | ND      | 11  | 0.39 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Diethylphthalate                 | ND      | 11  | 0.51 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4-Dimethylphenol               | ND      | 11  | 1.0  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Dimethylphthalate                | ND      | 11  | 0.43 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 11  | 7.0  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4-Dinitrophenol                | ND      | 11  | 8.5  | μg/L      | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4-Dinitrotoluene               | ND      | 11  | 0.64 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,6-Dinitrotoluene               | ND      | 11  | 0.53 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Di-n-octylphthalate              | ND      | 11  | 5.9  | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 11  | 0.56 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Fluoranthene                     | ND      | 5.3 | 0.39 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Fluorene                         | ND      | 5.3 | 0.44 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |

Page 38 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW221-211027 Sampled: 10/27/2021 10:10

Sample ID: 21J1856-05 Sample Matrix: Ground Water

| Semivolatile Organic | Compounds by GC/MS |
|----------------------|--------------------|
|----------------------|--------------------|

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 11     | 0.39 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Hexachlorobutadiene                  | ND      | 11     | 0.29 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Hexachlorocyclopentadiene            | ND      | 11     | 4.5  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Hexachloroethane                     | ND      | 11     | 0.33 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.3    | 0.83 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Isophorone                           | ND      | 11     | 0.52 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1-Methylnaphthalene                  | ND      | 5.3    | 0.31 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Methylnaphthalene                  | ND      | 5.3    | 0.35 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Methylphenol                       | ND      | 11     | 0.39 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 3/4-Methylphenol                     | ND      | 11     | 0.40 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Naphthalene                          | ND      | 5.3    | 0.31 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Nitroaniline                       | ND      | 11     | 0.80 | $\mu g/L$       | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 3-Nitroaniline                       | ND      | 11     | 0.54 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Nitroaniline                       | ND      | 11     | 0.52 | $\mu g/L$       | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Nitrobenzene                         | ND      | 11     | 0.56 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2-Nitrophenol                        | ND      | 11     | 0.50 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 4-Nitrophenol                        | ND      | 11     | 2.2  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| N-Nitrosodimethylamine               | ND      | 11     | 0.87 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 11     | 0.42 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 11     | 0.56 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Pentachloronitrobenzene              | ND      | 11     | 0.67 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Pentachlorophenol                    | ND      | 11     | 4.0  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Phenanthrene                         | ND      | 5.3    | 0.42 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Phenol                               | ND      | 11     | 0.26 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Pyrene                               | ND      | 5.3    | 0.50 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Pyridine                             | ND      | 5.3    | 2.7  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 11     | 0.29 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 5.3    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 11     | 0.49 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 11     | 0.43 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:27         | IMR     |
| Surrogates                           |         | % Reco | very | Recovery Limits |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 52.4   |      | 15-110          |          |           |              |                  | 11/4/21 12:27         |         |
| Phenol-d6                            |         | 38.5   |      | 15-110          |          |           |              |                  | 11/4/21 12:27         |         |
| Nitrobenzene-d5                      |         | 70.7   |      | 30-130          |          |           |              |                  | 11/4/21 12:27         |         |
| 2-Fluorobiphenyl                     |         | 68.0   |      | 30-130          |          |           |              |                  | 11/4/21 12:27         |         |



Analyte

39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Polychlorinated Biphenyls By GC/ECD

Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW221-211027 Sampled: 10/27/2021 10:10

Results

ND

ND

ND

ND

ND

RL

0.23

0.23

0.23

0.23

0.23

Sample ID: 21J1856-05
Sample Matrix: Ground Water

Aroclor-1016 [1]

Aroclor-1221 [1]

Aroclor-1232 [1]

Aroclor-1242 [1]

Aroclor-1248 [1]

| DL   | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| 0.20 | μg/L      | 1        |           | SW-846 8082A | 10/31/21         | 11/2/21 12:03         | TG      |
| 0.19 | $\mu g/L$ | 1        |           | SW-846 8082A | 10/31/21         | 11/2/21 12:03         | TG      |
| 0.19 | $\mu g/L$ | 1        |           | SW-846 8082A | 10/31/21         | 11/2/21 12:03         | TG      |
| 0.20 | $\mu g/L$ | 1        |           | SW-846 8082A | 10/31/21         | 11/2/21 12:03         | TG      |
| 0.19 | $\mu g/L$ | 1        |           | SW-846 8082A | 10/31/21         | 11/2/21 12:03         | TG      |

| Surrogates       |    | % Reco | very | Recovery Limits | Flag/Qua | ıl           |          |               |    |
|------------------|----|--------|------|-----------------|----------|--------------|----------|---------------|----|
| Aroclor-1268 [1] | ND | 0.23   | 0.21 | μg/L            | 1        | SW-846 8082A | 10/31/21 | 11/2/21 12:03 | TG |
| Aroclor-1262 [1] | ND | 0.23   | 0.20 | $\mu g/L$       | 1        | SW-846 8082A | 10/31/21 | 11/2/21 12:03 | TG |
| Aroclor-1260 [1] | ND | 0.23   | 0.19 | $\mu g/L$       | 1        | SW-846 8082A | 10/31/21 | 11/2/21 12:03 | TG |
| Aroclor-1254 [1] | ND | 0.23   | 0.21 | $\mu g/L$       | 1        | SW-846 8082A | 10/31/21 | 11/2/21 12:03 | TG |
|                  |    |        |      |                 |          |              |          |               |    |

| Surrogates               | % Recovery | Recovery Limits | Flag/Qual |               |
|--------------------------|------------|-----------------|-----------|---------------|
| Decachlorobiphenyl [1]   | 104        | 30-150          |           | 11/2/21 12:03 |
| Decachlorobiphenyl [2]   | 111        | 30-150          |           | 11/2/21 12:03 |
| Tetrachloro-m-xylene [1] | 85.6       | 30-150          |           | 11/2/21 12:03 |
| Tetrachloro-m-xylene [2] | 81.7       | 30-150          |           | 11/2/21 12:03 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

|                                    |          |      | Volatile | Organic Co   | mpounds by G | C/MS      |                              |                  |                       |         |
|------------------------------------|----------|------|----------|--------------|--------------|-----------|------------------------------|------------------|-----------------------|---------|
| Analyte                            | Results  | RL   | DL       | Units        | Dilution     | Flag/Qual | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Acetone                            | ND       | 50   | 2.4      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Acrylonitrile                      | ND       | 5.0  | 0.69     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Benzene                            | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Bromobenzene                       | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Bromochloromethane                 | ND       | 1.0  | 0.36     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Bromodichloromethane               | ND       | 0.50 | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Bromoform                          | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Bromomethane                       | ND       | 2.0  | 1.1      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| n-Butylbenzene                     | ND       | 1.0  | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Carbon Disulfide                   | ND       | 5.0  | 1.5      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Chlorobenzene                      | ND       | 1.0  | 0.080    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Chlorodibromomethane               | ND       | 0.50 | 0.16     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Chloroethane                       | ND       | 2.0  | 0.37     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Chloroform                         | ND       | 2.0  | 0.19     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Chloromethane                      | ND       | 2.0  | 0.38     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Dibromomethane                     | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8      | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.17     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.18     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,3-Dichloropropane                | ND       | 0.50 | 0.13     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 2,2-Dichloropropane                | ND       | 1.0  | 0.12     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1-Dichloropropene                | ND       | 2.0  | 0.26     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| cis-1,3-Dichloropropene            | ND<br>ND | 0.50 | 0.20     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| trans-1,3-Dichloropropene          | ND<br>ND | 0.50 | 0.12     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21          | 11/1/21 15:56         | MFF     |
| Diethyl Ether                      | ND<br>ND | 2.0  | 0.13     |              | 1            |           | SW-846 8260D<br>SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Diemyt Eulet                       | ND       | ∠.0  | 0.22     | μg/L         | 1            |           | 3 W-040 0700D                | 11/1/21          | Page /11              |         |

Page 41 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

| Volatile | Organic | Compounds | by | GC/MS |
|----------|---------|-----------|----|-------|
|          |         |           |    |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        | -         | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Tetrachloroethylene                               | 0.88    | 1.0  | 0.20  | $\mu g/L$ | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Toluene                                           | 0.85    | 1.0  | 0.11  | $\mu g/L$ | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 15:56         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 108        | 70-130          |           | 11/1/21 15:56 |
| Toluene-d8            | 107        | 70-130          |           | 11/1/21 15:56 |
| 4-Bromofluorobenzene  | 102        | 70-130          |           | 11/1/21 15:56 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10               |         |     | Semivolat | ile Organic ( | Compounds by | GC/MS      |                |                  |                       |         |
|----------------------------------|---------|-----|-----------|---------------|--------------|------------|----------------|------------------|-----------------------|---------|
| Analyte                          | Results | RL  | DL        | Units         | Dilution     | Flag/Qual  | Method         | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Acenaphthene                     | ND      | 5.1 | 0.34      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Acenaphthylene                   | ND      | 5.1 | 0.33      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Acetophenone                     | ND      | 10  | 0.46      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Aniline                          | ND      | 5.1 | 0.84      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Anthracene                       | ND      | 5.1 | 0.41      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzidine                        | ND      | 21  | 10        | μg/L          | 1            | V-04       | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzo(a)anthracene               | ND      | 5.1 | 0.39      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzo(a)pyrene                   | ND      | 5.1 | 0.49      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzo(b)fluoranthene             | ND      | 5.1 | 0.43      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzo(g,h,i)perylene             | ND      | 5.1 | 0.66      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzo(k)fluoranthene             | ND      | 5.1 | 0.38      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Benzoic Acid                     | ND      | 10  | 9.5       | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 10  | 0.44      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 10  | 0.53      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 10  | 0.61      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 10  | 0.95      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Bromophenylphenylether         | ND      | 10  | 0.39      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Butylbenzylphthalate             | ND      | 10  | 0.71      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Carbazole                        | ND      | 10  | 0.42      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Chloroaniline                  | ND      | 10  | 0.45      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 10  | 0.55      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Chloronaphthalene              | ND      | 10  | 0.27      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Chlorophenol                   | ND      | 10  | 0.38      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Chlorophenylphenylether        | ND      | 10  | 0.34      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Chrysene                         | ND      | 5.1 | 0.38      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Dibenz(a,h)anthracene            | ND      | 5.1 | 0.73      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Dibenzofuran                     | ND      | 5.1 | 0.35      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Di-n-butylphthalate              | ND      | 10  | 0.51      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,2-Dichlorobenzene              | ND      | 5.1 | 0.24      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,3-Dichlorobenzene              | ND      | 5.1 | 0.25      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,4-Dichlorobenzene              | ND      | 5.1 | 0.27      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 10  | 0.64      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4-Dichlorophenol               | ND      | 10  | 0.37      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Diethylphthalate                 | ND      | 10  | 0.49      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4-Dimethylphenol               | ND      | 10  | 0.99      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Dimethylphthalate                | ND      | 10  | 0.41      | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 10  | 6.7       | μg/L          | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4-Dinitrophenol                | ND      | 10  | 8.2       | μg/L          | 1            | V-04, V-20 | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4-Dinitrotoluene               | ND      | 10  | 0.62      | μg/L<br>μg/L  | 1            | , . = .    | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,6-Dinitrotoluene               | ND      | 10  | 0.51      | μg/L<br>μg/L  | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Di-n-octylphthalate              | ND      | 10  | 5.7       | μg/L<br>μg/L  | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 10  | 0.54      | μg/L<br>μg/L  | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Fluoranthene                     | ND      | 5.1 | 0.38      | μg/L<br>μg/L  | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
| Fluorene                         | ND      | 5.1 | 0.43      | μg/L<br>μg/L  | 1            |            | SW-846 8270E   | 11/3/21          | 11/5/21 9:16          | IMR     |
|                                  | ND      | J.1 | 5.73      | μg/ L         | 1            |            | 5 11-040 02/0E | 11/3/21          | Page 43 (             |         |

Page 43 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

| Sample Matrix: Ground Water Sample Flags: H-10 |         |        | Semive   | olatile Organic Co | mpounds by | GC/MS     |              |                  |                       |         |
|------------------------------------------------|---------|--------|----------|--------------------|------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                                        | Results | RL     | DL       | Units              | Dilution   | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                              | ND      | 10     | 0.37     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Hexachlorobutadiene                            | ND      | 10     | 0.28     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Hexachlorocyclopentadiene                      | ND      | 10     | 4.3      | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Hexachloroethane                               | ND      | 10     | 0.32     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Indeno(1,2,3-cd)pyrene                         | ND      | 5.1    | 0.81     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Isophorone                                     | ND      | 10     | 0.50     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1-Methylnaphthalene                            | ND      | 5.1    | 0.30     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Methylnaphthalene                            | ND      | 5.1    | 0.34     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Methylphenol                                 | ND      | 10     | 0.37     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 3/4-Methylphenol                               | ND      | 10     | 0.39     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Naphthalene                                    | ND      | 5.1    | 0.30     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Nitroaniline                                 | ND      | 10     | 0.77     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 3-Nitroaniline                                 | ND      | 10     | 0.52     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Nitroaniline                                 | ND      | 10     | 0.50     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Nitrobenzene                                   | ND      | 10     | 0.54     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2-Nitrophenol                                  | ND      | 10     | 0.49     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 4-Nitrophenol                                  | ND      | 10     | 2.1      | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| N-Nitrosodimethylamine                         | ND      | 10     | 0.84     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine           | ND      | 10     | 0.41     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| N-Nitrosodi-n-propylamine                      | ND      | 10     | 0.54     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Pentachloronitrobenzene                        | ND      | 10     | 0.65     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Pentachlorophenol                              | ND      | 10     | 3.8      | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Phenanthrene                                   | ND      | 5.1    | 0.41     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Phenol                                         | ND      | 10     | 0.25     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Pyrene                                         | ND      | 5.1    | 0.49     | μg/L               | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Pyridine                                       | ND      | 5.1    | 2.7      | μg/L<br>μg/L       | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,2,4,5-Tetrachlorobenzene                     | ND      | 10     | 0.28     | μg/L<br>μg/L       | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 1,2,4-Trichlorobenzene                         | ND      | 5.1    | 0.25     | μg/L<br>μg/L       | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4,5-Trichlorophenol                          | ND      | 10     | 0.23     | μg/L<br>μg/L       | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| 2,4,6-Trichlorophenol                          | ND      | 10     | 0.42     | μg/L<br>μg/L       | 1          |           | SW-846 8270E | 11/3/21          | 11/5/21 9:16          | IMR     |
| Surrogates                                     | ND      | % Reco |          | Recovery Limits    |            | Flag/Qual | 3W-040 0270E | 11/3/21          | 11/3/21 9.10          | IIVIK   |
| 2-Fluorophenol                                 |         | 37.0   | , , cı y | 15-110             | •          | rag/Quai  |              |                  | 11/5/21 9:16          |         |
| Phenol-d6                                      |         | 25.9   |          | 15-110             |            |           |              |                  | 11/5/21 9:16          |         |
| Nitrobenzene-d5                                |         | 62.5   |          | 30-130             |            |           |              |                  | 11/5/21 9:16          |         |
| 2-Fluorobiphenyl                               |         | 67.2   |          | 30-130             |            |           |              |                  | 11/5/21 9:16          |         |
| 2,4,6-Tribromophenol                           |         | 83.1   |          | 15-110             |            |           |              |                  | 11/5/21 9:16          |         |
| p-Terphenyl-d14                                |         | 97.8   |          | 30-130             |            |           |              |                  | 11/5/21 9:16          |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 4:41 | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 4:41 | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 4:41 | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 4:41 | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 4:41 | SFM     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW201-211025 Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

# Metals Analyses (Total)

| Analyte   | Resul | s RL    | DL       | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------|-------|---------|----------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Aluminum  | 0.24  | 0.050   | 0.049    | mg/L      | 1        | riag/Quai | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Antimony  | ND    | 1.0     | 0.20     | Č         | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 22:48        | QNW     |
| •         |       |         |          | μg/L      | -        |           |              |                  |                       |         |
| Arsenic   | 0.65  | 0.80    | 0.46     | μg/L      | 1        | J         | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Barium    | 25    | 10      | 1.2      | μg/L      | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Beryllium | 0.091 | 0.40    | 0.066    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21         | 11/1/21 11:44         | QNW     |
| Cadmium   | 0.20  | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Calcium   | 46    | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Chromium  | ND    | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:44         | QNW     |
| Cobalt    | 7.7   | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Copper    | 1.2   | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Iron      | 0.16  | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Lead      | 0.16  | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Magnesium | 15    | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Manganese | 330   | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Mercury   | ND    | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21          | 11/2/21 9:20          | DRL     |
| Nickel    | 6.2   | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Potassium | 5.5   | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Selenium  | 5.7   | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Silver    | ND    | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Sodium    | 15    | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 22:48        | QNW     |
| Thallium  | ND    | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Vanadium  | ND    | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |
| Zinc      | 8.6   | 10      | 3.4      | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21         | 10/31/21 20:31        | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW201-211025** Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.11    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Arsenic   | 0.77    | 0.80    | 0.46     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Barium    | 23      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Beryllium | 0.11    | 0.40    | 0.066    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:44  | QNW     |
| Cadmium   | 0.22    | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Calcium   | 41      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Cobalt    | 7.2     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Copper    | 1.7     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:44  | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Magnesium | 13      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Manganese | 340     | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:50   | DRL     |
| Nickel    | 5.5     | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Potassium | 4.9     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Selenium  | 6.1     | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:44  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Sodium    | 14      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 20:49 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |
| Zinc      | 7.9     | 10      | 3.4      | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 11:48  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW201-211025** Sampled: 10/25/2021 15:45

Sample ID: 21J1856-06
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
|              | Analyte | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N |         | 0.36    | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 14:36 | MMH     |
| Sulfate      |         | 150     | 10   | 6.0   | mg/L  | 10       |           | ASTM D516-16 | 11/5/21  | 11/5/21 9:59  | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026 Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

|                                    |          |      | Volatile | Organic Co   | mpounds by G | C/MS      |                              |                     |                                |            |
|------------------------------------|----------|------|----------|--------------|--------------|-----------|------------------------------|---------------------|--------------------------------|------------|
| Analyte                            | Results  | RL   | DL       | Units        | Dilution     | Flag/Qual | Method                       | Date<br>Prepared    | Date/Time<br>Analyzed          | Analyst    |
| Acetone                            | ND       | 50   | 2.4      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Acrylonitrile                      | ND       | 5.0  | 0.69     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Benzene                            | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Bromobenzene                       | ND       | 1.0  | 0.13     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Bromochloromethane                 | ND       | 1.0  | 0.36     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Bromodichloromethane               | ND       | 0.50 | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Bromoform                          | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Bromomethane                       | ND       | 2.0  | 1.1      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| n-Butylbenzene                     | ND       | 1.0  | 0.14     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Carbon Disulfide                   | ND       | 5.0  | 1.5      | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Chlorobenzene                      | ND       | 1.0  | 0.080    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Chlorodibromomethane               | ND       | 0.50 | 0.16     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Chloroethane                       | ND       | 2.0  | 0.37     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Chloroform                         | ND       | 2.0  | 0.19     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Chloromethane                      | ND       | 2.0  | 0.38     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090    | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Dibromomethane                     | ND       | 1.0  | 0.29     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090    | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8      | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.13     |              | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| 1,2-Dichloropropane                | ND<br>ND | 1.0  | 0.17     | μg/L<br>μg/L | 1            |           | SW-846 8260D                 | 11/1/21             |                                |            |
| 1,3-Dichloropropane                | ND<br>ND | 0.50 | 0.18     | μg/L<br>μg/L | 1            |           | SW-846 8260D<br>SW-846 8260D | 11/1/21             | 11/1/21 16:20<br>11/1/21 16:20 | MFF<br>MFF |
| 2,2-Dichloropropane                | ND<br>ND | 1.0  |          |              | 1            |           | SW-846 8260D<br>SW-846 8260D |                     |                                |            |
| 1,1-Dichloropropene                |          |      | 0.31     | μg/L<br>uα/I |              |           |                              | 11/1/21             | 11/1/21 16:20                  | MFF        |
| cis-1,3-Dichloropropene            | ND<br>ND | 2.0  | 0.26     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| trans-1,3-Dichloropropene          | ND<br>ND | 0.50 | 0.12     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Diethyl Ether                      | ND<br>ND | 0.50 | 0.15     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21             | 11/1/21 16:20                  | MFF        |
| Diemyi Euro                        | ND       | 2.0  | 0.22     | μg/L         | 1            |           | SW-846 8260D                 | 11/1/21<br><b>Г</b> | 11/1/21 16:20<br>Page 40       | MFF        |

Page 49 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026 Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# **Volatile Organic Compounds by GC/MS**

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | 5.1     | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | μg/L      | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | μg/L      | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | μg/L      | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:20         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 108        | 70-130          |           | 11/1/21 16:20 |
| Toluene-d8            | 106        | 70-130          |           | 11/1/21 16:20 |
| 4-Bromofluorobenzene  | 103        | 70-130          |           | 11/1/21 16:20 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW202-211026** Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

| Analyte                          | Results  | RL  | DL   | Units        | Compounds by<br>Dilution | Flag/Qual  | Method                       | Date<br>Prepared | Date/Time<br>Analyzed          | Analyst    |
|----------------------------------|----------|-----|------|--------------|--------------------------|------------|------------------------------|------------------|--------------------------------|------------|
| Acenaphthene                     | ND       | 5.3 | 0.36 |              | 1                        | Flag/Qual  | SW-846 8270E                 | 11/1/21          | -                              |            |
| Acenaphthylene                   | ND<br>ND | 5.3 | 0.34 | μg/L         |                          |            | SW-846 8270E<br>SW-846 8270E | 11/1/21          | 11/4/21 12:55<br>11/4/21 12:55 | IMR<br>IMR |
| Acetophenone                     |          |     |      | μg/L         | 1                        |            |                              |                  |                                |            |
| Aniline                          | ND       | 11  | 0.48 | μg/L         | 1                        | W 20       | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
|                                  | ND       | 5.3 | 0.88 | μg/L         | 1                        | V-20       | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Anthracene                       | ND       | 5.3 | 0.42 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzidine                        | ND       | 21  | 11   | μg/L         | 1                        | V-04, V-20 | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzo(a)anthracene               | ND       | 5.3 | 0.41 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzo(a)pyrene                   | ND       | 5.3 | 0.51 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzo(b)fluoranthene             | ND       | 5.3 | 0.45 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzo(g,h,i)perylene             | ND       | 5.3 | 0.68 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzo(k)fluoranthene             | ND       | 5.3 | 0.39 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Benzoic Acid                     | ND       | 11  | 9.9  | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Bis(2-chloroethoxy)methane       | ND       | 11  | 0.46 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Bis(2-chloroethyl)ether          | ND       | 11  | 0.56 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Bis(2-chloroisopropyl)ether      | ND       | 11  | 0.64 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Bis(2-Ethylhexyl)phthalate       | ND       | 11  | 0.99 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 4-Bromophenylphenylether         | ND       | 11  | 0.41 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Butylbenzylphthalate             | ND       | 11  | 0.74 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Carbazole                        | ND       | 11  | 0.44 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 4-Chloroaniline                  | ND       | 11  | 0.47 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 4-Chloro-3-methylphenol          | ND       | 11  | 0.58 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2-Chloronaphthalene              | ND       | 11  | 0.28 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2-Chlorophenol                   | ND       | 11  | 0.40 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 4-Chlorophenylphenylether        | ND       | 11  | 0.36 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Chrysene                         | ND       | 5.3 | 0.40 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Dibenz(a,h)anthracene            | ND       | 5.3 | 0.76 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Dibenzofuran                     | ND       | 5.3 | 0.36 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Di-n-butylphthalate              | ND       | 11  | 0.53 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 1,2-Dichlorobenzene              | ND       | 5.3 | 0.25 | μg/L<br>μg/L | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 1,3-Dichlorobenzene              | ND       | 5.3 | 0.26 |              | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 1,4-Dichlorobenzene              | ND<br>ND | 5.3 | 0.28 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  |            |
| 3,3-Dichlorobenzidine            | ND<br>ND |     |      | μg/L         |                          |            | SW-846 8270E<br>SW-846 8270E |                  |                                | IMR        |
|                                  |          | 11  | 0.67 | μg/L         | 1                        |            |                              | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2,4-Dichlorophenol               | ND       | 11  | 0.39 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Diethylphthalate                 | ND       | 11  | 0.51 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2,4-Dimethylphenol               | ND       | 11  | 1.0  | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Dimethylphthalate                | ND       | 11  | 0.43 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 4,6-Dinitro-2-methylphenol       | ND       | 11  | 7.0  | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2,4-Dinitrophenol                | ND       | 11  | 8.6  | μg/L         | 1                        | V-04, V-20 | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2,4-Dinitrotoluene               | ND       | 11  | 0.65 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 2,6-Dinitrotoluene               | ND       | 11  | 0.53 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Di-n-octylphthalate              | ND       | 11  | 6.0  | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 11  | 0.56 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Fluoranthene                     | ND       | 5.3 | 0.40 | $\mu g/L$    | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |
| Fluorene                         | ND       | 5.3 | 0.45 | μg/L         | 1                        |            | SW-846 8270E                 | 11/1/21          | 11/4/21 12:55                  | IMR        |

Page 51 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026 Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07 Sample Matrix: Ground Water

| Semivolatile Organic | Compounds | by | GC/MS |  |
|----------------------|-----------|----|-------|--|
|----------------------|-----------|----|-------|--|

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 11     | 0.39 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Hexachlorobutadiene                  | ND      | 11     | 0.29 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Hexachlorocyclopentadiene            | ND      | 11     | 4.5  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Hexachloroethane                     | ND      | 11     | 0.33 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.3    | 0.84 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Isophorone                           | ND      | 11     | 0.52 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 1-Methylnaphthalene                  | ND      | 5.3    | 0.31 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2-Methylnaphthalene                  | ND      | 5.3    | 0.36 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2-Methylphenol                       | ND      | 11     | 0.39 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 3/4-Methylphenol                     | 0.80    | 11     | 0.41 | μg/L            | 1        | J         | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Naphthalene                          | ND      | 5.3    | 0.32 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2-Nitroaniline                       | ND      | 11     | 0.81 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 3-Nitroaniline                       | ND      | 11     | 0.54 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 4-Nitroaniline                       | ND      | 11     | 0.52 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Nitrobenzene                         | ND      | 11     | 0.57 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2-Nitrophenol                        | ND      | 11     | 0.51 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 4-Nitrophenol                        | ND      | 11     | 2.2  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| N-Nitrosodimethylamine               | ND      | 11     | 0.88 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 11     | 0.43 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 11     | 0.57 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Pentachloronitrobenzene              | ND      | 11     | 0.68 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Pentachlorophenol                    | ND      | 11     | 4.0  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Phenanthrene                         | ND      | 5.3    | 0.42 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Phenol                               | ND      | 11     | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Pyrene                               | ND      | 5.3    | 0.51 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Pyridine                             | ND      | 5.3    | 2.8  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 11     | 0.29 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 5.3    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 11     | 0.50 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 11     | 0.44 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 12:55         | IMR     |
| Surrogates                           |         | % Reco | very | Recovery Limits |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 53.9   |      | 15-110          |          |           |              |                  | 11/4/21 12:55         |         |
| Phenol-d6                            |         | 40.6   |      | 15-110          |          |           |              |                  | 11/4/21 12:55         |         |
| Nitrobenzene-d5                      |         | 65.2   |      | 30-130          |          |           |              |                  | 11/4/21 12:55         |         |
| 2-Fluorobiphenyl                     |         | 69.9   |      | 30-130          |          |           |              |                  | 11/4/21 12:55         |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW202-211026** Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:04 | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:04 | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:04 | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:04 | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:04 | SFM     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026 Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# Metals Analyses (Total)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.46    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Arsenic   | 4.5     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Barium    | 22      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Beryllium | 1.3     | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:49  | QNW     |
| Cadmium   | 0.11    | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Calcium   | 160     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Chromium  | 0.99    | 1.0     | 0.92     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 11:49  | QNW     |
| Cobalt    | 40      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Copper    | 1.3     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Iron      | 60      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Lead      | 0.46    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Magnesium | 26      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Manganese | 5500    | 20      | 4.7      | $\mu g/L$ | 20       |           | SW-846 6020B | 10/31/21 | 11/1/21 13:39  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 9:22   | DRL     |
| Nickel    | 35      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Potassium | 3.3     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Selenium  | 1.7     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Silver    | 0.030   | 0.20    | 0.026    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Sodium    | 45      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 22:54 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |
| Zinc      | 28      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:34 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026 Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

| Analyte   | Result | s RL    | DL       | Units        | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------|--------|---------|----------|--------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Aluminum  | 0.28   | 0.050   | 0.049    | mg/L         | 1        | riag/Quai | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Antimony  | ND     | 1.0     | 0.20     | mg/L<br>μg/L | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| •         |        |         |          |              | -        |           |              |                  |                       | -       |
| Arsenic   | 4.1    | 0.80    | 0.46     | μg/L         | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Barium    | 22     | 10      | 1.2      | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Beryllium | 1.3    | 0.40    | 0.066    | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 12:47         | QNW     |
| Cadmium   | 0.29   | 0.20    | 0.027    | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Calcium   | 150    | 0.50    | 0.11     | mg/L         | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Chromium  | ND     | 1.0     | 0.92     | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Cobalt    | 37     | 1.0     | 0.14     | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Copper    | 1.5    | 1.0     | 0.27     | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 12:47         | QNW     |
| Iron      | 63     | 0.050   | 0.032    | mg/L         | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Lead      | 0.16   | 0.50    | 0.14     | $\mu g/L$    | 1        | J         | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Magnesium | 28     | 0.050   | 0.023    | mg/L         | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Manganese | 5700   | 20      | 4.7      | $\mu g/L$    | 20       |           | SW-846 6020B | 10/31/21         | 11/1/21 13:58         | QNW     |
| Mercury   | ND     | 0.00010 | 0.000050 | mg/L         | 1        |           | SW-846 7470A | 11/1/21          | 11/2/21 8:52          | DRL     |
| Nickel    | 25     | 5.0     | 0.52     | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Potassium | 3.3    | 2.0     | 0.40     | mg/L         | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Selenium  | 2.2    | 5.0     | 0.78     | $\mu g/L$    | 1        | J         | SW-846 6020B | 10/31/21         | 11/1/21 12:47         | QNW     |
| Silver    | ND     | 0.20    | 0.026    | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Sodium    | 47     | 2.0     | 0.56     | mg/L         | 1        |           | SW-846 6010D | 10/31/21         | 10/31/21 20:55        | QNW     |
| Thallium  | ND     | 0.20    | 0.067    | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Vanadium  | ND     | 5.0     | 3.5      | $\mu g/L$    | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |
| Zinc      | 23     | 10      | 3.4      | μg/L         | 1        |           | SW-846 6020B | 10/31/21         | 11/1/21 11:51         | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW202-211026

Sampled: 10/26/2021 09:50

Sample ID: 21J1856-07
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte      | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N | 1.0     | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 14:36 | MMH     |
| Sulfate      | 590     | 50   | 30    | mg/L  | 50       |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:52 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-DUP05-211026** Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

# **Volatile Organic Compounds by GC/MS**

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
|                                    |         |      |       |           |          |           |              | Г                | Page 57 (             | of 1/10 |

Page 57 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-DUP05-211026 Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

| Volatile | Organic | Compounds | by GC/MS |
|----------|---------|-----------|----------|
|          |         |           |          |

| Analyte                                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------------------------|---------|--------|-------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                             | ND      | 0.50   | 0.15  | μg/L            | 1        | 1 mg/ 2 mm | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,4-Dioxane                                          | ND      | 50     | 22    | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Ethylbenzene                                         | ND      | 1.0    | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Hexachlorobutadiene                                  | ND      | 0.60   | 0.41  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 2-Hexanone (MBK)                                     | ND      | 10     | 1.4   | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Isopropylbenzene (Cumene)                            | ND      | 1.0    | 0.10  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| p-Isopropyltoluene (p-Cymene)                        | 5.4     | 1.0    | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Methyl Acetate                                       | ND      | 1.0    | 0.39  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                       | ND      | 1.0    | 0.17  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Methyl Cyclohexane                                   | ND      | 1.0    | 0.33  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Methylene Chloride                                   | ND      | 5.0    | 0.30  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                          | ND      | 10     | 1.6   | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Naphthalene                                          | ND      | 2.0    | 0.15  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| n-Propylbenzene                                      | ND      | 1.0    | 0.080 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Styrene                                              | ND      | 1.0    | 0.080 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1,1,2-Tetrachloroethane                            | ND      | 1.0    | 0.14  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1,2,2-Tetrachloroethane                            | ND      | 0.50   | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Tetrachloroethylene                                  | ND      | 1.0    | 0.20  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Tetrahydrofuran                                      | ND      | 10     | 0.58  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Toluene                                              | ND      | 1.0    | 0.11  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2,3-Trichlorobenzene                               | ND      | 5.0    | 0.14  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2,4-Trichlorobenzene                               | ND      | 1.0    | 0.16  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,3,5-Trichlorobenzene                               | ND      | 1.0    | 0.18  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1,1-Trichloroethane                                | ND      | 1.0    | 0.17  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1,2-Trichloroethane                                | ND      | 1.0    | 0.15  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Trichloroethylene                                    | ND      | 1.0    | 0.18  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Trichlorofluoromethane (Freon 11)                    | ND      | 2.0    | 0.19  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2,3-Trichloropropane                               | ND      | 2.0    | 0.31  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND      | 1.0    | 0.24  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,2,4-Trimethylbenzene                               | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| 1,3,5-Trimethylbenzene                               | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Vinyl Chloride                                       | ND      | 2.0    | 0.20  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| m+p Xylene                                           | ND      | 2.0    | 0.18  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| o-Xylene                                             | ND      | 1.0    | 0.090 | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 16:44         | MFF     |
| Surrogates                                           |         | % Reco | overy | Recovery Limits | 8        | Flag/Qual  |              |                  |                       |         |
| 1.2-Dichloroethane-d4                                |         | 109    |       | 70-130          |          |            |              |                  | 11/1/21 16:44         |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-DUP05-211026 Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 4.8 | 0.32 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Acenaphthylene                   | ND      | 4.8 | 0.31 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Acetophenone                     | ND      | 9.6 | 0.43 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Aniline                          | ND      | 4.8 | 0.79 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Anthracene                       | ND      | 4.8 | 0.38 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzidine                        | ND      | 19  | 9.6  | μg/L  | 1        | V-04       | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzo(a)anthracene               | ND      | 4.8 | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzo(a)pyrene                   | ND      | 4.8 | 0.46 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzo(b)fluoranthene             | ND      | 4.8 | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 4.8 | 0.62 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzo(k)fluoranthene             | ND      | 4.8 | 0.35 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Benzoic Acid                     | ND      | 9.6 | 8.9  | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 9.6 | 0.42 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 9.6 | 0.50 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 9.6 | 0.57 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 9.6 | 0.89 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Bromophenylphenylether         | ND      | 9.6 | 0.37 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Butylbenzylphthalate             | ND      | 9.6 | 0.67 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Carbazole                        | ND      | 9.6 | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Chloroaniline                  | ND      | 9.6 | 0.42 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 9.6 | 0.52 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Chloronaphthalene              | ND      | 9.6 | 0.25 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Chlorophenol                   | ND      | 9.6 | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 9.6 | 0.32 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Chrysene                         | ND      | 4.8 | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 4.8 | 0.68 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Dibenzofuran                     | ND      | 4.8 | 0.33 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Di-n-butylphthalate              | ND      | 9.6 | 0.48 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 4.8 | 0.22 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 4.8 | 0.25 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 9.6 | 0.60 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4-Dichlorophenol               | ND      | 9.6 | 0.35 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Diethylphthalate                 | ND      | 9.6 | 0.46 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4-Dimethylphenol               | ND      | 9.6 | 0.93 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Dimethylphthalate                | ND      | 9.6 | 0.39 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 9.6 | 6.3  | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4-Dinitrophenol                | ND      | 9.6 | 7.7  | μg/L  | 1        | V-04, V-20 | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 9.6 | 0.59 | μg/L  | 1        | V-20       | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 9.6 | 0.48 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Di-n-octylphthalate              | ND      | 9.6 | 5.4  | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 9.6 | 0.51 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Fluoranthene                     | ND      | 4.8 | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Fluorene                         | ND      | 4.8 | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |

Page 59 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-DUP05-211026 Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08 Sample Matrix: Ground Water

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.6    | 0.35 | μg/L            | 1        | -         | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Hexachlorobutadiene                  | ND      | 9.6    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 9.6    | 4.1  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Hexachloroethane                     | ND      | 9.6    | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.76 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Isophorone                           | ND      | 9.6    | 0.47 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Methylphenol                       | ND      | 9.6    | 0.35 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 3/4-Methylphenol                     | 0.49    | 9.6    | 0.37 | μg/L            | 1        | J         | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Naphthalene                          | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Nitroaniline                       | ND      | 9.6    | 0.72 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 3-Nitroaniline                       | ND      | 9.6    | 0.49 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Nitroaniline                       | ND      | 9.6    | 0.47 | μg/L            | 1        | V-20      | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Nitrobenzene                         | ND      | 9.6    | 0.51 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2-Nitrophenol                        | ND      | 9.6    | 0.45 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 4-Nitrophenol                        | ND      | 9.6    | 2.0  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| N-Nitrosodimethylamine               | ND      | 9.6    | 0.79 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.6    | 0.38 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 9.6    | 0.51 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Pentachloronitrobenzene              | ND      | 9.6    | 0.61 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Pentachlorophenol                    | ND      | 9.6    | 3.6  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Phenanthrene                         | ND      | 4.8    | 0.38 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Phenol                               | ND      | 9.6    | 0.24 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Pyrene                               | ND      | 4.8    | 0.45 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Pyridine                             | ND      | 4.8    | 2.5  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.6    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.24 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 9.6    | 0.45 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 9.6    | 0.39 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/3/21 13:47         | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 44.9   |      | 15-110          |          |           |              |                  | 11/3/21 13:47         |         |
| Phenol-d6                            |         | 31.4   |      | 15-110          |          |           |              |                  | 11/3/21 13:47         |         |
| Nitrobenzene-d5                      |         | 53.2   |      | 30-130          |          |           |              |                  | 11/3/21 13:47         |         |
| 2-Fluorobiphenyl                     |         | 57.0   |      | 30-130          |          |           |              |                  | 11/3/21 13:47         |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-DUP05-211026** Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:28 | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:28 | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:28 | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:28 | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 10/29/21 | 10/30/21 5:28 | SFM     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-DUP05-211026** Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.30    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Arsenic   | 4.7     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Barium    | 24      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Beryllium | 1.1     | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:51  | QNW     |
| Cadmium   | 0.097   | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Calcium   | 150     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:51  | QNW     |
| Cobalt    | 40      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Copper    | 1.2     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Iron      | 64      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Lead      | 0.27    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Magnesium | 28      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Manganese | 5700    | 20      | 4.7      | $\mu g/L$ | 20       |           | SW-846 6020B | 10/31/21 | 11/1/21 13:41  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 9:23   | DRL     |
| Nickel    | 32      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Potassium | 3.3     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Selenium  | 1.6     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Silver    | 0.030   | 0.20    | 0.026    | μg/L      | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Sodium    | 47      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:02 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |
| Zinc      | 24      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:37 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-DUP05-211026** Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.27    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Arsenic   | 4.0     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Barium    | 22      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Beryllium | 1.2     | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:57  | QNW     |
| Cadmium   | 0.25    | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Calcium   | 150     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Cobalt    | 37      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Copper    | 1.3     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:57  | QNW     |
| Iron      | 63      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Lead      | 0.15    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Magnesium | 28      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Manganese | 5800    | 20      | 4.7      | $\mu g/L$ | 20       |           | SW-846 6020B | 10/31/21 | 11/1/21 13:59  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:54   | DRL     |
| Nickel    | 24      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Potassium | 3.3     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Selenium  | 2.1     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:57  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Sodium    | 46      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:03 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |
| Zinc      | 22      | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:00  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-DUP05-211026** Sampled: 10/26/2021 10:00

Sample ID: 21J1856-08
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
|              | Analyte | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N |         | 0.78    | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 14:37 | MMH     |
| Sulfate      |         | 580     | 50   | 30    | mg/L  | 50       |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:52 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |

Page 65 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW205-211026 Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

| Volatile | Organic | Compounds | by | GC/MS |
|----------|---------|-----------|----|-------|
|          |         |           |    |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Tetrachloroethylene                               | 0.68    | 1.0  | 0.20  | $\mu g/L$ | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:08         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 109        | 70-130          |           | 11/1/21 17:08 |
| Toluene-d8            | 108        | 70-130          |           | 11/1/21 17:08 |
| 4-Bromofluorobenzene  | 105        | 70-130          |           | 11/1/21 17:08 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

| Semivolatile Organic Compounds by GC/N | MS | C/I | G | hv | Ь | าดแท | omi | nic ( | )rgai | tile | ivola | Sem |
|----------------------------------------|----|-----|---|----|---|------|-----|-------|-------|------|-------|-----|
|----------------------------------------|----|-----|---|----|---|------|-----|-------|-------|------|-------|-----|

| Analyte                          | Results | RL  | DL   | Units | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 5.2 | 0.35 | μg/L  | 1        | g C        | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Acenaphthylene                   | ND      | 5.2 | 0.33 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Acetophenone                     | ND      | 10  | 0.47 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Aniline                          | ND      | 5.2 | 0.85 | μg/L  | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Anthracene                       | ND      | 5.2 | 0.41 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzidine                        | ND      | 21  | 10   | μg/L  | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzo(a)anthracene               | ND      | 5.2 | 0.39 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzo(a)pyrene                   | ND      | 5.2 | 0.50 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzo(b)fluoranthene             | ND      | 5.2 | 0.43 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzo(g,h,i)perylene             | ND      | 5.2 | 0.66 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzo(k)fluoranthene             | ND      | 5.2 | 0.38 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Benzoic Acid                     | ND      | 10  | 9.6  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 10  | 0.45 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 10  | 0.54 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 10  | 0.62 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 10  | 0.96 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Bromophenylphenylether         | ND      | 10  | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Butylbenzylphthalate             | ND      | 10  | 0.72 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Carbazole                        | ND      | 10  | 0.43 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Chloroaniline                  | ND      | 10  | 0.45 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 10  | 0.56 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Chloronaphthalene              | ND      | 10  | 0.27 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Chlorophenol                   | ND      | 10  | 0.39 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Chlorophenylphenylether        | ND      | 10  | 0.34 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Chrysene                         | ND      | 5.2 | 0.39 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Dibenz(a,h)anthracene            | ND      | 5.2 | 0.74 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Dibenzofuran                     | ND      | 5.2 | 0.35 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Di-n-butylphthalate              | ND      | 10  | 0.52 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,2-Dichlorobenzene              | ND      | 5.2 | 0.24 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,3-Dichlorobenzene              | ND      | 5.2 | 0.25 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,4-Dichlorobenzene              | ND      | 5.2 | 0.27 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 10  | 0.65 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4-Dichlorophenol               | ND      | 10  | 0.38 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Diethylphthalate                 | ND      | 10  | 0.50 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4-Dimethylphenol               | ND      | 10  | 1.0  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Dimethylphthalate                | ND      | 10  | 0.42 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 10  | 6.8  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4-Dinitrophenol                | ND      | 10  | 8.3  | μg/L  | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4-Dinitrotoluene               | ND      | 10  | 0.63 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,6-Dinitrotoluene               | ND      | 10  | 0.52 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Di-n-octylphthalate              | ND      | 10  | 5.8  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 10  | 0.55 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Fluoranthene                     | ND      | 5.2 | 0.38 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Fluorene                         | ND      | 5.2 | 0.43 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |

Page 67 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

| 5 |   |
|---|---|
|   | • |

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 10     | 0.38 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Hexachlorobutadiene                  | ND      | 10     | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Hexachlorocyclopentadiene            | ND      | 10     | 4.4  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Hexachloroethane                     | ND      | 10     | 0.32 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.2    | 0.82 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Isophorone                           | ND      | 10     | 0.50 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1-Methylnaphthalene                  | ND      | 5.2    | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Methylnaphthalene                  | ND      | 5.2    | 0.34 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Methylphenol                       | ND      | 10     | 0.38 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 3/4-Methylphenol                     | ND      | 10     | 0.39 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Naphthalene                          | ND      | 5.2    | 0.31 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Nitroaniline                       | ND      | 10     | 0.78 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 3-Nitroaniline                       | ND      | 10     | 0.53 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Nitroaniline                       | ND      | 10     | 0.51 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Nitrobenzene                         | ND      | 10     | 0.55 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2-Nitrophenol                        | ND      | 10     | 0.49 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 4-Nitrophenol                        | ND      | 10     | 2.1  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| N-Nitrosodimethylamine               | ND      | 10     | 0.85 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 10     | 0.41 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 10     | 0.55 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Pentachloronitrobenzene              | ND      | 10     | 0.66 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Pentachlorophenol                    | ND      | 10     | 3.9  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Phenanthrene                         | ND      | 5.2    | 0.41 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Phenol                               | ND      | 10     | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Pyrene                               | ND      | 5.2    | 0.49 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Pyridine                             | ND      | 5.2    | 2.7  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 10     | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 5.2    | 0.25 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 10     | 0.48 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 10     | 0.42 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 13:23         | IMR     |
| Surrogates                           |         | % Reco | very | Recovery Limits |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 46.9   |      | 15-110          |          |           |              |                  | 11/4/21 13:23         | _       |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 46.9       | 15-110          |           | 11/4/21 13:23 |
| Phenol-d6            | 33.4       | 15-110          |           | 11/4/21 13:23 |
| Nitrobenzene-d5      | 61.7       | 30-130          |           | 11/4/21 13:23 |
| 2-Fluorobiphenyl     | 61.3       | 30-130          |           | 11/4/21 13:23 |
| 2,4,6-Tribromophenol | 74.5       | 15-110          |           | 11/4/21 13:23 |
| p-Terphenyl-d14      | 84.8       | 30-130          |           | 11/4/21 13:23 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

|                               |         |        |        |                 |          |           |              | Date     | Date/Time    |         |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|----------|--------------|---------|
| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Prepared | Analyzed     | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/2/21  | 11/3/21 5:02 | KMB     |
| Diesel Range Organics         | 0.21    | 0.20   | 0.082  | mg/L            | 1        |           | SW-846 8015C | 11/2/21  | 11/4/21 8:50 | SFM     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 6        | Flag/Qual |              |          |              |         |
| 1-Chloro-3-fluorobenzene      |         | 107    |        | 70-130          |          |           |              |          | 11/3/21 5:02 |         |
| 2-Fluorobiphenyl              |         | 99.8   |        | 40-140          |          |           |              |          | 11/4/21 8:50 |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |        |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|--------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Result | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.10   | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Antimony  | ND     | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Arsenic   | ND     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Barium    | 68     | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Beryllium | ND     | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:52  | QNW     |
| Cadmium   | 0.043  | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Calcium   | 31     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Chromium  | ND     | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:52  | QNW     |
| Cobalt    | 2.6    | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Copper    | 0.43   | 1.0     | 0.27     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Iron      | 0.16   | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Lead      | ND     | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Magnesium | 5.6    | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Manganese | 33     | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Mercury   | ND     | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 9:25   | DRL     |
| Nickel    | 3.2    | 5.0     | 0.52     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Potassium | 3.3    | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Selenium  | 1.5    | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Silver    | ND     | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Sodium    | 4.1    | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:10 | QNW     |
| Thallium  | ND     | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Vanadium  | ND     | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |
| Zinc      | ND     | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:41 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Barium    | 63      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:00  | QNW     |
| Cadmium   | 0.042   | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Calcium   | 30      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Cobalt    | 2.2     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Copper    | 0.90    | 1.0     | 0.27     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 13:00  | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Magnesium | 5.4     | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Manganese | 31      | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:56   | DRL     |
| Nickel    | 1.6     | 5.0     | 0.52     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Potassium | 3.2     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Selenium  | 1.6     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 13:00  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Sodium    | 4.0     | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:10 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |
| Zinc      | ND      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:03  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21J1856-09
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |         |      |       |       |          |           |              | Date     | Date/Time      |         |
|--------------|---------|---------|------|-------|-------|----------|-----------|--------------|----------|----------------|---------|
|              | Analyte | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Ammonia as N |         | ND      | 0.10 | 0.056 | mg/L  | 1        | V-05      | EPA 350.1    | 11/12/21 | 11/12/21 13:21 | EC      |
| Sulfate      |         | 66      | 5.0  | 3.0   | mg/L  | 5        |           | ASTM D516-16 | 11/2/21  | 11/2/21 10:49  | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

## **Volatile Organic Compounds by GC/MS**

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | 2.8     | 50   | 2.4   | μg/L      | 1        | J         | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
|                                    |         |      |       |           |          |           |              |                  | Page 73 d             | of 1/12 |

Page 73 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

| Volatile | Organic | Compounds | by | GC/MS |
|----------|---------|-----------|----|-------|
|          |         |           |    |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:32         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 108        | 70-130          |           | 11/1/21 17:32 |
| Toluene-d8            | 105        | 70-130          |           | 11/1/21 17:32 |
| 4-Bromofluorobenzene  | 103        | 70-130          |           | 11/1/21 17:32 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 5.6 | 0.37 | μg/L      | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Acenaphthylene                   | ND      | 5.6 | 0.36 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Acetophenone                     | ND      | 11  | 0.50 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Aniline                          | ND      | 5.6 | 0.92 | $\mu g/L$ | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Anthracene                       | ND      | 5.6 | 0.44 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzidine                        | ND      | 22  | 11   | $\mu g/L$ | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzo(a)anthracene               | ND      | 5.6 | 0.42 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzo(a)pyrene                   | ND      | 5.6 | 0.54 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzo(b)fluoranthene             | ND      | 5.6 | 0.47 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzo(g,h,i)perylene             | ND      | 5.6 | 0.72 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzo(k)fluoranthene             | ND      | 5.6 | 0.41 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Benzoic Acid                     | ND      | 11  | 10   | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 11  | 0.48 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 11  | 0.58 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 11  | 0.67 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 11  | 1.0  | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Bromophenylphenylether         | ND      | 11  | 0.43 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Butylbenzylphthalate             | ND      | 11  | 0.78 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Carbazole                        | ND      | 11  | 0.46 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Chloroaniline                  | ND      | 11  | 0.49 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 11  | 0.60 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Chloronaphthalene              | ND      | 11  | 0.30 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Chlorophenol                   | ND      | 11  | 0.42 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Chlorophenylphenylether        | ND      | 11  | 0.37 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Chrysene                         | ND      | 5.6 | 0.42 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Dibenz(a,h)anthracene            | ND      | 5.6 | 0.79 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Dibenzofuran                     | ND      | 5.6 | 0.38 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Di-n-butylphthalate              | ND      | 11  | 0.56 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,2-Dichlorobenzene              | ND      | 5.6 | 0.26 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,3-Dichlorobenzene              | ND      | 5.6 | 0.27 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,4-Dichlorobenzene              | ND      | 5.6 | 0.30 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 11  | 0.70 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4-Dichlorophenol               | ND      | 11  | 0.41 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Diethylphthalate                 | ND      | 11  | 0.54 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4-Dimethylphenol               | ND      | 11  | 1.1  | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Dimethylphthalate                | ND      | 11  | 0.45 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 11  | 7.3  | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4-Dinitrophenol                | ND      | 11  | 9.0  | $\mu g/L$ | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4-Dinitrotoluene               | ND      | 11  | 0.68 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,6-Dinitrotoluene               | ND      | 11  | 0.56 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Di-n-octylphthalate              | ND      | 11  | 6.3  | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 11  | 0.59 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Fluoranthene                     | ND      | 5.6 | 0.41 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Fluorene                         | ND      | 5.6 | 0.47 | $\mu g/L$ | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
|                                  |         |     |      |           |          |            |              |                  | Page 75 d             | of 1/10 |

Page 75 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

| 5 |   |
|---|---|
|   | • |

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 11     | 0.41 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Hexachlorobutadiene                  | ND      | 11     | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Hexachlorocyclopentadiene            | ND      | 11     | 4.7  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Hexachloroethane                     | ND      | 11     | 0.35 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.6    | 0.88 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Isophorone                           | ND      | 11     | 0.54 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1-Methylnaphthalene                  | ND      | 5.6    | 0.33 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Methylnaphthalene                  | ND      | 5.6    | 0.37 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Methylphenol                       | ND      | 11     | 0.41 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 3/4-Methylphenol                     | ND      | 11     | 0.43 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Naphthalene                          | ND      | 5.6    | 0.33 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Nitroaniline                       | ND      | 11     | 0.84 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 3-Nitroaniline                       | ND      | 11     | 0.57 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Nitroaniline                       | ND      | 11     | 0.55 | μg/L            | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Nitrobenzene                         | ND      | 11     | 0.59 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2-Nitrophenol                        | ND      | 11     | 0.53 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 4-Nitrophenol                        | ND      | 11     | 2.3  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| N-Nitrosodimethylamine               | ND      | 11     | 0.92 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 11     | 0.44 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 11     | 0.59 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Pentachloronitrobenzene              | ND      | 11     | 0.71 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Pentachlorophenol                    | ND      | 11     | 4.2  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Phenanthrene                         | ND      | 5.6    | 0.44 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Phenol                               | ND      | 11     | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Pyrene                               | ND      | 5.6    | 0.53 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Pyridine                             | ND      | 5.6    | 2.9  | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 11     | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 5.6    | 0.27 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 11     | 0.52 | μg/L            | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 11     | 0.46 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 15:43         | IMR     |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 53.6   |      | 15-110          |          |           |              |                  | 11/4/21 15:43         |         |
| Phenol-d6                            |         | 52.4   |      | 15-110          |          |           |              |                  | 11/4/21 15:43         |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 53.6       | 15-110          |           | 11/4/21 15:43 |
| Phenol-d6            | 52.4       | 15-110          |           | 11/4/21 15:43 |
| Nitrobenzene-d5      | 64.3       | 30-130          |           | 11/4/21 15:43 |
| 2-Fluorobiphenyl     | 65.6       | 30-130          |           | 11/4/21 15:43 |
| 2,4,6-Tribromophenol | 87.8       | 15-110          |           | 11/4/21 15:43 |
| p-Terphenyl-d14      | 87.8       | 30-130          |           | 11/4/21 15:43 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

|                               |         |        |        |                |          |           |              | Date     | Date/Time    |         |
|-------------------------------|---------|--------|--------|----------------|----------|-----------|--------------|----------|--------------|---------|
| Analyte                       | Results | RL     | DL     | Units          | Dilution | Flag/Qual | Method       | Prepared | Analyzed     | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L           | 1        |           | SW-846 8015C | 11/2/21  | 11/3/21 5:39 | KMB     |
| Diesel Range Organics         | 0.56    | 0.22   | 0.091  | mg/L           | 1        |           | SW-846 8015C | 11/2/21  | 11/4/21 9:10 | SFM     |
| Surrogates                    |         | % Reco | overy  | Recovery Limit | s        | Flag/Qual |              |          |              |         |
| 1-Chloro-3-fluorobenzene      |         | 105    |        | 70-130         |          |           |              |          | 11/3/21 5:39 |         |
| 2-Fluorobiphenyl              |         | 98.7   |        | 40-140         |          |           |              |          | 11/4/21 9:10 |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

# Metals Analyses (Total)

|           |          |         |          |           | • • •    |           |              |          |                |         |
|-----------|----------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
|           |          |         |          |           |          |           |              | Date     | Date/Time      |         |
| Analyte   | Results  | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 19       | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:16 | QNW     |
| Antimony  | 0.41     | 1.0     | 0.20     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Arsenic   | 18       | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Barium    | 220      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Beryllium | 1.4      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:54  | QNW     |
| Cadmium   | 0.053    | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Calcium   | 200      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:16 | QNW     |
| Chromium  | 36       | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:54  | QNW     |
| Cobalt    | 100      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Copper    | 52       | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Iron      | 150      | 0.50    | 0.32     | mg/L      | 10       |           | SW-846 6010D | 10/31/21 | 11/1/21 14:02  | QNW     |
| Lead      | 25       | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Magnesium | 130      | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:16 | QNW     |
| Manganese | 15000    | 100     | 24       | $\mu g/L$ | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 14:04  | QNW     |
| Mercury   | 0.000053 | 0.00010 | 0.000050 | mg/L      | 1        | J         | SW-846 7470A | 11/1/21  | 11/2/21 9:27   | DRL     |
| Nickel    | 89       | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Potassium | 26       | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:16 | QNW     |
| Selenium  | 14       | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Silver    | 0.37     | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Sodium    | 1100     | 20      | 5.6      | mg/L      | 10       |           | SW-846 6010D | 10/31/21 | 11/1/21 14:02  | QNW     |
| Thallium  | 0.27     | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Vanadium  | 64       | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |
| Zinc      | 110      | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:44 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026 Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.067   | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:16 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Arsenic   | 5.0     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Barium    | 28      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:03  | QNW     |
| Cadmium   | ND      | 0.20    | 0.027    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Calcium   | 200     | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:16 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Cobalt    | 72      | 1.0     | 0.14     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Copper    | 25      | 1.0     | 0.27     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:03  | QNW     |
| Iron      | 100     | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:16 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Magnesium | 130     | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:16 | QNW     |
| Manganese | 14000   | 100     | 24       | μg/L      | 100      |           | SW-846 6020B | 10/31/21 | 11/1/21 14:01  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:58   | DRL     |
| Nickel    | 41      | 5.0     | 0.52     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Potassium | 26      | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:16 | QNW     |
| Selenium  | 15      | 5.0     | 0.78     | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:03  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Sodium    | 1100    | 20      | 5.6      | mg/L      | 10       |           | SW-846 6010D | 10/31/21 | 11/1/21 13:50  | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |
| Zinc      | 16      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:06  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW206-211026

Sampled: 10/26/2021 16:55

Sample ID: 21J1856-10
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |     |     |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|-----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL  | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | 2600    | 500 | 300 | mg/L  | 500      |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:59 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-TB07-211025** Sampled: 10/25/2021 13:45

Sample ID: 21J1856-11
Sample Matrix: Ground Water

## **Volatile Organic Compounds by GC/MS**

| Analyte                            | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |

Page 81 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-TB07-211025 Sampled: 10/25/2021 13:45

Sample ID: 21J1856-11
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------------------------|---------|--------|-------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                             | ND      | 0.50   | 0.15  | μg/L            | 1        | 1 mg/ 2 mm | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,4-Dioxane                                          | ND      | 50     | 22    | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Ethylbenzene                                         | ND      | 1.0    | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Hexachlorobutadiene                                  | ND      | 0.60   | 0.41  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 2-Hexanone (MBK)                                     | ND      | 10     | 1.4   | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Isopropylbenzene (Cumene)                            | ND      | 1.0    | 0.10  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| p-Isopropyltoluene (p-Cymene)                        | ND      | 1.0    | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Methyl Acetate                                       | ND      | 1.0    | 0.39  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                       | ND      | 1.0    | 0.17  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Methyl Cyclohexane                                   | ND      | 1.0    | 0.33  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Methylene Chloride                                   | ND      | 5.0    | 0.30  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                          | ND      | 10     | 1.6   | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Naphthalene                                          | ND      | 2.0    | 0.15  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| n-Propylbenzene                                      | ND      | 1.0    | 0.080 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Styrene                                              | ND      | 1.0    | 0.080 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1,1,2-Tetrachloroethane                            | ND      | 1.0    | 0.14  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1,2,2-Tetrachloroethane                            | ND      | 0.50   | 0.090 | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Tetrachloroethylene                                  | ND      | 1.0    | 0.20  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Tetrahydrofuran                                      | ND      | 10     | 0.58  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Toluene                                              | ND      | 1.0    | 0.11  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2,3-Trichlorobenzene                               | ND      | 5.0    | 0.14  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2,4-Trichlorobenzene                               | ND      | 1.0    | 0.16  | μg/L            | 1        | V-05       | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,3,5-Trichlorobenzene                               | ND      | 1.0    | 0.18  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1,1-Trichloroethane                                | ND      | 1.0    | 0.17  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1,2-Trichloroethane                                | ND      | 1.0    | 0.15  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Trichloroethylene                                    | ND      | 1.0    | 0.18  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Trichlorofluoromethane (Freon 11)                    | ND      | 2.0    | 0.19  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2,3-Trichloropropane                               | ND      | 2.0    | 0.31  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND      | 1.0    | 0.24  | μg/L            | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,2,4-Trimethylbenzene                               | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| 1,3,5-Trimethylbenzene                               | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Vinyl Chloride                                       | ND      | 2.0    | 0.20  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| m+p Xylene                                           | ND      | 2.0    | 0.18  | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| o-Xylene                                             | ND      | 1.0    | 0.090 | $\mu g/L$       | 1        |            | SW-846 8260D | 11/1/21          | 11/1/21 17:56         | MFF     |
| Surrogates                                           |         | % Reco | very  | Recovery Limits | 6        | Flag/Qual  |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

|                                    |         |      |       | ** *         |          | TH. (0. 1 |              | Date     | Date/Time                  |         |
|------------------------------------|---------|------|-------|--------------|----------|-----------|--------------|----------|----------------------------|---------|
| Analyte                            | Results | RL   | DL    | Units        | Dilution | Flag/Qual | Method       | Prepared | Analyzed                   | Analyst |
| Acetone                            | ND      | 50   | 2.4   | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Acrylonitrile (TAME)               | ND      | 5.0  | 0.69  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L<br>μg/L | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L<br>μg/L | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,2-Dichloroethane                 |         |      |       |              |          |           |              |          |                            |         |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.32  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| •                                  | ND      | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L         | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20              | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | $\mu g/L$    | 1        |           | SW-846 8260D | 11/1/21  | 11/1/21 18:20<br>Page 83 ( | MFF     |

Page 83 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50   | 0.15  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,4-Dioxane                                       | ND      | 50     | 22    | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Ethylbenzene                                      | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60   | 0.41  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10     | 1.4   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0    | 0.10  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0    | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Methyl Acetate                                    | ND      | 1.0    | 0.39  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0    | 0.17  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0    | 0.33  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Methylene Chloride                                | ND      | 5.0    | 0.30  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10     | 1.6   | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Naphthalene                                       | ND      | 2.0    | 0.15  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Styrene                                           | ND      | 1.0    | 0.080 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0    | 0.14  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50   | 0.090 | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0    | 0.20  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Tetrahydrofuran                                   | ND      | 10     | 0.58  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Toluene                                           | ND      | 1.0    | 0.11  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0    | 0.14  | $\mu g/L$       | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0    | 0.16  | μg/L            | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0    | 0.17  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0    | 0.15  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Trichloroethylene                                 | ND      | 1.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0    | 0.19  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0    | 0.31  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0    | 0.24  | μg/L            | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0    | 0.10  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0    | 0.20  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| m+p Xylene                                        | ND      | 2.0    | 0.18  | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| o-Xylene                                          | ND      | 1.0    | 0.090 | $\mu g/L$       | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 18:20         | MFF     |
| Surrogates                                        |         | % Reco | very  | Recovery Limits |          | Flag/Qual |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-MW102-211027** Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 5.4 | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Acenaphthylene                   | ND      | 5.4 | 0.35 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Acetophenone                     | ND      | 11  | 0.49 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Aniline                          | ND      | 5.4 | 0.89 | μg/L  | 1        | V-20       | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Anthracene                       | ND      | 5.4 | 0.43 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzidine                        | ND      | 22  | 11   | μg/L  | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzo(a)anthracene               | ND      | 5.4 | 0.41 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzo(a)pyrene                   | ND      | 5.4 | 0.52 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzo(b)fluoranthene             | ND      | 5.4 | 0.45 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzo(g,h,i)perylene             | ND      | 5.4 | 0.70 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzo(k)fluoranthene             | ND      | 5.4 | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Benzoic Acid                     | ND      | 11  | 10   | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Bis(2-chloroethoxy)methane       | ND      | 11  | 0.47 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Bis(2-chloroethyl)ether          | ND      | 11  | 0.56 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Bis(2-chloroisopropyl)ether      | ND      | 11  | 0.65 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 11  | 1.0  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Bromophenylphenylether         | ND      | 11  | 0.42 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Butylbenzylphthalate             | ND      | 11  | 0.76 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Carbazole                        | ND      | 11  | 0.45 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Chloroaniline                  | ND      | 11  | 0.48 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Chloro-3-methylphenol          | ND      | 11  | 0.59 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Chloronaphthalene              | ND      | 11  | 0.29 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Chlorophenol                   | ND      | 11  | 0.41 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Chlorophenylphenylether        | ND      | 11  | 0.36 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Chrysene                         | ND      | 5.4 | 0.41 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Dibenz(a,h)anthracene            | ND      | 5.4 | 0.77 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Dibenzofuran                     | ND      | 5.4 | 0.37 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Di-n-butylphthalate              | ND      | 11  | 0.54 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,2-Dichlorobenzene              | ND      | 5.4 | 0.25 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,3-Dichlorobenzene              | ND      | 5.4 | 0.26 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,4-Dichlorobenzene              | ND      | 5.4 | 0.29 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 3,3-Dichlorobenzidine            | ND      | 11  | 0.68 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4-Dichlorophenol               | ND      | 11  | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Diethylphthalate                 | ND      | 11  | 0.52 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4-Dimethylphenol               | ND      | 11  | 1.0  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Dimethylphthalate                | ND      | 11  | 0.44 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4,6-Dinitro-2-methylphenol       | ND      | 11  | 7.1  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4-Dinitrophenol                | ND      | 11  | 8.7  | μg/L  | 1        | V-04, V-20 | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4-Dinitrotoluene               | ND      | 11  | 0.66 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,6-Dinitrotoluene               | ND      | 11  | 0.54 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Di-n-octylphthalate              | ND      | 11  | 6.1  | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 11  | 0.57 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Fluoranthene                     | ND      | 5.4 | 0.40 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
|                                  | ND      | 5.4 | 0.45 | μg/L  | 1        |            | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |

Page 85 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12 Sample Matrix: Ground Water

| Semivolatile Organ | nic Compoun | ids by Go | C/MS |
|--------------------|-------------|-----------|------|
|--------------------|-------------|-----------|------|

| Analyte                              | Results | RL           | DL   | Units            | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------------|------|------------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 11           | 0.40 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Hexachlorobutadiene                  | ND      | 11           | 0.29 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Hexachlorocyclopentadiene            | ND      | 11           | 4.6  | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Hexachloroethane                     | ND      | 11           | 0.34 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.4          | 0.86 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Isophorone                           | ND      | 11           | 0.53 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1-Methylnaphthalene                  | ND      | 5.4          | 0.32 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Methylnaphthalene                  | ND      | 5.4          | 0.36 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Methylphenol                       | ND      | 11           | 0.40 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 3/4-Methylphenol                     | ND      | 11           | 0.41 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Naphthalene                          | ND      | 5.4          | 0.32 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Nitroaniline                       | ND      | 11           | 0.82 | $\mu g/L$        | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 3-Nitroaniline                       | ND      | 11           | 0.55 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Nitroaniline                       | ND      | 11           | 0.53 | $\mu g/L$        | 1        | V-20      | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Nitrobenzene                         | ND      | 11           | 0.58 | μg/L             | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2-Nitrophenol                        | ND      | 11           | 0.51 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 4-Nitrophenol                        | ND      | 11           | 2.2  | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| N-Nitrosodimethylamine               | ND      | 11           | 0.89 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 11           | 0.43 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| N-Nitrosodi-n-propylamine            | ND      | 11           | 0.58 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Pentachloronitrobenzene              | ND      | 11           | 0.69 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Pentachlorophenol                    | ND      | 11           | 4.1  | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Phenanthrene                         | ND      | 5.4          | 0.43 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Phenol                               | ND      | 11           | 0.27 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Pyrene                               | ND      | 5.4          | 0.51 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Pyridine                             | ND      | 5.4          | 2.8  | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 11           | 0.29 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 1,2,4-Trichlorobenzene               | ND      | 5.4          | 0.27 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4,5-Trichlorophenol                | ND      | 11           | 0.51 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| 2,4,6-Trichlorophenol                | ND      | 11           | 0.44 | $\mu g/L$        | 1        |           | SW-846 8270E | 11/1/21          | 11/4/21 16:11         | IMR     |
| Surrogates                           |         | % Reco       | very | Recovery Limits  |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 48.0         |      | 15-110           |          |           |              |                  | 11/4/21 16:11         |         |
| Phenol-d6                            |         | 35.7         |      | 15-110           |          |           |              |                  | 11/4/21 16:11         |         |
| Nitrobenzene-d5 2-Fluorobinbenyl     |         | 64.0<br>65.2 |      | 30-130<br>30-130 |          |           |              |                  | 11/4/21 16:11         |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 48.0       | 15-110          |           | 11/4/21 16:11 |
| Phenol-d6            | 35.7       | 15-110          |           | 11/4/21 16:11 |
| Nitrobenzene-d5      | 64.0       | 30-130          |           | 11/4/21 16:11 |
| 2-Fluorobiphenyl     | 65.2       | 30-130          |           | 11/4/21 16:11 |
| 2,4,6-Tribromophenol | 85.5       | 15-110          |           | 11/4/21 16:11 |
| p-Terphenyl-d14      | 93.2       | 30-130          |           | 11/4/21 16:11 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC

| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------|---------|----|-----|-------|----------|-----------|--------------|------------------|-----------------------|---------|
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 10/29/21         | 10/30/21 5:51         | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 10/29/21         | 10/30/21 5:51         | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 10/29/21         | 10/30/21 5:51         | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 10/29/21         | 10/30/21 5:51         | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 10/29/21         | 10/30/21 5:51         | SFM     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | 0.13    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Antimony  | 0.61    | 1.0     | 0.20     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Arsenic   | 3.1     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Barium    | 68      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:56  | QNW     |
| Cadmium   | 0.20    | 0.20    | 0.027    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Calcium   | 16      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Chromium  | 1.1     | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 11:56  | QNW     |
| Cobalt    | 6.9     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Copper    | 3.1     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Iron      | 2.1     | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Lead      | 0.43    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Magnesium | 8.0     | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Manganese | 1500    | 10      | 2.4      | $\mu g/L$ | 10       |           | SW-846 6020B | 10/31/21 | 11/1/21 13:44  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 9:29   | DRL     |
| Nickel    | 14      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Potassium | 5.8     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Selenium  | 1.6     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Sodium    | 33      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 23:36 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |
| Zinc      | 18      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 10/31/21 20:47 | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          |           |          |           |              | Date     | Date/Time      |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|----------|----------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed       | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Antimony  | 0.49    | 1.0     | 0.20     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Arsenic   | 2.5     | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Barium    | 56      | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:06  | QNW     |
| Cadmium   | 0.12    | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Calcium   | 17      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Cobalt    | 6.6     | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Copper    | 2.2     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 13:06  | QNW     |
| Iron      | 3.1     | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Magnesium | 7.9     | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Manganese | 1800    | 10      | 2.4      | $\mu g/L$ | 10       |           | SW-846 6020B | 10/31/21 | 11/1/21 14:02  | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/1/21  | 11/2/21 8:59   | DRL     |
| Nickel    | 12      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Potassium | 6.2     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Selenium  | 1.9     | 5.0     | 0.78     | $\mu g/L$ | 1        | J         | SW-846 6020B | 10/31/21 | 11/1/21 13:06  | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Sodium    | 29      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 10/31/21 | 10/31/21 21:24 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |
| Zinc      | 17      | 10      | 3.4      | μg/L      | 1        |           | SW-846 6020B | 10/31/21 | 11/1/21 12:08  | QNW     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: HRP-MW102-211027 Sampled: 10/27/2021 10:45

Sample ID: 21J1856-12
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
|              | Analyte | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N |         | 0.12    | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 14:37 | MMH     |
| Sulfate      |         | 110     | 10   | 6.0   | mg/L  | 10       |           | ASTM D516-16 | 11/2/21  | 11/2/21 10:56 | MMH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-TB09-211025** Sampled: 10/25/2021 12:30

Sample ID: 21J1856-13
Sample Matrix: Ground Water

## **Volatile Organic Compounds by GC/MS**

| Analyte                            | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L  | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| •                                  |         | ,    |       | r-o   | -        |           |              | Г                | Page 91 (             |         |

Page 91 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

**Field Sample #: HRP-TB09-211025** Sampled: 10/25/2021 12:30

Sample ID: 21J1856-13
Sample Matrix: Ground Water

| Volatile | Organic | Compound | s by | GC/MS |
|----------|---------|----------|------|-------|
|          |         |          |      |       |

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        | -         | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/1/21          | 11/1/21 12:43         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 105        | 70-130          |           | 11/1/21 12:43 |
| Toluene-d8            | 105        | 70-130          |           | 11/1/21 12:43 |
| 4-Bromofluorobenzene  | 104        | 70-130          |           | 11/1/21 12:43 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: Trip Blank Sampled: 10/25/2021 00:00

Sample ID: 21J1856-14
Sample Matrix: Ground Water

| Analyte                            | Results | RL   | DL    | Units        | Dilution | Flag/Qual | Method         | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|--------------|----------|-----------|----------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Bromomethane                       | ND      | 2.0  | 1.1   | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Chlorobenzene                      | ND      | 1.0  | 0.080 | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L         | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.12  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| Diethyl Ether                      | ND      | 2.0  | 0.13  | μg/L<br>μg/L | 1        |           | SW-846 8260D   | 11/3/21          | 11/3/21 12:05         | MFF     |
| .y                                 | ND      | 2.0  | 5.22  | μg/ L        | ī        |           | 5.11-040-02001 | 111,2121         | Page 93 (             |         |

Page 93 of 148



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: Trip Blank Sampled: 10/25/2021 00:00

Sample ID: 21J1856-14
Sample Matrix: Ground Water

| Volatile O | rganic Co | mpounds | by ( | 3C/MS |
|------------|-----------|---------|------|-------|
|------------|-----------|---------|------|-------|

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        | -         | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/3/21          | 11/3/21 12:05         | MFF     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 105        | 70-130          |           | 11/3/21 12:05 |
| Toluene-d8            | 104        | 70-130          |           | 11/3/21 12:05 |
| 4-Bromofluorobenzene  | 101        | 70-130          |           | 11/3/21 12:05 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21J1856

Date Received: 10/29/2021

Field Sample #: Trip Blank Sampled: 10/25/2021 00:00

Sample ID: 21J1856-14 Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/2/21          | 11/3/21 9:22          | KMB     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 3        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 106    |        | 70-130          |          |           |              |                  | 11/3/21 9:22          |         |

Page 95 of 148



## **Sample Extraction Data**

### ASTM D516-16

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293753 | 10.0         | 10.0       | 11/02/21 |  |
| 21J1856-12 [HRP-MW102-211027] | B293753 | 10.0         | 10.0       | 11/02/21 |  |

### ASTM D516-16

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-06 [HRP-MW201-211025] | B294057 | 10.0         | 10.0       | 11/05/21 |

## EPA 350.1

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-06 [HRP-MW201-211025] | B293898 | 50.0         | 50.0       | 11/03/21 |
| 21J1856-07 [HRP-MW202-211026] | B293898 | 50.0         | 50.0       | 11/03/21 |
| 21J1856-08 [HRP-DUP05-211026] | B293898 | 50.0         | 50.0       | 11/03/21 |
| 21J1856-12 [HRP-MW102-211027] | B293898 | 50.0         | 50.0       | 11/03/21 |

## EPA 350.1

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-09 [HRP-MW205-211026] | B294542 | 100          | 100        | 11/12/21 |

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6010D

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-06 [HRP-MW201-211025] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293656 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-12 [HRP-MW102-211027] | B293656 | 50.0         | 50.0       | 10/31/21 |  |

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-06 [HRP-MW201-211025] | B293658 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |  |

Page 96 of 148



## **Sample Extraction Data**

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-09 [HRP-MW205-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-10 [HRP-MW206-211026] | B293658 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-12 [HRP-MW102-211027] | B293658 | 50.0         | 50.0       | 10/31/21 |

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6020B

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-01 [HRP-MW214-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-02 [HRP-MW208-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-03 [HRP-MW207-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-06 [HRP-MW201-211025] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-07 [HRP-MW202-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-08 [HRP-DUP05-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-09 [HRP-MW205-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-10 [HRP-MW206-211026] | B293655 | 50.0         | 50.0       | 10/31/21 |
| 21J1856-12 [HRP-MW102-211027] | B293655 | 50.0         | 50.0       | 10/31/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-06 [HRP-MW201-211025] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293657 | 50.0         | 50.0       | 10/31/21 |  |
| 21J1856-12 [HRP-MW102-211027] | B293657 | 50.0         | 50.0       | 10/31/21 |  |

Prep Method: SW-846 7470A Dissolved Analytical Method: SW-846 7470A

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-06 [HRP-MW201-211025] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293727 | 10.0         | 10.0       | 11/01/21 |  |
| 21J1856-12 [HRP-MW102-211027] | B293727 | 10.0         | 10.0       | 11/01/21 |  |

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-01 [HRP-MW214-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-02 [HRP-MW208-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-03 [HRP-MW207-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-06 [HRP-MW201-211025] | B293728 | 10.0         | 10.0       | 11/01/21 |



## **Sample Extraction Data**

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-07 [HRP-MW202-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-08 [HRP-DUP05-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-09 [HRP-MW205-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-10 [HRP-MW206-211026] | B293728 | 10.0         | 10.0       | 11/01/21 |
| 21J1856-12 [HRP-MW102-211027] | B293728 | 10.0         | 10.0       | 11/01/21 |

Prep Method: Alcohol Prep Analytical Method: SW-846 8015C

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-06 [HRP-MW201-211025] | B293612 | 1.00         | 1.00       | 10/29/21 |
| 21J1856-07 [HRP-MW202-211026] | B293612 | 1.00         | 1.00       | 10/29/21 |
| 21J1856-08 [HRP-DUP05-211026] | B293612 | 1.00         | 1.00       | 10/29/21 |
| 21J1856-12 [HRP-MW102-211027] | B293612 | 1.00         | 1.00       | 10/29/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8015C

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-01 [HRP-MW214-211026] | B293763 | 1040         | 1.00       | 11/02/21 |
| 21J1856-02 [HRP-MW208-211026] | B293763 | 1040         | 1.00       | 11/02/21 |
| 21J1856-03 [HRP-MW207-211026] | B293763 | 1020         | 1.00       | 11/02/21 |
| 21J1856-09 [HRP-MW205-211026] | B293763 | 1020         | 1.00       | 11/02/21 |
| 21J1856-10 [HRP-MW206-211026] | B293763 | 920          | 1.00       | 11/02/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293804 | 5            | 5.00       | 11/02/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293804 | 5            | 5.00       | 11/02/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293804 | 5            | 5.00       | 11/02/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293804 | 5            | 5.00       | 11/02/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293804 | 5            | 5.00       | 11/02/21 |  |
| 21J1856-14 [Trip Blank]       | B293804 | 5            | 5.00       | 11/02/21 |  |

Prep Method: SW-846 3510C Analytical Method: SW-846 8082A

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-05 [HRP-MW221-211027] | B293652 | 880          | 10.0       | 10/31/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-02 [HRP-MW208-211026] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-04 [HRP-TB11-211026]  | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-05 [HRP-MW221-211027] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-06 [HRP-MW201-211025] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293683 | 5            | 5.00       | 11/01/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293683 | 5            | 5.00       | 11/01/21 |  |

Page 98 of 148



## **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-09 [HRP-MW205-211026] | B293683 | 5            | 5.00       | 11/01/21 |
| 21J1856-10 [HRP-MW206-211026] | B293683 | 5            | 5.00       | 11/01/21 |
| 21J1856-11 [HRP-TB07-211025]  | B293683 | 5            | 5.00       | 11/01/21 |
| 21J1856-12 [HRP-MW102-211027] | B293683 | 5            | 5.00       | 11/01/21 |
| 21J1856-13 [HRP-TB09-211025]  | B293683 | 5            | 5.00       | 11/01/21 |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]   | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------|---------|--------------|------------|----------|
| 21J1856-14 [Trip Blank] | B293865 | 5            | 5.00       | 11/03/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-01 [HRP-MW214-211026] | B293672 | 1040         | 1.00       | 11/01/21 |  |
| 21J1856-03 [HRP-MW207-211026] | B293672 | 1040         | 1.00       | 11/01/21 |  |
| 21J1856-05 [HRP-MW221-211027] | B293672 | 945          | 1.00       | 11/01/21 |  |
| 21J1856-07 [HRP-MW202-211026] | B293672 | 935          | 1.00       | 11/01/21 |  |
| 21J1856-09 [HRP-MW205-211026] | B293672 | 965          | 1.00       | 11/01/21 |  |
| 21J1856-10 [HRP-MW206-211026] | B293672 | 895          | 1.00       | 11/01/21 |  |
| 21J1856-12 [HRP-MW102-211027] | B293672 | 920          | 1.00       | 11/01/21 |  |

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-------------------------------|---------|--------------|------------|----------|--|
| 21J1856-02 [HRP-MW208-211026] | B293790 | 1040         | 1.00       | 11/02/21 |  |
| 21J1856-08 [HRP-DUP05-211026] | B293790 | 1040         | 1.00       | 11/02/21 |  |

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21J1856-06 [HRP-MW201-211025] | B293858 | 975          | 1.00       | 11/03/21 |



## QUALITY CONTROL

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |
|         |        |           |       |       |        |      |        |     |       |       |

| Blank (B293683-BLK1)               |          |      |              | Prepared & Analyzed: |
|------------------------------------|----------|------|--------------|----------------------|
| Acetone                            | ND       | 50   | μg/L         |                      |
| Acrylonitrile                      | ND       | 5.0  | μg/L         |                      |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | $\mu g/L$    |                      |
| Benzene                            | ND       | 1.0  | μg/L         |                      |
| Bromobenzene                       | ND       | 1.0  | μg/L         |                      |
| Bromochloromethane                 | ND       | 1.0  | μg/L         |                      |
| Bromodichloromethane               | ND       | 0.50 | μg/L         |                      |
| Bromoform                          | ND       | 1.0  | μg/L         |                      |
| Bromomethane                       | ND       | 2.0  | $\mu g/L$    |                      |
| 2-Butanone (MEK)                   | ND       | 20   | $\mu g/L$    |                      |
| ert-Butyl Alcohol (TBA)            | ND       | 20   | μg/L         |                      |
| n-Butylbenzene                     | ND       | 1.0  | $\mu g/L$    |                      |
| sec-Butylbenzene                   | ND       | 1.0  | $\mu g/L$    |                      |
| tert-Butylbenzene                  | ND       | 1.0  | $\mu g/L$    |                      |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | μg/L         |                      |
| Carbon Disulfide                   | ND       | 5.0  | μg/L         |                      |
| Carbon Tetrachloride               | ND       | 5.0  | μg/L         |                      |
| Chlorobenzene                      | ND       | 1.0  | μg/L         |                      |
| Chlorodibromomethane               | ND       | 0.50 | μg/L         |                      |
| Chloroethane                       | ND       | 2.0  | μg/L         |                      |
| Chloroform                         | ND       | 2.0  | μg/L         |                      |
| Chloromethane                      | ND       | 2.0  | μg/L         |                      |
| 2-Chlorotoluene                    | ND       | 1.0  | μg/L         |                      |
| 4-Chlorotoluene                    | ND       | 1.0  | μg/L         |                      |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | μg/L         |                      |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | μg/L         |                      |
| Dibromomethane                     | ND       | 1.0  | μg/L         |                      |
| 1,2-Dichlorobenzene                | ND       | 1.0  | μg/L         |                      |
| ,3-Dichlorobenzene                 | ND       | 1.0  | μg/L         |                      |
| 1,4-Dichlorobenzene                | ND       | 1.0  | μg/L         |                      |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | μg/L         |                      |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | μg/L         |                      |
| 1,1-Dichloroethane                 | ND       | 1.0  | μg/L         |                      |
| 1,2-Dichloroethane                 | ND       | 1.0  | μg/L         |                      |
| 1,1-Dichloroethylene               | ND       | 1.0  | μg/L         |                      |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | μg/L         |                      |
| trans-1,2-Dichloroethylene         | ND<br>ND | 1.0  | μg/L         |                      |
| 1,2-Dichloropropane                | ND<br>ND | 1.0  | μg/L<br>μg/L |                      |
| 1,3-Dichloropropane                | ND<br>ND | 0.50 | μg/L<br>μg/L |                      |
| 2,2-Dichloropropane                | ND<br>ND | 1.0  | μg/L<br>μg/L |                      |
| 1,1-Dichloropropene                |          | 2.0  | μg/L<br>μg/L |                      |
| cis-1,3-Dichloropropene            | ND<br>ND | 0.50 | μg/L<br>μg/L |                      |
| trans-1,3-Dichloropropene          | ND       | 0.50 |              |                      |
| Diethyl Ether                      | ND       |      | μg/L         |                      |
| -                                  | ND       | 2.0  | μg/L         |                      |
| Diisopropyl Ether (DIPE)           | ND       | 0.50 | μg/L         |                      |
| 1,4-Dioxane                        | ND       | 50   | μg/L         |                      |
| Ethylbenzene                       | ND       | 1.0  | μg/L         |                      |
| Hexachlorobutadiene                | ND       | 0.60 | μg/L         |                      |
| 2-Hexanone (MBK)                   | ND       | 10   | μg/L         |                      |
| Isopropylbenzene (Cumene)          | ND       | 1.0  | μg/L         |                      |
| p-Isopropyltoluene (p-Cymene)      | ND       | 1.0  | μg/L         |                      |
| Methyl Acetate                     | ND       | 1.0  | μg/L         |                      |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| nalyte                                        | Result       | Reporting<br>Limit | Units                | Spike<br>Level       | Source<br>Result | %REC       | %REC<br>Limits             | RPD | RPD<br>Limit | Notes |
|-----------------------------------------------|--------------|--------------------|----------------------|----------------------|------------------|------------|----------------------------|-----|--------------|-------|
| atch B293683 - SW-846 5030B                   |              |                    |                      |                      |                  |            |                            |     |              |       |
| lank (B293683-BLK1)                           |              |                    |                      | Prepared &           | Analyzed: 11/    | /01/21     |                            |     |              |       |
| ethyl tert-Butyl Ether (MTBE)                 | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| ethyl Cyclohexane                             | ND           | 1.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| ethylene Chloride                             | ND           | 5.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| Methyl-2-pentanone (MIBK)                     | ND           | 10                 | μg/L                 |                      |                  |            |                            |     |              |       |
| aphthalene                                    | ND           | 2.0                | μg/L                 |                      |                  |            |                            |     |              | V-05  |
| Propylbenzene                                 | ND           | 1.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| yrene                                         | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 1,1,2-Tetrachloroethane                       | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 1,2,2-Tetrachloroethane                       | ND           | 0.50               | μg/L                 |                      |                  |            |                            |     |              |       |
| etrachloroethylene                            | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| etrahydrofuran                                | ND           | 10                 | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| bluene                                        | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 2,3-Trichlorobenzene                          | ND           | 5.0                | $\mu g/L$            |                      |                  |            |                            |     |              | V-05  |
| 2,4-Trichlorobenzene                          | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              | V-05  |
| 3,5-Trichlorobenzene                          | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 1,1-Trichloroethane                           | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 1,2-Trichloroethane                           | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| richloroethylene                              | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| richlorofluoromethane (Freon 11)              | ND           | 2.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| 2,3-Trichloropropane                          | ND           | 2.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 1,2-Trichloro-1,2,2-trifluoroethane (Freon 3) | ND           | 1.0                | $\mu g/L$            |                      |                  |            |                            |     |              |       |
| 2,4-Trimethylbenzene                          | ND           | 1.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| 3,5-Trimethylbenzene                          | ND           | 1.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| inyl Chloride                                 | ND           | 2.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| +p Xylene                                     | ND           | 2.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| Xylene                                        | ND           | 1.0                | μg/L                 |                      |                  |            |                            |     |              |       |
| urrogate: 1,2-Dichloroethane-d4               | 25.5         |                    | μg/L                 | 25.0                 |                  | 102        | 70-130                     |     |              |       |
| urrogate: Toluene-d8                          | 26.8         |                    | μg/L                 | 25.0                 |                  | 107        | 70-130                     |     |              |       |
| urrogate: 4-Bromofluorobenzene                | 25.5         |                    | μg/L                 | 25.0                 |                  | 102        | 70-130                     |     |              |       |
| CS (B293683-BS1)                              |              |                    |                      | Prepared &           | Analyzed: 11/    | /01/21     |                            |     |              |       |
| cetone                                        | 95.6         | 50                 | μg/L                 | 100                  |                  | 95.6       | 70-160                     |     |              |       |
| crylonitrile                                  | 8.61         | 5.0                | μg/L                 | 10.0                 |                  | 86.1       | 70-130                     |     |              |       |
| rt-Amyl Methyl Ether (TAME)                   | 9.88         | 0.50               | $\mu g/L$            | 10.0                 |                  | 98.8       | 70-130                     |     |              |       |
| enzene                                        | 10.6         | 1.0                | $\mu g/L$            | 10.0                 |                  | 106        | 70-130                     |     |              |       |
| romobenzene                                   | 9.80         | 1.0                | $\mu g/L$            | 10.0                 |                  | 98.0       | 70-130                     |     |              |       |
| romochloromethane                             | 10.3         | 1.0                | $\mu g/L$            | 10.0                 |                  | 103        | 70-130                     |     |              |       |
| romodichloromethane                           | 10.1         | 0.50               | $\mu g/L$            | 10.0                 |                  | 101        | 70-130                     |     |              |       |
| romoform                                      | 9.83         | 1.0                | $\mu g/L$            | 10.0                 |                  | 98.3       | 70-130                     |     |              |       |
| romomethane                                   | 10.7         | 2.0                | $\mu g/L$            | 10.0                 |                  | 107        | 40-160                     |     |              |       |
| Butanone (MEK)                                | 91.3         | 20                 | $\mu g/L$            | 100                  |                  | 91.3       | 40-160                     |     |              |       |
| rt-Butyl Alcohol (TBA)                        | 84.9         | 20                 | $\mu g/L$            | 100                  |                  | 84.9       | 40-160                     |     |              |       |
| Butylbenzene                                  | 8.93         | 1.0                | $\mu g/L$            | 10.0                 |                  | 89.3       | 70-130                     |     |              |       |
| c-Butylbenzene                                | 9.68         | 1.0                | $\mu g/L$            | 10.0                 |                  | 96.8       | 70-130                     |     |              |       |
| rt-Butylbenzene                               | 10.1         | 1.0                | μg/L                 | 10.0                 |                  | 101        | 70-130                     |     |              |       |
| rt-Butyl Ethyl Ether (TBEE)                   | 9.80         | 0.50               | μg/L                 | 10.0                 |                  | 98.0       | 70-130                     |     |              |       |
|                                               | 93.9         | 5.0                | μg/L                 | 100                  |                  | 93.9       | 70-130                     |     |              |       |
| arbon Disulfide                               |              | 5.0                | μg/L                 | 10.0                 |                  | 97.2       | 70-130                     |     |              |       |
| arbon Distillide<br>arbon Tetrachloride       | 9 12         |                    |                      |                      |                  |            |                            |     |              |       |
|                                               | 9.72<br>10.6 | 1.0                | μg/L                 | 10.0                 |                  | 106        | 70-130                     |     |              |       |
| arbon Tetrachloride                           | 10.6         |                    | μg/L<br>μg/L         | 10.0<br>10.0         |                  | 106<br>105 | 70-130<br>70-130           |     |              |       |
| arbon Tetrachloride<br>hlorobenzene           |              | 1.0                | μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0 |                  |            | 70-130<br>70-130<br>70-130 |     |              |       |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                          | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|----------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-----|--------------|------------|
| Batch B293683 - SW-846 5030B     |        |                    |           |                |                  |        |                |     |              |            |
| CS (B293683-BS1)                 |        |                    |           | Prepared & A   | Analyzed: 11/01  | /21    |                |     |              |            |
| hloromethane                     | 10.6   | 2.0                | $\mu g/L$ | 10.0           |                  | 106    | 40-160         |     |              |            |
| Chlorotoluene                    | 9.90   | 1.0                | μg/L      | 10.0           |                  | 99.0   | 70-130         |     |              |            |
| Chlorotoluene                    | 9.87   | 1.0                | μg/L      | 10.0           |                  | 98.7   | 70-130         |     |              |            |
| 2-Dibromo-3-chloropropane (DBCP) | 8.35   | 5.0                | μg/L      | 10.0           |                  | 83.5   | 70-130         |     |              |            |
| 2-Dibromoethane (EDB)            | 10.1   | 0.50               | μg/L      | 10.0           |                  | 101    | 70-130         |     |              |            |
| bromomethane                     | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |
| 2-Dichlorobenzene                | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |
| 3-Dichlorobenzene                | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| -Dichlorobenzene                 | 9.98   | 1.0                | μg/L      | 10.0           |                  | 99.8   | 70-130         |     |              |            |
| ns-1,4-Dichloro-2-butene         | 9.83   | 2.0                | μg/L      | 10.0           |                  | 98.3   | 70-130         |     |              |            |
| chlorodifluoromethane (Freon 12) | 10.1   | 2.0                | μg/L      | 10.0           |                  | 101    | 40-160         |     |              |            |
| -Dichloroethane                  | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         |     |              |            |
| -Dichloroethane                  | 9.83   | 1.0                | μg/L      | 10.0           |                  | 98.3   | 70-130         |     |              |            |
| -Dichloroethylene                | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| -1,2-Dichloroethylene            | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| ns-1,2-Dichloroethylene          | 9.67   | 1.0                | μg/L      | 10.0           |                  | 96.7   | 70-130         |     |              |            |
| 2-Dichloropropane                | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |
| -Dichloropropane                 | 9.77   | 0.50               | μg/L      | 10.0           |                  | 97.7   | 70-130         |     |              |            |
| 2-Dichloropropane                | 9.78   | 1.0                | μg/L      | 10.0           |                  | 97.8   | 40-130         |     |              |            |
| -Dichloropropene                 | 9.51   | 2.0                | μg/L      | 10.0           |                  | 95.1   | 70-130         |     |              |            |
| -1,3-Dichloropropene             | 10.3   | 0.50               | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |
| ns-1,3-Dichloropropene           | 9.63   | 0.50               | μg/L      | 10.0           |                  | 96.3   | 70-130         |     |              |            |
| ethyl Ether                      | 9.62   | 2.0                | μg/L      | 10.0           |                  | 96.2   | 70-130         |     |              |            |
| isopropyl Ether (DIPE)           | 9.73   | 0.50               | μg/L      | 10.0           |                  | 97.3   | 70-130         |     |              |            |
| 4-Dioxane                        | 82.6   | 50                 | μg/L      | 100            |                  | 82.6   | 40-130         |     |              |            |
| nylbenzene                       | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 70-130         |     |              |            |
| exachlorobutadiene               | 9.53   | 0.60               | μg/L      | 10.0           |                  | 95.3   | 70-130         |     |              |            |
| Hexanone (MBK)                   | 90.2   | 10                 | μg/L      | 100            |                  | 90.2   | 70-160         |     |              |            |
| opropylbenzene (Cumene)          | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| Isopropyltoluene (p-Cymene)      | 9.44   | 1.0                | μg/L      | 10.0           |                  | 94.4   | 70-130         |     |              |            |
| ethyl Acetate                    | 9.98   | 1.0                | μg/L      | 10.0           |                  | 99.8   | 70-130         |     |              |            |
| ethyl tert-Butyl Ether (MTBE)    | 9.58   | 1.0                | μg/L      | 10.0           |                  | 95.8   | 70-130         |     |              |            |
| ethyl Cyclohexane                | 8.85   | 1.0                | μg/L      | 10.0           |                  | 88.5   | 70-130         |     |              |            |
| ethylene Chloride                | 10.1   | 5.0                | μg/L      | 10.0           |                  | 101    | 70-130         |     |              |            |
| Methyl-2-pentanone (MIBK)        | 95.9   | 10                 | μg/L      | 100            |                  | 95.9   | 70-160         |     |              |            |
| phthalene                        | 5.73   | 2.0                | μg/L      | 10.0           |                  | 57.3   | 40-130         |     |              | V-05       |
| Propylbenzene                    | 9.72   | 1.0                | μg/L      | 10.0           |                  | 97.2   | 70-130         |     |              |            |
| yrene                            | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| 1,1,2-Tetrachloroethane          | 10.5   | 1.0                | μg/L      | 10.0           |                  | 105    | 70-130         |     |              |            |
| 1,2,2-Tetrachloroethane          | 10.4   | 0.50               | μg/L      | 10.0           |                  | 104    | 70-130         |     |              |            |
| trachloroethylene                | 10.4   | 1.0                | μg/L      | 10.0           |                  | 104    | 70-130         |     |              |            |
| trahydrofuran                    | 9.03   | 10                 | μg/L      | 10.0           |                  | 90.3   | 70-130         |     |              | J          |
| luene                            | 10.7   | 1.0                | μg/L      | 10.0           |                  | 107    | 70-130         |     |              |            |
| 2,3-Trichlorobenzene             | 6.82   | 5.0                | μg/L      | 10.0           |                  | 68.2 * | 70-130         |     |              | L-07, V-05 |
| 2,4-Trichlorobenzene             | 7.63   | 1.0                | μg/L      | 10.0           |                  | 76.3   | 70-130         |     |              | V-05       |
| 3,5-Trichlorobenzene             | 8.64   | 1.0                | μg/L      | 10.0           |                  | 86.4   | 70-130         |     |              |            |
| 1,1-Trichloroethane              | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         |     |              |            |
| 1,2-Trichloroethane              | 10.5   | 1.0                | μg/L      | 10.0           |                  | 105    | 70-130         |     |              |            |
| richloroethylene                 | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         |     |              |            |
| richlorofluoromethane (Freon 11) | 10.1   | 2.0                | $\mu g/L$ | 10.0           |                  | 101    | 70-130         |     |              |            |
| 2,3-Trichloropropane             | 8.89   | 2.0                | $\mu g/L$ | 10.0           |                  | 88.9   | 70-130         |     |              |            |



# QUALITY CONTROL

| Analyte                                     | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result % |      | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------------------------|--------------|--------------------|--------------|----------------|--------------------|------|----------------|------|--------------|-------|
| Batch B293683 - SW-846 5030B                |              |                    |              |                |                    |      |                |      |              |       |
| CS (B293683-BS1)                            |              |                    |              | Prepared &     | Analyzed: 11/01/2  | 21   |                |      |              |       |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 9.54         | 1.0                | μg/L         | 10.0           | 9                  | 95.4 | 70-130         |      |              |       |
| 13)                                         |              | 1.0                | /T           | 10.0           |                    | 100  | <b>5</b> 0.130 |      |              |       |
| ,2,4-Trimethylbenzene                       | 10.2         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         |      |              |       |
| ,3,5-Trimethylbenzene                       | 9.74         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         |      |              |       |
| Vinyl Chloride                              | 10.9         | 2.0                | μg/L         | 10.0           |                    |      | 40-160         |      |              |       |
| n+p Xylene                                  | 21.1         | 2.0                | μg/L         | 20.0           |                    |      | 70-130         |      |              |       |
| -Xylene                                     | 10.8         | 1.0                | μg/L         | 10.0           |                    | 108  | 70-130         |      |              |       |
| surrogate: 1,2-Dichloroethane-d4            | 25.9         |                    | $\mu g/L$    | 25.0           | 1                  | 104  | 70-130         |      |              |       |
| urrogate: Toluene-d8                        | 26.7         |                    | $\mu g/L$    | 25.0           | 1                  | 107  | 70-130         |      |              |       |
| urrogate: 4-Bromofluorobenzene              | 26.4         |                    | $\mu g/L$    | 25.0           | 1                  | 105  | 70-130         |      |              |       |
| .CS Dup (B293683-BSD1)                      |              |                    |              | Prepared & A   | Analyzed: 11/01/2  | 21   |                |      |              |       |
| cetone                                      | 104          | 50                 | μg/L         | 100            | 1                  | 104  | 70-160         | 8.23 | 25           |       |
| acrylonitrile                               | 9.02         | 5.0                | μg/L         | 10.0           |                    |      | 70-130         | 4.65 | 25           |       |
| ert-Amyl Methyl Ether (TAME)                | 10.6         | 0.50               | μg/L         | 10.0           |                    |      | 70-130         | 6.94 | 25           |       |
| Benzene                                     | 11.0         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 3.15 | 25           |       |
| Bromobenzene                                | 10.5         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 6.71 | 25           |       |
| romochloromethane                           | 11.2         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 8.07 | 25           |       |
| romodichloromethane                         | 11.4         | 0.50               | μg/L         | 10.0           |                    |      | 70-130         | 11.6 | 25           |       |
| romoform                                    | 10.4         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.15 | 25           |       |
| romomethane                                 | 11.5         | 2.0                | μg/L         | 10.0           |                    |      | 40-160         | 7.23 | 25           |       |
| Butanone (MEK)                              | 100          | 20                 | μg/L         | 100            |                    |      | 40-160         | 9.04 | 25           |       |
| rt-Butyl Alcohol (TBA)                      | 93.4         | 20                 | μg/L         | 100            |                    |      | 40-160         | 9.60 | 25           |       |
| Butylbenzene                                | 9.47         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.87 | 25           |       |
| ec-Butylbenzene                             | 10.2         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.33 | 25           |       |
| ert-Butylbenzene                            | 10.2         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.49 | 25           |       |
| ert-Butyl Ethyl Ether (TBEE)                | 10.7         | 0.50               | μg/L         | 10.0           |                    |      | 70-130         | 6.13 | 25           |       |
| arbon Disulfide                             | 10.4         | 5.0                | μg/L         | 100            |                    |      | 70-130         | 7.67 | 25           |       |
| arbon Tetrachloride                         | 10.8         | 5.0                | μg/L         | 10.0           |                    |      | 70-130         | 10.9 | 25           |       |
| hlorobenzene                                | 11.0         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 4.26 | 25           |       |
| Chlorodibromomethane                        | 11.5         | 0.50               | μg/L         | 10.0           |                    |      | 70-130         | 8.84 | 25           |       |
| Chloroethane                                | 12.1         | 2.0                | μg/L         | 10.0           |                    |      | 70-130         | 7.52 | 25           |       |
| Chloroform                                  | 11.2         | 2.0                | μg/L         | 10.0           |                    |      | 70-130         | 9.93 | 25           |       |
| Chloromethane                               | 11.3         | 2.0                | μg/L         | 10.0           |                    |      | 40-160         | 6.32 | 25           |       |
| -Chlorotoluene                              | 10.6         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 7.11 | 25           |       |
| -Chlorotoluene                              | 10.4         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 4.75 | 25           |       |
| ,2-Dibromo-3-chloropropane (DBCP)           | 9.47         | 5.0                | μg/L         | 10.0           |                    |      | 70-130         | 12.6 | 25           |       |
| ,2-Dibromoethane (EDB)                      | 10.9         | 0.50               | μg/L         | 10.0           |                    |      | 70-130         | 7.91 | 25           |       |
| Dibromomethane                              | 11.1         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 7.38 | 25           |       |
| ,2-Dichlorobenzene                          | 10.8         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.50 | 25           |       |
| ,3-Dichlorobenzene                          | 10.8         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 5.24 | 25           |       |
| ,4-Dichlorobenzene                          | 10.8         | 1.0                | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 4.89 | 25           |       |
| ans-1,4-Dichloro-2-butene                   | 9.32         | 2.0                | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 5.33 | 25           |       |
| ichlorodifluoromethane (Freon 12)           | 10.6         | 2.0                | μg/L<br>μg/L | 10.0           |                    |      | 40-160         | 4.73 | 25           |       |
| 1-Dichloroethane                            | 10.6         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 6.96 | 25           |       |
| 2-Dichloroethane                            | 10.9         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 4.77 | 25           |       |
| 1-Dichloroethylene                          | 10.5         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 7.71 | 25           |       |
| s-1,2-Dichloroethylene                      | 11.0         | 1.0                | μg/L         | 10.0           |                    |      | 70-130         | 8.04 | 25           |       |
| ans-1,2-Dichloroethylene                    |              | 1.0                | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 6.70 | 25           |       |
| 2-Dichloropropane                           | 10.3         | 1.0                | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 7.94 | 25           |       |
| 3-Dichloropropane                           | 11.1         | 0.50               | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 10.3 | 25<br>25     |       |
| ,2-Dichloropropane                          | 10.8<br>10.5 | 1.0                | μg/L<br>μg/L | 10.0           |                    |      | 40-130         | 7.29 | 25           |       |
| orop.op.op                                  | 10.5         | 2.0                | μg/L<br>μg/L | 10.0           |                    |      | 70-130         | 7.29 | 25           |       |



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD    | RPD<br>Limit | Notes    |       |
|---------------------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|--------|--------------|----------|-------|
| Batch B293683 - SW-846 5030B                      |        |                    |           |                |                  |        |                |        |              |          |       |
| LCS Dup (B293683-BSD1)                            |        |                    |           | Prepared & A   | Analyzed: 11     | /01/21 |                |        |              |          |       |
| cis-1,3-Dichloropropene                           | 11.2   | 0.50               | $\mu g/L$ | 10.0           |                  | 112    | 70-130         | 8.73   | 25           |          |       |
| rans-1,3-Dichloropropene                          | 10.6   | 0.50               | $\mu g/L$ | 10.0           |                  | 106    | 70-130         | 9.21   | 25           |          |       |
| Diethyl Ether                                     | 10.5   | 2.0                | $\mu g/L$ | 10.0           |                  | 105    | 70-130         | 8.37   | 25           |          |       |
| Diisopropyl Ether (DIPE)                          | 10.4   | 0.50               | μg/L      | 10.0           |                  | 104    | 70-130         | 7.14   | 25           |          |       |
| 1,4-Dioxane                                       | 85.4   | 50                 | μg/L      | 100            |                  | 85.4   | 40-130         | 3.37   | 50           |          | †     |
| Ethylbenzene                                      | 10.5   | 1.0                | μg/L      | 10.0           |                  | 105    | 70-130         | 2.50   | 25           |          |       |
| Hexachlorobutadiene                               | 10.4   | 0.60               | μg/L      | 10.0           |                  | 104    | 70-130         | 8.83   | 25           |          |       |
| 2-Hexanone (MBK)                                  | 97.8   | 10                 | μg/L      | 100            |                  | 97.8   | 70-160         | 8.07   | 25           |          | †     |
| (sopropylbenzene (Cumene)                         | 10.6   | 1.0                | μg/L      | 10.0           |                  | 106    | 70-130         | 3.95   | 25           |          |       |
| p-Isopropyltoluene (p-Cymene)                     | 9.96   | 1.0                | μg/L      | 10.0           |                  | 99.6   | 70-130         | 5.36   | 25           |          |       |
| Methyl Acetate                                    | 10.8   | 1.0                | μg/L      | 10.0           |                  | 108    | 70-130         | 8.35   | 25           |          |       |
| Methyl tert-Butyl Ether (MTBE)                    | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         | 5.38   | 25           |          |       |
| Methyl Cyclohexane                                | 9.61   | 1.0                | μg/L      | 10.0           |                  | 96.1   | 70-130         | 8.23   | 25           |          |       |
| Methylene Chloride                                | 11.0   | 5.0                | μg/L      | 10.0           |                  | 110    | 70-130         | 8.73   | 25           |          |       |
| 4-Methyl-2-pentanone (MIBK)                       | 104    | 10                 | μg/L      | 100            |                  | 104    | 70-160         | 7.80   | 25           |          | Ť     |
| Naphthalene                                       | 6.30   | 2.0                | μg/L      | 10.0           |                  | 63.0   | 40-130         | 9.48   | 25           | V-05     | †     |
| n-Propylbenzene                                   | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         | 5.11   | 25           |          |       |
| Styrene                                           | 10.7   | 1.0                | μg/L      | 10.0           |                  | 107    | 70-130         | 4.48   | 25           |          |       |
| 1,1,1,2-Tetrachloroethane                         | 11.1   | 1.0                | μg/L      | 10.0           |                  | 111    | 70-130         | 5.18   | 25           |          |       |
| 1,1,2,2-Tetrachloroethane                         | 10.8   | 0.50               | μg/L      | 10.0           |                  | 108    | 70-130         | 3.86   | 25           |          |       |
| Tetrachloroethylene                               | 11.2   | 1.0                | μg/L      | 10.0           |                  | 112    | 70-130         | 7.80   | 25           |          |       |
| Tetrahydrofuran                                   | 9.60   | 10                 | μg/L      | 10.0           |                  | 96.0   | 70-130         | 6.12   | 25           | J        |       |
| Toluene                                           | 10.9   | 1.0                | μg/L      | 10.0           |                  | 109    | 70-130         | 1.11   | 25           |          |       |
| 1,2,3-Trichlorobenzene                            | 7.63   | 5.0                | μg/L      | 10.0           |                  | 76.3   | 70-130         | 11.2   | 25           | V-05     |       |
| 1,2,4-Trichlorobenzene                            | 8.12   | 1.0                | μg/L      | 10.0           |                  | 81.2   | 70-130         | 6.22   | 25           | V-05     |       |
| 1,3,5-Trichlorobenzene                            | 9.37   | 1.0                | μg/L      | 10.0           |                  | 93.7   | 70-130         | 8.11   | 25           |          |       |
| 1,1,1-Trichloroethane                             | 10.9   | 1.0                | μg/L      | 10.0           |                  | 109    | 70-130         | 7.61   | 25           |          |       |
| 1,1,2-Trichloroethane                             | 11.3   | 1.0                | μg/L      | 10.0           |                  | 113    | 70-130         | 6.88   | 25           |          |       |
| Trichloroethylene                                 | 11.0   | 1.0                | μg/L      | 10.0           |                  | 110    | 70-130         | 7.51   | 25           |          |       |
| Trichlorofluoromethane (Freon 11)                 | 10.7   | 2.0                | μg/L      | 10.0           |                  | 107    | 70-130         | 6.54   | 25           |          |       |
| 1,2,3-Trichloropropane                            | 9.79   | 2.0                | μg/L      | 10.0           |                  | 97.9   | 70-130         | 9.64   | 25           |          |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 9.83   | 1.0                | μg/L      | 10.0           |                  | 98.3   | 70-130         | 2.99   | 25           |          |       |
| 1,2,4-Trimethylbenzene                            | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         | 0.0979 | 25           |          |       |
| 1,3,5-Trimethylbenzene                            | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         | 5.10   | 25           |          |       |
| Vinyl Chloride                                    | 11.6   | 2.0                | $\mu g/L$ | 10.0           |                  | 116    | 40-160         | 6.39   | 25           |          | †     |
| m+p Xylene                                        | 21.4   | 2.0                | $\mu g/L$ | 20.0           |                  | 107    | 70-130         | 1.37   | 25           |          |       |
| o-Xylene                                          | 10.9   | 1.0                | $\mu g/L$ | 10.0           |                  | 109    | 70-130         | 1.02   | 25           |          |       |
| Surrogate: 1,2-Dichloroethane-d4                  | 25.9   |                    | μg/L      | 25.0           |                  | 103    | 70-130         |        |              |          |       |
| Surrogate: Toluene-d8                             | 27.1   |                    | μg/L      | 25.0           |                  | 108    | 70-130         |        |              |          |       |
| Surrogate: 4-Bromofluorobenzene                   | 26.4   |                    | μg/L      | 25.0           |                  | 106    | 70-130         |        |              |          |       |
| Batch B293865 - SW-846 5030B                      |        |                    |           |                |                  |        |                |        |              |          |       |
| Blank (B293865-BLK1)                              |        |                    |           | Prepared & A   | Analyzed: 11     | /03/21 |                |        |              |          |       |
| Acetone                                           | ND     | 50                 | μg/L      | -              | -                |        |                |        |              |          |       |
| Acrylonitrile                                     | ND     | 5.0                | μg/L      |                |                  |        |                |        |              |          |       |
| tert-Amyl Methyl Ether (TAME)                     | ND     | 0.50               | μg/L      |                |                  |        |                |        |              |          |       |
| Benzene                                           | ND     | 1.0                | μg/L      |                |                  |        |                |        |              |          |       |
| Bromobenzene                                      | ND     | 1.0                | μg/L      |                |                  |        |                |        |              |          |       |
| Bromochloromethane                                | ND     | 1.0                | μg/L      |                |                  |        |                |        |              |          |       |
| Bromodichloromethane                              | ND     | 0.50               | μg/L      |                |                  |        |                |        |              |          |       |
| Bromoform                                         | ND     | 1.0                | μg/L      |                |                  |        |                |        |              |          |       |
|                                                   |        |                    |           |                |                  |        |                |        | Pa           | ge 104 c | of 14 |



## QUALITY CONTROL

| nalyte                              | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------|----------|--------------------|--------------|----------------|------------------|--------|----------------|-----|--------------|-------|
| atch B293865 - SW-846 5030B         |          |                    |              |                |                  |        |                |     |              |       |
| lank (B293865-BLK1)                 |          |                    |              | Prepared & A   | Analyzed: 11     | /03/21 |                |     |              |       |
| romomethane                         | ND       | 2.0                | μg/L         |                |                  |        |                |     |              |       |
| Butanone (MEK)                      | ND       | 20                 | $\mu g/L$    |                |                  |        |                |     |              |       |
| rt-Butyl Alcohol (TBA)              | ND       | 20                 | $\mu g/L$    |                |                  |        |                |     |              |       |
| Butylbenzene                        | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| c-Butylbenzene                      | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| rt-Butylbenzene                     | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| rt-Butyl Ethyl Ether (TBEE)         | ND       | 0.50               | μg/L         |                |                  |        |                |     |              |       |
| arbon Disulfide                     | ND       | 5.0                | μg/L         |                |                  |        |                |     |              |       |
| arbon Tetrachloride                 | ND       | 5.0                | μg/L         |                |                  |        |                |     |              |       |
| hlorobenzene                        | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| nlorodibromomethane                 | ND       | 0.50               | μg/L         |                |                  |        |                |     |              |       |
| hloroethane                         | ND       | 2.0                | μg/L         |                |                  |        |                |     |              |       |
| hloroform                           | ND       | 2.0                | μg/L         |                |                  |        |                |     |              |       |
| hloromethane                        | ND       | 2.0                | μg/L         |                |                  |        |                |     |              |       |
| Chlorateleses                       | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| Chlorotoluene                       | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| 2-Dibromo-3-chloropropane (DBCP)    | ND       | 5.0                | μg/L         |                |                  |        |                |     |              |       |
| 2-Dibromoethane (EDB) ibromomethane | ND       | 0.50<br>1.0        | μg/L         |                |                  |        |                |     |              |       |
| 2-Dichlorobenzene                   | ND       | 1.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| 3-Dichlorobenzene                   | ND       | 1.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| 4-Dichlorobenzene                   | ND       | 1.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| ans-1,4-Dichloro-2-butene           | ND       | 2.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| ichlorodifluoromethane (Freon 12)   | ND<br>ND | 2.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| 1-Dichloroethane                    | ND<br>ND | 1.0                | μg/L<br>μg/L |                |                  |        |                |     |              |       |
| 2-Dichloroethane                    | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| 1-Dichloroethylene                  | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| s-1,2-Dichloroethylene              | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| ans-1,2-Dichloroethylene            | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| 2-Dichloropropane                   | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| 3-Dichloropropane                   | ND       | 0.50               | μg/L         |                |                  |        |                |     |              |       |
| 2-Dichloropropane                   | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| 1-Dichloropropene                   | ND       | 2.0                | μg/L         |                |                  |        |                |     |              |       |
| s-1,3-Dichloropropene               | ND       | 0.50               | μg/L         |                |                  |        |                |     |              |       |
| ans-1,3-Dichloropropene             | ND       | 0.50               | μg/L         |                |                  |        |                |     |              |       |
| iethyl Ether                        | ND       | 2.0                | $\mu g/L$    |                |                  |        |                |     |              |       |
| iisopropyl Ether (DIPE)             | ND       | 0.50               | $\mu g/L$    |                |                  |        |                |     |              |       |
| 4-Dioxane                           | ND       | 50                 | $\mu g/L$    |                |                  |        |                |     |              |       |
| thylbenzene                         | ND       | 1.0                | $\mu g/L$    |                |                  |        |                |     |              |       |
| exachlorobutadiene                  | ND       | 0.60               | $\mu g/L$    |                |                  |        |                |     |              |       |
| Hexanone (MBK)                      | ND       | 10                 | $\mu g/L$    |                |                  |        |                |     |              |       |
| opropylbenzene (Cumene)             | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| Isopropyltoluene (p-Cymene)         | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| ethyl Acetate                       | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| ethyl tert-Butyl Ether (MTBE)       | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| ethyl Cyclohexane                   | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| ethylene Chloride                   | ND       | 5.0                | μg/L         |                |                  |        |                |     |              |       |
| Methyl-2-pentanone (MIBK)           | ND       | 10                 | μg/L         |                |                  |        |                |     |              |       |
| aphthalene                          | ND       | 2.0                | μg/L         |                |                  |        |                |     |              | V-05  |
| Propylbenzene                       | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |
| yrene                               | ND       | 1.0                | μg/L         |                |                  |        |                |     |              |       |

%REC

RPD



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

# Volatile Organic Compounds by GC/MS - Quality Control

| analyte                                               | Result       | Limit       | Units        | Level      | Source<br>Result | %REC  | %REC<br>Limits | RPD | Limit  | Notes  |
|-------------------------------------------------------|--------------|-------------|--------------|------------|------------------|-------|----------------|-----|--------|--------|
| maryce                                                | Result       | Limit       | Oma          | Level      | Result           | 70KLC | Limits         | МЪ  | Liiiit | 110103 |
| atch B293865 - SW-846 5030B                           |              |             |              |            |                  |       |                |     |        |        |
| lank (B293865-BLK1)                                   |              |             |              | Prepared & | Analyzed: 11/    | 03/21 |                |     |        |        |
| 1,2,2-Tetrachloroethane                               | ND           | 0.50        | μg/L         |            |                  |       |                |     |        |        |
| etrachloroethylene                                    | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| etrahydrofuran                                        | ND           | 10          | μg/L         |            |                  |       |                |     |        |        |
| bluene                                                | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| 2,3-Trichlorobenzene                                  | ND           | 5.0         | $\mu g/L$    |            |                  |       |                |     |        | V-05   |
| 2,4-Trichlorobenzene                                  | ND           | 1.0         | $\mu g/L$    |            |                  |       |                |     |        | V-05   |
| 3,5-Trichlorobenzene                                  | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| 1,1-Trichloroethane                                   | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| 1,2-Trichloroethane                                   | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| richloroethylene                                      | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| richlorofluoromethane (Freon 11)                      | ND           | 2.0         | μg/L         |            |                  |       |                |     |        |        |
| 2,3-Trichloropropane                                  | ND           | 2.0         | μg/L         |            |                  |       |                |     |        |        |
| 1,2-Trichloro-1,2,2-trifluoroethane (Freon            |              | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| 3)                                                    | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| 2,4-Trimethylbenzene                                  | ND           | 1.0         | $\mu g/L$    |            |                  |       |                |     |        |        |
| 3,5-Trimethylbenzene                                  | ND           | 1.0         | $\mu g/L$    |            |                  |       |                |     |        |        |
| inyl Chloride                                         | ND           | 2.0         | μg/L         |            |                  |       |                |     |        |        |
| +p Xylene                                             | ND           | 2.0         | μg/L         |            |                  |       |                |     |        |        |
| -Xylene                                               | ND           | 1.0         | μg/L         |            |                  |       |                |     |        |        |
| arrogate: 1,2-Dichloroethane-d4                       | 25.7         |             | μg/L         | 25.0       |                  | 103   | 70-130         |     |        |        |
| arrogate: Toluene-d8                                  | 25.8         |             | μg/L         | 25.0       |                  | 103   | 70-130         |     |        |        |
| urrogate: 4-Bromofluorobenzene                        | 25.1         |             | μg/L         | 25.0       |                  | 100   | 70-130         |     |        |        |
| CS (B293865-BS1)                                      |              |             | . 5          |            | Analyzed: 11/    |       |                |     |        |        |
| cetone                                                | 97.2         | 50          | μg/L         | 100        | maryzed. 117     | 97.2  | 70-160         |     |        |        |
| crylonitrile                                          |              | 5.0         | μg/L         | 10.0       |                  | 83.7  | 70-100         |     |        |        |
| ·                                                     | 8.37         |             |              |            |                  |       |                |     |        |        |
| rt-Amyl Methyl Ether (TAME)                           | 10.0         | 0.50        | μg/L         | 10.0       |                  | 100   | 70-130         |     |        |        |
| enzene                                                | 10.9         | 1.0         | μg/L         | 10.0       |                  | 109   | 70-130         |     |        |        |
| romobenzene                                           | 10.1         | 1.0         | μg/L         | 10.0       |                  | 101   | 70-130         |     |        |        |
| romochloromethane                                     | 11.2         | 1.0         | μg/L         | 10.0       |                  | 112   | 70-130         |     |        |        |
| romodichloromethane                                   | 10.9         | 0.50        | μg/L         | 10.0       |                  | 109   | 70-130         |     |        |        |
| romoform                                              | 10.0         | 1.0         | μg/L         | 10.0       |                  | 100   | 70-130         |     |        |        |
| romomethane                                           | 12.0         | 2.0         | μg/L         | 10.0       |                  | 120   | 40-160         |     |        | V-20   |
| Butanone (MEK)                                        | 92.3         | 20          | $\mu g/L$    | 100        |                  | 92.3  | 40-160         |     |        |        |
| rt-Butyl Alcohol (TBA)                                | 87.1         | 20          | $\mu g/L$    | 100        |                  | 87.1  | 40-160         |     |        |        |
| Butylbenzene                                          | 9.20         | 1.0         | $\mu g/L$    | 10.0       |                  | 92.0  | 70-130         |     |        |        |
| c-Butylbenzene                                        | 10.1         | 1.0         | μg/L         | 10.0       |                  | 101   | 70-130         |     |        |        |
| rt-Butylbenzene                                       | 10.2         | 1.0         | μg/L         | 10.0       |                  | 102   | 70-130         |     |        |        |
| rt-Butyl Ethyl Ether (TBEE)                           | 10.3         | 0.50        | μg/L         | 10.0       |                  | 103   | 70-130         |     |        |        |
| arbon Disulfide                                       | 10.3         | 5.0         | μg/L         | 100        |                  | 107   | 70-130         |     |        |        |
| arbon Tetrachloride                                   | 10.8         | 5.0         | μg/L         | 10.0       |                  | 108   | 70-130         |     |        |        |
| hlorobenzene                                          |              | 1.0         | μg/L<br>μg/L | 10.0       |                  | 108   | 70-130         |     |        |        |
| hlorodibromomethane                                   | 10.9         | 0.50        |              |            |                  | 109   | 70-130         |     |        |        |
| hloroethane                                           | 10.8         |             | μg/L<br>μg/I | 10.0       |                  |       |                |     |        | 37.20  |
|                                                       | 12.7         | 2.0         | μg/L         | 10.0       |                  | 127   | 70-130         |     |        | V-20   |
| hloroform                                             | 10.7         | 2.0         | μg/L         | 10.0       |                  | 107   | 70-130         |     |        |        |
| hloromethane                                          | 11.6         | 2.0         | μg/L         | 10.0       |                  | 116   | 40-160         |     |        |        |
| Chlorotoluene                                         | 10.5         | 1.0         | μg/L         | 10.0       |                  | 105   | 70-130         |     |        |        |
| Chlorotoluene                                         | 10.2         | 1.0         | μg/L         | 10.0       |                  | 102   | 70-130         |     |        |        |
| 2-Dibromo-3-chloropropane (DBCP)                      | 8.34         | 5.0         | μg/L         | 10.0       |                  | 83.4  | 70-130         |     |        |        |
|                                                       |              |             | u ~/I        | 10.0       |                  | 106   | 70-130         |     |        |        |
| 2-Dibromoethane (EDB)                                 | 10.6         | 0.50        | μg/L         | 10.0       |                  | 100   |                |     |        |        |
| , ,                                                   | 10.6<br>10.6 | 0.50<br>1.0 | μg/L<br>μg/L | 10.0       |                  | 106   | 70-130         |     |        |        |
| 2-Dibromoethane (EDB) ibromomethane 2-Dichlorobenzene |              |             |              |            |                  |       |                |     |        |        |



## QUALITY CONTROL

| Analyte                                     | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result %REC | %REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
|---------------------------------------------|--------|--------------------|--------------|----------------|-----------------------|----------------|-----|--------------|-------|--|
| Batch B293865 - SW-846 5030B                |        |                    |              |                |                       |                |     |              |       |  |
| LCS (B293865-BS1)                           |        |                    |              | Prepared &     | Analyzed: 11/03/21    |                |     |              |       |  |
| 1,4-Dichlorobenzene                         | 10.5   | 1.0                | μg/L         | 10.0           | 105                   | 70-130         |     |              |       |  |
| crans-1,4-Dichloro-2-butene                 | 9.30   | 2.0                | $\mu g/L$    | 10.0           | 93.0                  | 70-130         |     |              |       |  |
| Dichlorodifluoromethane (Freon 12)          | 10.5   | 2.0                | $\mu g/L$    | 10.0           | 105                   | 40-160         |     |              |       |  |
| 1,1-Dichloroethane                          | 10.7   | 1.0                | $\mu g/L$    | 10.0           | 107                   | 70-130         |     |              |       |  |
| 1,2-Dichloroethane                          | 10.4   | 1.0                | $\mu g/L$    | 10.0           | 104                   | 70-130         |     |              |       |  |
| 1,1-Dichloroethylene                        | 10.9   | 1.0                | $\mu g/L$    | 10.0           | 109                   | 70-130         |     |              |       |  |
| eis-1,2-Dichloroethylene                    | 11.0   | 1.0                | $\mu g/L$    | 10.0           | 110                   | 70-130         |     |              |       |  |
| trans-1,2-Dichloroethylene                  | 10.1   | 1.0                | $\mu g/L$    | 10.0           | 101                   | 70-130         |     |              |       |  |
| 1,2-Dichloropropane                         | 10.5   | 1.0                | $\mu g/L$    | 10.0           | 105                   | 70-130         |     |              |       |  |
| 1,3-Dichloropropane                         | 10.4   | 0.50               | μg/L         | 10.0           | 104                   | 70-130         |     |              |       |  |
| 2,2-Dichloropropane                         | 10.6   | 1.0                | μg/L         | 10.0           | 106                   | 40-130         |     |              |       |  |
| 1,1-Dichloropropene                         | 10.3   | 2.0                | μg/L         | 10.0           | 103                   | 70-130         |     |              |       |  |
| cis-1,3-Dichloropropene                     | 11.2   | 0.50               | μg/L         | 10.0           | 112                   | 70-130         |     |              |       |  |
| trans-1,3-Dichloropropene                   | 10.1   | 0.50               | μg/L         | 10.0           | 101                   | 70-130         |     |              |       |  |
| Diethyl Ether                               | 10.0   | 2.0                | μg/L         | 10.0           | 100                   | 70-130         |     |              |       |  |
| Diisopropyl Ether (DIPE)                    | 10.1   | 0.50               | μg/L         | 10.0           | 101                   | 70-130         |     |              |       |  |
| 1,4-Dioxane                                 | 84.8   | 50                 | μg/L         | 100            | 84.8                  | 40-130         |     |              |       |  |
| Ethylbenzene                                | 10.3   | 1.0                | μg/L         | 10.0           | 103                   | 70-130         |     |              |       |  |
| Hexachlorobutadiene                         | 10.7   | 0.60               | μg/L         | 10.0           | 107                   | 70-130         |     |              |       |  |
| 2-Hexanone (MBK)                            | 89.0   | 10                 | μg/L         | 100            | 89.0                  | 70-160         |     |              |       |  |
| (sopropylbenzene (Cumene)                   | 10.4   | 1.0                | μg/L         | 10.0           | 104                   | 70-130         |     |              |       |  |
| o-Isopropyltoluene (p-Cymene)               | 9.93   | 1.0                | μg/L         | 10.0           | 99.3                  | 70-130         |     |              |       |  |
| Methyl Acetate                              | 10.5   | 1.0                | μg/L         | 10.0           | 105                   | 70-130         |     |              |       |  |
| Methyl tert-Butyl Ether (MTBE)              | 9.77   | 1.0                | μg/L<br>μg/L | 10.0           | 97.7                  | 70-130         |     |              |       |  |
| Methyl Cyclohexane                          |        | 1.0                | μg/L<br>μg/L | 10.0           | 93.0                  | 70-130         |     |              |       |  |
| Methylene Chloride                          | 9.30   | 5.0                | μg/L<br>μg/L | 10.0           | 112                   | 70-130         |     |              |       |  |
| 4-Methyl-2-pentanone (MIBK)                 | 11.2   | 10                 | μg/L<br>μg/L | 10.0           | 96.6                  | 70-130         |     |              |       |  |
| Naphthalene                                 | 96.6   | 2.0                | μg/L<br>μg/L | 10.0           |                       | 40-130         |     |              | V-05  |  |
| n-Propylbenzene                             | 5.37   | 1.0                |              |                | 53.7                  |                |     |              | V-03  |  |
| • •                                         | 10.1   |                    | μg/L         | 10.0           | 101                   | 70-130         |     |              |       |  |
| Styrene                                     | 10.8   | 1.0                | μg/L         | 10.0           | 108                   | 70-130         |     |              |       |  |
| 1,1,2-Tetrachloroethane                     | 10.8   | 1.0                | μg/L         | 10.0           | 108                   | 70-130         |     |              |       |  |
| 1,1,2,2-Tetrachloroethane                   | 10.5   | 0.50               | μg/L         | 10.0           | 105                   | 70-130         |     |              |       |  |
| Tetrachloroethylene                         | 10.9   | 1.0                | μg/L         | 10.0           | 109                   | 70-130         |     |              | _     |  |
| Tetrahydrofuran                             | 9.05   | 10                 | μg/L         | 10.0           | 90.5                  | 70-130         |     |              | J     |  |
| Toluene                                     | 10.8   | 1.0                | μg/L         | 10.0           | 108                   | 70-130         |     |              |       |  |
| 1,2,3-Trichlorobenzene                      | 7.14   | 5.0                | μg/L         | 10.0           | 71.4                  | 70-130         |     |              | V-05  |  |
| 1,2,4-Trichlorobenzene                      | 7.52   | 1.0                | μg/L         | 10.0           | 75.2                  | 70-130         |     |              | V-05  |  |
| ,3,5-Trichlorobenzene                       | 9.44   | 1.0                | μg/L         | 10.0           | 94.4                  | 70-130         |     |              |       |  |
| 1,1,1-Trichloroethane                       | 10.7   | 1.0                | μg/L         | 10.0           | 107                   | 70-130         |     |              |       |  |
| ,1,2-Trichloroethane                        | 11.2   | 1.0                | μg/L         | 10.0           | 112                   | 70-130         |     |              |       |  |
| Trichloroethylene                           | 11.0   | 1.0                | μg/L         | 10.0           | 110                   | 70-130         |     |              |       |  |
| Trichlorofluoromethane (Freon 11)           | 10.6   | 2.0                | μg/L         | 10.0           | 106                   | 70-130         |     |              |       |  |
| ,2,3-Trichloropropane                       | 9.39   | 2.0                | μg/L         | 10.0           | 93.9                  | 70-130         |     |              |       |  |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 10.1   | 1.0                | μg/L         | 10.0           | 101                   | 70-130         |     |              |       |  |
| 113)                                        |        | 1.0                | ,/r          | 10.0           | 101                   | 70.120         |     |              |       |  |
| ,2,4-Trimethylbenzene                       | 10.1   | 1.0                | μg/L         | 10.0           | 101                   | 70-130         |     |              |       |  |
| ,3,5-Trimethylbenzene                       | 10.0   | 1.0                | μg/L         | 10.0           | 100                   | 70-130         |     |              |       |  |
| Vinyl Chloride                              | 11.9   | 2.0                | μg/L         | 10.0           | 119                   | 40-160         |     |              |       |  |
| n+p Xylene                                  | 20.9   | 2.0                | μg/L         | 20.0           | 104                   | 70-130         |     |              |       |  |
| o-Xylene                                    | 10.7   | 1.0                | μg/L         | 10.0           | 107                   | 70-130         |     |              |       |  |
| Surrogate: 1,2-Dichloroethane-d4            | 26.1   |                    | $\mu g/L$    | 25.0           | 104                   | 70-130         |     |              |       |  |
| Surrogate: Toluene-d8                       | 26.3   |                    | μg/L         | 25.0           | 105                   | 70-130         |     |              |       |  |



## QUALITY CONTROL

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |  |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|--------|--------------|-------|--|
| Batch B293865 - SW-846 5030B       |        |                    |           |                |                  |        |                |        |              |       |  |
| LCS (B293865-BS1)                  |        |                    |           | Prepared & A   | Analyzed: 11     | /03/21 |                |        |              |       |  |
| Surrogate: 4-Bromofluorobenzene    | 26.3   |                    | μg/L      | 25.0           |                  | 105    | 70-130         |        |              |       |  |
| LCS Dup (B293865-BSD1)             |        |                    |           | Prepared & A   | Analyzed: 11     | /03/21 |                |        |              |       |  |
| Acetone                            | 106    | 50                 | μg/L      | 100            |                  | 106    | 70-160         | 8.95   | 25           |       |  |
| Acrylonitrile                      | 9.41   | 5.0                | $\mu g/L$ | 10.0           |                  | 94.1   | 70-130         | 11.7   | 25           |       |  |
| ert-Amyl Methyl Ether (TAME)       | 10.5   | 0.50               | $\mu g/L$ | 10.0           |                  | 105    | 70-130         | 4.97   | 25           |       |  |
| Benzene                            | 11.0   | 1.0                | $\mu g/L$ | 10.0           |                  | 110    | 70-130         | 0.456  | 25           |       |  |
| Bromobenzene                       | 9.87   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.7   | 70-130         | 2.60   | 25           |       |  |
| Bromochloromethane                 | 11.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 112    | 70-130         | 0.358  | 25           |       |  |
| Bromodichloromethane               | 10.9   | 0.50               | $\mu g/L$ | 10.0           |                  | 109    | 70-130         | 0.276  | 25           |       |  |
| Bromoform                          | 10.2   | 1.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         | 1.38   | 25           |       |  |
| Bromomethane                       | 12.0   | 2.0                | μg/L      | 10.0           |                  | 120    | 40-160         | 0.334  | 25           | V-20  |  |
| 2-Butanone (MEK)                   | 103    | 20                 | $\mu g/L$ | 100            |                  | 103    | 40-160         | 11.2   | 25           |       |  |
| ert-Butyl Alcohol (TBA)            | 103    | 20                 | $\mu g/L$ | 100            |                  | 103    | 40-160         | 16.4   | 25           |       |  |
| n-Butylbenzene                     | 9.04   | 1.0                | $\mu g/L$ | 10.0           |                  | 90.4   | 70-130         | 1.75   | 25           |       |  |
| ec-Butylbenzene                    | 9.48   | 1.0                | $\mu g/L$ | 10.0           |                  | 94.8   | 70-130         | 6.04   | 25           |       |  |
| ert-Butylbenzene                   | 9.84   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.4   | 70-130         | 3.49   | 25           |       |  |
| ert-Butyl Ethyl Ether (TBEE)       | 10.2   | 0.50               | $\mu g/L$ | 10.0           |                  | 102    | 70-130         | 1.17   | 25           |       |  |
| Carbon Disulfide                   | 104    | 5.0                | $\mu g/L$ | 100            |                  | 104    | 70-130         | 2.30   | 25           |       |  |
| Carbon Tetrachloride               | 10.2   | 5.0                | $\mu g/L$ | 10.0           |                  | 102    | 70-130         | 5.14   | 25           |       |  |
| Chlorobenzene                      | 10.6   | 1.0                | $\mu g/L$ | 10.0           |                  | 106    | 70-130         | 2.23   | 25           |       |  |
| Chlorodibromomethane               | 10.8   | 0.50               | $\mu g/L$ | 10.0           |                  | 108    | 70-130         | 0.464  | 25           |       |  |
| Chloroethane                       | 12.3   | 2.0                | $\mu g/L$ | 10.0           |                  | 123    | 70-130         | 2.88   | 25           | V-20  |  |
| Chloroform                         | 10.9   | 2.0                | $\mu g/L$ | 10.0           |                  | 109    | 70-130         | 1.85   | 25           |       |  |
| Chloromethane                      | 11.8   | 2.0                | $\mu g/L$ | 10.0           |                  | 118    | 40-160         | 1.70   | 25           |       |  |
| -Chlorotoluene                     | 10.1   | 1.0                | $\mu g/L$ | 10.0           |                  | 101    | 70-130         | 4.28   | 25           |       |  |
| -Chlorotoluene                     | 10.1   | 1.0                | $\mu g/L$ | 10.0           |                  | 101    | 70-130         | 0.886  | 25           |       |  |
| ,2-Dibromo-3-chloropropane (DBCP)  | 9.27   | 5.0                | $\mu g/L$ | 10.0           |                  | 92.7   | 70-130         | 10.6   | 25           |       |  |
| ,2-Dibromoethane (EDB)             | 10.7   | 0.50               | $\mu g/L$ | 10.0           |                  | 107    | 70-130         | 1.60   | 25           |       |  |
| Dibromomethane                     | 10.8   | 1.0                | $\mu g/L$ | 10.0           |                  | 108    | 70-130         | 1.22   | 25           |       |  |
| ,2-Dichlorobenzene                 | 10.4   | 1.0                | $\mu g/L$ | 10.0           |                  | 104    | 70-130         | 3.03   | 25           |       |  |
| ,3-Dichlorobenzene                 | 10.4   | 1.0                | $\mu g/L$ | 10.0           |                  | 104    | 70-130         | 4.52   | 25           |       |  |
| ,4-Dichlorobenzene                 | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         | 3.68   | 25           |       |  |
| rans-1,4-Dichloro-2-butene         | 9.88   | 2.0                | μg/L      | 10.0           |                  | 98.8   | 70-130         | 6.05   | 25           |       |  |
| Dichlorodifluoromethane (Freon 12) | 10.1   | 2.0                | μg/L      | 10.0           |                  | 101    | 40-160         | 4.66   | 25           |       |  |
| ,1-Dichloroethane                  | 10.8   | 1.0                | μg/L      | 10.0           |                  | 108    | 70-130         | 0.653  | 25           |       |  |
| ,2-Dichloroethane                  | 10.2   | 1.0                | μg/L      | 10.0           |                  | 102    | 70-130         | 2.03   | 25           |       |  |
| ,1-Dichloroethylene                | 10.9   | 1.0                | μg/L      | 10.0           |                  | 109    | 70-130         | 0.0914 | 25           |       |  |
| is-1,2-Dichloroethylene            | 10.8   | 1.0                | μg/L      | 10.0           |                  | 108    | 70-130         | 1.74   | 25           |       |  |
| rans-1,2-Dichloroethylene          | 10.4   | 1.0                | μg/L      | 10.0           |                  | 104    | 70-130         | 2.44   | 25           |       |  |
| ,2-Dichloropropane                 | 10.6   | 1.0                | μg/L      | 10.0           |                  | 106    | 70-130         | 0.190  | 25           |       |  |
| ,3-Dichloropropane                 | 10.6   | 0.50               | μg/L      | 10.0           |                  | 106    | 70-130         | 1.62   | 25           |       |  |
| ,2-Dichloropropane                 | 10.3   | 1.0                | μg/L      | 10.0           |                  | 103    | 40-130         | 2.01   | 25           |       |  |
| ,1-Dichloropropene                 | 10.1   | 2.0                | μg/L      | 10.0           |                  | 101    | 70-130         | 2.05   | 25           |       |  |
| is-1,3-Dichloropropene             | 11.0   | 0.50               | μg/L      | 10.0           |                  | 110    | 70-130         | 2.26   | 25           |       |  |
| rans-1,3-Dichloropropene           | 10.1   | 0.50               | μg/L      | 10.0           |                  | 101    | 70-130         | 0.0991 | 25           |       |  |
| Diethyl Ether                      | 10.1   | 2.0                | μg/L      | 10.0           |                  | 101    | 70-130         | 0.496  | 25           |       |  |
| hisopropyl Ether (DIPE)            | 10.3   | 0.50               | μg/L      | 10.0           |                  | 103    | 70-130         | 2.15   | 25           |       |  |
| ,4-Dioxane                         | 95.9   | 50                 | μg/L      | 100            |                  | 95.9   | 40-130         | 12.2   | 50           |       |  |
| ithylbenzene                       | 10.1   | 1.0                | μg/L      | 10.0           |                  | 101    | 70-130         | 2.15   | 25           |       |  |
| Hexachlorobutadiene                | 9.65   | 0.60               | μg/L      | 10.0           |                  | 96.5   | 70-130         | 10.3   | 25           |       |  |
| 2-Hexanone (MBK)                   | 102    | 10                 | μg/L      | 100            |                  | 102    | 70-160         | 13.6   | 25           |       |  |



## QUALITY CONTROL

| Analyte                                           | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|---------------------------------------------------|--------|--------------------|-------------------|----------------|------------------|--------|----------------|-------|--------------|-------|---|
| Batch B293865 - SW-846 5030B                      |        |                    |                   |                |                  |        |                |       |              |       |   |
| LCS Dup (B293865-BSD1)                            |        |                    |                   | Prepared &     | Analyzed: 11     | /03/21 |                |       |              |       |   |
| Isopropylbenzene (Cumene)                         | 10.3   | 1.0                | μg/L              | 10.0           |                  | 103    | 70-130         | 1.74  | 25           |       |   |
| p-Isopropyltoluene (p-Cymene)                     | 9.56   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 95.6   | 70-130         | 3.80  | 25           |       |   |
| Methyl Acetate                                    | 11.3   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 113    | 70-130         | 6.88  | 25           |       |   |
| Methyl tert-Butyl Ether (MTBE)                    | 10.0   | 1.0                | $\mu g/L$         | 10.0           |                  | 100    | 70-130         | 2.43  | 25           |       |   |
| Methyl Cyclohexane                                | 9.18   | 1.0                | $\mu g/L$         | 10.0           |                  | 91.8   | 70-130         | 1.30  | 25           |       |   |
| Methylene Chloride                                | 11.1   | 5.0                | $\mu g/L$         | 10.0           |                  | 111    | 70-130         | 1.17  | 25           |       |   |
| 4-Methyl-2-pentanone (MIBK)                       | 105    | 10                 | $\mu g \! / \! L$ | 100            |                  | 105    | 70-160         | 8.09  | 25           |       | † |
| Naphthalene                                       | 6.16   | 2.0                | $\mu g \! / \! L$ | 10.0           |                  | 61.6   | 40-130         | 13.7  | 25           | V-05  | † |
| n-Propylbenzene                                   | 9.98   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 99.8   | 70-130         | 0.898 | 25           |       |   |
| Styrene                                           | 10.5   | 1.0                | $\mu g/L$         | 10.0           |                  | 105    | 70-130         | 2.35  | 25           |       |   |
| 1,1,1,2-Tetrachloroethane                         | 10.7   | 1.0                | $\mu g/L$         | 10.0           |                  | 107    | 70-130         | 1.02  | 25           |       |   |
| 1,1,2,2-Tetrachloroethane                         | 10.9   | 0.50               | $\mu g \! / \! L$ | 10.0           |                  | 109    | 70-130         | 3.75  | 25           |       |   |
| Tetrachloroethylene                               | 10.3   | 1.0                | $\mu g/L$         | 10.0           |                  | 103    | 70-130         | 5.37  | 25           |       |   |
| Tetrahydrofuran                                   | 10.3   | 10                 | $\mu g/L$         | 10.0           |                  | 103    | 70-130         | 12.5  | 25           |       |   |
| Toluene                                           | 10.6   | 1.0                | $\mu g/L$         | 10.0           |                  | 106    | 70-130         | 1.97  | 25           |       |   |
| 1,2,3-Trichlorobenzene                            | 7.65   | 5.0                | $\mu g/L$         | 10.0           |                  | 76.5   | 70-130         | 6.90  | 25           | V-05  |   |
| 1,2,4-Trichlorobenzene                            | 7.98   | 1.0                | $\mu g/L$         | 10.0           |                  | 79.8   | 70-130         | 5.94  | 25           | V-05  |   |
| 1,3,5-Trichlorobenzene                            | 8.92   | 1.0                | $\mu g/L$         | 10.0           |                  | 89.2   | 70-130         | 5.66  | 25           |       |   |
| 1,1,1-Trichloroethane                             | 10.6   | 1.0                | $\mu g/L$         | 10.0           |                  | 106    | 70-130         | 0.282 | 25           |       |   |
| 1,1,2-Trichloroethane                             | 11.1   | 1.0                | $\mu g/L$         | 10.0           |                  | 111    | 70-130         | 1.61  | 25           |       |   |
| Trichloroethylene                                 | 10.7   | 1.0                | $\mu g/L$         | 10.0           |                  | 107    | 70-130         | 2.86  | 25           |       |   |
| Trichlorofluoromethane (Freon 11)                 | 10.4   | 2.0                | $\mu g/L$         | 10.0           |                  | 104    | 70-130         | 2.28  | 25           |       |   |
| 1,2,3-Trichloropropane                            | 9.98   | 2.0                | $\mu g/L$         | 10.0           |                  | 99.8   | 70-130         | 6.09  | 25           |       |   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | 9.70   | 1.0                | μg/L              | 10.0           |                  | 97.0   | 70-130         | 3.64  | 25           |       |   |
| 1,2,4-Trimethylbenzene                            | 9.66   | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 96.6   | 70-130         | 4.35  | 25           |       |   |
| 1,3,5-Trimethylbenzene                            | 9.98   | 1.0                | $\mu g/L$         | 10.0           |                  | 99.8   | 70-130         | 0.699 | 25           |       |   |
| Vinyl Chloride                                    | 11.4   | 2.0                | $\mu g/L$         | 10.0           |                  | 114    | 40-160         | 4.72  | 25           |       | † |
| m+p Xylene                                        | 20.2   | 2.0                | $\mu g/L$         | 20.0           |                  | 101    | 70-130         | 3.51  | 25           |       |   |
| o-Xylene                                          | 10.5   | 1.0                | $\mu g/L$         | 10.0           |                  | 105    | 70-130         | 2.64  | 25           |       |   |
| Surrogate: 1,2-Dichloroethane-d4                  | 26.2   |                    | μg/L              | 25.0           |                  | 105    | 70-130         |       |              |       |   |
| Surrogate: Toluene-d8                             | 26.4   |                    | $\mu g/L$         | 25.0           |                  | 106    | 70-130         |       |              |       |   |
| Surrogate: 4-Bromofluorobenzene                   | 26.0   |                    | $\mu g/L$         | 25.0           |                  | 104    | 70-130         |       |              |       |   |
|                                                   |        |                    |                   |                |                  |        |                |       |              |       |   |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                         | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|---------------------------------|----------|--------------------|--------------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| Batch B293672 - SW-846 3510C    |          |                    |              |                |                  |               |                |     |              |            |
| Blank (B293672-BLK1)            |          |                    |              | Prepared: 11   | /01/21 Analy     | yzed: 11/02/2 | 1              |     |              |            |
| Acenaphthene                    | ND       | 5.0                | μg/L         |                | <u> </u>         |               |                |     |              |            |
| Acenaphthylene                  | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Acetophenone                    | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Aniline                         | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Anthracene                      | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Benzidine                       | ND       | 20                 | $\mu g/L$    |                |                  |               |                |     |              | V-04, V-20 |
| Benzo(a)anthracene              | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Benzo(a)pyrene                  | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Benzo(b)fluoranthene            | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Benzo(g,h,i)perylene            | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Benzo(k)fluoranthene            | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Benzoic Acid                    | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Bis(2-chloroethoxy)methane      | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Bis(2-chloroethyl)ether         | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Bis(2-chloroisopropyl)ether     | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Bis(2-Ethylhexyl)phthalate      | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Bromophenylphenylether         | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Butylbenzylphthalate            | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Carbazole                       | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Chloroaniline                  | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Chloro-3-methylphenol          | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Chloronaphthalene              | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Chlorophenol                   | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Chlorophenylphenylether        | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Chrysene                        | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Dibenz(a,h)anthracene           | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Dibenzofuran                    | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Di-n-butylphthalate             | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,2-Dichlorobenzene              | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzene              | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| ,4-Dichlorobenzene              | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzidine            | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,4-Dichlorophenol               | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Diethylphthalate                | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,4-Dimethylphenol               | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Dimethylphthalate               | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,6-Dinitro-2-methylphenol       | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,4-Dinitrophenol                | ND       | 10                 | μg/L         |                |                  |               |                |     |              | V-04, V-20 |
| ,4-Dinitrotoluene               | ND<br>ND | 10                 | μg/L         |                |                  |               |                |     |              | . 01, 120  |
| ,6-Dinitrotoluene               | ND<br>ND | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Di-n-octylphthalate             | ND<br>ND | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,2-Diphenylhydrazine/Azobenzene | ND<br>ND | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Fluoranthene                    | ND<br>ND | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Fluorene                        | ND<br>ND | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Hexachlorobenzene               | ND<br>ND | 10                 | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| Hexachlorobutadiene             | ND<br>ND | 10                 | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| Hexachlorocyclopentadiene       |          | 10                 | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| Hexachloroethane                | ND       | 10                 | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| ndeno(1,2,3-cd)pyrene           | ND       | 5.0                | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| sophorone                       | ND       | 10                 |              |                |                  |               |                |     |              |            |
| -Methylnaphthalene              | ND       | 5.0                | μg/L<br>μα/Ι |                |                  |               |                |     |              |            |
| -ivicalymaphulaiche             | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| analyte                                           | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|---------------------------------------------------|----------|--------------------|--------------|----------------|------------------|--------------|----------------|-----|--------------|------------|
| atch B293672 - SW-846 3510C                       |          |                    |              |                |                  |              |                |     |              |            |
| lank (B293672-BLK1)                               |          |                    |              | Prepared: 11   | /01/21 Analy     | zed: 11/02/2 | 1              |     |              |            |
| Methylphenol                                      | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| 4-Methylphenol                                    | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| aphthalene                                        | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |            |
| -Nitroaniline                                     | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| -Nitroaniline                                     | ND       | 10                 | μg/L         |                |                  |              |                |     |              | V-20       |
| -Nitroaniline                                     | ND       | 10                 | μg/L         |                |                  |              |                |     |              | V-20       |
| itrobenzene                                       | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| Nitrophenol                                       | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| -Nitrophenol                                      | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| -Nitrosodimethylamine                             | ND       | 10                 | $\mu g/L$    |                |                  |              |                |     |              |            |
| -Nitrosodiphenylamine/Diphenylamine               | ND       | 10                 | $\mu g/L$    |                |                  |              |                |     |              |            |
| -Nitrosodi-n-propylamine                          | ND       | 10                 | $\mu g/L$    |                |                  |              |                |     |              |            |
| entachloronitrobenzene                            | ND       | 10                 | $\mu g/L$    |                |                  |              |                |     |              |            |
| entachlorophenol                                  | ND       | 10                 | $\mu g/L$    |                |                  |              |                |     |              |            |
| henanthrene                                       | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |            |
| henol                                             | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| yrene                                             | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |            |
| yridine                                           | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |            |
| 2,4,5-Tetrachlorobenzene                          | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| 2,4-Trichlorobenzene                              | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |            |
| 4,5-Trichlorophenol                               | ND       | 10                 | μg/L         |                |                  |              |                |     |              |            |
| 4,6-Trichlorophenol                               | ND<br>ND | 10                 | μg/L<br>μg/L |                |                  |              |                |     |              |            |
| urrogate: 2-Fluorophenol                          | 117      |                    | μg/L         | 200            |                  | 58.4         | 15-110         |     |              |            |
| arrogate: 2-1 tuorophenoi<br>arrogate: Phenol-d6  | 83.3     |                    | μg/L<br>μg/L | 200            |                  | 41.6         | 15-110         |     |              |            |
| urrogate: Pilenoi-do<br>urrogate: Nitrobenzene-d5 | 69.6     |                    | μg/L<br>μg/L | 100            |                  | 69.6         | 30-130         |     |              |            |
| arrogate: 2-Fluorobiphenyl                        | 71.9     |                    | μg/L<br>μg/L | 100            |                  | 71.9         | 30-130         |     |              |            |
| arrogate: 2,4,6-Tribromophenol                    | 182      |                    | μg/L<br>μg/L | 200            |                  | 91.1         | 15-110         |     |              |            |
| arrogate: 2,4,0-1110101110pnen01                  | 116      |                    | μg/L<br>μg/L | 100            |                  | 116          | 30-130         |     |              |            |
|                                                   | 110      |                    | µg/L         |                |                  |              |                |     |              |            |
| CS (B293672-BS1)                                  |          |                    |              |                | /01/21 Analy     |              |                |     |              |            |
| cenaphthene                                       | 39.4     | 5.0                | μg/L         | 50.0           |                  | 78.8         | 40-140         |     |              |            |
| cenaphthylene                                     | 39.6     | 5.0                | μg/L         | 50.0           |                  | 79.1         | 40-140         |     |              |            |
| cetophenone                                       | 41.5     | 10                 | μg/L         | 50.0           |                  | 82.9         | 40-140         |     |              |            |
| niline                                            | 42.1     | 5.0                | μg/L         | 50.0           |                  | 84.2         | 40-140         |     |              |            |
| nthracene                                         | 41.3     | 5.0                | μg/L         | 50.0           |                  | 82.6         | 40-140         |     |              |            |
| enzidine                                          | 44.8     | 20                 | μg/L         | 50.0           |                  | 89.7         | 40-140         |     |              | V-04, V-06 |
| enzo(a)anthracene                                 | 40.2     | 5.0                | μg/L         | 50.0           |                  | 80.4         | 40-140         |     |              |            |
| enzo(a)pyrene                                     | 45.8     | 5.0                | μg/L         | 50.0           |                  | 91.7         | 40-140         |     |              |            |
| enzo(b)fluoranthene                               | 41.9     | 5.0                | μg/L         | 50.0           |                  | 83.7         | 40-140         |     |              |            |
| enzo(g,h,i)perylene                               | 46.0     | 5.0                | μg/L         | 50.0           |                  | 92.0         | 40-140         |     |              |            |
| enzo(k)fluoranthene                               | 44.2     | 5.0                | $\mu g/L$    | 50.0           |                  | 88.4         | 40-140         |     |              |            |
| enzoic Acid                                       | 27.0     | 10                 | $\mu g/L$    | 50.0           |                  | 53.9         | 10-130         |     |              |            |
| is(2-chloroethoxy)methane                         | 43.4     | 10                 | $\mu g/L$    | 50.0           |                  | 86.8         | 40-140         |     |              |            |
| is(2-chloroethyl)ether                            | 42.1     | 10                 | $\mu g/L$    | 50.0           |                  | 84.2         | 40-140         |     |              |            |
| is(2-chloroisopropyl)ether                        | 48.9     | 10                 | $\mu g/L$    | 50.0           |                  | 97.7         | 40-140         |     |              |            |
| is(2-Ethylhexyl)phthalate                         | 46.1     | 10                 | $\mu g/L$    | 50.0           |                  | 92.3         | 40-140         |     |              |            |
| Bromophenylphenylether                            | 39.4     | 10                 | μg/L         | 50.0           |                  | 78.7         | 40-140         |     |              |            |
| utylbenzylphthalate                               | 43.9     | 10                 | μg/L         | 50.0           |                  | 87.8         | 40-140         |     |              |            |
| arbazole                                          | 41.2     | 10                 | μg/L         | 50.0           |                  | 82.3         | 40-140         |     |              |            |
| -Chloroaniline                                    | 36.8     | 10                 | μg/L         | 50.0           |                  | 73.5         | 40-140         |     |              |            |
| -Chloro-3-methylphenol                            | 43.5     | 10                 | μg/L         | 50.0           |                  | 86.9         | 30-130         |     |              |            |
| ~                                                 | 43.3     | • •                | F-6/ -       | 50.0           |                  | 00.7         | 50 150         |     |              |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                       | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes        |
|---------------------------------------------------------------|--------|--------------------|--------------|----------------|------------------|-------------|----------------|-----|--------------|--------------|
| atch B293672 - SW-846 3510C                                   |        |                    |              |                |                  |             |                |     |              |              |
| CS (B293672-BS1)                                              |        |                    |              | Prepared: 11   | /01/21 Analyze   | ed: 11/02/2 | :1             |     |              |              |
| -Chlorophenol                                                 | 36.8   | 10                 | μg/L         | 50.0           |                  | 73.7        | 30-130         |     |              |              |
| -Chlorophenylphenylether                                      | 38.1   | 10                 | μg/L         | 50.0           |                  | 76.2        | 40-140         |     |              |              |
| hrysene                                                       | 40.8   | 5.0                | $\mu g/L$    | 50.0           |                  | 81.6        | 40-140         |     |              |              |
| ibenz(a,h)anthracene                                          | 48.5   | 5.0                | μg/L         | 50.0           |                  | 97.1        | 40-140         |     |              |              |
| ibenzofuran                                                   | 41.1   | 5.0                | μg/L         | 50.0           |                  | 82.2        | 40-140         |     |              |              |
| i-n-butylphthalate                                            | 41.2   | 10                 | μg/L         | 50.0           |                  | 82.3        | 40-140         |     |              |              |
| 2-Dichlorobenzene                                             | 31.2   | 5.0                | μg/L         | 50.0           |                  | 62.4        | 40-140         |     |              |              |
| 3-Dichlorobenzene                                             | 30.0   | 5.0                | μg/L         | 50.0           |                  | 59.9        | 40-140         |     |              |              |
| 4-Dichlorobenzene                                             | 30.3   | 5.0                | μg/L         | 50.0           |                  | 60.6        | 40-140         |     |              |              |
| 3-Dichlorobenzidine                                           | 41.3   | 10                 | μg/L         | 50.0           |                  | 82.6        | 40-140         |     |              |              |
| 4-Dichlorophenol                                              | 40.3   | 10                 | μg/L         | 50.0           |                  | 80.6        | 30-130         |     |              |              |
| iethylphthalate                                               | 40.6   | 10                 | μg/L         | 50.0           |                  | 81.3        | 40-140         |     |              |              |
| 4-Dimethylphenol                                              | 39.8   | 10                 | $\mu g/L$    | 50.0           |                  | 79.6        | 30-130         |     |              |              |
| imethylphthalate                                              | 40.8   | 10                 | $\mu g/L$    | 50.0           |                  | 81.7        | 40-140         |     |              |              |
| 6-Dinitro-2-methylphenol                                      | 43.6   | 10                 | $\mu g/L$    | 50.0           |                  | 87.1        | 30-130         |     |              |              |
| 4-Dinitrophenol                                               | 57.2   | 10                 | $\mu g/L$    | 50.0           |                  | 114         | 30-130         |     |              | V-04, V-06   |
| 4-Dinitrotoluene                                              | 48.7   | 10                 | $\mu g/L$    | 50.0           |                  | 97.4        | 40-140         |     |              | V-06         |
| 5-Dinitrotoluene                                              | 46.6   | 10                 | $\mu g/L$    | 50.0           |                  | 93.1        | 40-140         |     |              |              |
| -n-octylphthalate                                             | 45.6   | 10                 | μg/L         | 50.0           |                  | 91.1        | 40-140         |     |              |              |
| 2-Diphenylhydrazine/Azobenzene                                | 43.2   | 10                 | μg/L         | 50.0           |                  | 86.4        | 40-140         |     |              |              |
| uoranthene                                                    | 40.4   | 5.0                | $\mu g/L$    | 50.0           |                  | 80.8        | 40-140         |     |              |              |
| iorene                                                        | 40.8   | 5.0                | μg/L         | 50.0           |                  | 81.6        | 40-140         |     |              |              |
| exachlorobenzene                                              | 41.9   | 10                 | μg/L         | 50.0           |                  | 83.9        | 40-140         |     |              |              |
| xachlorobutadiene                                             | 33.4   | 10                 | μg/L         | 50.0           |                  | 66.8        | 40-140         |     |              |              |
| xachlorocyclopentadiene                                       | 31.5   | 10                 | μg/L         | 50.0           |                  | 63.0        | 30-140         |     |              |              |
| exachloroethane                                               | 30.7   | 10                 | μg/L         | 50.0           |                  | 61.3        | 40-140         |     |              |              |
| leno(1,2,3-cd)pyrene                                          | 50.0   | 5.0                | μg/L         | 50.0           |                  | 100         | 40-140         |     |              |              |
| phorone                                                       | 47.6   | 10                 | μg/L         | 50.0           |                  | 95.3        | 40-140         |     |              |              |
| Methylnaphthalene                                             | 36.9   | 5.0                | μg/L         | 50.0           |                  | 73.7        | 40-140         |     |              |              |
| Methylnaphthalene                                             | 43.7   | 5.0                | μg/L         | 50.0           |                  | 87.4        | 40-140         |     |              |              |
| Methylphenol                                                  | 37.3   | 10                 | μg/L         | 50.0           |                  | 74.6        | 30-130         |     |              |              |
| 4-Methylphenol                                                | 36.5   | 10                 | μg/L         | 50.0           |                  | 73.0        | 30-130         |     |              |              |
| phthalene                                                     | 40.3   | 5.0                | μg/L         | 50.0           |                  | 80.6        | 40-140         |     |              |              |
| Nitroaniline                                                  | 57.5   | 10                 | μg/L<br>μg/L | 50.0           |                  | 115         | 40-140         |     |              |              |
| Nitroaniline                                                  |        | 10                 | μg/L<br>μg/L | 50.0           |                  | 88.8        | 40-140         |     |              | V-06         |
| Vitroaniline                                                  | 44.4   | 10                 | μg/L<br>μg/L | 50.0           |                  | 95.0        | 40-140         |     |              | V-06<br>V-06 |
| trobenzene                                                    | 47.5   | 10                 | μg/L<br>μg/L | 50.0           |                  | 83.6        | 40-140         |     |              | v-00         |
| Nitrophenol                                                   | 41.8   | 10                 | μg/L<br>μg/L | 50.0           |                  |             | 30-130         |     |              |              |
| Nitrophenol                                                   | 45.3   | 10                 |              |                |                  | 90.6        |                |     |              |              |
| Nitrosodimethylamine                                          | 25.2   | 10                 | μg/L<br>μα/Ι | 50.0           |                  | 50.5        | 10-130         |     |              |              |
| •                                                             | 28.4   | 10                 | μg/L         | 50.0           |                  | 56.8        | 40-140         |     |              |              |
| Nitrosodiphenylamine/Diphenylamine<br>Nitrosodi-n-propylamine | 42.4   | 10                 | μg/L<br>μα/Ι | 50.0           |                  | 84.7        | 40-140         |     |              |              |
| ntrosodi-n-propyramine<br>ntachloronitrobenzene               | 43.9   | 10                 | μg/L<br>μα/Ι | 50.0           |                  | 87.7        | 40-140         |     |              |              |
|                                                               | 42.2   |                    | μg/L         | 50.0           |                  | 84.5        | 40-140         |     |              |              |
| ntachlorophenol                                               | 40.2   | 10                 | μg/L         | 50.0           |                  | 80.4        | 30-130         |     |              |              |
| enanthrene                                                    | 41.0   | 5.0                | μg/L         | 50.0           |                  | 82.1        | 40-140         |     |              |              |
| enol                                                          | 20.1   | 10                 | μg/L         | 50.0           |                  | 40.1        | 20-130         |     |              |              |
| rrene                                                         | 42.2   | 5.0                | μg/L         | 50.0           |                  | 84.4        | 40-140         |     |              |              |
| ridine                                                        | 18.6   | 5.0                | μg/L         | 50.0           |                  | 37.2        | 10-140         |     |              |              |
| 2,4,5-Tetrachlorobenzene                                      | 35.8   | 10                 | μg/L         | 50.0           |                  | 71.5        | 40-140         |     |              |              |
| 2,4-Trichlorobenzene                                          | 34.3   | 5.0                | μg/L         | 50.0           |                  | 68.5        | 40-140         |     |              |              |
| 4,5-Trichlorophenol                                           | 41.6   | 10                 | μg/L         | 50.0           |                  | 83.2        | 30-130         |     |              |              |
| 4,6-Trichlorophenol                                           | 40.6   | 10                 | μg/L         | 50.0           |                  | 81.1        | 30-130         |     |              |              |



## QUALITY CONTROL

| Analyte                                                 | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD    | RPD<br>Limit | Notes              |     |
|---------------------------------------------------------|--------------|--------------------|--------------|----------------|------------------|---------------|----------------|--------|--------------|--------------------|-----|
| Batch B293672 - SW-846 3510C                            |              |                    |              |                |                  |               |                |        |              |                    |     |
| LCS (B293672-BS1)                                       |              |                    |              | Prepared: 11   | /01/21 Anal      | yzed: 11/02/2 | 21             |        |              |                    | _   |
| Surrogate: 2-Fluorophenol                               | 114          |                    | μg/L         | 200            |                  | 57.1          | 15-110         |        |              |                    | _   |
| Surrogate: Phenol-d6                                    | 84.8         |                    | μg/L         | 200            |                  | 42.4          | 15-110         |        |              |                    |     |
| Surrogate: Nitrobenzene-d5                              | 76.8         |                    | μg/L         | 100            |                  | 76.8          | 30-130         |        |              |                    |     |
| Surrogate: 2-Fluorobiphenyl                             | 70.0         |                    | μg/L         | 100            |                  | 70.0          | 30-130         |        |              |                    |     |
| Surrogate: 2,4,6-Tribromophenol                         | 188          |                    | μg/L         | 200            |                  | 94.2          | 15-110         |        |              |                    |     |
| Surrogate: p-Terphenyl-d14                              | 105          |                    | $\mu g/L$    | 100            |                  | 105           | 30-130         |        |              |                    |     |
| LCS Dup (B293672-BSD1)                                  |              |                    |              | Prepared: 11   | /01/21 Anal      | yzed: 11/02/2 | 21             |        |              |                    |     |
| Acenaphthene                                            | 37.7         | 5.0                | μg/L         | 50.0           |                  | 75.4          | 40-140         | 4.41   | 20           |                    |     |
| Acenaphthylene                                          | 38.9         | 5.0                | $\mu g/L$    | 50.0           |                  | 77.9          | 40-140         | 1.61   | 20           |                    |     |
| Acetophenone                                            | 39.1         | 10                 | $\mu g/L$    | 50.0           |                  | 78.1          | 40-140         | 5.99   | 20           |                    |     |
| Aniline                                                 | 37.0         | 5.0                | μg/L         | 50.0           |                  | 74.1          | 40-140         | 12.8   | 50           |                    | 1   |
| Anthracene                                              | 40.6         | 5.0                | $\mu g/L$    | 50.0           |                  | 81.2          | 40-140         | 1.78   | 20           |                    |     |
| Benzidine                                               | 41.7         | 20                 | $\mu g/L$    | 50.0           |                  | 83.3          | 40-140         | 7.33   | 20           | V-04, V-06         |     |
| Benzo(a)anthracene                                      | 39.7         | 5.0                | $\mu g/L$    | 50.0           |                  | 79.5          | 40-140         | 1.18   | 20           |                    |     |
| Benzo(a)pyrene                                          | 45.3         | 5.0                | $\mu g/L$    | 50.0           |                  | 90.6          | 40-140         | 1.16   | 20           |                    |     |
| Benzo(b)fluoranthene                                    | 42.3         | 5.0                | $\mu g/L$    | 50.0           |                  | 84.6          | 40-140         | 1.07   | 20           |                    |     |
| Benzo(g,h,i)perylene                                    | 45.7         | 5.0                | $\mu g/L$    | 50.0           |                  | 91.4          | 40-140         | 0.698  | 20           |                    |     |
| Benzo(k)fluoranthene                                    | 44.4         | 5.0                | $\mu g/L$    | 50.0           |                  | 88.9          | 40-140         | 0.542  | 20           |                    |     |
| Benzoic Acid                                            | 26.4         | 10                 | $\mu g/L$    | 50.0           |                  | 52.7          | 10-130         | 2.18   | 50           |                    | † : |
| Bis(2-chloroethoxy)methane                              | 41.1         | 10                 | $\mu g/L$    | 50.0           |                  | 82.2          | 40-140         | 5.44   | 20           |                    |     |
| Bis(2-chloroethyl)ether                                 | 39.8         | 10                 | $\mu g/L$    | 50.0           |                  | 79.7          | 40-140         | 5.54   | 20           |                    |     |
| Bis(2-chloroisopropyl)ether                             | 46.4         | 10                 | $\mu g/L$    | 50.0           |                  | 92.9          | 40-140         | 5.12   | 20           |                    |     |
| Bis(2-Ethylhexyl)phthalate                              | 46.4         | 10                 | $\mu g/L$    | 50.0           |                  | 92.8          | 40-140         | 0.562  | 20           |                    |     |
| 4-Bromophenylphenylether                                | 38.5         | 10                 | μg/L         | 50.0           |                  | 76.9          | 40-140         | 2.34   | 20           |                    |     |
| Butylbenzylphthalate                                    | 43.4         | 10                 | μg/L         | 50.0           |                  | 86.7          | 40-140         | 1.17   | 20           |                    |     |
| Carbazole                                               | 41.3         | 10                 | μg/L         | 50.0           |                  | 82.6          | 40-140         | 0.267  | 20           |                    |     |
| 4-Chloroaniline                                         | 31.3         | 10                 | μg/L         | 50.0           |                  | 62.6          | 40-140         | 16.1   | 20           |                    |     |
| 4-Chloro-3-methylphenol                                 | 40.6         | 10                 | μg/L         | 50.0           |                  | 81.2          | 30-130         | 6.80   | 20           |                    |     |
| 2-Chloronaphthalene                                     | 31.1         | 10                 | μg/L         | 50.0           |                  | 62.1          | 40-140         | 2.29   | 20           |                    |     |
| 2-Chlorophenol                                          | 35.0         | 10                 | μg/L         | 50.0           |                  | 70.0          | 30-130         | 5.15   | 20           |                    |     |
| 4-Chlorophenylphenylether                               | 37.5         | 10                 | μg/L         | 50.0           |                  | 75.1          | 40-140         | 1.45   | 20           |                    |     |
| Chrysene                                                | 40.7         | 5.0                | μg/L         | 50.0           |                  | 81.5          | 40-140         | 0.0981 | 20           |                    |     |
| Dibenz(a,h)anthracene                                   | 47.1         | 5.0                | μg/L         | 50.0           |                  | 94.1          | 40-140         | 3.10   | 20           |                    |     |
| Dibenzofuran                                            | 39.8         | 5.0                | μg/L         | 50.0           |                  | 79.6          | 40-140         | 3.19   | 20           |                    |     |
| Di-n-butylphthalate                                     | 41.5         | 10                 | μg/L         | 50.0           |                  | 83.0          | 40-140         | 0.871  | 20           |                    |     |
| 1,2-Dichlorobenzene                                     | 29.2         | 5.0                | μg/L         | 50.0           |                  | 58.3          | 40-140         | 6.76   | 20           |                    |     |
| 1,3-Dichlorobenzene                                     | 27.4         | 5.0                | μg/L         | 50.0           |                  | 54.9          | 40-140         | 8.74   | 20           |                    |     |
| 1,4-Dichlorobenzene                                     | 28.0         | 5.0                | μg/L         | 50.0           |                  | 55.9          | 40-140         | 8.07   | 20           |                    |     |
| 3,3-Dichlorobenzidine                                   | 39.7         | 10                 | μg/L         | 50.0           |                  | 79.5          | 40-140         | 3.83   | 20           |                    |     |
| 2,4-Dichlorophenol                                      | 37.5         | 10                 | μg/L         | 50.0           |                  | 74.9          | 30-130         | 7.33   | 20           |                    |     |
| Diethylphthalate                                        | 41.0         | 10                 | μg/L         | 50.0           |                  | 81.9          | 40-140         | 0.833  | 20           |                    |     |
| 2,4-Dimethylphenol                                      | 37.3         | 10                 | μg/L         | 50.0           |                  | 74.6          | 30-130         | 6.46   | 20           |                    |     |
| Dimethylphthalate                                       | 40.8         | 10                 | μg/L<br>μg/L | 50.0           |                  | 81.6          | 40-140         | 0.0980 | 50           |                    |     |
| 4,6-Dinitro-2-methylphenol                              | 42.3         | 10                 | μg/L<br>μg/L | 50.0           |                  | 84.5          | 30-130         | 3.01   | 50           |                    |     |
| 2,4-Dinitrophenol                                       | 57.1         | 10                 | μg/L<br>μg/L | 50.0           |                  | 114           | 30-130         | 0.0875 | 50           | V-04, V-06         |     |
| 2,4-Dinitrotoluene                                      | 57.1<br>48.6 | 10                 | μg/L<br>μg/L | 50.0           |                  | 97.2          | 40-140         | 0.0873 | 20           | V-04, V-00<br>V-06 | •   |
| 2,6-Dinitrotoluene                                      |              | 10                 | μg/L<br>μg/L | 50.0           |                  | 91.6          | 40-140         | 1.60   | 20           | ¥-00               |     |
| Di-n-octylphthalate                                     | 45.8         | 10                 | μg/L<br>μg/L |                |                  |               |                |        |              |                    |     |
| D1-n-octytpntnatate<br>1,2-Diphenylhydrazine/Azobenzene | 45.8         | 10                 |              | 50.0           |                  | 91.6          | 40-140         | 0.504  | 20           |                    |     |
| Fluoranthene                                            | 42.4         |                    | μg/L<br>μg/I | 50.0           |                  | 84.9          | 40-140         | 1.77   | 20           |                    |     |
|                                                         | 41.1         | 5.0                | μg/L         | 50.0           |                  | 82.2          | 40-140         | 1.79   | 20           |                    |     |
| Fluorene                                                | 40.4         | 5.0                | μg/L         | 50.0           |                  | 80.7          | 40-140         | 1.08   | 20           |                    |     |



## QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|---|
| Batch B293672 - SW-846 3510C         |        |                    |           |                |                  |               |                |       |              |       |   |
| LCS Dup (B293672-BSD1)               |        |                    |           | Prepared: 11   | /01/21 Anal      | yzed: 11/02/2 | 21             |       |              |       |   |
| Hexachlorobenzene                    | 40.4   | 10                 | μg/L      | 50.0           |                  | 80.8          | 40-140         | 3.69  | 20           |       |   |
| Hexachlorobutadiene                  | 30.0   | 10                 | μg/L      | 50.0           |                  | 60.0          | 40-140         | 10.8  | 20           |       |   |
| Hexachlorocyclopentadiene            | 31.0   | 10                 | μg/L      | 50.0           |                  | 62.0          | 30-140         | 1.57  | 50           |       | † |
| Hexachloroethane                     | 28.3   | 10                 | $\mu g/L$ | 50.0           |                  | 56.7          | 40-140         | 7.90  | 50           |       |   |
| ndeno(1,2,3-cd)pyrene                | 50.6   | 5.0                | $\mu g/L$ | 50.0           |                  | 101           | 40-140         | 1.11  | 50           |       |   |
| sophorone                            | 44.7   | 10                 | μg/L      | 50.0           |                  | 89.5          | 40-140         | 6.30  | 20           |       |   |
| -Methylnaphthalene                   | 33.8   | 5.0                | μg/L      | 50.0           |                  | 67.6          | 40-140         | 8.75  | 20           |       |   |
| 2-Methylnaphthalene                  | 39.7   | 5.0                | μg/L      | 50.0           |                  | 79.5          | 40-140         | 9.47  | 20           |       |   |
| -Methylphenol                        | 37.3   | 10                 | μg/L      | 50.0           |                  | 74.6          | 30-130         | 0.107 | 20           |       |   |
| 3/4-Methylphenol                     | 35.9   | 10                 | μg/L      | 50.0           |                  | 71.8          | 30-130         | 1.60  | 20           |       |   |
| Naphthalene                          | 36.6   | 5.0                | μg/L      | 50.0           |                  | 73.2          | 40-140         | 9.57  | 20           |       |   |
| 2-Nitroaniline                       | 57.2   | 10                 | μg/L      | 50.0           |                  | 114           | 40-140         | 0.488 | 20           |       |   |
| 3-Nitroaniline                       | 42.5   | 10                 | μg/L      | 50.0           |                  | 85.0          | 40-140         | 4.33  | 20           | V-06  |   |
| -Nitroaniline                        | 47.1   | 10                 | μg/L      | 50.0           |                  | 94.3          | 40-140         | 0.761 | 20           | V-06  |   |
| Vitrobenzene                         | 38.6   | 10                 | $\mu g/L$ | 50.0           |                  | 77.2          | 40-140         | 7.99  | 20           |       |   |
| -Nitrophenol                         | 41.6   | 10                 | μg/L      | 50.0           |                  | 83.2          | 30-130         | 8.54  | 20           |       |   |
| -Nitrophenol                         | 25.6   | 10                 | $\mu g/L$ | 50.0           |                  | 51.2          | 10-130         | 1.45  | 50           |       | i |
| N-Nitrosodimethylamine               | 25.7   | 10                 | μg/L      | 50.0           |                  | 51.4          | 40-140         | 10.0  | 20           |       |   |
| N-Nitrosodiphenylamine/Diphenylamine | 41.6   | 10                 | μg/L      | 50.0           |                  | 83.2          | 40-140         | 1.81  | 20           |       |   |
| I-Nitrosodi-n-propylamine            | 42.9   | 10                 | μg/L      | 50.0           |                  | 85.8          | 40-140         | 2.24  | 20           |       |   |
| entachloronitrobenzene               | 43.0   | 10                 | μg/L      | 50.0           |                  | 85.9          | 40-140         | 1.69  | 20           |       |   |
| entachlorophenol                     | 39.1   | 10                 | μg/L      | 50.0           |                  | 78.1          | 30-130         | 2.90  | 50           |       |   |
| henanthrene                          | 40.2   | 5.0                | μg/L      | 50.0           |                  | 80.3          | 40-140         | 2.22  | 20           |       |   |
| Phenol                               | 18.9   | 10                 | $\mu g/L$ | 50.0           |                  | 37.8          | 20-130         | 6.06  | 20           |       | i |
| Pyrene                               | 40.7   | 5.0                | μg/L      | 50.0           |                  | 81.4          | 40-140         | 3.62  | 20           |       |   |
| Pyridine                             | 16.7   | 5.0                | μg/L      | 50.0           |                  | 33.5          | 10-140         | 10.6  | 50           |       | † |
| 1,2,4,5-Tetrachlorobenzene           | 34.5   | 10                 | μg/L      | 50.0           |                  | 68.9          | 40-140         | 3.67  | 20           |       |   |
| ,2,4-Trichlorobenzene                | 31.4   | 5.0                | μg/L      | 50.0           |                  | 62.8          | 40-140         | 8.74  | 20           |       |   |
| 2,4,5-Trichlorophenol                | 41.0   | 10                 | μg/L      | 50.0           |                  | 81.9          | 30-130         | 1.57  | 20           |       |   |
| 2,4,6-Trichlorophenol                | 40.6   | 10                 | μg/L      | 50.0           |                  | 81.3          | 30-130         | 0.172 | 50           |       |   |
| Surrogate: 2-Fluorophenol            | 106    |                    | $\mu g/L$ | 200            |                  | 53.2          | 15-110         |       |              |       |   |
| Surrogate: Phenol-d6                 | 80.6   |                    | $\mu g/L$ | 200            |                  | 40.3          | 15-110         |       |              |       |   |
| Surrogate: Nitrobenzene-d5           | 68.6   |                    | $\mu g/L$ | 100            |                  | 68.6          | 30-130         |       |              |       |   |
| Surrogate: 2-Fluorobiphenyl          | 68.4   |                    | $\mu g/L$ | 100            |                  | 68.4          | 30-130         |       |              |       |   |
| Surrogate: 2,4,6-Tribromophenol      | 185    |                    | $\mu g/L$ | 200            |                  | 92.4          | 15-110         |       |              |       |   |
| Surrogate: p-Terphenyl-d14           | 103    |                    | μg/L      | 100            |                  | 103           | 30-130         |       |              |       |   |
| Batch B293790 - SW-846 3510C         |        |                    |           |                |                  |               |                |       |              |       | _ |
| Blank (B293790-BLK1)                 |        |                    |           | Prepared: 11   | /02/21 Anal      | yzed: 11/03/2 | 21             |       |              |       |   |
| Acenaphthene                         | ND     | 5.0                | $\mu g/L$ |                |                  |               |                |       |              |       |   |
| Acenaphthylene                       | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Acetophenone                         | ND     | 10                 | $\mu g/L$ |                |                  |               |                |       |              |       |   |
| Aniline                              | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Anthracene                           | ND     | 5.0                | $\mu g/L$ |                |                  |               |                |       |              |       |   |
| Benzidine                            | ND     | 20                 | μg/L      |                |                  |               |                |       |              | V-04  |   |
| Benzo(a)anthracene                   | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Benzo(a)pyrene                       | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Benzo(b)fluoranthene                 | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Benzo(g,h,i)perylene                 | ND     | 5.0                | μg/L      |                |                  |               |                |       |              |       |   |
| Benzo(k)fluoranthene                 | ND     | 5.0                | $\mu g/L$ |                |                  |               |                |       |              |       |   |
| Benzoic Acid                         | ND     | 10                 | $\mu g/L$ |                |                  |               |                |       |              |       |   |
| Bis(2-chloroethoxy)methane           |        |                    | $\mu g/L$ |                |                  |               |                |       |              |       |   |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|--------------------------------------|----------|--------------------|--------------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| Batch B293790 - SW-846 3510C         |          |                    |              |                |                  |               |                |     |              |            |
| Blank (B293790-BLK1)                 |          |                    |              | Prepared: 11   | /02/21 Analy     | yzed: 11/03/2 | 21             |     |              |            |
| Bis(2-chloroethyl)ether              | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| Bis(2-chloroisopropyl)ether          | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| sis(2-Ethylhexyl)phthalate           | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Bromophenylphenylether              | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| utylbenzylphthalate                  | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| arbazole                             | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| -Chloroaniline                       | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| -Chloro-3-methylphenol               | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| -Chloronaphthalene                   | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| -Chlorophenol                        | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| -Chlorophenylphenylether             | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| hrysene                              | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Dibenz(a,h)anthracene                | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| Dibenzofuran                         | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| Di-n-butylphthalate                  | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |
| ,2-Dichlorobenzene                   | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzene                   | ND       | 5.0                | $\mu g/L$    |                |                  |               |                |     |              |            |
| ,4-Dichlorobenzene                   | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| 3-Dichlorobenzidine                  | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,4-Dichlorophenol                    | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| riethylphthalate                     | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| 4-Dimethylphenol                     | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| imethylphthalate                     | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,6-Dinitro-2-methylphenol            | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| 4-Dinitrophenol                      | ND       | 10                 | μg/L         |                |                  |               |                |     |              | V-04, V-20 |
| 4-Dinitrotoluene                     | ND       | 10                 | μg/L         |                |                  |               |                |     |              | V-20       |
| ,6-Dinitrotoluene                    | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| i-n-octylphthalate                   | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ,2-Diphenylhydrazine/Azobenzene      | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| luoranthene                          | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| luorene                              | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| exachlorobenzene                     | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| [exachlorobutadiene                  | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| exachlorocyclopentadiene             | ND<br>ND | 10                 | μg/L         |                |                  |               |                |     |              |            |
| [exachloroethane                     |          | 10                 | μg/L         |                |                  |               |                |     |              |            |
| ndeno(1,2,3-cd)pyrene                | ND<br>ND | 5.0                | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| sophorone                            |          | 10                 | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| -Methylnaphthalene                   | ND<br>ND | 5.0                | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| -Methylnaphthalene                   |          | 5.0                | μg/L<br>μg/L |                |                  |               |                |     |              |            |
| -Methylphenol                        | ND       | 10                 |              |                |                  |               |                |     |              |            |
|                                      | ND       | 10                 | μg/L<br>μg/I |                |                  |               |                |     |              |            |
| /4-Methylphenol<br>Iaphthalene       | ND       | 5.0                | μg/L         |                |                  |               |                |     |              |            |
| -Nitroaniline                        | ND       |                    | μg/L         |                |                  |               |                |     |              |            |
| -Nitroaniline<br>-Nitroaniline       | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
|                                      | ND       | 10                 | μg/L         |                |                  |               |                |     |              | ****       |
| -Nitroaniline                        | ND       | 10                 | μg/L         |                |                  |               |                |     |              | V-20       |
| litrobenzene<br>Nitrobenzene         | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Nitrophenol                         | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| -Nitrophenol                         | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| I-Nitrosodimethylamine               | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| I-Nitrosodiphenylamine/Diphenylamine | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| N-Nitrosodi-n-propylamine            | ND       | 10                 | μg/L         |                |                  |               |                |     |              |            |
| entachloronitrobenzene               | ND       | 10                 | $\mu g/L$    |                |                  |               |                |     |              |            |



## QUALITY CONTROL

| Analyte                        | Result | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------|--------|--------------------|--------------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Batch B293790 - SW-846 3510C   |        |                    |              |                |                  |              |                |     |              |       |
| Blank (B293790-BLK1)           |        |                    |              | Prepared: 11   | /02/21 Analy     | zed: 11/03/2 | 1              |     |              |       |
| Pentachlorophenol              | ND     | 10                 | μg/L         |                |                  |              |                |     |              |       |
| Phenanthrene                   | ND     | 5.0                | $\mu g/L$    |                |                  |              |                |     |              |       |
| Phenol                         | ND     | 10                 | $\mu g/L$    |                |                  |              |                |     |              |       |
| Pyrene                         | ND     | 5.0                | $\mu g/L$    |                |                  |              |                |     |              |       |
| Pyridine                       | ND     | 5.0                | $\mu g/L$    |                |                  |              |                |     |              |       |
| ,2,4,5-Tetrachlorobenzene      | ND     | 10                 | $\mu g/L$    |                |                  |              |                |     |              |       |
| ,2,4-Trichlorobenzene          | ND     | 5.0                | $\mu g/L$    |                |                  |              |                |     |              |       |
| ,4,5-Trichlorophenol           | ND     | 10                 | μg/L         |                |                  |              |                |     |              |       |
| ,4,6-Trichlorophenol           | ND     | 10                 | μg/L         |                |                  |              |                |     |              |       |
| urrogate: 2-Fluorophenol       | 99.8   |                    | μg/L         | 200            |                  | 49.9         | 15-110         |     |              |       |
| urrogate: Phenol-d6            | 73.7   |                    | μg/L         | 200            |                  | 36.9         | 15-110         |     |              |       |
| Surrogate: Nitrobenzene-d5     | 65.3   |                    | μg/L<br>μg/L | 100            |                  | 65.3         | 30-130         |     |              |       |
| Surrogate: 2-Fluorobiphenyl    | 62.6   |                    | μg/L<br>μg/L | 100            |                  | 62.6         | 30-130         |     |              |       |
| urrogate: 2,4,6-Tribromophenol | 149    |                    | μg/L         | 200            |                  | 74.4         | 15-110         |     |              |       |
| urrogate: p-Terphenyl-d14      | 96.6   |                    | μg/L<br>μg/L | 100            |                  | 96.6         | 30-130         |     |              |       |
| .CS (B293790-BS1)              |        |                    |              |                | /02/21 Analy     |              |                |     |              |       |
| cenaphthene                    | 26.8   | 5.0                | μg/L         | 50.0           | 702/21 Allaly    |              |                |     |              |       |
| cenaphthylene                  | 36.8   | 5.0                | μg/L<br>μg/L |                |                  | 73.7         | 40-140         |     |              |       |
| Acetophenone                   | 38.4   |                    |              | 50.0           |                  | 76.7         | 40-140         |     |              |       |
| •                              | 37.5   | 10                 | μg/L         | 50.0           |                  | 75.1         | 40-140         |     |              |       |
| niline                         | 36.4   | 5.0                | μg/L         | 50.0           |                  | 72.8         | 40-140         |     |              |       |
| nthracene                      | 38.1   | 5.0                | μg/L         | 50.0           |                  | 76.2         | 40-140         |     |              | ***   |
| enzidine                       | 41.9   | 20                 | μg/L         | 50.0           |                  | 83.8         | 40-140         |     |              | V-04  |
| enzo(a)anthracene              | 36.7   | 5.0                | μg/L         | 50.0           |                  | 73.4         | 40-140         |     |              |       |
| enzo(a)pyrene                  | 41.3   | 5.0                | μg/L         | 50.0           |                  | 82.6         | 40-140         |     |              |       |
| enzo(b)fluoranthene            | 38.0   | 5.0                | μg/L         | 50.0           |                  | 76.0         | 40-140         |     |              |       |
| enzo(g,h,i)perylene            | 42.8   | 5.0                | $\mu g/L$    | 50.0           |                  | 85.6         | 40-140         |     |              |       |
| enzo(k)fluoranthene            | 40.7   | 5.0                | μg/L         | 50.0           |                  | 81.4         | 40-140         |     |              |       |
| Benzoic Acid                   | 20.1   | 10                 | $\mu g/L$    | 50.0           |                  | 40.3         | 10-130         |     |              |       |
| sis(2-chloroethoxy)methane     | 38.1   | 10                 | $\mu g/L$    | 50.0           |                  | 76.2         | 40-140         |     |              |       |
| is(2-chloroethyl)ether         | 36.7   | 10                 | $\mu g/L$    | 50.0           |                  | 73.3         | 40-140         |     |              |       |
| is(2-chloroisopropyl)ether     | 45.0   | 10                 | $\mu g/L$    | 50.0           |                  | 90.0         | 40-140         |     |              |       |
| sis(2-Ethylhexyl)phthalate     | 42.4   | 10                 | $\mu g/L$    | 50.0           |                  | 84.9         | 40-140         |     |              |       |
| Bromophenylphenylether         | 35.2   | 10                 | $\mu g/L$    | 50.0           |                  | 70.4         | 40-140         |     |              |       |
| utylbenzylphthalate            | 40.2   | 10                 | $\mu g/L$    | 50.0           |                  | 80.4         | 40-140         |     |              |       |
| arbazole                       | 38.1   | 10                 | $\mu g/L$    | 50.0           |                  | 76.2         | 40-140         |     |              |       |
| -Chloroaniline                 | 35.9   | 10                 | $\mu g/L$    | 50.0           |                  | 71.8         | 40-140         |     |              |       |
| -Chloro-3-methylphenol         | 38.1   | 10                 | μg/L         | 50.0           |                  | 76.2         | 30-130         |     |              |       |
| Chloronaphthalene              | 30.4   | 10                 | μg/L         | 50.0           |                  | 60.8         | 40-140         |     |              |       |
| Chlorophenol                   | 32.0   | 10                 | μg/L         | 50.0           |                  | 63.9         | 30-130         |     |              |       |
| Chlorophenylphenylether        | 35.4   | 10                 | μg/L         | 50.0           |                  | 70.7         | 40-140         |     |              |       |
| hrysene                        | 37.8   | 5.0                | μg/L         | 50.0           |                  | 75.6         | 40-140         |     |              |       |
| ibenz(a,h)anthracene           | 43.1   | 5.0                | μg/L         | 50.0           |                  | 86.2         | 40-140         |     |              |       |
| ibenzofuran                    | 37.8   | 5.0                | μg/L         | 50.0           |                  | 75.7         | 40-140         |     |              |       |
| i-n-butylphthalate             | 36.7   | 10                 | μg/L         | 50.0           |                  | 73.4         | 40-140         |     |              |       |
| 2-Dichlorobenzene              | 29.6   | 5.0                | μg/L         | 50.0           |                  | 59.1         | 40-140         |     |              |       |
| 3-Dichlorobenzene              | 28.4   | 5.0                | μg/L<br>μg/L | 50.0           |                  | 56.7         | 40-140         |     |              |       |
| 4-Dichlorobenzene              |        | 5.0                | μg/L<br>μg/L | 50.0           |                  | 57.7         | 40-140         |     |              |       |
| ,3-Dichlorobenzidine           | 28.8   | 10                 |              |                |                  |              |                |     |              |       |
|                                | 40.3   |                    | μg/L<br>μα/Ι | 50.0           |                  | 80.6         | 40-140         |     |              |       |
| ,4-Dichlorophenol              | 34.5   | 10                 | μg/L         | 50.0           |                  | 69.0         | 30-130         |     |              |       |
| Diethylphthalate               | 37.2   | 10                 | μg/L         | 50.0           |                  | 74.5         | 40-140         |     |              |       |
| ,4-Dimethylphenol              | 33.9   | 10                 | μg/L         | 50.0           |                  | 67.8         | 30-130         |     |              |       |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                | Result       | Limit | Units        | Level        | Result       | %REC         | Limits | RPD | Limit | Notes      |
|--------------------------------------------------------|--------------|-------|--------------|--------------|--------------|--------------|--------|-----|-------|------------|
| Batch B293790 - SW-846 3510C                           |              |       |              |              |              |              |        |     |       |            |
| LCS (B293790-BS1)                                      |              |       |              | Prepared: 11 | /02/21 Analy | zed: 11/03/2 | :1     |     |       |            |
| Dimethylphthalate                                      | 37.0         | 10    | $\mu g/L$    | 50.0         |              | 74.0         | 40-140 |     |       |            |
| 4,6-Dinitro-2-methylphenol                             | 39.2         | 10    | $\mu g/L$    | 50.0         |              | 78.3         | 30-130 |     |       |            |
| 2,4-Dinitrophenol                                      | 51.8         | 10    | $\mu g/L$    | 50.0         |              | 104          | 30-130 |     |       | V-04, V-06 |
| 2,4-Dinitrotoluene                                     | 44.5         | 10    | $\mu g/L$    | 50.0         |              | 89.1         | 40-140 |     |       | V-06       |
| 2,6-Dinitrotoluene                                     | 44.3         | 10    | $\mu g/L$    | 50.0         |              | 88.6         | 40-140 |     |       |            |
| Di-n-octylphthalate                                    | 40.3         | 10    | $\mu g/L$    | 50.0         |              | 80.7         | 40-140 |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene                       | 41.4         | 10    | $\mu g/L$    | 50.0         |              | 82.7         | 40-140 |     |       |            |
| Fluoranthene                                           | 36.5         | 5.0   | $\mu g/L$    | 50.0         |              | 73.1         | 40-140 |     |       |            |
| Fluorene                                               | 38.4         | 5.0   | $\mu g/L$    | 50.0         |              | 76.9         | 40-140 |     |       |            |
| Hexachlorobenzene                                      | 37.1         | 10    | $\mu g/L$    | 50.0         |              | 74.1         | 40-140 |     |       |            |
| Hexachlorobutadiene                                    | 28.0         | 10    | $\mu g/L$    | 50.0         |              | 56.0         | 40-140 |     |       |            |
| Hexachlorocyclopentadiene                              | 28.6         | 10    | $\mu g/L$    | 50.0         |              | 57.3         | 30-140 |     |       |            |
| Hexachloroethane                                       | 29.4         | 10    | $\mu g/L$    | 50.0         |              | 58.8         | 40-140 |     |       |            |
| Indeno(1,2,3-cd)pyrene                                 | 46.3         | 5.0   | $\mu g/L$    | 50.0         |              | 92.6         | 40-140 |     |       |            |
| Isophorone                                             | 42.4         | 10    | $\mu g/L$    | 50.0         |              | 84.9         | 40-140 |     |       |            |
| 1-Methylnaphthalene                                    | 32.3         | 5.0   | μg/L         | 50.0         |              | 64.6         | 40-140 |     |       |            |
| 2-Methylnaphthalene                                    | 39.4         | 5.0   | μg/L         | 50.0         |              | 78.7         | 40-140 |     |       |            |
| 2-Methylphenol                                         | 33.6         | 10    | μg/L         | 50.0         |              | 67.3         | 30-130 |     |       |            |
| 3/4-Methylphenol                                       | 32.6         | 10    | μg/L         | 50.0         |              | 65.2         | 30-130 |     |       |            |
| Naphthalene                                            | 35.6         | 5.0   | μg/L         | 50.0         |              | 71.1         | 40-140 |     |       |            |
| 2-Nitroaniline                                         | 55.1         | 10    | μg/L         | 50.0         |              | 110          | 40-140 |     |       |            |
| 3-Nitroaniline                                         | 41.2         | 10    | μg/L         | 50.0         |              | 82.5         | 40-140 |     |       |            |
| 4-Nitroaniline                                         | 44.0         | 10    | μg/L         | 50.0         |              | 87.9         | 40-140 |     |       | V-06       |
| Nitrobenzene                                           | 35.7         | 10    | μg/L         | 50.0         |              | 71.5         | 40-140 |     |       |            |
| 2-Nitrophenol                                          | 38.3         | 10    | μg/L         | 50.0         |              | 76.6         | 30-130 |     |       |            |
| 4-Nitrophenol                                          | 22.2         | 10    | μg/L         | 50.0         |              | 44.4         | 10-130 |     |       |            |
| N-Nitrosodimethylamine                                 | 23.8         | 10    | μg/L         | 50.0         |              | 47.7         | 40-140 |     |       |            |
| N-Nitrosodiphenylamine/Diphenylamine                   | 39.1         | 10    | μg/L         | 50.0         |              | 78.2         | 40-140 |     |       |            |
| N-Nitrosodi-n-propylamine                              | 41.9         | 10    | μg/L         | 50.0         |              | 83.8         | 40-140 |     |       |            |
| Pentachloronitrobenzene                                | 37.9         | 10    | μg/L         | 50.0         |              | 75.8         | 40-140 |     |       |            |
| Pentachlorophenol                                      | 34.9         | 10    | μg/L         | 50.0         |              | 69.9         | 30-130 |     |       |            |
| Phenanthrene                                           | 37.5         | 5.0   | μg/L         | 50.0         |              | 75.0         | 40-140 |     |       |            |
| Phenol                                                 | 17.5         | 10    | μg/L         | 50.0         |              | 34.9         | 20-130 |     |       |            |
| Pyrene                                                 | 37.8         | 5.0   | μg/L         | 50.0         |              | 75.7         | 40-140 |     |       |            |
| Pyridine                                               | 16.3         | 5.0   | μg/L         | 50.0         |              | 32.5         | 10-140 |     |       |            |
| 1,2,4,5-Tetrachlorobenzene                             |              | 10    | μg/L         | 50.0         |              | 66.4         | 40-140 |     |       |            |
| 1,2,4-Trichlorobenzene                                 | 33.2<br>29.8 | 5.0   | μg/L         | 50.0         |              | 59.6         | 40-140 |     |       |            |
| 2,4,5-Trichlorophenol                                  | 38.0         | 10    | μg/L<br>μg/L | 50.0         |              | 75.9         | 30-130 |     |       |            |
| 2,4,6-Trichlorophenol                                  | 37.0         | 10    | μg/L<br>μg/L | 50.0         |              | 74.1         | 30-130 |     |       |            |
| Surrogate: 2-Fluorophenol                              | 98.3         |       | μg/L         | 200          |              | 49.1         | 15-110 |     |       |            |
| Surrogate: Phenol-d6                                   | 72.2         |       |              | 200          |              | 36.1         | 15-110 |     |       |            |
| Surrogate: Pnenoi-do<br>Surrogate: Nitrobenzene-d5     | 62.7         |       | μg/L<br>μg/I | 100          |              | 62.7         | 30-130 |     |       |            |
| Surrogate: Nitrobenzene-u3 Surrogate: 2-Fluorobiphenyl | 65.5         |       | μg/L<br>μg/L | 100          |              | 65.5         | 30-130 |     |       |            |
| Surrogate: 2,4,6-Tribromophenol                        | 05.5<br>172  |       | μg/L<br>μg/L | 200          |              | 85.9         | 15-110 |     |       |            |
| Surrogate: p-Terphenyl-d14                             | 92.3         |       | μg/L<br>μg/L | 100          |              | 92.3         | 30-130 |     |       |            |



## QUALITY CONTROL

| Analyte                         | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|---------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|------------|---|
| Batch B293790 - SW-846 3510C    |        |                    |           |                |                  |               |                |       |              |            | _ |
| LCS Dup (B293790-BSD1)          |        |                    |           | Prepared: 11   | /02/21 Analy     | yzed: 11/03/2 | 1              |       |              |            |   |
| Acenaphthene                    | 38.5   | 5.0                | $\mu g/L$ | 50.0           |                  | 76.9          | 40-140         | 4.30  | 20           |            |   |
| Acenaphthylene                  | 39.2   | 5.0                | μg/L      | 50.0           |                  | 78.4          | 40-140         | 2.24  | 20           |            |   |
| Acetophenone                    | 38.4   | 10                 | μg/L      | 50.0           |                  | 76.8          | 40-140         | 2.24  | 20           |            |   |
| Aniline                         | 38.7   | 5.0                | μg/L      | 50.0           |                  | 77.4          | 40-140         | 6.20  | 50           |            |   |
| Anthracene                      | 41.1   | 5.0                | μg/L      | 50.0           |                  | 82.2          | 40-140         | 7.60  | 20           |            |   |
| Benzidine                       | 37.6   | 20                 | μg/L      | 50.0           |                  | 75.1          | 40-140         | 11.0  | 20           | V-04       |   |
| Benzo(a)anthracene              | 39.4   | 5.0                | μg/L      | 50.0           |                  | 78.7          | 40-140         | 6.99  | 20           |            |   |
| Benzo(a)pyrene                  | 45.1   | 5.0                | μg/L      | 50.0           |                  | 90.2          | 40-140         | 8.79  | 20           |            |   |
| Benzo(b)fluoranthene            | 40.8   | 5.0                | μg/L      | 50.0           |                  | 81.7          | 40-140         | 7.21  | 20           |            |   |
| Benzo(g,h,i)perylene            | 44.6   | 5.0                | μg/L      | 50.0           |                  | 89.2          | 40-140         | 4.17  | 20           |            |   |
| Benzo(k)fluoranthene            | 43.9   | 5.0                | μg/L      | 50.0           |                  | 87.8          | 40-140         | 7.56  | 20           |            |   |
| Benzoic Acid                    | 22.9   | 10                 | μg/L      | 50.0           |                  | 45.8          | 10-130         | 12.9  | 50           |            | i |
| Bis(2-chloroethoxy)methane      | 39.1   | 10                 | μg/L      | 50.0           |                  | 78.3          | 40-140         | 2.67  | 20           |            |   |
| Bis(2-chloroethyl)ether         | 37.7   | 10                 | μg/L      | 50.0           |                  | 75.4          | 40-140         | 2.80  | 20           |            |   |
| Bis(2-chloroisopropyl)ether     | 44.2   | 10                 | $\mu g/L$ | 50.0           |                  | 88.4          | 40-140         | 1.75  | 20           |            |   |
| 3is(2-Ethylhexyl)phthalate      | 43.2   | 10                 | $\mu g/L$ | 50.0           |                  | 86.3          | 40-140         | 1.71  | 20           |            |   |
| -Bromophenylphenylether         | 37.7   | 10                 | $\mu g/L$ | 50.0           |                  | 75.3          | 40-140         | 6.81  | 20           |            |   |
| Butylbenzylphthalate            | 42.0   | 10                 | $\mu g/L$ | 50.0           |                  | 84.0          | 40-140         | 4.33  | 20           |            |   |
| Carbazole                       | 41.4   | 10                 | $\mu g/L$ | 50.0           |                  | 82.8          | 40-140         | 8.35  | 20           |            |   |
| -Chloroaniline                  | 37.8   | 10                 | $\mu g/L$ | 50.0           |                  | 75.6          | 40-140         | 5.21  | 20           |            |   |
| -Chloro-3-methylphenol          | 39.7   | 10                 | $\mu g/L$ | 50.0           |                  | 79.4          | 30-130         | 4.11  | 20           |            |   |
| -Chloronaphthalene              | 30.3   | 10                 | $\mu g/L$ | 50.0           |                  | 60.6          | 40-140         | 0.363 | 20           |            |   |
| -Chlorophenol                   | 33.1   | 10                 | $\mu g/L$ | 50.0           |                  | 66.2          | 30-130         | 3.50  | 20           |            |   |
| -Chlorophenylphenylether        | 36.8   | 10                 | $\mu g/L$ | 50.0           |                  | 73.7          | 40-140         | 4.13  | 20           |            |   |
| Chrysene                        | 40.8   | 5.0                | μg/L      | 50.0           |                  | 81.5          | 40-140         | 7.61  | 20           |            |   |
| Dibenz(a,h)anthracene           | 47.2   | 5.0                | $\mu g/L$ | 50.0           |                  | 94.4          | 40-140         | 9.06  | 20           |            |   |
| Dibenzofuran                    | 39.6   | 5.0                | $\mu g/L$ | 50.0           |                  | 79.1          | 40-140         | 4.44  | 20           |            |   |
| Di-n-butylphthalate             | 40.0   | 10                 | μg/L      | 50.0           |                  | 80.1          | 40-140         | 8.73  | 20           |            |   |
| ,2-Dichlorobenzene              | 30.2   | 5.0                | μg/L      | 50.0           |                  | 60.4          | 40-140         | 2.14  | 20           |            |   |
| ,3-Dichlorobenzene              | 28.7   | 5.0                | μg/L      | 50.0           |                  | 57.4          | 40-140         | 1.19  | 20           |            |   |
| ,4-Dichlorobenzene              | 29.4   | 5.0                | $\mu g/L$ | 50.0           |                  | 58.8          | 40-140         | 1.86  | 20           |            |   |
| 3,3-Dichlorobenzidine           | 42.7   | 10                 | $\mu g/L$ | 50.0           |                  | 85.4          | 40-140         | 5.76  | 20           |            |   |
| ,4-Dichlorophenol               | 36.2   | 10                 | $\mu g/L$ | 50.0           |                  | 72.4          | 30-130         | 4.78  | 20           |            |   |
| Diethylphthalate                | 39.1   | 10                 | $\mu g/L$ | 50.0           |                  | 78.3          | 40-140         | 4.92  | 20           |            |   |
| ,4-Dimethylphenol               | 35.4   | 10                 | $\mu g/L$ | 50.0           |                  | 70.9          | 30-130         | 4.50  | 20           |            |   |
| Dimethylphthalate               | 40.4   | 10                 | $\mu g/L$ | 50.0           |                  | 80.7          | 40-140         | 8.63  | 50           |            |   |
| ,6-Dinitro-2-methylphenol       | 43.3   | 10                 | μg/L      | 50.0           |                  | 86.5          | 30-130         | 9.97  | 50           |            |   |
| ,4-Dinitrophenol                | 60.3   | 10                 | μg/L      | 50.0           |                  | 121           | 30-130         | 15.1  | 50           | V-04, V-06 |   |
| 2,4-Dinitrotoluene              | 50.2   | 10                 | μg/L      | 50.0           |                  | 100           | 40-140         | 11.8  | 20           | V-06       |   |
| ,6-Dinitrotoluene               | 47.4   | 10                 | μg/L      | 50.0           |                  | 94.8          | 40-140         | 6.81  | 20           |            |   |
| Di-n-octylphthalate             | 41.8   | 10                 | μg/L      | 50.0           |                  | 83.5          | 40-140         | 3.46  | 20           |            |   |
| ,2-Diphenylhydrazine/Azobenzene | 41.8   | 10                 | μg/L      | 50.0           |                  | 83.7          | 40-140         | 1.15  | 20           |            |   |
| luoranthene                     | 41.5   | 5.0                | μg/L      | 50.0           |                  | 82.9          | 40-140         | 12.6  | 20           |            |   |
| luorene                         | 40.9   | 5.0                | μg/L      | 50.0           |                  | 81.7          | 40-140         | 6.08  | 20           |            |   |
| Iexachlorobenzene               | 39.0   | 10                 | μg/L      | 50.0           |                  | 78.0          | 40-140         | 5.02  | 20           |            |   |
| Hexachlorobutadiene             | 28.7   | 10                 | μg/L      | 50.0           |                  | 57.4          | 40-140         | 2.50  | 20           |            |   |
| Hexachlorocyclopentadiene       | 29.8   | 10                 | μg/L      | 50.0           |                  | 59.6          | 30-140         | 4.07  | 50           |            | ÷ |
| Hexachloroethane                | 29.5   | 10                 | μg/L      | 50.0           |                  | 59.1          | 40-140         | 0.407 | 50           |            |   |
| ndeno(1,2,3-cd)pyrene           | 49.2   | 5.0                | μg/L      | 50.0           |                  | 98.3          | 40-140         | 6.01  | 50           |            |   |
| sophorone                       | 42.9   | 10                 | μg/L      | 50.0           |                  | 85.9          | 40-140         | 1.15  | 20           |            |   |
| -Methylnaphthalene              | 34.1   | 5.0                | μg/L      | 50.0           |                  | 68.2          | 40-140         | 5.42  | 20           |            |   |
| -Methylnaphthalene              | 39.6   | 5.0                | μg/L      | 50.0           |                  | 79.3          | 40-140         | 0.709 | 20           |            |   |



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

| Analyte                                                                                                                                                                                                                                    | Result                                   | Reporting<br>Limit                                                         | Units                                                        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------|------------------|--------------|----------------|-------|--------------|-------|---|
| Satch B293790 - SW-846 3510C                                                                                                                                                                                                               |                                          |                                                                            |                                                              |                |                  |              |                |       |              |       |   |
| CS Dup (B293790-BSD1)                                                                                                                                                                                                                      |                                          |                                                                            |                                                              | Prepared: 11   | /02/21 Analy     | zed: 11/03/2 | 1              |       |              |       |   |
| -Methylphenol                                                                                                                                                                                                                              | 34.8                                     | 10                                                                         | μg/L                                                         | 50.0           |                  | 69.7         | 30-130         | 3.56  | 20           |       |   |
| 4-Methylphenol                                                                                                                                                                                                                             | 34.1                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 68.2         | 30-130         | 4.53  | 20           |       |   |
| aphthalene                                                                                                                                                                                                                                 | 34.9                                     | 5.0                                                                        | $\mu g/L$                                                    | 50.0           |                  | 69.8         | 40-140         | 1.82  | 20           |       |   |
| -Nitroaniline                                                                                                                                                                                                                              | 59.3                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 119          | 40-140         | 7.26  | 20           |       |   |
| -Nitroaniline                                                                                                                                                                                                                              | 45.2                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 90.3         | 40-140         | 9.05  | 20           |       |   |
| Nitroaniline                                                                                                                                                                                                                               | 49.7                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 99.3         | 40-140         | 12.2  | 20           | V-06  |   |
| itrobenzene                                                                                                                                                                                                                                | 37.0                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 73.9         | 40-140         | 3.36  | 20           |       |   |
| Nitrophenol                                                                                                                                                                                                                                | 40.2                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 80.5         | 30-130         | 4.94  | 20           |       |   |
| Nitrophenol                                                                                                                                                                                                                                | 25.4                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 50.8         | 10-130         | 13.5  | 50           |       | † |
| -Nitrosodimethylamine                                                                                                                                                                                                                      | 24.6                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 49.1         | 40-140         | 2.89  | 20           |       |   |
| -Nitrosodiphenylamine/Diphenylamine                                                                                                                                                                                                        | 41.8                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 83.7         | 40-140         | 6.72  | 20           |       |   |
| -Nitrosodi-n-propylamine                                                                                                                                                                                                                   | 41.8                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 83.6         | 40-140         | 0.287 | 20           |       |   |
| entachloronitrobenzene                                                                                                                                                                                                                     | 42.5                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 85.1         | 40-140         | 11.6  | 20           |       |   |
| entachlorophenol                                                                                                                                                                                                                           | 38.4                                     | 10                                                                         | μg/L                                                         | 50.0           |                  | 76.9         | 30-130         | 9.54  | 50           |       |   |
| nenanthrene                                                                                                                                                                                                                                | 40.6                                     | 5.0                                                                        | μg/L                                                         | 50.0           |                  | 81.2         | 40-140         | 7.86  | 20           |       |   |
| nenol                                                                                                                                                                                                                                      | 18.4                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 36.8         | 20-130         | 5.13  | 20           |       | † |
| vrene                                                                                                                                                                                                                                      | 40.6                                     | 5.0                                                                        | μg/L                                                         | 50.0           |                  | 81.2         | 40-140         | 7.01  | 20           |       |   |
| yridine                                                                                                                                                                                                                                    | 15.4                                     | 5.0                                                                        | $\mu g/L$                                                    | 50.0           |                  | 30.9         | 10-140         | 5.23  | 50           |       | † |
| 2,4,5-Tetrachlorobenzene                                                                                                                                                                                                                   | 33.1                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 66.1         | 40-140         | 0.453 | 20           |       |   |
| 2,4-Trichlorobenzene                                                                                                                                                                                                                       | 31.4                                     | 5.0                                                                        | $\mu g/L$                                                    | 50.0           |                  | 62.7         | 40-140         | 5.04  | 20           |       |   |
| 4,5-Trichlorophenol                                                                                                                                                                                                                        | 40.4                                     | 10                                                                         | $\mu g/L$                                                    | 50.0           |                  | 80.7         | 30-130         | 6.10  | 20           |       |   |
| 4,6-Trichlorophenol                                                                                                                                                                                                                        | 39.5                                     | 10                                                                         | μg/L                                                         | 50.0           |                  | 79.0         | 30-130         | 6.51  | 50           |       |   |
| rrogate: 2-Fluorophenol                                                                                                                                                                                                                    | 101                                      |                                                                            | μg/L                                                         | 200            |                  | 50.5         | 15-110         |       |              |       |   |
| urrogate: Phenol-d6                                                                                                                                                                                                                        | 76.2                                     |                                                                            | μg/L                                                         | 200            |                  | 38.1         | 15-110         |       |              |       |   |
| urrogate: Nitrobenzene-d5                                                                                                                                                                                                                  | 66.7                                     |                                                                            | μg/L                                                         | 100            |                  | 66.7         | 30-130         |       |              |       |   |
| urrogate: 2-Fluorobiphenyl                                                                                                                                                                                                                 | 66.0                                     |                                                                            | $\mu g/L$                                                    | 100            |                  | 66.0         | 30-130         |       |              |       |   |
| urrogate: 2,4,6-Tribromophenol                                                                                                                                                                                                             | 190                                      |                                                                            | $\mu g/L$                                                    | 200            |                  | 94.8         | 15-110         |       |              |       |   |
| urrogate: p-Terphenyl-d14                                                                                                                                                                                                                  | 98.2                                     |                                                                            | $\mu g/L$                                                    | 100            |                  | 98.2         | 30-130         |       |              |       |   |
| atch B293858 - SW-846 3510C                                                                                                                                                                                                                |                                          |                                                                            |                                                              |                |                  |              |                |       |              |       |   |
| lank (B293858-BLK1)                                                                                                                                                                                                                        |                                          |                                                                            |                                                              | Prepared: 11   | /03/21 Analy     | zed: 11/04/2 | 1              |       |              |       |   |
| cenaphthene                                                                                                                                                                                                                                | ND                                       | 5.0                                                                        | μg/L                                                         |                |                  |              |                |       |              |       |   |
| cenaphthylene                                                                                                                                                                                                                              | ND                                       | 5.0                                                                        | μg/L                                                         |                |                  |              |                |       |              |       |   |
| . 1                                                                                                                                                                                                                                        |                                          |                                                                            |                                                              |                |                  |              |                |       |              |       |   |
| cetophenone                                                                                                                                                                                                                                | ND                                       | 10                                                                         | $\mu g/L$                                                    |                |                  |              |                |       |              |       |   |
| niline                                                                                                                                                                                                                                     | ND<br>ND                                 | 10<br>5.0                                                                  | μg/L<br>μg/L                                                 |                |                  |              |                |       |              |       |   |
| niline                                                                                                                                                                                                                                     |                                          |                                                                            |                                                              |                |                  |              |                |       |              |       |   |
| niline<br>nthracene                                                                                                                                                                                                                        | ND<br>ND                                 | 5.0                                                                        | μg/L<br>μg/L                                                 |                |                  |              |                |       |              | V-05  |   |
| niline<br>nthracene<br>enzidine                                                                                                                                                                                                            | ND                                       | 5.0<br>5.0                                                                 | $\mu g/L$                                                    |                |                  |              |                |       |              | V-05  |   |
|                                                                                                                                                                                                                                            | ND<br>ND<br>ND                           | 5.0<br>5.0<br>20                                                           | μg/L<br>μg/L<br>μg/L                                         |                |                  |              |                |       |              | V-05  |   |
| niline<br>nthracene<br>enzidine<br>enzo(a)anthracene                                                                                                                                                                                       | ND<br>ND<br>ND<br>ND                     | 5.0<br>5.0<br>20<br>5.0                                                    | μg/L<br>μg/L<br>μg/L<br>μg/L                                 |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene                                                                                                                                                              | ND<br>ND<br>ND<br>ND                     | 5.0<br>5.0<br>20<br>5.0<br>5.0                                             | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene                                                                                                                                                        | ND<br>ND<br>ND<br>ND<br>ND               | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0                                      | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                 |                |                  |              |                |       |              | V-05  |   |
| nthracene enzidine enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene                                                                                                                                           | ND ND ND ND ND ND ND                     | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0                               | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid                                                                                                          | ND ND ND ND ND ND ND ND ND               | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0                               | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid s(2-chloroethoxy)methane                                                                                 | ND            | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                        | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid s(2-chloroethoxy)methane s(2-chloroethyl)ether                                                           | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid s(2-chloroethoxy)methane s(2-chloroisopropyl)ether                                                                     | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10                         | µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L                      |                |                  |              |                |       |              | V-05  |   |
| atline athracene anzidine anzo(a)anthracene anzo(b)fluoranthene anzo(g,h,i)perylene anzo(k)fluoranthene anzoic Acid se(2-chloroethoxy)methane se(2-chloroisopropyl)ether se(2-Ethylhexyl)phthalate                                         | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10<br>10                   | Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L                      |                |                  |              |                |       |              | V-05  |   |
| nthracene enzidine enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid s(2-chloroethoxy)methane s(2-chloroisopropyl)ether s(2-Ethylhexyl)phthalate Bromophenylphenylether                            | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10<br>10<br>10<br>10       | Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L                      |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene enzoic Acid s(2-chloroethoxy)methane s(2-chloroisopropyl)ether s(2-Ethylhexyl)phthalate Bromophenylphenylether utylbenzylphthalate | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10<br>10<br>10<br>10<br>10 | Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L                      |                |                  |              |                |       |              | V-05  |   |
| niline nthracene enzidine enzo(a)anthracene enzo(a)pyrene                                                                                                                                                                                  | ND N | 5.0<br>5.0<br>20<br>5.0<br>5.0<br>5.0<br>5.0<br>10<br>10<br>10<br>10       | Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L                      |                |                  |              |                |       |              | V-05  |   |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

|                                                      |          | Reporting  |                   | Spike        | Source       |               | %REC   |     | RPD   |           |
|------------------------------------------------------|----------|------------|-------------------|--------------|--------------|---------------|--------|-----|-------|-----------|
| Analyte                                              | Result   | Limit      | Units             | Level        | Result       | %REC          | Limits | RPD | Limit | Notes     |
| Batch B293858 - SW-846 3510C                         |          |            |                   |              |              |               |        |     |       |           |
| Blank (B293858-BLK1)                                 |          |            |                   | Prepared: 11 | /03/21 Analy | yzed: 11/04/2 | 21     |     |       |           |
| -Chloronaphthalene                                   | ND       | 10         | $\mu g/L$         |              |              |               |        |     |       |           |
| -Chlorophenol                                        | ND       | 10         | $\mu g/L$         |              |              |               |        |     |       |           |
| -Chlorophenylphenylether                             | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| Chrysene                                             | ND       | 5.0        | $\mu g/L$         |              |              |               |        |     |       |           |
| Dibenz(a,h)anthracene                                | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| Dibenzofuran                                         | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| Di-n-butylphthalate                                  | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ,2-Dichlorobenzene                                   | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| ,3-Dichlorobenzene                                   | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| ,4-Dichlorobenzene                                   | ND       | 5.0        | $\mu g/L$         |              |              |               |        |     |       |           |
| ,3-Dichlorobenzidine                                 | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ,4-Dichlorophenol                                    | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| Diethylphthalate                                     | ND       | 10         | $\mu g \! / \! L$ |              |              |               |        |     |       |           |
| ,4-Dimethylphenol                                    | ND       | 10         | $\mu g \! / \! L$ |              |              |               |        |     |       |           |
| Dimethylphthalate                                    | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ,6-Dinitro-2-methylphenol                            | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ,4-Dinitrophenol                                     | ND       | 10         | μg/L              |              |              |               |        |     |       | V-04, V-2 |
| ,4-Dinitrotoluene                                    | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| 6-Dinitrotoluene                                     | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| i-n-octylphthalate                                   | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ,2-Diphenylhydrazine/Azobenzene                      | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| luoranthene                                          | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| luorene                                              | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| [exachlorobenzene                                    | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| exachlorobutadiene                                   | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| [exachlorocyclopentadiene                            | ND       | 10         | μg/L              |              |              |               |        |     |       | V-05      |
| [exachloroethane                                     | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| ndeno(1,2,3-cd)pyrene                                | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| sophorone                                            | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| -Methylnaphthalene                                   | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| -Methylnaphthalene                                   | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| -Methylphenol                                        | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| /4-Methylphenol                                      | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| Vaphthalene                                          | ND       | 5.0        | μg/L              |              |              |               |        |     |       |           |
| -Nitroaniline                                        | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| -Nitroaniline<br>-Nitroaniline                       | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
|                                                      | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| Nitrophonal                                          | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| -Nitrophenol<br>-Nitrophenol                         | ND       | 10         | μg/L              |              |              |               |        |     |       |           |
| -Nitropnenoi<br>J-Nitrosodimethylamine               | ND       | 10         | μg/L<br>μg/I      |              |              |               |        |     |       |           |
|                                                      | ND       | 10<br>10   | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| J-Nitrosodiphenylamine/Diphenylamine                 | ND       |            | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| I-Nitrosodi-n-propylamine<br>Pentachloronitrobenzene | ND       | 10<br>10   | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| Pentachlorophenol                                    | ND       | 10         | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| Phenanthrene                                         | ND       | 5.0        | μg/L<br>μg/I      |              |              |               |        |     |       | D OF T    |
| henanthrene<br>henol                                 | 0.43     | 5.0<br>10  | μg/L<br>μg/I      |              |              |               |        |     |       | B-05, J   |
|                                                      | ND       |            | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| Pyrene<br>Pyridine                                   | ND       | 5.0<br>5.0 | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| ,2,4,5-Tetrachlorobenzene                            | ND       | 3.0<br>10  | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| ,2,4-Trichlorobenzene                                | ND       |            | μg/L<br>μg/I      |              |              |               |        |     |       |           |
| ,2,4-1 richlorobenzene                               | ND<br>ND | 5.0<br>10  | μg/L<br>μg/L      |              |              |               |        |     |       |           |



## QUALITY CONTROL

Spike

Source

%REC

RPD

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                               | Result       | Limit      | Units        | Level        | Result %REC             | Limits           | RPD | Limit | Notes      |
|---------------------------------------|--------------|------------|--------------|--------------|-------------------------|------------------|-----|-------|------------|
| Batch B293858 - SW-846 3510C          |              |            |              |              |                         |                  |     |       |            |
| Blank (B293858-BLK1)                  |              |            |              | Prepared: 11 | /03/21 Analyzed: 11/04/ | 21               |     |       |            |
| 2,4,6-Trichlorophenol                 | ND           | 10         | μg/L         |              |                         |                  |     |       |            |
| Surrogate: 2-Fluorophenol             | 83.8         |            | μg/L         | 200          | 41.9                    | 15-110           |     |       |            |
| Surrogate: Phenol-d6                  | 52.7         |            | $\mu g/L$    | 200          | 26.4                    | 15-110           |     |       |            |
| Surrogate: Nitrobenzene-d5            | 65.9         |            | $\mu g/L$    | 100          | 65.9                    | 30-130           |     |       |            |
| Surrogate: 2-Fluorobiphenyl           | 74.3         |            | $\mu g/L$    | 100          | 74.3                    | 30-130           |     |       |            |
| Surrogate: 2,4,6-Tribromophenol       | 203          |            | $\mu g/L$    | 200          | 102                     | 15-110           |     |       |            |
| surrogate: p-Terphenyl-d14            | 112          |            | $\mu g/L$    | 100          | 112                     | 30-130           |     |       |            |
| LCS (B293858-BS1)                     |              |            |              | Prepared: 11 | /03/21 Analyzed: 11/04/ | 21               |     |       |            |
| Acenaphthene                          | 34.4         | 5.0        | μg/L         | 50.0         | 68.8                    | 40-140           |     |       |            |
| Acenaphthylene                        | 39.3         | 5.0        | μg/L         | 50.0         | 78.6                    | 40-140           |     |       |            |
| Acetophenone                          | 32.0         | 10         | μg/L         | 50.0         | 64.1                    | 40-140           |     |       |            |
| Aniline                               | 31.0         | 5.0        | μg/L         | 50.0         | 62.0                    | 40-140           |     |       |            |
| Anthracene                            | 37.6         | 5.0        | μg/L         | 50.0         | 75.2                    | 40-140           |     |       |            |
| Benzidine                             | 49.4         | 20         | μg/L         | 50.0         | 98.9                    | 40-140           |     |       | V-05       |
| Benzo(a)anthracene                    | 36.1         | 5.0        | μg/L         | 50.0         | 72.3                    | 40-140           |     |       |            |
| Benzo(a)pyrene                        | 40.6         | 5.0        | μg/L         | 50.0         | 81.3                    | 40-140           |     |       |            |
| Benzo(b)fluoranthene                  | 38.9         | 5.0        | μg/L         | 50.0         | 77.8                    | 40-140           |     |       |            |
| Benzo(g,h,i)perylene                  | 43.1         | 5.0        | μg/L         | 50.0         | 86.1                    | 40-140           |     |       |            |
| Benzo(k)fluoranthene                  | 41.5         | 5.0        | μg/L         | 50.0         | 83.0                    | 40-140           |     |       |            |
| Benzoic Acid                          | 12.7         | 10         | μg/L         | 50.0         | 25.4                    | 10-130           |     |       |            |
| is(2-chloroethoxy)methane             | 33.1         | 10         | μg/L         | 50.0         | 66.2                    | 40-140           |     |       |            |
| is(2-chloroethyl)ether                | 31.9         | 10         | μg/L         | 50.0         | 63.9                    | 40-140           |     |       |            |
| sis(2-chloroisopropyl)ether           | 40.6         | 10         | μg/L         | 50.0         | 81.1                    | 40-140           |     |       |            |
| Bis(2-Ethylhexyl)phthalate            | 38.5         | 10         | μg/L         | 50.0         | 77.0                    | 40-140           |     |       |            |
| -Bromophenylphenylether               | 36.8         | 10         | μg/L         | 50.0         | 73.6                    | 40-140           |     |       |            |
| Butylbenzylphthalate                  | 37.0         | 10         | μg/L         | 50.0         | 74.0                    | 40-140           |     |       |            |
| Carbazole                             | 36.8         | 10         | μg/L         | 50.0         | 73.6                    | 40-140           |     |       | ****       |
| -Chloroaniline                        | 31.4         | 10         | μg/L         | 50.0         | 62.9                    | 40-140           |     |       | V-34       |
| -Chloro-3-methylphenol                | 33.3         | 10         | μg/L         | 50.0         | 66.5                    | 30-130           |     |       |            |
| -Chloronaphthalene                    | 32.2         | 10         | μg/L         | 50.0         | 64.5                    | 40-140           |     |       |            |
| -Chlorophenol                         | 30.8         | 10         | μg/L         | 50.0         | 61.6                    | 30-130           |     |       |            |
| -Chlorophenylphenylether              | 35.9         | 10         | μg/L         | 50.0         | 71.7                    | 40-140           |     |       |            |
| Chrysene<br>Dibenz(a,h)anthracene     | 37.5         | 5.0<br>5.0 | μg/L<br>μg/I | 50.0         | 74.9                    | 40-140           |     |       |            |
| Dibenz(a,n)anthracene<br>Dibenzofuran | 43.1         | 5.0        | μg/L<br>μg/I | 50.0         | 86.2                    | 40-140           |     |       |            |
| Dienzoturan<br>Di-n-butylphthalate    | 39.0         | 10         | μg/L<br>μg/I | 50.0         | 78.1                    | 40-140           |     |       |            |
| ,2-Dichlorobenzene                    | 37.4         | 5.0        | μg/L<br>μg/L | 50.0<br>50.0 | 74.8<br>59.6            | 40-140<br>40-140 |     |       |            |
| ,3-Dichlorobenzene                    | 29.8         | 5.0        | μg/L<br>μg/L | 50.0         | 59.6                    | 40-140           |     |       |            |
| ,4-Dichlorobenzene                    | 29.8         | 5.0        | μg/L<br>μg/L | 50.0         | 59.1                    | 40-140           |     |       |            |
| ,3-Dichlorobenzidine                  | 29.5         | 10         | μg/L<br>μg/L | 50.0         | 84.5                    | 40-140           |     |       |            |
| ,4-Dichlorophenol                     | 42.2<br>33.2 | 10         | μg/L<br>μg/L | 50.0         | 66.5                    | 30-130           |     |       |            |
| Diethylphthalate                      | 36.4         | 10         | μg/L<br>μg/L | 50.0         | 72.7                    | 40-140           |     |       |            |
| ,4-Dimethylphenol                     | 33.4         | 10         | μg/L<br>μg/L | 50.0         | 66.7                    | 30-130           |     |       |            |
| Dimethylphthalate                     | 33.4<br>37.4 | 10         | μg/L<br>μg/L | 50.0         | 74.7                    | 40-140           |     |       |            |
| ,6-Dinitro-2-methylphenol             | 37.4<br>37.6 | 10         | μg/L<br>μg/L | 50.0         | 75.2                    | 30-130           |     |       |            |
| ,4-Dinitrophenol                      | 43.3         | 10         | μg/L<br>μg/L | 50.0         | 86.5                    | 30-130           |     |       | V-04, V-06 |
| ,4-Dinitrophenor                      | 43.3         | 10         | μg/L<br>μg/L | 50.0         | 85.4                    | 40-140           |     |       | , 57, V-00 |
| ,,,Dinitrotoluene                     | 44.1         | 10         | μg/L<br>μg/L | 50.0         | 88.2                    | 40-140           |     |       |            |
| Di-n-octylphthalate                   | 35.4         | 10         | μg/L<br>μg/L | 50.0         | 70.8                    | 40-140           |     |       |            |
| ,2-Diphenylhydrazine/Azobenzene       | 35.4<br>31.6 | 10         | μg/L<br>μg/L | 50.0         | 63.3                    | 40-140           |     |       |            |
| luoranthene                           | 36.4         | 5.0        | μg/L<br>μg/L | 50.0         | 72.7                    | 40-140           |     |       |            |



# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

| Companies   Comp   | Analyte                      | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|---|
| Second   S   | Batch B293858 - SW-846 3510C |        |                    |           |                |                  |               |                |       |              |       |   |
| Secuelar Processor   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCS (B293858-BS1)            |        |                    |           | Prepared: 11   | /03/21 Anal      | yzed: 11/04/2 | :1             |       |              |       |   |
| International particular   1978   1988   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1989   1   | Fluorene                     | 37.2   | 5.0                | $\mu g/L$ | 50.0           |                  | 74.4          | 40-140         |       |              |       |   |
| Reachborocyclogenetadiane   19.2   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hexachlorobenzene            | 40.4   | 10                 | $\mu g/L$ | 50.0           |                  | 80.7          | 40-140         |       |              |       |   |
| Resemblemotement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorobutadiene          | 27.7   | 10                 | μg/L      | 50.0           |                  | 55.3          | 40-140         |       |              |       |   |
| Manual   1.2-dipysees   1.2-dipyse   | • •                          | 19.3   | 10                 | μg/L      | 50.0           |                  | 38.5          | 30-140         |       |              | V-05  | † |
| Southern    |                              | 26.6   |                    |           |                |                  |               |                |       |              |       |   |
| Medylaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 42.5   |                    |           |                |                  |               |                |       |              |       |   |
| Medicplaphalanies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Methylphenel 379   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Adealy planel   253   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Page      |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Namaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                          |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitrosmiline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                            |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitrosalinine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Himbenzene 30,4 10 pg/L 50,0 60,9 40-140 Horizone Horizone 1373 10 pg/L 50,0 74,5 30-150 Horizone 1373 10 pg/L 50,0 33.5 10-130 Horizone 16.8 10 pg/L 50,0 33.5 10-130 Horizone 16.8 10 pg/L 50,0 33.5 10-130 Horizone 16.8 Horizone 19.0 10 pg/L 50,0 42,1 40-140 Horizone Horizone 19.0 10 pg/L 50,0 64,6 40-140 Horizone Horizone 19.0 10 pg/L 50,0 75,0 84,4 30-130 Horizone Horizone 19.0 10 pg/L 50,0 75,0 40-140 Hor |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitrophenol   37.3   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitropiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitrosodimethylamine   210   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                            |        |                    |           |                |                  |               |                |       |              |       |   |
| Nitrosodiphenylamine    39,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                            |        |                    |           |                |                  |               |                |       |              |       |   |
| -Nitrosodi-n-propylamine 32.3 10 μg/L 50.0 64.6 40.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                            |        |                    |           |                |                  |               |                |       |              |       |   |
| entachlorophenol 92.2 10 µg/L 50.0 80.5 40.140 entachlorophenol 92.2 10 µg/L 50.0 58.4 30-130 entachlorophenol 92.2 10 µg/L 50.0 58.4 30-130 entachlorophenol 92.2 10 µg/L 50.0 75.3 40-140 entachlorophenol 12.0 10 µg/L 50.0 75.0 40-140 entachlorophenol 12.2 10 µg/L 50.0 66.7 40-140 entachlorophenol 12.4-5-Tichlorobenzene 33.4 10 µg/L 50.0 66.7 40-140 entachlorophenol 32.2 10 µg/L 50.0 78.4 30-130 entachlorophenol 32.2 10 µg/L 100 57.0 30-130 entachlorophenol 33.9 S. 9 µg/L 100 67.0 30-130 entachlorophenol 33.0 S. 9 µg/L  |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Part      |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| themathbrene 37, 5.0 µg/L 50,0 75,3 40-140 120 120 120 120 120 120 120 120 120 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| henol 12.0 10 µg/L 50.0 24.0 20-130 yerdenenenenenenenenenenenenenenenenenene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                            |        |                    |           |                |                  |               |                |       |              |       |   |
| yrene 37.5 5.0 µg/L 50.0 75.0 40-140 yridine 15.5 5.0 µg/L 50.0 31.1 10-140 yridine 15.5 5.0 µg/L 50.0 31.1 10-140 yridine 15.5 5.0 µg/L 50.0 66.7 40-140 yridine 2.2.4-Trichlorobenzene 33.4 10 µg/L 50.0 66.7 40-140 yridine 2.2.4-Trichlorobenzene 30.4 5.0 µg/L 50.0 66.7 40-140 yridine 30-120 |                              |        |                    |           |                |                  |               |                |       |              |       | ÷ |
| State   Stat   |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| 2,4,5-Tetrachlorobenzene   33,4   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |        |                    |           |                |                  |               |                |       |              |       | ÷ |
| 2,4-Trichlorobenzene 30,4 5.0 µg/L 50,0 60,9 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,2,4,5-Tetrachlorobenzene    |        | 10                 |           |                |                  |               |                |       |              |       |   |
| A,5-Trichlorophenol 39.2 10 µg/L 50.0 78.4 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,2,4-Trichlorobenzene        |        | 5.0                |           |                |                  |               |                |       |              |       |   |
| Ade-Trichlorophenol 37,2 10 µg/L 50,0 74,4 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,4,5-Trichlorophenol         |        | 10                 | μg/L      | 50.0           |                  | 78.4          | 30-130         |       |              |       |   |
| Prepared    | ,4,6-Trichlorophenol         |        | 10                 | $\mu g/L$ | 50.0           |                  | 74.4          | 30-130         |       |              |       |   |
| urrogate: Nitrobenzene-d5 57.0 μg/L 100 57.0 30-130 urrogate: 2-Fluorobiphenyl 67.0 μg/L 100 67.0 30-130 urrogate: 2-Fluorobiphenyl 67.0 μg/L 200 93.8 15-110 urrogate: 2-Ferphenyl-d14 95.9 μg/L 100 95.9 30-130 urrogate: p-Terphenyl-d14 95.9 μg/L 50.0 67.9 40-140 1.32 20 uccaphthene 33.9 5.0 μg/L 50.0 67.9 40-140 1.32 20 uccaphthylene 39.4 5.0 μg/L 50.0 67.9 40-140 0.178 20 uccaphthylene 39.4 5.0 μg/L 50.0 67.9 40-140 1.32 20 uccaphthylene 39.4 5.0 μg/L 50.0 67.9 40-140 1.32 20 uccaphthylene 39.4 5.0 μg/L 50.0 67.9 40-140 1.32 20 uccaphthylene 39.4 5.0 μg/L 50.0 67.9 40-140 1.09 20 uccaphthylene 38.0 5.0 μg/L 50.0 58.1 40-140 6.53 50 uccaphthylene 38.0 5.0 μg/L 50.0 58.1 40-140 7.36 20 uccaphthylene 38.0 5.0 μg/L 50.0 76.0 40-140 1.09 20 uccaphthylene 38.0 5.0 μg/L 50.0 76.0 40-140 1.09 20 uccaphthylene 38.0 53.2 20 μg/L 50.0 76.0 40-140 1.09 20 uccaphthylene 38.0 53.2 20 μg/L 50.0 76.0 40-140 1.09 20 uccaphthylene 40.0 40.0 40.0 40-140 1.09 20 uccaphthylene 40.0 40.0 40.0 40-140 1.09 20 uccaphthylene 40.0 40.0 40.0 40.0 40.0 40-140 1.09 20 uccaphthylene 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | urrogate: 2-Fluorophenol     | 78.2   |                    | μg/L      | 200            |                  | 39.1          | 15-110         |       |              |       |   |
| currogate: 2-Fluorobiphenyl         67.0         μg/L         100         67.0         30-130           urrogate: 2,4,6-Tribromophenol         188         μg/L         200         93.8         15-110           urrogate: p-Terphenyl-d14         95.9         μg/L         100         95.9         30-130           CCS Dup (B293858-BSD1)         Prepared: 11/03/21 Analyzed: 11/04/21           Prepared: 11/03/21 Analyzed: 11/04/21           CCS Dup (B293858-BSD1)         Prepared: 11/03/21 Analyzed: 11/04/21           Prepared: 11/03/21 Analyzed: 11/04/21           Prepared: 11/03/21 Analyzed: 11/04/21           Prepared: 11/03/21 Analyzed: 11/04/21           CCS Dup (B2 S)         40-140         1.32         20           Prepared: 11/03/21 Analyzed: 11/04/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | urrogate: Phenol-d6          | 49.0   |                    | $\mu g/L$ | 200            |                  | 24.5          | 15-110         |       |              |       |   |
| Prepared: 2,4,6-Tribromophenol   188   μg/L   200   93.8   15-110   μg/L   100   95.9   30-130   μg/L   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1    | urrogate: Nitrobenzene-d5    | 57.0   |                    | $\mu g/L$ | 100            |                  | 57.0          | 30-130         |       |              |       |   |
| Prepared: 11/03/21 Analyzed: 11/04/21    Prepared: 11/03/21 Analyzed: 11/04/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| Prepared: 11/03/21 Analyzed: 11/04/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| See Note    | durrogate: p-Terphenyl-d14   | 95.9   |                    | μg/L      | 100            |                  | 95.9          | 30-130         |       |              |       |   |
| See    | CS Dup (B293858-BSD1)        |        |                    |           | Prepared: 11   | /03/21 Anal      | yzed: 11/04/2 | :1             |       |              |       | _ |
| Second   S   | -                            | 33.9   | 5.0                |           |                |                  | 67.9          | 40-140         | 1.32  | 20           |       |   |
| 29.0 5.0 μg/L 50.0 58.1 40-140 6.53 50 anthracene 38.0 5.0 μg/L 50.0 76.0 40-140 1.09 20 senzidine 53.2 20 μg/L 50.0 106 40-140 7.36 20 V-05 senzidine 36.7 5.0 μg/L 50.0 73.4 40-140 1.48 20 senzo(a)pyrene 40.7 5.0 μg/L 50.0 81.4 40-140 0.148 20 senzo(b)fluoranthene 38.9 5.0 μg/L 50.0 77.9 40-140 0.154 20 senzo(g,h,i)perylene 43.1 5.0 μg/L 50.0 86.2 40-140 0.0464 20 senzo(k)fluoranthene 41.9 5.0 μg/L 50.0 83.7 40-140 0.888 20 senzo(k)fluoranthene 41.9 5.0 μg/L 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cenaphthylene                | 39.4   | 5.0                | μg/L      | 50.0           |                  | 78.8          | 40-140         | 0.178 | 20           |       |   |
| nthracene     38.0     5.0     μg/L     50.0     76.0     40-140     1.09     20       enzidine     53.2     20     μg/L     50.0     106     40-140     7.36     20     V-05       enzo(a)anthracene     36.7     5.0     μg/L     50.0     73.4     40-140     1.48     20       enzo(a)pyrene     40.7     5.0     μg/L     50.0     81.4     40-140     0.148     20       enzo(b)fluoranthene     38.9     5.0     μg/L     50.0     77.9     40-140     0.154     20       enzo(g,h,i)perylene     43.1     5.0     μg/L     50.0     86.2     40-140     0.0464     20       enzo(k)fluoranthene     41.9     5.0     μg/L     50.0     83.7     40-140     0.888     20       enzoic Acid     11.2     10     μg/L     50.0     22.3     10-130     12.8     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                            | 30.6   | 10                 | μg/L      | 50.0           |                  | 61.3          | 40-140         | 4.50  | 20           |       |   |
| enzidine 53.2 20 µg/L 50.0 106 40-140 7.36 20 V-05 enzo(a)anthracene 36.7 5.0 µg/L 50.0 73.4 40-140 1.48 20 enzo(a)pyrene 40.7 5.0 µg/L 50.0 81.4 40-140 0.148 20 enzo(b)fluoranthene 38.9 5.0 µg/L 50.0 77.9 40-140 0.154 20 enzo(g,h,i)perylene 43.1 5.0 µg/L 50.0 86.2 40-140 0.0464 20 enzo(k)fluoranthene 41.9 5.0 µg/L 50.0 83.7 40-140 0.888 20 enzo(k)fluoranthene 11.2 10 µg/L 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 29.0   |                    |           |                |                  | 58.1          | 40-140         | 6.53  | 50           |       |   |
| enzo(a)anthracene 36.7 5.0 $\mu g/L$ 50.0 73.4 40-140 1.48 20 enzo(a)pyrene 40.7 5.0 $\mu g/L$ 50.0 81.4 40-140 0.148 20 enzo(b)fluoranthene 38.9 5.0 $\mu g/L$ 50.0 77.9 40-140 0.154 20 enzo(b,h)perylene 43.1 5.0 $\mu g/L$ 50.0 86.2 40-140 0.0464 20 enzo(k)fluoranthene 41.9 5.0 $\mu g/L$ 50.0 83.7 40-140 0.888 20 enzo(c) Acid 11.2 10 $\mu g/L$ 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 38.0   |                    |           |                |                  |               |                |       |              |       |   |
| enzo(a)pyrene $40.7$ $5.0$ $\mu g/L$ $50.0$ $81.4$ $40-140$ $0.148$ $20$ enzo(b)fluoranthene $38.9$ $5.0$ $\mu g/L$ $50.0$ $77.9$ $40-140$ $0.154$ $20$ enzo(g,h,i)perylene $43.1$ $5.0$ $\mu g/L$ $50.0$ $86.2$ $40-140$ $0.0464$ $20$ enzo(k)fluoranthene $41.9$ $5.0$ $\mu g/L$ $50.0$ $83.7$ $40-140$ $0.888$ $20$ enzoic Acid $11.2$ $10$ $\mu g/L$ $50.0$ $22.3$ $10-130$ $12.8$ $50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 53.2   |                    |           |                |                  |               |                |       |              | V-05  |   |
| enzo(b)fluoranthene $38.9$ $5.0$ $\mu g/L$ $50.0$ $77.9$ $40-140$ $0.154$ $20$ enzo(g,h,i)perylene $43.1$ $5.0$ $\mu g/L$ $50.0$ $86.2$ $40-140$ $0.0464$ $20$ enzo(k)fluoranthene $41.9$ $5.0$ $\mu g/L$ $50.0$ $83.7$ $40-140$ $0.888$ $20$ enzoic Acid $11.2$ $10$ $\mu g/L$ $50.0$ $22.3$ $10-130$ $12.8$ $50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * *                          |        |                    |           |                |                  |               |                |       |              |       |   |
| enzo(g,h,i)perylene 43.1 5.0 µg/L 50.0 86.2 40-140 0.0464 20 enzo(k)fluoranthene 41.9 5.0 µg/L 50.0 83.7 40-140 0.888 20 enzoic Acid 11.2 10 µg/L 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| enzo(k)fluoranthene 41.9 5.0 µg/L 50.0 83.7 40-140 0.888 20 enzoic Acid 11.2 10 µg/L 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| enzoic Acid 11.2 10 µg/L 50.0 22.3 10-130 12.8 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |        |                    |           |                |                  |               |                |       |              |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |        |                    |           |                |                  |               |                |       |              |       |   |
| $32.6$ 10 $\mu g/L$ 50.0 65.1 40-140 1.55 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 11.2   |                    |           |                |                  | 22.3          | 10-130         | 12.8  | 50           |       | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-chloroethoxy)methane   | 32.6   | 10                 | μg/L      | 50.0           |                  | 65.1          | 40-140         | 1.55  | 20           |       |   |



## QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |  |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|------------|--|
| Batch B293858 - SW-846 3510C         |        |                    |           |                |                  |               |                |       |              |            |  |
| .CS Dup (B293858-BSD1)               |        |                    |           | Prepared: 11   | /03/21 Anal      | yzed: 11/04/2 | 1              |       |              |            |  |
| Bis(2-chloroethyl)ether              | 31.0   | 10                 | $\mu g/L$ | 50.0           |                  | 61.9          | 40-140         | 3.15  | 20           |            |  |
| Bis(2-chloroisopropyl)ether          | 39.3   | 10                 | μg/L      | 50.0           |                  | 78.6          | 40-140         | 3.18  | 20           |            |  |
| Bis(2-Ethylhexyl)phthalate           | 40.2   | 10                 | μg/L      | 50.0           |                  | 80.5          | 40-140         | 4.37  | 20           |            |  |
| -Bromophenylphenylether              | 37.9   | 10                 | μg/L      | 50.0           |                  | 75.7          | 40-140         | 2.84  | 20           |            |  |
| Butylbenzylphthalate                 | 37.5   | 10                 | μg/L      | 50.0           |                  | 74.9          | 40-140         | 1.32  | 20           |            |  |
| Carbazole                            | 37.5   | 10                 | μg/L      | 50.0           |                  | 74.9          | 40-140         | 1.80  | 20           |            |  |
| -Chloroaniline                       | 31.1   | 10                 | μg/L      | 50.0           |                  | 62.3          | 40-140         | 0.991 | 20           | V-34       |  |
| -Chloro-3-methylphenol               | 33.1   | 10                 | μg/L      | 50.0           |                  | 66.2          | 30-130         | 0.573 | 20           |            |  |
| -Chloronaphthalene                   | 32.2   | 10                 | μg/L      | 50.0           |                  | 64.4          | 40-140         | 0.186 | 20           |            |  |
| -Chlorophenol                        | 29.2   | 10                 | μg/L      | 50.0           |                  | 58.4          | 30-130         | 5.27  | 20           |            |  |
| -Chlorophenylphenylether             | 35.6   | 10                 | μg/L      | 50.0           |                  | 71.3          | 40-140         | 0.643 | 20           |            |  |
| Chrysene                             | 38.0   | 5.0                | μg/L      | 50.0           |                  | 76.1          | 40-140         | 1.56  | 20           |            |  |
| Dibenz(a,h)anthracene                | 44.4   | 5.0                | μg/L      | 50.0           |                  | 88.8          | 40-140         | 2.99  | 20           |            |  |
| Dibenzofuran                         | 38.9   | 5.0                | μg/L      | 50.0           |                  | 77.8          | 40-140         | 0.359 | 20           |            |  |
| Di-n-butylphthalate                  | 38.5   | 10                 | μg/L      | 50.0           |                  | 77.1          | 40-140         | 2.98  | 20           |            |  |
| ,2-Dichlorobenzene                   | 29.3   | 5.0                | μg/L      | 50.0           |                  | 58.6          | 40-140         | 1.62  | 20           |            |  |
| ,3-Dichlorobenzene                   | 28.6   | 5.0                | μg/L      | 50.0           |                  | 57.1          | 40-140         | 4.15  | 20           |            |  |
| ,4-Dichlorobenzene                   | 29.1   | 5.0                | μg/L      | 50.0           |                  | 58.3          | 40-140         | 1.36  | 20           |            |  |
| ,3-Dichlorobenzidine                 | 43.4   | 10                 | μg/L      | 50.0           |                  | 86.9          | 40-140         | 2.82  | 20           |            |  |
| ,4-Dichlorophenol                    | 32.0   | 10                 | μg/L      | 50.0           |                  | 64.0          | 30-130         | 3.77  | 20           |            |  |
| Diethylphthalate                     | 36.5   | 10                 | μg/L      | 50.0           |                  | 72.9          | 40-140         | 0.247 | 20           |            |  |
| ,4-Dimethylphenol                    | 32.3   | 10                 | μg/L      | 50.0           |                  | 64.7          | 30-130         | 3.11  | 20           |            |  |
| Dimethylphthalate                    | 36.1   | 10                 | μg/L      | 50.0           |                  | 72.2          | 40-140         | 3.38  | 50           |            |  |
| ,6-Dinitro-2-methylphenol            | 39.0   | 10                 | μg/L      | 50.0           |                  | 77.9          | 30-130         | 3.47  | 50           |            |  |
| ,4-Dinitrophenol                     | 43.9   | 10                 | μg/L      | 50.0           |                  | 87.8          | 30-130         | 1.40  | 50           | V-04, V-06 |  |
| ,4-Dinitrotoluene                    | 41.5   | 10                 | μg/L      | 50.0           |                  | 83.1          | 40-140         | 2.80  | 20           |            |  |
| ,6-Dinitrotoluene                    | 43.4   | 10                 | μg/L      | 50.0           |                  | 86.8          | 40-140         | 1.55  | 20           |            |  |
| Di-n-octylphthalate                  | 36.6   | 10                 | μg/L      | 50.0           |                  | 73.3          | 40-140         | 3.47  | 20           |            |  |
| ,2-Diphenylhydrazine/Azobenzene      | 32.6   | 10                 | μg/L      | 50.0           |                  | 65.2          | 40-140         | 2.99  | 20           |            |  |
| luoranthene                          | 36.9   | 5.0                | μg/L      | 50.0           |                  | 73.8          | 40-140         | 1.56  | 20           |            |  |
| Fluorene                             | 37.3   | 5.0                | μg/L      | 50.0           |                  | 74.5          | 40-140         | 0.134 | 20           |            |  |
| Hexachlorobenzene                    | 40.8   | 10                 | μg/L      | 50.0           |                  | 81.5          | 40-140         | 0.986 | 20           |            |  |
| Hexachlorobutadiene                  | 27.1   | 10                 | μg/L      | 50.0           |                  | 54.3          | 40-140         | 1.93  | 20           |            |  |
| Iexachlorocyclopentadiene            | 20.0   | 10                 | μg/L      | 50.0           |                  | 40.0          | 30-140         | 3.62  | 50           | V-05       |  |
| Iexachloroethane                     | 26.2   | 10                 | μg/L      | 50.0           |                  | 52.5          | 40-140         | 1.44  | 50           |            |  |
| ndeno(1,2,3-cd)pyrene                | 43.8   | 5.0                | μg/L      | 50.0           |                  | 87.7          | 40-140         | 2.99  | 50           |            |  |
| sophorone                            | 34.0   | 10                 | μg/L      | 50.0           |                  | 67.9          | 40-140         | 0.996 | 20           |            |  |
| -Methylnaphthalene                   | 31.2   | 5.0                | μg/L      | 50.0           |                  | 62.4          | 40-140         | 0.893 | 20           |            |  |
| -Methylnaphthalene                   | 38.4   | 5.0                | μg/L      | 50.0           |                  | 76.8          | 40-140         | 2.65  | 20           |            |  |
| -Methylphenol                        | 26.5   | 10                 | μg/L      | 50.0           |                  | 53.0          | 30-130         | 5.25  | 20           |            |  |
| /4-Methylphenol                      | 24.9   | 10                 | μg/L      | 50.0           |                  | 49.8          | 30-130         | 1.55  | 20           |            |  |
| Japhthalene                          | 32.2   | 5.0                | μg/L      | 50.0           |                  | 64.3          | 40-140         | 3.51  | 20           |            |  |
| -Nitroaniline                        | 37.8   | 10                 | μg/L      | 50.0           |                  | 75.6          | 40-140         | 3.23  | 20           |            |  |
| -Nitroaniline                        | 39.5   | 10                 | μg/L      | 50.0           |                  | 79.0          | 40-140         | 3.12  | 20           |            |  |
| -Nitroaniline                        | 41.4   | 10                 | μg/L      | 50.0           |                  | 82.8          | 40-140         | 1.79  | 20           |            |  |
| litrobenzene                         | 29.0   | 10                 | μg/L      | 50.0           |                  | 58.0          | 40-140         | 4.85  | 20           |            |  |
| -Nitrophenol                         | 36.5   | 10                 | μg/L      | 50.0           |                  | 73.0          | 30-130         | 2.11  | 20           |            |  |
| -Nitrophenol                         | 16.4   | 10                 | μg/L      | 50.0           |                  | 32.9          | 10-130         | 2.05  | 50           |            |  |
| I-Nitrosodimethylamine               | 19.1   | 10                 | μg/L      | 50.0           |                  | 38.3 *        | 40-140         | 9.50  | 20           | L-07       |  |
| N-Nitrosodiphenylamine/Diphenylamine | 40.6   | 10                 | μg/L      | 50.0           |                  | 81.2          | 40-140         | 2.77  | 20           |            |  |
| N-Nitrosodi-n-propylamine            | 31.6   | 10                 | μg/L      | 50.0           |                  | 63.1          | 40-140         | 2.25  | 20           |            |  |
| Pentachloronitrobenzene              | 41.2   | 10                 | $\mu g/L$ | 50.0           |                  | 82.5          | 40-140         | 2.45  | 20           |            |  |



## QUALITY CONTROL

|                                     | Reporting |           | Spike        | Source       |               | %REC   |       | RPD   |       |     |
|-------------------------------------|-----------|-----------|--------------|--------------|---------------|--------|-------|-------|-------|-----|
| Analyte Result                      | Limit     | Units     | Level        | Result       | %REC          | Limits | RPD   | Limit | Notes | _   |
| Batch B293858 - SW-846 3510C        |           |           |              |              |               |        |       |       |       | _   |
| LCS Dup (B293858-BSD1)              |           |           | Prepared: 11 | 1/03/21 Anal | yzed: 11/04/2 | 21     |       |       |       |     |
| Pentachlorophenol 29.6              | 10        | μg/L      | 50.0         |              | 59.3          | 30-130 | 1.39  | 50    |       | ‡   |
| Phenanthrene 38.4                   | 5.0       | $\mu g/L$ | 50.0         |              | 76.8          | 40-140 | 1.89  | 20    |       |     |
| Phenol 11.4                         | 10        | $\mu g/L$ | 50.0         |              | 22.7          | 20-130 | 5.56  | 20    |       | †   |
| Pyrene 38.0                         | 5.0       | $\mu g/L$ | 50.0         |              | 75.9          | 40-140 | 1.19  | 20    |       |     |
| Pyridine 13.8                       | 5.0       | μg/L      | 50.0         |              | 27.5          | 10-140 | 12.2  | 50    |       | † ‡ |
| 1,2,4,5-Tetrachlorobenzene 33.3     | 10        | μg/L      | 50.0         |              | 66.6          | 40-140 | 0.150 | 20    |       |     |
| 1,2,4-Trichlorobenzene 29.2         | 5.0       | μg/L      | 50.0         |              | 58.5          | 40-140 | 4.02  | 20    |       |     |
| 2,4,5-Trichlorophenol 39.4          | 10        | μg/L      | 50.0         |              | 78.8          | 30-130 | 0.483 | 20    |       |     |
| 2,4,6-Trichlorophenol 37.1          | 10        | $\mu g/L$ | 50.0         |              | 74.2          | 30-130 | 0.188 | 50    |       | ‡   |
| Surrogate: 2-Fluorophenol 69.1      |           | μg/L      | 200          |              | 34.6          | 15-110 |       |       |       | _   |
| Surrogate: Phenol-d6 46.2           |           | $\mu g/L$ | 200          |              | 23.1          | 15-110 |       |       |       |     |
| Surrogate: Nitrobenzene-d5 54.0     |           | $\mu g/L$ | 100          |              | 54.0          | 30-130 |       |       |       |     |
| Surrogate: 2-Fluorobiphenyl 66.8    |           | $\mu g/L$ | 100          |              | 66.8          | 30-130 |       |       |       |     |
| Surrogate: 2,4,6-Tribromophenol 185 |           | $\mu g/L$ | 200          |              | 92.4          | 15-110 |       |       |       |     |
| Surrogate: p-Terphenyl-d14 97.2     |           | $\mu g/L$ | 100          |              | 97.2          | 30-130 |       |       |       |     |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

## Polychlorinated Biphenyls By GC/ECD - Quality Control

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|------|--------------|-------|
| Batch B293652 - SW-846 3510C         |        |                    |           |                |                  |               |                |      |              |       |
| Blank (B293652-BLK1)                 |        |                    |           | Prepared: 10   | 0/31/21 Anal     | yzed: 11/02/2 | 21             |      |              |       |
| Aroclor-1016                         | ND     | 0.20               | μg/L      |                |                  |               |                |      |              |       |
| Aroclor-1016 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1221                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1221 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1232                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1232 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1242                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1242 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1248                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1248 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1254                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1254 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1260                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1260 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1262                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1262 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1268                         | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Aroclor-1268 [2C]                    | ND     | 0.20               | $\mu g/L$ |                |                  |               |                |      |              |       |
| Surrogate: Decachlorobiphenyl        | 1.93   |                    | μg/L      | 2.00           |                  | 96.3          | 30-150         |      |              |       |
| Surrogate: Decachlorobiphenyl [2C]   | 2.17   |                    | $\mu g/L$ | 2.00           |                  | 108           | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene      | 1.56   |                    | $\mu g/L$ | 2.00           |                  | 77.9          | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.42   |                    | μg/L      | 2.00           |                  | 71.1          | 30-150         |      |              |       |
| LCS (B293652-BS1)                    |        |                    |           | Prepared: 10   | 0/31/21 Anal     | yzed: 11/02/2 | 21             |      |              |       |
| Aroclor-1016                         | 0.46   | 0.20               | μg/L      | 0.500          |                  | 91.6          | 40-140         |      |              |       |
| Aroclor-1016 [2C]                    | 0.45   | 0.20               | $\mu g/L$ | 0.500          |                  | 90.3          | 40-140         |      |              |       |
| Aroclor-1260                         | 0.47   | 0.20               | $\mu g/L$ | 0.500          |                  | 93.6          | 40-140         |      |              |       |
| Aroclor-1260 [2C]                    | 0.49   | 0.20               | $\mu g/L$ | 0.500          |                  | 98.0          | 40-140         |      |              |       |
| Surrogate: Decachlorobiphenyl        | 1.86   |                    | μg/L      | 2.00           |                  | 93.0          | 30-150         |      |              |       |
| Surrogate: Decachlorobiphenyl [2C]   | 2.11   |                    | $\mu g/L$ | 2.00           |                  | 105           | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene      | 1.66   |                    | $\mu g/L$ | 2.00           |                  | 83.0          | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.46   |                    | $\mu g/L$ | 2.00           |                  | 73.2          | 30-150         |      |              |       |
| LCS Dup (B293652-BSD1)               |        |                    |           | Prepared: 10   | 0/31/21 Anal     | yzed: 11/02/2 | 21             |      |              |       |
| Aroclor-1016                         | 0.44   | 0.20               | μg/L      | 0.500          |                  | 88.4          | 40-140         | 3.56 | 20           |       |
| Aroclor-1016 [2C]                    | 0.43   | 0.20               | $\mu g/L$ | 0.500          |                  | 85.5          | 40-140         | 5.37 | 20           |       |
| Aroclor-1260                         | 0.45   | 0.20               | $\mu g/L$ | 0.500          |                  | 89.9          | 40-140         | 3.96 | 20           |       |
| Aroclor-1260 [2C]                    | 0.47   | 0.20               | $\mu g/L$ | 0.500          |                  | 94.4          | 40-140         | 3.83 | 20           |       |
| Surrogate: Decachlorobiphenyl        | 1.95   |                    | μg/L      | 2.00           |                  | 97.5          | 30-150         |      |              |       |
| Surrogate: Decachlorobiphenyl [2C]   | 2.16   |                    | μg/L      | 2.00           |                  | 108           | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene      | 1.58   |                    | μg/L      | 2.00           |                  | 78.9          | 30-150         |      |              |       |
| Surrogate: Tetrachloro-m-xylene [2C] | 1.40   |                    | μg/L      | 2.00           |                  | 70.1          | 30-150         |      |              |       |



## QUALITY CONTROL

|                              |        | Reporting    |       |              | Source        |              | %REC   |      | RPD   |       |
|------------------------------|--------|--------------|-------|--------------|---------------|--------------|--------|------|-------|-------|
| Analyte                      | Result | Limit        | Units | Level        | Result        | %REC         | Limits | RPD  | Limit | Notes |
| Batch B293612 - Alcohol Prep |        |              |       |              |               |              |        |      |       |       |
| Blank (B293612-BLK1)         |        |              |       | Prepared & A | Analyzed: 10/ | /29/21       |        |      |       |       |
| Methanol                     | ND     | 10           | mg/L  |              |               |              |        |      |       |       |
| sopropanol                   | ND     | 10           | mg/L  |              |               |              |        |      |       |       |
| Ethanol                      | ND     | 10           | mg/L  |              |               |              |        |      |       |       |
| Propylene glycol             | ND     | 10           | mg/L  |              |               |              |        |      |       |       |
| Ethylene glycol              | ND     | 10           | mg/L  |              |               |              |        |      |       |       |
| CS (B293612-BS1)             |        |              |       | Prepared & A | Analyzed: 10/ | 29/21        |        |      |       |       |
| Methanol                     | 106    | 10           | mg/L  | 100          |               | 106          | 40-140 |      |       |       |
| sopropanol                   | 107    | 10           | mg/L  | 100          |               | 107          | 40-140 |      |       |       |
| Ethanol                      | 111    | 10           | mg/L  | 100          |               | 111          | 40-140 |      |       |       |
| ropylene glycol              | 114    | 10           | mg/L  | 100          |               | 114          | 40-140 |      |       |       |
| thylene glycol               | 101    | 10           | mg/L  | 100          |               | 101          | 40-140 |      |       |       |
| CS Dup (B293612-BSD1)        |        |              |       | Prepared & A | Analyzed: 10/ | 29/21        |        |      |       |       |
| Methanol                     | 111    | 10           | mg/L  | 100          |               | 111          | 40-140 | 5.20 | 50    |       |
| sopropanol                   | 108    | 10           | mg/L  | 100          |               | 108          | 40-140 | 1.60 | 50    |       |
| thanol                       | 113    | 10           | mg/L  | 100          |               | 113          | 40-140 | 1.38 | 50    |       |
| ropylene glycol              | 117    | 10           | mg/L  | 100          |               | 117          | 40-140 | 2.43 | 50    |       |
| thylene glycol               | 103    | 10           | mg/L  | 100          |               | 103          | 40-140 | 2.12 | 50    |       |
| Puplicate (B293612-DUP1)     | Source | e: 21J1856-0 | 6     | Prepared: 10 | /29/21 Analy  |              |        |      |       |       |
| Methanol                     | ND     | 10           | mg/L  |              | ND            |              |        | NC   | 50    |       |
| sopropanol                   | ND     | 10           | mg/L  |              | ND            |              |        | NC   | 50    |       |
| thanol                       | ND     | 10           | mg/L  |              | ND            |              |        | NC   | 50    |       |
| ropylene glycol              | ND     | 10           | mg/L  |              | ND            |              |        | NC   | 50    |       |
| thylene glycol               | ND     | 10           | mg/L  |              | ND            |              |        | NC   | 50    |       |
| Matrix Spike (B293612-MS1)   | Source | e: 21J1856-0 | 6     | Prepared: 10 | /29/21 Analy  | zed: 10/30/2 | 21     |      |       |       |
| Methanol                     | 102    | 10           | mg/L  | 100          | ND            | 102          | 40-140 |      |       |       |
| sopropanol                   | 95.7   | 10           | mg/L  | 100          | ND            | 95.7         | 40-140 |      |       |       |
| thanol                       | 108    | 10           | mg/L  | 100          | ND            | 108          | 40-140 |      |       |       |
| Propylene glycol             | 101    | 10           | mg/L  | 100          | ND            | 101          | 40-140 |      |       |       |
| Ethylene glycol              | 76.3   | 10           | mg/L  | 100          | ND            | 76.3         | 40-140 |      |       |       |



## QUALITY CONTROL

### Petroleum Hydrocarbons Analyses - Quality Control

|                                     |        | Reporting |       | Spike        | Source       |               | %REC   |       | RPD   |       |
|-------------------------------------|--------|-----------|-------|--------------|--------------|---------------|--------|-------|-------|-------|
| Analyte                             | Result | Limit     | Units | Level        | Result       | %REC          | Limits | RPD   | Limit | Notes |
| Batch B293763 - SW-846 3510C        |        |           |       |              |              |               |        |       |       |       |
| Blank (B293763-BLK1)                |        |           |       | Prepared: 11 | /02/21 Analy | yzed: 11/03/2 | 21     |       |       |       |
| Diesel Range Organics               | ND     | 0.20      | mg/L  |              |              |               |        |       |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0777 |           | mg/L  | 0.100        |              | 77.7          | 40-140 |       |       |       |
| LCS (B293763-BS1)                   |        |           |       | Prepared: 11 | /02/21 Analy | yzed: 11/04/2 | 21     |       |       |       |
| Diesel Range Organics               | 0.752  | 0.20      | mg/L  | 1.00         |              | 75.2          | 40-140 |       |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0772 |           | mg/L  | 0.100        |              | 77.2          | 40-140 |       |       |       |
| LCS Dup (B293763-BSD1)              |        |           |       | Prepared: 11 | /02/21 Analy | yzed: 11/04/2 | 21     |       |       |       |
| Diesel Range Organics               | 0.719  | 0.20      | mg/L  | 1.00         |              | 71.9          | 40-140 | 4.51  | 30    |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0714 |           | mg/L  | 0.100        |              | 71.4          | 40-140 |       |       |       |
| Batch B293804 - SW-846 5030B        |        |           |       |              |              |               |        |       |       |       |
| Blank (B293804-BLK1)                |        |           |       | Prepared: 11 | /02/21 Anal  | yzed: 11/03/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | ND     | 0.010     | mg/L  |              |              |               |        |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.2   |           | μg/L  | 15.0         |              | 108           | 70-130 |       |       |       |
| LCS (B293804-BS1)                   |        |           |       | Prepared &   | Analyzed: 11 | /02/21        |        |       |       |       |
| Gasoline Range Organics (GRO)       | 0.223  | 0.010     | mg/L  | 0.250        |              | 89.2          | 80-120 |       |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.9   |           | μg/L  | 15.0         |              | 106           | 70-130 |       |       |       |
| LCS Dup (B293804-BSD1)              |        |           |       | Prepared: 11 | /02/21 Anal  | yzed: 11/03/2 | 21     |       |       |       |
| Gasoline Range Organics (GRO)       | 0.225  | 0.010     | mg/L  | 0.250        |              | 90.0          | 80-120 | 0.878 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 15.2   |           | μg/L  | 15.0         |              | 101           | 70-130 |       |       |       |



## QUALITY CONTROL

# Metals Analyses (Total) - Quality Control

| Analyte                      | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------|--------|--------------------|-------------------|----------------|------------------|--------------|----------------|-------|--------------|-------|
| Batch B293657 - SW-846 3005A |        |                    |                   |                |                  |              |                |       |              |       |
| Blank (B293657-BLK1)         |        |                    |                   | Prepared &     | Analyzed: 10     | /31/21       |                |       |              |       |
| Antimony                     | ND     | 1.0                | μg/L              |                |                  |              |                |       |              |       |
| Arsenic                      | ND     | 0.80               | $\mu g/L$         |                |                  |              |                |       |              |       |
| arium                        | ND     | 10                 | $\mu g \! / \! L$ |                |                  |              |                |       |              |       |
| Beryllium                    | ND     | 0.40               | $\mu g/L$         |                |                  |              |                |       |              |       |
| admium                       | ND     | 0.20               | $\mu g/L$         |                |                  |              |                |       |              |       |
| hromium                      | ND     | 1.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| obalt                        | ND     | 1.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| opper                        | ND     | 1.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| ead                          | ND     | 0.50               | $\mu g/L$         |                |                  |              |                |       |              |       |
| langanese                    | ND     | 1.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| ickel                        | ND     | 5.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| elenium                      | ND     | 5.0                | $\mu g/L$         |                |                  |              |                |       |              |       |
| ilver                        | ND     | 0.20               | $\mu g/L$         |                |                  |              |                |       |              |       |
| hallium                      | ND     | 0.20               | $\mu g/L$         |                |                  |              |                |       |              |       |
| <sup>7</sup> anadium         | ND     | 5.0                | $\mu g \! / \! L$ |                |                  |              |                |       |              |       |
| inc                          | ND     | 10                 | $\mu g/L$         |                |                  |              |                |       |              |       |
| lank (B293657-BLK2)          |        |                    |                   | Prepared: 10   | 0/31/21 Anal     | yzed: 11/01/ | 21             |       |              |       |
| hromium                      | ND     | 1.0                | μg/L              |                |                  |              |                |       |              |       |
| CS (B293657-BS1)             |        |                    |                   | Prepared &     | Analyzed: 10     | /31/21       |                |       |              |       |
| ntimony                      | 549    | 10                 | $\mu g/L$         | 500            |                  | 110          | 80-120         |       |              |       |
| rsenic                       | 536    | 8.0                | $\mu g/L$         | 500            |                  | 107          | 80-120         |       |              |       |
| arium                        | 523    | 100                | $\mu g/L$         | 500            |                  | 105          | 80-120         |       |              |       |
| eryllium                     | 532    | 4.0                | $\mu g \! / \! L$ | 500            |                  | 106          | 80-120         |       |              |       |
| admium                       | 532    | 2.0                | $\mu g \! / \! L$ | 500            |                  | 106          | 80-120         |       |              |       |
| hromium                      | 521    | 10                 | $\mu g \! / \! L$ | 500            |                  | 104          | 80-120         |       |              |       |
| obalt                        | 509    | 10                 | $\mu g \! / \! L$ | 500            |                  | 102          | 80-120         |       |              |       |
| opper                        | 1010   | 10                 | $\mu g/L$         | 1000           |                  | 101          | 80-120         |       |              |       |
| ead                          | 523    | 5.0                | $\mu g/L$         | 500            |                  | 105          | 80-120         |       |              |       |
| langanese                    | 504    | 10                 | $\mu g/L$         | 500            |                  | 101          | 80-120         |       |              |       |
| ickel                        | 528    | 50                 | $\mu g/L$         | 500            |                  | 106          | 80-120         |       |              |       |
| elenium                      | 530    | 50                 | $\mu g/L$         | 500            |                  | 106          | 80-120         |       |              |       |
| ilver                        | 509    | 2.0                | $\mu g/L$         | 500            |                  | 102          | 80-120         |       |              |       |
| hallium                      | 536    | 2.0                | $\mu g/L$         | 500            |                  | 107          | 80-120         |       |              |       |
| anadium                      | 498    | 50                 | $\mu g/L$         | 500            |                  | 99.7         | 80-120         |       |              |       |
| inc                          | 1120   | 100                | $\mu g/L$         | 1000           |                  | 112          | 80-120         |       |              |       |
| CS (B293657-BS2)             |        |                    |                   | Prepared: 10   | 0/31/21 Anal     | yzed: 11/01/ | 21             |       |              |       |
| hromium                      | 521    | 10                 | μg/L              | 500            |                  | 104          | 80-120         |       |              |       |
| .CS Dup (B293657-BSD1)       |        |                    |                   | Prepared &     | Analyzed: 10     | /31/21       |                |       |              |       |
| Antimony                     | 548    | 10                 | $\mu g/L$         | 500            |                  | 110          | 80-120         | 0.341 | 20           |       |
| arsenic                      | 536    | 8.0                | $\mu g/L$         | 500            |                  | 107          | 80-120         | 0.122 | 20           |       |
| arium                        | 529    | 100                | $\mu g/L$         | 500            |                  | 106          | 80-120         | 1.09  | 20           |       |
| eryllium                     | 536    | 4.0                | $\mu g/L$         | 500            |                  | 107          | 80-120         | 0.624 | 20           |       |
| admium                       | 528    | 2.0                | $\mu g/L$         | 500            |                  | 106          | 80-120         | 0.638 | 20           |       |
| hromium                      | 523    | 10                 | $\mu g/L$         | 500            |                  | 105          | 80-120         | 0.323 | 20           |       |
| obalt                        | 507    | 10                 | $\mu g \! / \! L$ | 500            |                  | 101          | 80-120         | 0.340 | 20           |       |
| opper                        | 1020   | 10                 | $\mu g/L$         | 1000           |                  | 102          | 80-120         | 0.169 | 20           |       |
| ead                          | 530    | 5.0                | $\mu g/L$         | 500            |                  | 106          | 80-120         | 1.39  | 20           |       |
| langanese                    | 509    | 10                 | μg/L              | 500            |                  | 102          | 80-120         | 1.17  | 20           |       |
| lickel                       | 530    | 50                 | μg/L              | 500            |                  | 106          | 80-120         | 0.331 | 20           |       |



## QUALITY CONTROL

### Metals Analyses (Total) - Quality Control

|                                   | _ ,     | Reporting |                   | Spike        | Source       |               | %REC   |       | RPD   |       |
|-----------------------------------|---------|-----------|-------------------|--------------|--------------|---------------|--------|-------|-------|-------|
| Analyte                           | Result  | Limit     | Units             | Level        | Result       | %REC          | Limits | RPD   | Limit | Notes |
| Batch B293657 - SW-846 3005A      |         |           |                   |              |              |               |        |       |       |       |
| LCS Dup (B293657-BSD1)            |         |           |                   | Prepared &   | Analyzed: 10 | /31/21        |        |       |       |       |
| Selenium                          | 539     | 50        | μg/L              | 500          |              | 108           | 80-120 | 1.75  | 20    |       |
| Silver                            | 515     | 2.0       | $\mu g \! / \! L$ | 500          |              | 103           | 80-120 | 1.13  | 20    |       |
| Thallium                          | 547     | 2.0       | μg/L              | 500          |              | 109           | 80-120 | 2.01  | 20    |       |
| Vanadium                          | 499     | 50        | μg/L              | 500          |              | 99.8          | 80-120 | 0.146 | 20    |       |
| Zinc                              | 1130    | 100       | μg/L              | 1000         |              | 113           | 80-120 | 0.826 | 20    |       |
| LCS Dup (B293657-BSD2)            |         |           |                   | Prepared: 10 | 0/31/21 Anal | yzed: 11/01/2 | 21     |       |       |       |
| Chromium                          | 523     | 10        | $\mu g/L$         | 500          |              | 105           | 80-120 | 0.323 | 20    |       |
| Batch B293658 - SW-846 3005A      |         |           |                   |              |              |               |        |       |       |       |
| Blank (B293658-BLK1)              |         |           |                   | Prepared &   | Analyzed: 10 | /31/21        |        |       |       |       |
| Aluminum                          | ND      | 0.050     | mg/L              |              |              |               |        |       |       |       |
| Calcium                           | ND      | 0.50      | mg/L              |              |              |               |        |       |       |       |
| Iron                              | ND      | 0.050     | mg/L              |              |              |               |        |       |       |       |
| Magnesium                         | ND      | 0.050     | mg/L              |              |              |               |        |       |       |       |
| Potassium                         | ND      | 2.0       | mg/L              |              |              |               |        |       |       |       |
| Sodium                            | ND      | 2.0       | mg/L              |              |              |               |        |       |       |       |
| LCS (B293658-BS1)                 |         |           |                   | Prepared &   | Analyzed: 10 | /31/21        |        |       |       |       |
| Aluminum                          | 0.494   | 0.050     | mg/L              | 0.500        |              | 98.8          | 80-120 |       |       |       |
| Calcium                           | 3.96    | 0.50      | mg/L              | 4.00         |              | 98.9          | 80-120 |       |       |       |
| Iron                              | 4.03    | 0.050     | mg/L              | 4.00         |              | 101           | 80-120 |       |       |       |
| Magnesium                         | 3.88    | 0.050     | mg/L              | 4.00         |              | 97.1          | 80-120 |       |       |       |
| Potassium                         | 3.85    | 2.0       | mg/L              | 4.00         |              | 96.4          | 80-120 |       |       |       |
| Sodium                            | 3.96    | 2.0       | mg/L              | 4.00         |              | 99.1          | 80-120 |       |       |       |
| LCS Dup (B293658-BSD1)            |         |           |                   | Prepared &   | Analyzed: 10 | /31/21        |        |       |       |       |
| Aluminum                          | 0.488   | 0.050     | mg/L              | 0.500        |              | 97.5          | 80-120 | 1.28  | 20    |       |
| Calcium                           | 3.91    | 0.50      | mg/L              | 4.00         |              | 97.8          | 80-120 | 1.18  | 20    |       |
| Iron                              | 3.95    | 0.050     | mg/L              | 4.00         |              | 98.9          | 80-120 | 1.88  | 20    |       |
| Magnesium                         | 3.84    | 0.050     | mg/L              | 4.00         |              | 95.9          | 80-120 | 1.26  | 20    |       |
| Potassium                         | 3.77    | 2.0       | mg/L              | 4.00         |              | 94.4          | 80-120 | 2.10  | 20    |       |
| Sodium                            | 3.92    | 2.0       | mg/L              | 4.00         |              | 98.1          | 80-120 | 0.952 | 20    |       |
| Batch B293728 - SW-846 7470A Prep |         |           |                   |              |              |               |        |       |       |       |
| Blank (B293728-BLK1)              |         |           |                   | Prepared: 11 | /01/21 Anal  | yzed: 11/02/2 | 21     |       |       |       |
| Mercury                           | ND      | 0.00010   | mg/L              |              |              |               |        |       |       |       |
| LCS (B293728-BS1)                 |         |           |                   | Prepared: 11 | /01/21 Anal  | yzed: 11/02/2 | 21     |       |       |       |
| Mercury                           | 0.00436 | 0.00010   | mg/L              | 0.00402      |              | 108           | 80-120 |       |       |       |



## QUALITY CONTROL

## Metals Analyses (Total) - Quality Control

|                                   |                                       | Reporting          |       | Spike        | Source                                |      | %REC   |       | RPD   |       |
|-----------------------------------|---------------------------------------|--------------------|-------|--------------|---------------------------------------|------|--------|-------|-------|-------|
| Analyte                           | Result                                | Limit              | Units | Level        | Result                                | %REC | Limits | RPD   | Limit | Notes |
| Batch B293728 - SW-846 7470A Prep |                                       |                    |       |              |                                       |      |        |       |       |       |
| LCS Dup (B293728-BSD1)            | Prepared: 11/01/21 Analyzed: 11/02/21 |                    |       |              |                                       |      |        |       |       |       |
| Mercury                           | 0.00437                               | 0.00010            | mg/L  | 0.00402      |                                       | 109  | 80-120 | 0.200 | 20    |       |
| Duplicate (B293728-DUP1)          | Sour                                  | ce: 21J1856-0      | 1     | Prepared: 11 | zed: 11/02/2                          |      |        |       |       |       |
| Mercury                           | 0.000330                              | 0.00020            | mg/L  |              | 0.000326                              |      |        | 1.29  | 20    |       |
| Matrix Spike (B293728-MS1)        | Sour                                  | Source: 21J1856-01 |       |              | Prepared: 11/01/21 Analyzed: 11/02/21 |      |        |       |       |       |
| Mercury                           | 0.00408                               | 0.00020            | mg/L  | 0.00402      | 0.000326                              | 93.5 | 75-125 |       |       |       |

RPD

%REC



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

Spike

Source

### Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result | Limit | Units             | Level        | Result      | %REC          | Limits | RPD   | Limit | Notes |
|----------------------------------------|--------|-------|-------------------|--------------|-------------|---------------|--------|-------|-------|-------|
| Batch B293655 - SW-846 3005A Dissolved |        |       |                   |              |             |               |        |       |       |       |
| Blank (B293655-BLK1)                   |        |       |                   | Prepared: 10 | /31/21 Anal | yzed: 11/01/2 | 21     |       |       |       |
| Antimony                               | ND     | 1.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Arsenic                                | ND     | 0.80  | $\mu g/L$         |              |             |               |        |       |       |       |
| Barium                                 | ND     | 10    | $\mu g/L$         |              |             |               |        |       |       |       |
| Beryllium                              | ND     | 0.40  | $\mu g/L$         |              |             |               |        |       |       |       |
| Cadmium                                | ND     | 0.20  | $\mu g/L$         |              |             |               |        |       |       |       |
| Chromium                               | ND     | 1.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Cobalt                                 | ND     | 1.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Copper                                 | ND     | 1.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Lead                                   | ND     | 0.50  | $\mu g/L$         |              |             |               |        |       |       |       |
| Manganese                              | ND     | 1.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Vickel                                 | 1.3    | 5.0   | $\mu g/L$         |              |             |               |        |       |       | J     |
| Selenium                               | ND     | 5.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Silver                                 | ND     | 0.20  | $\mu g/L$         |              |             |               |        |       |       |       |
| Thallium                               | ND     | 0.20  | $\mu g/L$         |              |             |               |        |       |       |       |
| /anadium                               | ND     | 5.0   | $\mu g/L$         |              |             |               |        |       |       |       |
| Zinc                                   | ND     | 10    | μg/L              |              |             |               |        |       |       |       |
| .CS (B293655-BS1)                      |        |       |                   | Prepared: 10 | /31/21 Anal | yzed: 11/01/2 | 21     |       |       |       |
| Antimony                               | 552    | 10    | $\mu g/L$         | 500          |             | 110           | 80-120 |       |       |       |
| arsenic                                | 506    | 8.0   | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Barium                                 | 504    | 100   | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Beryllium                              | 507    | 4.0   | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Cadmium                                | 505    | 2.0   | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Chromium                               | 505    | 10    | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Cobalt                                 | 508    | 10    | $\mu g/L$         | 500          |             | 102           | 80-120 |       |       |       |
| Copper                                 | 1030   | 10    | $\mu g/L$         | 1000         |             | 103           | 80-120 |       |       |       |
| Lead                                   | 497    | 5.0   | $\mu g/L$         | 500          |             | 99.3          | 80-120 |       |       |       |
| Manganese                              | 524    | 10    | $\mu g/L$         | 500          |             | 105           | 80-120 |       |       |       |
| Nickel                                 | 505    | 50    | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Selenium                               | 510    | 50    | $\mu g/L$         | 500          |             | 102           | 80-120 |       |       |       |
| Silver                                 | 491    | 2.0   | $\mu g/L$         | 500          |             | 98.3          | 80-120 |       |       |       |
| Thallium                               | 505    | 2.0   | $\mu g/L$         | 500          |             | 101           | 80-120 |       |       |       |
| Vanadium                               | 518    | 50    | $\mu g/L$         | 500          |             | 104           | 80-120 |       |       |       |
| linc                                   | 965    | 100   | $\mu g/L$         | 1000         |             | 96.5          | 80-120 |       |       |       |
| CS Dup (B293655-BSD1)                  |        |       |                   | Prepared: 10 | /31/21 Anal | yzed: 11/01/2 | 21     |       |       |       |
| Antimony                               | 550    | 10    | $\mu g/L$         | 500          |             | 110           | 80-120 | 0.340 | 20    |       |
| Arsenic                                | 504    | 8.0   | $\mu g/L$         | 500          |             | 101           | 80-120 | 0.477 | 20    |       |
| Barium                                 | 500    | 100   | $\mu g \! / \! L$ | 500          |             | 100           | 80-120 | 0.801 | 20    |       |
| Beryllium                              | 508    | 4.0   | μg/L              | 500          |             | 102           | 80-120 | 0.139 | 20    |       |
| Cadmium                                | 509    | 2.0   | μg/L              | 500          |             | 102           | 80-120 | 0.760 | 20    |       |
| Chromium                               | 485    | 10    | μg/L              | 500          |             | 96.9          | 80-120 | 4.11  | 20    |       |
| Cobalt                                 | 492    | 10    | μg/L              | 500          |             | 98.4          | 80-120 | 3.20  | 20    |       |
| Copper                                 | 1040   | 10    | μg/L              | 1000         |             | 104           | 80-120 | 0.835 | 20    |       |
| ead                                    | 495    | 5.0   | μg/L              | 500          |             | 99.0          | 80-120 | 0.388 | 20    |       |
| Manganese                              | 503    | 10    | μg/L              | 500          |             | 101           | 80-120 | 3.93  | 20    |       |
| Nickel                                 | 491    | 50    | μg/L              | 500          |             | 98.3          | 80-120 | 2.80  | 20    |       |
| Selenium                               | 515    | 50    | $\mu g/L$         | 500          |             | 103           | 80-120 | 0.934 | 20    |       |
| Silver                                 | 496    | 2.0   | $\mu g/L$         | 500          |             | 99.3          | 80-120 | 1.03  | 20    |       |
| Гhallium                               | 499    | 2.0   | $\mu g/L$         | 500          |             | 99.7          | 80-120 | 1.37  | 20    |       |
| Vanadium                               | 511    | 50    | $\mu g/L$         | 500          |             | 102           | 80-120 | 1.30  | 20    |       |
| Zinc                                   | 957    | 100   | $\mu g/L$         | 1000         |             | 95.7          | 80-120 | 0.902 | 20    |       |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

# Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD     | RPD<br>Limit | Notes |
|----------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|---------|--------------|-------|
| Batch B293655 - SW-846 3005A Dissolved |        |                    |           |                |                  |              |                |         |              |       |
| Duplicate (B293655-DUP1)               | Sou    | rce: 21J1856-0     | )1        | Prepared: 10   | 0/31/21 Analy    | zed: 11/01/2 | 21             |         |              |       |
| Antimony                               | ND     | 1.0                | $\mu g/L$ |                | ND               |              |                | NC      | 20           |       |
| Arsenic                                | 5.47   | 0.80               | $\mu g/L$ |                | 5.43             |              |                | 0.729   | 20           |       |
| Barium                                 | 38.8   | 10                 | $\mu g/L$ |                | 39.6             |              |                | 1.86    | 20           |       |
| Beryllium                              | 1.70   | 0.40               | $\mu g/L$ |                | 1.70             |              |                | 0.00112 | 20           |       |
| Cadmium                                | 7.62   | 0.20               | $\mu g/L$ |                | 7.71             |              |                | 1.13    | 20           |       |
| Chromium                               | ND     | 1.0                | $\mu g/L$ |                | ND               |              |                | NC      | 20           |       |
| Cobalt                                 | 818    | 100                | $\mu g/L$ |                | 832              |              |                | 1.66    | 20           |       |
| Copper                                 | 15.5   | 1.0                | $\mu g/L$ |                | 15.7             |              |                | 1.53    | 20           |       |
| Lead                                   | 1.50   | 0.50               | $\mu g/L$ |                | 1.54             |              |                | 2.69    | 20           |       |
| Manganese                              | 26000  | 100                | $\mu g/L$ |                | 26500            |              |                | 1.56    | 20           |       |
| Nickel                                 | 190    | 5.0                | $\mu g/L$ |                | 189              |              |                | 0.0679  | 20           |       |
| Selenium                               | 18.5   | 5.0                | $\mu g/L$ |                | 18.3             |              |                | 1.26    | 20           |       |
| Silver                                 | ND     | 0.20               | $\mu g/L$ |                | ND               |              |                | NC      | 20           |       |
| Thallium                               | 0.106  | 0.20               | $\mu g/L$ |                | 0.0884           |              |                | 18.3    | 20           | J     |
| Vanadium                               | ND     | 5.0                | $\mu g/L$ |                | ND               |              |                | NC      | 20           |       |
| Zinc                                   | 350    | 10                 | $\mu g/L$ |                | 351              |              |                | 0.393   | 20           |       |
| Matrix Spike (B293655-MS1)             | Sou    | rce: 21J1856-0     | )1        | Prepared: 10   | 0/31/21 Analy    | zed: 11/01/2 | 21             |         |              |       |
| Antimony                               | 553    | 10                 | μg/L      | 500            | ND               | 111          | 75-125         |         |              |       |
| Arsenic                                | 510    | 8.0                | $\mu g/L$ | 500            | 5.43             | 101          | 75-125         |         |              |       |
| Barium                                 | 536    | 100                | $\mu g/L$ | 500            | 39.6             | 99.3         | 75-125         |         |              |       |
| Beryllium                              | 515    | 4.0                | $\mu g/L$ | 500            | 1.70             | 103          | 75-125         |         |              |       |
| Cadmium                                | 511    | 2.0                | $\mu g/L$ | 500            | 7.71             | 101          | 75-125         |         |              |       |
| Chromium                               | 492    | 10                 | $\mu g/L$ | 500            | ND               | 98.3         | 75-125         |         |              |       |
| Cobalt                                 | 1260   | 10                 | $\mu g/L$ | 500            | 832              | 84.8         | 75-125         |         |              |       |
| Copper                                 | 1070   | 10                 | $\mu g/L$ | 1000           | 15.7             | 105          | 75-125         |         |              |       |
| Lead                                   | 494    | 5.0                | $\mu g/L$ | 500            | 1.54             | 98.5         | 75-125         |         |              |       |
| Manganese                              | 27300  | 100                | $\mu g/L$ | 500            | 26500            | 174 *        | 75-125         |         |              | MS-19 |
| Nickel                                 | 685    | 50                 | $\mu g/L$ | 500            | 189              | 99.1         | 75-125         |         |              |       |
| Selenium                               | 546    | 50                 | $\mu g/L$ | 500            | 18.3             | 106          | 75-125         |         |              |       |
| Silver                                 | 403    | 2.0                | $\mu g/L$ | 500            | ND               | 80.7         | 75-125         |         |              |       |
| Thallium                               | 499    | 2.0                | $\mu g/L$ | 500            | ND               | 99.7         | 75-125         |         |              |       |
| Vanadium                               | 512    | 50                 | $\mu g/L$ | 500            | ND               | 102          | 75-125         |         |              |       |
| Zinc                                   | 1310   | 100                | $\mu g/L$ | 1000           | 351              | 96.0         | 75-125         |         |              |       |
| Batch B293656 - SW-846 3005A Dissolved |        |                    |           |                |                  |              |                |         |              |       |
| Blank (B293656-BLK1)                   |        |                    |           | Prepared &     | Analyzed: 10/    | 31/21        |                |         |              |       |
| Aluminum                               | ND     | 0.050              | mg/L      |                |                  |              |                |         |              |       |
| Calcium                                | ND     | 0.50               | mg/L      |                |                  |              |                |         |              |       |
| Iron                                   | ND     | 0.050              | mg/L      |                |                  |              |                |         |              |       |
| Magnesium                              | ND     | 0.050              | mg/L      |                |                  |              |                |         |              |       |
| Potassium                              | ND     | 2.0                | mg/L      |                |                  |              |                |         |              |       |
| Sodium                                 | ND     | 2.0                | mg/L      |                |                  |              |                |         |              |       |



# QUALITY CONTROL

# Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result                        | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes  |
|----------------------------------------|-------------------------------|--------------------|-------|----------------|------------------|---------------|----------------|-------|--------------|--------|
| · ·                                    | ACSUIT                        | Liiiit             | Omts  | Level          | Result           | /UKEC         | Lilling        | KI D  | Lillit       | 110103 |
| Batch B293656 - SW-846 3005A Dissolved |                               |                    |       |                |                  |               |                |       |              |        |
| LCS (B293656-BS1)                      | Prepared & Analyzed: 10/31/21 |                    |       |                |                  |               |                |       |              |        |
| Aluminum                               | 0.489                         | 0.050              | mg/L  | 0.500          |                  | 97.8          | 80-120         |       |              |        |
| Calcium                                | 3.81                          | 0.50               | mg/L  | 4.00           |                  | 95.4          | 80-120         |       |              |        |
| fron                                   | 3.87                          | 0.050              | mg/L  | 4.00           |                  | 96.9          | 80-120         |       |              |        |
| Magnesium                              | 3.82                          | 0.050              | mg/L  | 4.00           |                  | 95.5          | 80-120         |       |              |        |
| Potassium                              | 3.79                          | 2.0                | mg/L  | 4.00           |                  | 94.9          | 80-120         |       |              |        |
| Sodium                                 | 3.97                          | 2.0                | mg/L  | 4.00           |                  | 99.3          | 80-120         |       |              |        |
| .CS Dup (B293656-BSD1)                 |                               |                    |       | Prepared & A   | Analyzed: 10     | /31/21        |                |       |              |        |
| Aluminum                               | 0.485                         | 0.050              | mg/L  | 0.500          |                  | 97.0          | 80-120         | 0.748 | 20           |        |
| Calcium                                | 3.79                          | 0.50               | mg/L  | 4.00           |                  | 94.8          | 80-120         | 0.580 | 20           |        |
| Íron                                   | 3.87                          | 0.050              | mg/L  | 4.00           |                  | 96.6          | 80-120         | 0.230 | 20           |        |
| Magnesium                              | 3.79                          | 0.050              | mg/L  | 4.00           |                  | 94.8          | 80-120         | 0.650 | 20           |        |
| Potassium                              | 3.78                          | 2.0                | mg/L  | 4.00           |                  | 94.5          | 80-120         | 0.349 | 20           |        |
| Sodium                                 | 3.91                          | 2.0                | mg/L  | 4.00           |                  | 97.8          | 80-120         | 1.53  | 20           |        |
| Ouplicate (B293656-DUP1)               | Sou                           | rce: 21J1856-(     | )1    | Prepared & A   | Analyzed: 10     | /31/21        |                |       |              |        |
| Aluminum                               | 2.03                          | 0.050              | mg/L  |                | 2.04             |               |                | 0.816 | 20           |        |
| Calcium                                | 52.0                          | 0.50               | mg/L  |                | 52.4             |               |                | 0.852 | 20           |        |
| ron                                    | 0.310                         | 0.050              | mg/L  |                | 0.311            |               |                | 0.214 | 20           |        |
| Magnesium                              | 31.5                          | 0.050              | mg/L  |                | 31.8             |               |                | 0.682 | 20           |        |
| Potassium                              | 10.0                          | 2.0                | mg/L  |                | 10.1             |               |                | 1.22  | 20           |        |
| Sodium                                 | 27.1                          | 2.0                | mg/L  |                | 27.3             |               |                | 0.563 | 20           |        |
| Matrix Spike (B293656-MS1)             | Sou                           | rce: 21J1856-(     | )1    | Prepared & A   | Analyzed: 10     | /31/21        |                |       |              |        |
| Aluminum                               | 2.53                          | 0.050              | mg/L  | 0.500          | 2.04             | 97.5          | 75-125         |       |              |        |
| Calcium                                | 56.0                          | 0.50               | mg/L  | 4.00           | 52.4             | 90.9          | 75-125         |       |              |        |
| fron                                   | 4.11                          | 0.050              | mg/L  | 4.00           | 0.311            | 95.1          | 75-125         |       |              |        |
| Magnesium                              | 35.3                          | 0.050              | mg/L  | 4.00           | 31.8             | 88.7          | 75-125         |       |              |        |
| Potassium                              | 13.9                          | 2.0                | mg/L  | 4.00           | 10.1             | 93.0          | 75-125         |       |              |        |
| Sodium                                 | 30.9                          | 2.0                | mg/L  | 4.00           | 27.3             | 90.1          | 75-125         |       |              |        |
| Batch B293727 - SW-846 7470A Dissolved |                               |                    |       |                |                  |               |                |       |              |        |
| Blank (B293727-BLK1)                   |                               |                    |       | Prepared: 11   | /01/21 Analy     | /zed: 11/02/2 | 21             |       |              |        |
| Mercury                                | ND                            | 0.00010            | mg/L  |                |                  |               |                |       |              |        |
| LCS (B293727-BS1)                      |                               |                    |       | Prepared: 11   | /01/21 Analy     | zed: 11/02/2  | 21             |       |              |        |
| Mercury                                | 0.00431                       | 0.00010            | mg/L  | 0.00402        |                  | 107           | 80-120         |       |              |        |
| LCS Dup (B293727-BSD1)                 |                               |                    |       | Prepared: 11   | /01/21 Analy     | zed: 11/02/2  | 21             |       |              |        |
| Mercury                                | 0.00398                       | 0.00010            | mg/L  | 0.00402        |                  | 99.0          | 80-120         | 7.97  | 20           |        |



# QUALITY CONTROL

# Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes    |
|----------------------------------------|----------|--------------------|-------|----------------|------------------|--------------|----------------|------|--------------|----------|
| Batch B293727 - SW-846 7470A Dissolved |          |                    |       |                |                  |              |                |      |              |          |
| Duplicate (B293727-DUP1)               | Sour     | ce: 21J1856-0      | 1     | Prepared: 11   | /01/21 Analy     | zed: 11/02/2 | 21             |      |              |          |
| Mercury                                | 0.000103 | 0.00020            | mg/L  |                | 0.000105         |              |                | 1.66 | 20           | DL-03, J |
| Matrix Spike (B293727-MS1)             | Sour     | ce: 21J1856-0      | 1     | Prepared: 11   | /01/21 Analy     | zed: 11/02/2 | 21             |      |              |          |
| Mercury                                | 0.00379  | 0.00020            | mg/L  | 0.00402        | 0.000105         | 91.8         | 75-125         |      |              |          |



# QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

|                              |        | Reporting      |       | Spike        | Source       | 0/77         | %REC   | 222    | RPD   |       |
|------------------------------|--------|----------------|-------|--------------|--------------|--------------|--------|--------|-------|-------|
| Analyte                      | Result | Limit          | Units | Level        | Result       | %REC         | Limits | RPD    | Limit | Notes |
| Batch B293753 - ASTM D516-16 |        |                |       |              |              |              |        |        |       |       |
| Blank (B293753-BLK1)         |        |                |       | Prepared &   | Analyzed: 11 | /02/21       |        |        |       |       |
| Sulfate                      | ND     | 1.0            | mg/L  |              |              |              |        |        |       |       |
| LCS (B293753-BS1)            |        |                |       | Prepared &   | Analyzed: 11 | /02/21       |        |        |       |       |
| Sulfate                      | 12     | 1.0            | mg/L  | 12.5         |              | 98.1         | 90-110 |        |       |       |
| LCS Dup (B293753-BSD1)       |        |                |       | Prepared &   | Analyzed: 11 | /02/21       |        |        |       |       |
| Sulfate                      | 13     | 1.0            | mg/L  | 12.5         |              | 102          | 90-110 | 3.42   | 20    |       |
| Duplicate (B293753-DUP1)     | Sou    | rce: 21J1856-0 | )1    | Prepared &   | Analyzed: 11 | /02/21       |        |        |       |       |
| Sulfate                      | 320    | 25             | mg/L  |              | 32           | 0            |        | 0.0987 | 20    |       |
| Matrix Spike (B293753-MS1)   | Sou    | rce: 21J1856-0 | )1    | Prepared &   | Analyzed: 11 | /02/21       |        |        |       |       |
| Sulfate                      | 910    | 50             | mg/L  | 625          | 32           | 0 95.1       | 90-110 |        |       |       |
| Batch B293898 - EPA 350.1    |        |                |       |              |              |              |        |        |       |       |
| Blank (B293898-BLK1)         |        |                |       | Prepared: 11 | /03/21 Anal  | yzed: 11/04/ | 21     |        |       |       |
| Ammonia as N                 | ND     | 0.10           | mg/L  |              |              |              |        |        |       |       |
| LCS (B293898-BS1)            |        |                |       | Prepared: 11 | /03/21 Anal  | yzed: 11/04/ | 21     |        |       |       |
| Ammonia as N                 | 1.7    | 0.10           | mg/L  | 2.00         |              | 86.1 *       | 90-110 |        |       | L-07A |
| LCS Dup (B293898-BSD1)       |        |                |       | Prepared: 11 | /03/21 Anal  | yzed: 11/04/ | 21     |        |       |       |
| Ammonia as N                 | 2.1    | 0.10           | mg/L  | 2.00         |              | 106          | 90-110 | 20.5 * | 20    | L-07A |
| Batch B294057 - ASTM D516-16 |        |                |       |              |              |              |        |        |       |       |
| Blank (B294057-BLK1)         |        |                |       | Prepared &   | Analyzed: 11 | /05/21       |        |        |       |       |
| Sulfate                      | ND     | 1.0            | mg/L  |              |              |              |        |        |       |       |
| LCS (B294057-BS1)            |        |                |       | Prepared &   | Analyzed: 11 | /05/21       |        |        |       |       |
| Sulfate                      | 13     | 1.0            | mg/L  | 12.5         |              | 101          | 90-110 |        |       |       |
| LCS Dup (B294057-BSD1)       |        |                |       | Prepared &   | Analyzed: 11 | /05/21       |        |        |       |       |
| Sulfate                      | 13     | 1.0            | mg/L  | 12.5         |              | 102          | 90-110 | 1.18   | 20    |       |
| Duplicate (B294057-DUP1)     | Sou    | rce: 21J1856-( | )6    | Prepared &   | Analyzed: 11 | /05/21       |        |        |       |       |
| Sulfate                      | 150    | 10             | mg/L  |              | 15           | 0            |        | 0.0325 | 20    |       |
| Matrix Spike (B294057-MS1)   | Sou    | rce: 21J1856-( | )6    | Prepared &   | Analyzed: 11 | /05/21       |        |        |       |       |
| Sulfate                      | 450    | 25             | mg/L  | 312          | 15           | 0 95.4       | 90-110 |        |       |       |



# QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                   | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------|--------|--------------------|-------|----------------|------------------|--------|----------------|------|--------------|-------|
| Batch B294542 - EPA 350.1 |        |                    |       |                |                  |        |                |      |              |       |
| Blank (B294542-BLK1)      |        |                    |       | Prepared &     | Analyzed: 11     | /12/21 |                |      |              |       |
| Ammonia as N              | ND     | 0.10               | mg/L  |                |                  |        |                |      |              |       |
| LCS (B294542-BS1)         |        |                    |       | Prepared &     | Analyzed: 11     | /12/21 |                |      |              |       |
| Ammonia as N              | 1.9    | 0.10               | mg/L  | 2.00           |                  | 96.8   | 90-110         |      |              |       |
| LCS Dup (B294542-BSD1)    |        |                    |       | Prepared &     | Analyzed: 11     | /12/21 |                |      |              |       |
| Ammonia as N              | 2.2    | 0.10               | mg/L  | 2.00           |                  | 109    | 90-110         | 12.0 | 20           |       |



# FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                                                |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                                                     |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                                                    |
| ND    | Not Detected                                                                                                                                                                                                                                            |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                   |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                             |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                                               |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                                  |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                   |
| B-05  | Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".                                                                                                                                                    |
| DL-03 | Elevated reporting limit due to matrix interference.                                                                                                                                                                                                    |
| H-10  | Analysis was requested after the recommended holding time had passed.                                                                                                                                                                                   |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                     |
| L-07  | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.                                |
| L-07A | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. |
| MS-19 | Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.                                                               |
| V-04  | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                                                               |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                                          |
| V-06  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for<br>this compound.                                                                                                                      |
| V-20  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                                                |
| V-34  | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                                               |
|       |                                                                                                                                                                                                                                                         |



### CERTIFICATIONS

### Certified Analyses included in this Report

| Analyte               | Certifications |
|-----------------------|----------------|
| ASTM D516-16 in Water |                |

NC,NY,MA,VA,ME,NH,CT,RI

# EPA 350.1 in Water

Sulfate

Ammonia as N NC,NY,MA,NH,RI,ME,VA

### SW-846 6010D in Water

Aluminum CT,NY,NH,ME,VA,NC Aluminum CT,NH,NY,ME,VA,NC Calcium CT,NH,NY,ME,VA,NC Calcium CT,NH,NY,NC,ME,VA CT,NH,NY,ME,VA,NC Iron CT,NH,NY,ME,NC,VA Iron Magnesium CT,NH,NY,NC,ME,VA Magnesium CT,NH,NY,ME,VA,NC Potassium CT,NH,NY,ME,VA,NC Potassium CT,NH,NY,ME,NC,VA Sodium CT,NH,NY,NC,ME,VA CT,NH,NY,ME,VA,NC Sodium

### SW-846 6020B in Water

Vanadium

Antimony CT,NH,NY,ME,VA,NC CT,NH,NY,ME,VA,NC Antimony CT,NH,NY,ME,VA,NC Arsenic CT,NH,NY,NC,ME,VA Arsenic CT,NH,NY,ME,VA,NC Barium Barium MA,NY,CT,NC,NH,ME,VA Beryllium CT,NH,NY,ME,VA,NC Beryllium CT,NH,NY,NC,ME,VA Cadmium CT,NH,NY,NC,ME,VA Cadmium CT,NH,NY,RI,ME,VA,NC CT,NH,NY,NC,ME,VA Chromium Chromium CT,NH,NY,ME,VA,NC CT,NH,NY,ME,VA,NC Cobalt Cobalt CT.NH.NY.NC.ME.VA CT,NH,NY,ME,VA,NC Copper CT,NH,NY,NC,ME,VA Copper CT,NH,NY,NC,ME,VA Lead Lead CT,NH,NY,ME,VA,NC Manganese CT,NH,NY,NC,ME,VA Manganese CT,NH,NY,ME,VA,NC Nickel CT,NH,NY,NC,ME,VA Nickel CT,NH,NY,ME,VA,NC Selenium CT,NH,NY,ME,VA,NC Selenium CT,NH,NY,NC,ME,VA Silver CT,NC,NH,NY,ME,VA Silver CT,NH,NY,ME,VA,NC Thallium CT,NH,NY,NC,ME,VA Thallium CT,NH,NY,ME,VA,NC

CT,NH,NY,ME,VA,NC



# CERTIFICATIONS

# Certified Analyses included in this Report

tert-Butylbenzene

| Certified Analyses included in this Report     |                                        |
|------------------------------------------------|----------------------------------------|
| Analyte                                        | Certifications                         |
| SW-846 6020B in Water                          |                                        |
| Vanadium                                       | CT,NH,NY,NC,ME,VA                      |
| Zine                                           | CT,NH,NY,ME,VA,NC                      |
| Zine                                           | CT,NH,NY,NC,ME,VA                      |
| SW-846 7470A in Water                          |                                        |
| Mercury                                        | CT,NH,NY,NC,ME,VA                      |
| Mercury                                        | CT,NH,NY,NC,ME,VA                      |
| SW-846 8015C in Water                          |                                        |
| Gasoline Range Organics (GRO)                  | NY, VA, NH, NC                         |
| Diesel Range Organics                          | NY,VA,NH,NC                            |
| Ethanol                                        | NY                                     |
| Ethylene glycol                                | NY                                     |
| SW-846 8082A in Water                          | ***                                    |
|                                                |                                        |
| Aroclor-1016                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1016 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1221                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1221 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1232                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1232 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1242                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1242 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1248                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1248 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1254                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1254 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1260                                   | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1260 [2C]                              | CT,NH,NY,NC,ME,VA,PA                   |
| Aroclor-1262                                   | NH,NY,NC,ME,VA,PA                      |
| Aroclor-1262 [2C] Aroclor-1268                 | NH,NY,NC,ME,VA,PA                      |
| Aroclor-1268 [2C]                              | NH,NY,NC,ME,VA,PA<br>NH,NY,NC,ME,VA,PA |
| SW-846 8260D in Water                          | MILIU I,MC,WE, VA,FA                   |
|                                                | CTATE NILLYA ADV                       |
| Acetone                                        | CT,ME,NH,VA,NY                         |
| Acrylonitrile<br>tert-Amyl Methyl Ether (TAME) | CT,ME,NH,VA,NY<br>ME,NH,VA,NY          |
| Benzene                                        | CT,ME,NH,VA,NY                         |
| Bromobenzene                                   | ME,NY                                  |
| Bromochloromethane                             | ME,NH,VA,NY                            |
| Bromodichloromethane                           | CT,ME,NH,VA,NY                         |
| Bromoform                                      | CT,ME,NH,VA,NY                         |
| Bromomethane                                   | CT,ME,NH,VA,NY                         |
| 2-Butanone (MEK)                               | CT,ME,NH,VA,NY                         |
| tert-Butyl Alcohol (TBA)                       | ME,NH,VA,NY                            |
| n-Butylbenzene                                 | ME,VA,NY                               |
| sec-Butylbenzene                               | ME,VA,NY                               |
| See Dutyrochizene                              | arazing ta aya'i L                     |

ME,VA,NY



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                            | Certifications |
|------------------------------------|----------------|
| SW-846 8260D in Water              |                |
| tert-Butyl Ethyl Ether (TBEE)      | ME,NH,VA,NY    |
| Carbon Disulfide                   | CT,ME,NH,VA,NY |
| Carbon Tetrachloride               | CT,ME,NH,VA,NY |
| Chlorobenzene                      | CT,ME,NH,VA,NY |
| Chlorodibromomethane               | CT,ME,NH,VA,NY |
| Chloroethane                       | CT,ME,NH,VA,NY |
| Chloroform                         | CT,ME,NH,VA,NY |
| Chloromethane                      | CT,ME,NH,VA,NY |
| 2-Chlorotoluene                    | ME,NH,VA,NY    |
| 4-Chlorotoluene                    | ME,NH,VA,NY    |
| 1,2-Dibromo-3-chloropropane (DBCP) | ME,NY          |
| 1,2-Dibromoethane (EDB)            | ME,NY          |
| Dibromomethane                     | ME,NH,VA,NY    |
| 1,2-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,3-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,4-Dichlorobenzene                | CT,ME,NH,VA,NY |
| trans-1,4-Dichloro-2-butene        | ME,NH,VA,NY    |
| Dichlorodifluoromethane (Freon 12) | ME,NH,VA,NY    |
| 1,1-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,2-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,1-Dichloroethylene               | CT,ME,NH,VA,NY |
| cis-1,2-Dichloroethylene           | ME,NY          |
| trans-1,2-Dichloroethylene         | CT,ME,NH,VA,NY |
| 1,2-Dichloropropane                | CT,ME,NH,VA,NY |
| 1,3-Dichloropropane                | ME,VA,NY       |
| 2,2-Dichloropropane                | ME,NH,VA,NY    |
| 1,1-Dichloropropene                | ME,NH,VA,NY    |
| cis-1,3-Dichloropropene            | CT,ME,NH,VA,NY |
| trans-1,3-Dichloropropene          | CT,ME,NH,VA,NY |
| Diethyl Ether                      | ME,NY          |
| Diisopropyl Ether (DIPE)           | ME,NH,VA,NY    |
| 1,4-Dioxane                        | ME,NY          |
| Ethylbenzene                       | CT,ME,NH,VA,NY |
| Hexachlorobutadiene                | CT,ME,NH,VA,NY |
| 2-Hexanone (MBK)                   | CT,ME,NH,VA,NY |
| Isopropylbenzene (Cumene)          | ME,VA,NY       |
| p-Isopropyltoluene (p-Cymene)      | CT,ME,NH,VA,NY |
| Methyl Acetate                     | ME,NY          |
| Methyl tert-Butyl Ether (MTBE)     | CT,ME,NH,VA,NY |
| Methyl Cyclohexane                 | NY             |
| Methylene Chloride                 | CT,ME,NH,VA,NY |
| 4-Methyl-2-pentanone (MIBK)        | CT,ME,NH,VA,NY |
| Naphthalene                        | ME,NH,VA,NY    |
| n-Propylbenzene                    | CT,ME,NH,VA,NY |
| Styrene                            | CT,ME,NH,VA,NY |
| 1,1,1,2-Tetrachloroethane          | CT,ME,NH,VA,NY |
| 1,1,2,2-Tetrachloroethane          | CT,ME,NH,VA,NY |
|                                    |                |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                                           | Certifications    |
|---------------------------------------------------|-------------------|
| SW-846 8260D in Water                             |                   |
| Tetrachloroethylene                               | CT,ME,NH,VA,NY    |
| Toluene                                           | CT,ME,NH,VA,NY    |
| 1,2,3-Trichlorobenzene                            | ME,NH,VA,NY       |
| 1,2,4-Trichlorobenzene                            | CT,ME,NH,VA,NY    |
| 1,3,5-Trichlorobenzene                            | ME                |
| 1,1,1-Trichloroethane                             | CT,ME,NH,VA,NY    |
| 1,1,2-Trichloroethane                             | CT,ME,NH,VA,NY    |
| Trichloroethylene                                 | CT,ME,NH,VA,NY    |
| Trichlorofluoromethane (Freon 11)                 | CT,ME,NH,VA,NY    |
| 1,2,3-Trichloropropane                            | ME,NH,VA,NY       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | VA,NY             |
| 1,2,4-Trimethylbenzene                            | ME,VA,NY          |
| 1,3,5-Trimethylbenzene                            | ME,VA,NY          |
| Vinyl Chloride                                    | CT,ME,NH,VA,NY    |
| m+p Xylene                                        | CT,ME,NH,VA,NY    |
| o-Xylene                                          | CT,ME,NH,VA,NY    |
| SW-846 8270E in Water                             |                   |
| Acenaphthene                                      | CT,NY,NC,ME,NH,VA |
| Acenaphthylene                                    | CT,NY,NC,ME,NH,VA |
| Acetophenone                                      | NY,NC             |
| Aniline                                           | CT,NY,NC,ME,VA    |
| Anthracene                                        | CT,NY,NC,ME,NH,VA |
| Benzidine                                         | CT,NY,NC,ME,NH,VA |
| Benzo(a)anthracene                                | CT,NY,NC,ME,NH,VA |
| Benzo(a)pyrene                                    | CT,NY,NC,ME,NH,VA |
| Benzo(b)fluoranthene                              | CT,NY,NC,ME,NH,VA |
| Benzo(g,h,i)perylene                              | CT,NY,NC,ME,NH,VA |
| Benzo(k)fluoranthene                              | CT,NY,NC,ME,NH,VA |
| Benzoic Acid                                      | NY,NC,ME,NH,VA    |
| Bis(2-chloroethoxy)methane                        | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroethyl)ether                           | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroisopropyl)ether                       | CT,NY,NC,ME,NH,VA |
| Bis(2-Ethylhexyl)phthalate                        | CT,NY,NC,ME,NH,VA |
| 4-Bromophenylphenylether                          | CT,NY,NC,ME,NH,VA |
| Butylbenzylphthalate                              | CT,NY,NC,ME,NH,VA |
| Carbazole                                         | NC                |
| 4-Chloroaniline                                   | CT,NY,NC,ME,NH,VA |
| 4-Chloro-3-methylphenol                           | CT,NY,NC,ME,NH,VA |
| 2-Chloronaphthalene                               | CT,NY,NC,ME,NH,VA |
| 2-Chlorophenol                                    | CT,NY,NC,ME,NH,VA |
| 4-Chlorophenylphenylether                         | CT,NY,NC,ME,NH,VA |
| Chrysene                                          | CT,NY,NC,ME,NH,VA |
| Dibenz(a,h)anthracene                             | CT,NY,NC,ME,NH,VA |
| Dibenzofuran Di a hytylahtholoto                  | CT,NY,NC,ME,NH,VA |
| Di-n-butylphthalate                               | CT,NY,NC,ME,NH,VA |
| 1,2-Dichlorobenzene                               | CT,NY,NC,ME,NH,VA |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Water            |                   |
| 1,3-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,4-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 3,3-Dichlorobenzidine            | CT,NY,NC,ME,NH,VA |
| 2,4-Dichlorophenol               | CT,NY,NC,ME,NH,VA |
| Diethylphthalate                 | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol               | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate                | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol                | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |
| Fluorene                         | NY,NC,ME,NH,VA    |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |
| Isophorone                       | CT,NY,NC,ME,NH,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |
| Pentachloronitrobenzene          | NC                |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |
| Phenanthrene                     | CT,NY,NC,ME,NH,VA |
| Phenol                           | CT,NY,NC,ME,NH,VA |
| Pyrene                           | CT,NY,NC,ME,NH,VA |
| Pyridine                         | CT,NY,NC,ME,NH,VA |
| 1,2,4,5-Tetrachlorobenzene       | NY,NC             |
| 1,2,4-Trichlorobenzene           | CT,NY,NC,ME,NH,VA |
| 2,4,5-Trichlorophenol            | CT,NY,NC,ME,NH,VA |
| 2,4,6-Trichlorophenol            | CT,NY,NC,ME,NH,VA |
| 2-Fluorophenol                   | NC                |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publile Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

Page 144 of 148

2151856

http://www.pacelabs.com

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pac Analytical values your partnership on each project and will try to assist with missing information, but wil Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? Matrix Codes:
GW = Ground Water
WW = Waste Water
DW = Drinking Water from prepacked coolers \*Pace Analytical is not otal Number Of <sup>2</sup> Preservation Codes: X = Sodium Hydraxide Courier Use Only A = Air
S = Soil
SL = Sludge
SOL = Solid
O = Other (please B = Sodium Bisulfate O = Other (please define) Page 1 of 2 S = Suffuric Acid Preservation Code N = Nitric Acid BACTERIA M = Methanol ENCORE GLASS\_ VIALS PLASTIC T = Sodium Thíosulfate H= HC l≃ Iced possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and All A. L. L. C. Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above; T NINI HI T HI T ANALYSIS REQUESTED X × × Other × Doc # 381 Rev 5\_07/13/2021 686 × × 741 Metals JAC MCAIS Dissolved × × 57012 × × CT RCP Required MA MCP Required RCP Certification Form Required MCP Certification Form Required WRTA MA State DW Required 5291 Х × × × × 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Fiftered Field Filtered PCB ONL Lab to Filter Lab to Filter PLASTIC School  $\mathcal{C}$ MWRA MBTA Sostertagarambolicom NON SOXHLET GLASS t 7 7 7 SOXHLET CHAIN OF CUSTODY RECORD VIALS જ 6 Ø ٥ **ಹ** ೦ 0 0 Matrix Conc Code د 10-Day Z Municipality Ramboll EDD Brownfield 0.18 0.18 SE SE EXCEL 3 3 # GISMd 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB 否 Ð Φ ৩ S 0 ৩ G বে PFAS 10-Day (std) PDF VA DER Government Ending Date/Time 100 559 1655 010 1310 Email To: 1310 3 Chai 1045 ax To#; 0101 16650 ormat: Federal Other: 10/07, 1330 TB. Try Blank 2-Day -Day ·Day Ċ Project Entity 2.97.01 Beginning Date/Time 12-72-01 other 12.97.01 10.26.21 10.26.21 12.92.91 Access COC's and Support Requests Project Location: 1400 N. Royal St., Alexandre VA 10/28/21 1630 Date/Time: 10 3 3 Date/Time: 3,4 FIRP-INWARI -AIIDRE HRP-TBT- AMERICA HRP 1813 -2 110 25 T HRP- TB1 - 211076 HRP-MW207-211026 10/27 1338 Invoice Recipient: Sostertag @ ramboll.com Client Sample 10 / Description HAP-MW208-211026 HE1-1512-211076 Phone: 413-525-2332 HRP. MW214-211026 12・29・21 Date/Time: HRP PRGS SCR Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: Address: 4350 N. Fairfait Dr. Ste 300 RAMbel Sampled By: Savah Osterton , 64 '4 Project Manager: Gres Gresse Pace Analytical \* 703 5162383 N 5 Relinquished by: (signature) Relipconshed by: (signature Pace Quote Name/Numbe Received by: (signature) ed by: (signature) Pace Work Order# RAY アイング elinguished by: (s Sembany Name Project Number: ab Comments Phone:

2151856

Prepackaged Cooler? Y / N responsible for missing samples Glassware in freezer? Y / N analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what Analytical values your partnership on each project and will try to assist with missing information, but will Glassware in the fridge? from prepacked coolers "Pace Analytical is not Total Number Of Matrix Codes: 5W = Ground Water DW = Drinking Water Preservation Codes: X = Sodium Hydroxide Counter Use Only WW = Waste Water S = Soil SL = Sludge SOL = Solid O = Other (please B = Sodium Bisulfate 28 See 60 0 = Other (please define) MI HI Preservation Code S = Sulfuric Acid SACTERIA N = Nitric Acid GLASS M = Methanol VIALS PEASTIC ENCORE Thiosulfate define) A = Air H= HC GR0 HGJ possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -- For the MAP-MW-201-811095, one voc vial broke, please try and run VOCs w/ the remaining vial Please use the following codes to indicate 980 HGT when commens. - For HRP-mwaging 111025, please try and run total metals from the clissolved metals sample NELAC and AMA-LAP, LLC Accredited ¥ Chromatogram AIHA-LAP, LLC DBO H9T not be held accountable. Jaison by I I H Code cotumn above: ANALYSIS REQUESTED Unknown XXXXX Other Doc # 381 Rev 5\_07/13/2021 マシ × 210 C H CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required WRTA MA State DW Required <u>70X</u> 39 Spruce Street East Longmeadow, MA 01028 ENCORE BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL PLASTIC 57 440 School C 3 MBTA Sasterlas & Ramboll Colm GLASS SOXHLET CHAIN OF CUSTODY RECORD VIALS 78 C 76.64 if possible - if there is enough volume **X** O Ç 0 0 Conc Code 10-Day day http://www.pacelabs.com Rumboll EDD Municipatity Brownfield Matrix <u>S</u> ટુ <u>ર</u>ુ 3 Grab all **∂** EXCEL # QISMd 3-Day 4-Day 3 CLP Like Data Pkg Required: Gr 126 COMP/GRAB 44 <u>ع</u> م Grap والعاق data data 2 FAS 10-Day (std) PDF NA DEC Ending Date/Time Government Email To: ax To #: ormat; Federal Other: -Day -Day -Day City Project Entity 0550 10/25 10/25 10/25 10/25 10/25 10/25 Beginning Date/Time 1400 N. Ruyal St. Alexandra VA Access COC's and Support Requests HRP- PERS RGS- SCR invoice Recipient: \$ 05tertage Ramboll. com HRP. mw 203-211026 THRY TRUG STUDY Date/Time: 3121 HAP- DUPUS-211026 THE HOLD STIGHTS 7 HRP-MW102-211027 35 HRP-MW-01100-31100-5 HAP-MW305-311036 HRP-MW806-BILDAG 4350 N. Fairfly Dr St. 300 10/07 1330 Date/Time: Jate/Time: いろう HRP-T807-211035 HART-1808-24626 Cilent Sample ID / Description Phone: 413-525-2332 10 25-21 Date/Time: Fax: 413-525-6405 Date/Time: Date/Time ンカルル 1 by: (signature) huy 5. 5 Green Bridge DWAD ALLA Pace Analytical Company Names ( Combo n 2 Pace Quote Name/Numbers elinquished by: (signature) Amore Received by: (signature) eceived by: (signature Pace Work Order# Project Location: Project Manager; Project Number: nd ampled By: Genson Relinquished Address: Phone: Page 145 of 148



# TRACK ANOTHER SHIPMENT

775056226495

ADD NICKNAME



Delivered

THIS IS 1 OF 5 PIECES



# **DELIVERED**

Signed for by: R.PIETRIS

GET STATUS UPDATES

OBTAIN PROOF OF DELIVERY

FROM

Mechanicsville, VA US

TO

EAST LONGMEADOW, MA US

# 5 Piece Shipment

| TRACKING ID                    | STATUS           | SHIP<br>Date | DELIVERY<br>Date | HANDLING PIECE<br>UNITS | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|--------------------------------|------------------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 775056226006 (master)          | Delivered        | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 77 <b>50</b> 562 <b>2</b> 6495 | Delivered        | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056226750                   | Delivered        | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056227285                   | In transit       | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056227540                   | <b>Delivered</b> | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

Travel History



# TRACK ANOTHER SHIPMENT

775056227285

ADD NICKNAME



Delivered

THIS IS 1 OF 5 PIECES



# **DELIVERED**

Signed for by: R.PIETRIAS

GET STATUS UPDATES

OBTAIN PROOF OF DELIVERY

FROM

Mechanicsville, VA US

TO

EAST LONGMEADOW, MA US

MANAGE DELIVERY  $\sim$ 

# 5 Piece Shipment

| TRACKING ID           | STATUS    | SHIP<br>Date | DELIVERY<br>Date | HANDLING PIECE<br>Units | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|-----------------------|-----------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 775056226006 (master) | Delivered | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056226495          | Delivered | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056226750          | Delivered | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056227285          | Delivered | 10/28/21     | 11/1/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775056227540          | Delivered | 10/28/21     | 10/29/21         | 0                       | Mechanicsville VA      | FAST LONGMEADOW MA       |

Travel History

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples\_\_\_\_\_



Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client              | Ferbull         | T                   |             |            |               |             |                                         |              |               |
|---------------------|-----------------|---------------------|-------------|------------|---------------|-------------|-----------------------------------------|--------------|---------------|
|                     | ived By         | l l                 |             | Date       | W-29          | - Z l       | Time                                    | 1033         |               |
|                     | the samples     | In Cooler           |             | No Cooler  |               | On Ice      | <del></del>                             |              | www           |
| rece                | eived?          | Direct from Sam     | olina       |            |               | _           |                                         | _ No Ice     | <del></del> - |
| 1A/-                |                 | - a total om oun    | _           |            |               | Ambient     | *************************************** | _ Melted Ice | )<br>         |
|                     | nples within    |                     | By Gun #    | 3          |               | Actual Te   | mp -                                    |              |               |
|                     | ture? 2-6°C     | <u></u>             | By Blank #  |            |               | Actual Te   | m <u>p - 2.0,2.1</u>                    | , 2.7, 4.    | 7             |
|                     | s Custody S     |                     | <u> </u>    | We         | re Sample     | s Tampere   | d with?                                 | NA           | =             |
| wa                  | is COC Relin    | quished?            | 1           | Does       | Chain Ag      | ree With S  | amples?                                 | 7            |               |
| Are tr              | iere broken/l   | eaking/loose caps   | on any samp | oles?      | F             |             | ,                                       |              |               |
|                     | nk/ Legible?    |                     |             | Were sam   | ples recei    | ved within  | holding time?                           |              |               |
|                     | include all     | Client              | T           | Analysis _ |               |             | oler Name                               | <del></del>  |               |
|                     | nformation?     | Project             | <u> </u>    | iD's       | 7             |             | n Dates/Times                           |              | <del></del>   |
| Are Sampl           | e labels filled | out and legible?    |             | ···        |               | •           | , ,                                     |              | -             |
|                     | ab to Filters?  | ,                   | F           |            | Who was       | s notified? |                                         |              |               |
| Are there R         |                 |                     | F           |            |               | s notified? | *************************************** |              |               |
| Are there S         | = -             | _                   | <u>É</u>    |            |               | s notified? |                                         | ···          | _             |
|                     | ugh Volume      |                     | *           |            |               |             |                                         |              | -             |
| Is there Hea        | adspace whe     | re applicable?      | F           | ٨          | MS/MSD?       | F           |                                         |              |               |
| Proper Med          | ia/Containers   | s Used?             | ī           | ls         | s splitting : | samples re  | -<br>quired?                            | F            |               |
|                     | anks receive    |                     | T           |            | On COC?       |             |                                         |              | -             |
|                     | les have the    | proper pH?          |             | Acid _     | T             | ·           | -<br>Base                               |              |               |
| Vials               |                 | Containers:         | #           |            |               | #           |                                         |              | - 4           |
| Unp-                | 15              | 1 Liter Amb.        | 24          | 1 Liter P  | lastic        |             | 16 oz /                                 | Amb          | #             |
| HCL-                | 3-2             | 500 mL Amb.         |             | 500 mL F   | Plastic       | ····        | 8oz Amt                                 |              |               |
| Meoh-<br>Bisulfate- |                 | 250 mL Amb.         |             | 250 mL F   |               | 31          | 4oz Amt                                 |              |               |
| Disuliate-<br>DI-   |                 | Flashpoint          |             | Col./Bac   |               |             | 2oz Amb                                 |              |               |
| Thiosulfate-        |                 | Other Glass         |             | Other PI   |               |             | Enco                                    |              |               |
| Sulfuric-           |                 | SOC Kit             |             | Plastic I  |               |             | Frozen:                                 |              |               |
| Sulfaric            |                 | Perchlorate         |             | Ziploc     | ck            |             |                                         |              |               |
| #-I- I              |                 |                     |             | Unused Me  | edia          |             |                                         |              |               |
| /ials               | # 0             | Containers:         | #           |            |               | #           |                                         |              | #             |
| Jnp-<br>HCL-        |                 | 1 Liter Amb.        |             | 1 Liter Pl |               |             | 16 oz A                                 | ımb.         |               |
| /leoh-              |                 | 500 mL Amb.         |             | 500 mL P   |               |             | 8oz Amb                                 | <u> </u>     |               |
| Bisulfate-          | <del></del>     | 250 mL Amb.         |             | 250 mL P   |               |             | 4oz Amb                                 |              | ****          |
| ) -<br>             |                 | Col./Bacteria       |             | Flashpo    |               |             | 2oz Amb                                 |              |               |
| hiosulfate-         |                 | Other Plastic       |             | Other GI   |               |             | Enco                                    | re           |               |
| Sulfuric-           |                 | SOC Kit Perchlorate |             | Plastic E  |               |             | Frozen:                                 |              |               |
| omments:            |                 | recollorate         |             | Ziploc     | k             |             |                                         |              |               |
|                     | <u></u>         |                     |             |            |               |             |                                         |              |               |
|                     |                 |                     | Cooler 1    | ust in     | + Carrit      | - 500 0     | mail                                    |              |               |

Missing copier received 11-1-21 922



November 9, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21K0043

Enclosed are results of analyses for samples as received by the laboratory on November 1, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# Table of Contents

| Sample Summary                          | 4  |
|-----------------------------------------|----|
| Case Narrative                          | 6  |
| Sample Results                          | 10 |
| 21K0043-01                              | 10 |
| 21K0043-02                              | 19 |
| 21K0043-03                              | 28 |
| 21K0043-04                              | 30 |
| 21K0043-05                              | 38 |
| 21K0043-06                              | 4  |
| 21K0043-07                              | 49 |
| Sample Preparation Information          | 54 |
| QC Data                                 | 5′ |
| Volatile Organic Compounds by GC/MS     | 5′ |
| B293778                                 | 5′ |
| Semivolatile Organic Compounds by GC/MS | 62 |
| B293790                                 | 62 |
| Semivolatile Organic Compounds by GC    | 6  |
| B294074                                 | 6  |
| Petroleum Hydrocarbons Analyses         | 68 |
| B293763                                 | 68 |
| B293957                                 | 68 |
| B294072                                 | 68 |
| Metals Analyses (Total)                 | 69 |
| B293822                                 | 69 |
| B293917                                 | 69 |

# Table of Contents (continued)

| B293919                                                              | 69 |
|----------------------------------------------------------------------|----|
| B293980                                                              | 70 |
| B294008                                                              | 72 |
| B294113                                                              | 72 |
| Metals Analyses (Dissolved)                                          | 73 |
| B293821                                                              | 73 |
| B293930                                                              | 73 |
| B293931                                                              | 74 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 76 |
| B293749                                                              | 76 |
| B293753                                                              | 76 |
| B293766                                                              | 76 |
| B293898                                                              | 76 |
| Flag/Qualifier Summary                                               | 78 |
| Certifications                                                       | 79 |
| Chain of Custody/Sample Receipt                                      | 85 |



Ramboll US Consulting, Inc. - Arlington, VA  $\,$ 

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 11/9/2021

PROJECT NUMBER:

### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21K0043

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| HRP-MW72S-211027 21K0043-01 Ground Water EPA 350.1  SW-846 6010D SW-846 6010D SW-846 8260D SW-846 8270E HRP-MW30S-211027 21K0043-02 Ground Water EPA 350.1  SW-846 8270E HRP-MW30S-211027 21K0043-02 Ground Water EPA 350.1  SW-846 6010D SW-846 6010D SW-846 6010D SW-846 8270E  HRP-MW209-211028 21K0043-03 Soil SM-2540G SW-846 8010C SW-846 5010D SW-846 6010D S | FIELD SAMPLE #       | LAB ID:    | MATRIX       | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------------|--------------------|--------------|---------|
| SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 820DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 601DD   SW-846 820DD   SW-846 820DD   SW-846 820DD   SW-846 820DD   SW-846 820DD   SW-846 601DD   SW-846 820DD   SW-846 820DD   SW-846 601DD   SW-8   | HRP-MW72S-211027     | 21K0043-01 | Ground Water |                    | ASTM D516-16 |         |
| RP-MW30S-211027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |              |                    | EPA 350.1    |         |
| SW-846 7470A   SW-846 801 SC   SW-846 8270E   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 7471A   SW-846 8270E   SW-846 7471B   SW-846 9014   SW-84   |                      |            |              |                    | SW-846 6010D |         |
| RRP-MW30S-211027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |            |              |                    | SW-846 6020B |         |
| RRP-MW308-211027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |            |              |                    | SW-846 7470A |         |
| HRP-MW30S-211027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |            |              |                    | SW-846 8015C |         |
| HRP-MW308-211027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |            |              |                    | SW-846 8260D |         |
| ### FPA 350.1  ### SEPA 350.1  |                      |            |              |                    | SW-846 8270E |         |
| SW-846 6010D   SW-846 6020B   SW-846 8260D   SW-846 8260D   SW-846 8260D   SW-846 8270E   SW-846 6010D   SW-846 8015C   SW-846 8015C   SW-846 8015C   SW-846 8010D   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 6010D   SW-846 6010D   SW-846 8270E   SW-846 6010D   SW-846 6010D   SW-846 8270E   SW-846 8270E   SW-846 6010D   SW-8   | HRP-MW30S-211027     | 21K0043-02 | Ground Water |                    | ASTM D516-16 |         |
| SW-846 6020B   SW-846 817C   SW-846 8015C   SW-846 8270E   SW-846 8010D   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9014   SW-846 9015C   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 6010D   SW-846 8015C   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 8010D   SW-846 6010D   SW-846 8270E   SW-846 8010D   SW-846 8270E   SW-846 8270E   SW-846 8270E   SW-846 8015C   SW-846 8270E   SW-846 82   |                      |            |              |                    | EPA 350.1    |         |
| SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 6010D |         |
| SW-846 8015C     SW-846 8270E     SW-846 8270E     SW-846 8270E     SW-846 8270E     SW-846 6010D     SW-846 6010D     SW-846 9014     SW-846 9014     SW-846 9015C     SW-846 9015C     SW-846 9015C     SW-846 9015C     SW-846 9015C     SW-846 9015C     SW-846 8010D     SW-846 6010D     SW-846 6010D     SW-846 6010D     SW-846 6010D     SW-846 8015C     SW-846 8270E     SW-846 8270E     SW-846 8270E     SW-846 6010D     SW-846 8015C     SW-846 8270E     SW-846 8270E     SW-846 6010D     SW-846 6010D     SW-846 8015C     SW-846 8270E     SW-846 8270E     SW-846 6010D     SW-846 8015C     SW-846   |                      |            |              |                    | SW-846 6020B |         |
| SW-846 8260D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 7470A |         |
| SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 8015C |         |
| HRP-SB210-0-1-211028 21K0043-03 Soil SM-2540G SW-846 6010D SW-846 7471B SW-846 9045C SW-846 9045C SW-846 9045C SW-846 6010D SW-846 6010D SW-846 6010D SW-846 6010D SW-846 6010D SW-846 6020B SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 8015C SW-846 8015C SW-846 8015C SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |              |                    | SW-846 8260D |         |
| SW-846 6010D SW-846 7471B SW-846 9014 SW-846 9045C HRP-MW209-211028 21K0043-04 Ground Water ASTM D516-16 SW-846 8020B SW-846 8270E HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6010D SW-846 6010D SW-846 8270E ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 8015C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |              |                    | SW-846 8270E |         |
| SW-846 7471B   SW-846 9014   SW-846 9014   SW-846 9045C     HRP-MW209-211028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP-SB210-0-1-211028 | 21K0043-03 | Soil         |                    | SM 2540G     |         |
| SW-846 9014   SW-846 9045C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |            |              |                    | SW-846 6010D |         |
| SW-846 9045C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 7471B |         |
| HRP-MW209-211028  4 21K0043-04 Ground Water  5 8W-846 6010D  5 8W-846 6020B  5 8W-846 7470A  5 8W-846 8260D  5 8W-846 8270E  HRP-MW100S-211028  21K0043-05 Ground Water  5 FPA 350.1  5 SW-846 6010D  5 SW-846 6010D  5 SW-846 6010D  5 SW-846 6020B  5 SW-846 6020B  5 SW-846 6020B  5 SW-846 6020B  5 SW-846 8270E  5 SW-846 8260D  5 SW-846 8260D  5 SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |              |                    | SW-846 9014  |         |
| SW-846 6010D SW-846 6020B SW-846 7470A SW-846 8015C SW-846 8260D SW-848 8270E  HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6010D SW-846 6020B SW-846 7470A SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |              |                    | SW-846 9045C |         |
| SW-846 6020B SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E  HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6020B SW-846 7470A SW-846 7470A SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-MW209-211028     | 21K0043-04 | Ground Water |                    | ASTM D516-16 |         |
| SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E  HRP-MW100S-211028  21K0043-05  Ground Water  ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6020B SW-846 7470A SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            |              |                    | SW-846 6010D |         |
| SW-846 8015C SW-846 8260D SW-846 8270E HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6020B SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |            |              |                    | SW-846 6020B |         |
| SW-846 8260D SW-846 8270E HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6020B SW-846 7470A SW-846 8260D SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |            |              |                    | SW-846 7470A |         |
| SW-846 8270E  HRP-MW100S-211028  21K0043-05  Ground Water  ASTM D516-16  EPA 350.1  SW-846 6010D  SW-846 6020B  SW-846 7470A  SW-846 8210E  SW-846 8260D  SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |            |              |                    | SW-846 8015C |         |
| HRP-MW100S-211028 21K0043-05 Ground Water ASTM D516-16 EPA 350.1 SW-846 6010D SW-846 6020B SW-846 7470A SW-846 8015C SW-846 8260D SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |            |              |                    | SW-846 8260D |         |
| EPA 350.1<br>SW-846 6010D<br>SW-846 6020B<br>SW-846 7470A<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |            |              |                    | SW-846 8270E |         |
| SW-846 6010D<br>SW-846 6020B<br>SW-846 7470A<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP-MW100S-211028    | 21K0043-05 | Ground Water |                    | ASTM D516-16 |         |
| SW-846 6020B<br>SW-846 7470A<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | EPA 350.1    |         |
| SW-846 7470A<br>SW-846 8015C<br>SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 6010D |         |
| SW-846 8015C<br>SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 6020B |         |
| SW-846 8260D<br>SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 7470A |         |
| SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |            |              |                    | SW-846 8015C |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |              |                    | SW-846 8260D |         |
| HRP-TB08-211028 21K0043-06 Ground Water SW-846 8260D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            |              |                    | SW-846 8270E |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP-TB08-211028      | 21K0043-06 | Ground Water |                    | SW-846 8260D |         |



Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 11/9/2021

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21K0043

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| _ | FIELD SAMPLE #  | LAB ID:    | MATRIX       | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|---|-----------------|------------|--------------|--------------------|--------------|---------|
|   | HRP-EB08-211028 | 21K0043-07 | Ground Water |                    | ASTM D516-16 |         |
|   |                 |            |              |                    | SW-846 6010D |         |
|   |                 |            |              |                    | SW-846 6020B |         |
|   |                 |            |              |                    | SW-846 7470A |         |
|   |                 |            |              |                    | SW-846 8015C |         |
|   |                 |            |              |                    | SW-846 8270E |         |



# CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.



### EPA 350.1

### **Qualifications:**

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Ammonia as N

B293898-BS1, B293898-BSD1

SW-846 6010D

### **Qualifications:**

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.

Analyte & Samples(s) Qualified:

21K0043-01[HRP-MW72S-211027], B293930-MS1

Calcium

 $21K0043\text{-}01[HRP\text{-}MW72S\text{-}211027],\,B293930\text{-}MS1$ 

21K0043-01[HRP-MW72S-211027], B293930-MS1

Magnesium

21K0043-01[HRP-MW72S-211027], B293930-MS1

SW-846 7470A

### Qualifications:

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).

Analyte & Samples(s) Qualified:

Mercury

21K0043-01[HRP-MW72S-211027], B293822-DUP1

SW-846 8015C

### **Qualifications:**

DL-01

Elevated reporting limits for all volatile compounds due to foaming sample matrix.

Analyte & Samples(s) Qualified:

21K0043-01[HRP-MW72S-211027]

SW-846 8260D

# Qualifications:

DL-01

Elevated reporting limits for all volatile compounds due to foaming sample matrix.

Analyte & Samples(s) Qualified:

21K0043-01[HRP-MW72S-211027]

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Bromomethane

B293778-BS1, B293778-BSD1



### L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

### Chloromethane

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1

### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

### Analyte & Samples(s) Qualified:

### 2-Butanone (MEK)

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028],  $21K0043-06[HRP-TB08-211028],\,B293778-BLK1,\,B293778-BS1,\,B293778-BSD1,\,S064938-CCV1$ 

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

### Methyl Acetate

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

# tert-Butyl Alcohol (TBA)

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

### **Bromomethane**

B293778-BS1, B293778-BSD1, S064938-CCV1

# V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

# Analyte & Samples(s) Qualified:

### Bromomethane

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-06[HRP-TB08-211028], B293778-BLK1, B293778-BS1, B293778-BSD1, S064938-CCV1

### SW-846 8270E

### **Qualifications:**

### V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-07[HRP-EB08-211028], B293790-BLK1, B293790-BS1, B293790-BSD1, S064958-CCV1, S065007-CCV1, S065107-CCV1

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-07[HRP-EB08-211028], B293790-BLK1, B293790-BS1, B293790-BSD1, S064958-CCV1, S065107-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

### Analyte & Samples(s) Qualified:

# Benzidine

S065007-CCV1

# Hexachlorocyclopentadiene

S065007-CCV1



### V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

### Analyte & Samples(s) Qualified:

### 2,4-Dinitrophenol

B293790-BS1, B293790-BSD1, S064958-CCV1, S065007-CCV1

### 2.4-Dinitrotoluene

B293790-BS1, B293790-BSD1, S064958-CCV1

### 4-Nitroaniline

B293790-BS1, B293790-BSD1, S064958-CCV1

### V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

### 2,4-Dinitrophenol

B293790-BLK1

### 2.4-Dinitrotoluene

B293790-BLK1

### 4-Nitroaniline

B293790-BLK1

### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

# estimated. Analyte & Samples(s) Qualified:

### 3,3-Dichlorobenzidine

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028],

### 21K0043-07[HRP-EB08-211028], S065107-CCV1

### 4-Chloroaniline

21K0043-01[HRP-MW72S-211027], 21K0043-02[HRP-MW30S-211027], 21K0043-04[HRP-MW209-211028], 21K0043-05[HRP-MW100S-211028], 21K0043-07[HRP-EB08-211028], S065007-CCV1, S065107-CCV1

### SW-846 9045C

### **Oualifications:**

# H-03

Sample received after recommended holding time was exceeded.

### Analyte & Samples(s) Qualified:

21K0043-03[HRP-SB210-0-1-211028]

### SW-846 8015C

Gasoline Range Organics (2-Methylpentane through 1,2,4-Trimethylbenzene) is quantitated against a calibration made with an unleaded gasoline composite standard. Diesel Range Organics (C10-C28) is quantitated against a calibration made with a #2 fuel oil standard.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

Veder

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

Sample Flags: DL-01

Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL  | DL   | Units     | Dilution | Flag/Qual        | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|-----|------|-----------|----------|------------------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 100 | 4.7  | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Acrylonitrile                      | ND      | 10  | 1.4  | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 1.0 | 0.30 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Benzene                            | ND      | 2.0 | 0.26 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Bromobenzene                       | ND      | 2.0 | 0.26 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Bromochloromethane                 | ND      | 2.0 | 0.72 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Bromodichloromethane               | ND      | 1.0 | 0.28 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Bromoform                          | ND      | 2.0 | 0.58 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Bromomethane                       | ND      | 10  | 2.1  | μg/L      | 2        | V-34             | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 2-Butanone (MEK)                   | ND      | 40  | 3.8  | μg/L      | 2        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| tert-Butyl Alcohol (TBA)           | ND      | 40  | 11   | μg/L      | 2        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| n-Butylbenzene                     | ND      | 2.0 | 0.28 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| sec-Butylbenzene                   | ND      | 2.0 | 0.20 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| tert-Butylbenzene                  | ND      | 2.0 | 0.18 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 1.0 | 0.22 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Carbon Disulfide                   | ND      | 10  | 3.0  | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Carbon Tetrachloride               | ND      | 10  | 0.34 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Chlorobenzene                      | ND      | 2.0 | 0.16 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Chlorodibromomethane               | ND      | 1.0 | 0.32 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Chloroethane                       | ND      | 4.0 | 0.74 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Chloroform                         | ND      | 4.0 | 0.38 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Chloromethane                      | ND      | 4.0 | 0.76 | $\mu g/L$ | 2        | L-04, V-05, V-34 | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 2-Chlorotoluene                    | ND      | 2.0 | 0.18 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 4-Chlorotoluene                    | ND      | 2.0 | 0.20 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 10  | 1.4  | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2-Dibromoethane (EDB)            | ND      | 1.0 | 0.30 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Dibromomethane                     | ND      | 2.0 | 0.58 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2-Dichlorobenzene                | ND      | 2.0 | 0.20 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,3-Dichlorobenzene                | ND      | 2.0 | 0.18 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,4-Dichlorobenzene                | ND      | 2.0 | 0.22 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| trans-1,4-Dichloro-2-butene        | ND      | 4.0 | 3.6  | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Dichlorodifluoromethane (Freon 12) | ND      | 4.0 | 0.40 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1-Dichloroethane                 | ND      | 2.0 | 0.32 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2-Dichloroethane                 | ND      | 2.0 | 0.64 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1-Dichloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| cis-1,2-Dichloroethylene           | ND      | 2.0 | 0.30 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| trans-1,2-Dichloroethylene         | ND      | 2.0 | 0.34 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2-Dichloropropane                | ND      | 2.0 | 0.36 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,3-Dichloropropane                | ND      | 1.0 | 0.24 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 2,2-Dichloropropane                | ND      | 2.0 | 0.62 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1-Dichloropropene                | ND      | 4.0 | 0.52 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| cis-1,3-Dichloropropene            | ND      | 1.0 | 0.24 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| trans-1,3-Dichloropropene          | ND      | 1.0 | 0.30 | $\mu g/L$ | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Diethyl Ether                      | ND      | 4.0 | 0.44 | μg/L      | 2        |                  | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

Sample Flags: DL-01

Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|-----|------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 1.0 | 0.30 | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,4-Dioxane                                       | ND      | 100 | 43   | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Ethylbenzene                                      | ND      | 2.0 | 0.18 | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Hexachlorobutadiene                               | ND      | 1.2 | 0.82 | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 2-Hexanone (MBK)                                  | ND      | 20  | 2.8  | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Isopropylbenzene (Cumene)                         | ND      | 2.0 | 0.20 | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 2.0 | 0.18 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Methyl Acetate                                    | ND      | 2.0 | 0.78 | $\mu g/L$ | 2        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 2.0 | 0.34 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Methyl Cyclohexane                                | ND      | 2.0 | 0.66 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Methylene Chloride                                | ND      | 10  | 0.60 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 20  | 3.2  | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Naphthalene                                       | ND      | 4.0 | 0.30 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| n-Propylbenzene                                   | ND      | 2.0 | 0.16 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Styrene                                           | ND      | 2.0 | 0.16 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 1.0 | 0.18 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Tetrachloroethylene                               | ND      | 2.0 | 0.40 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Tetrahydrofuran                                   | ND      | 20  | 1.2  | $\mu g/L$ | 2        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Toluene                                           | ND      | 2.0 | 0.22 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2,3-Trichlorobenzene                            | ND      | 10  | 0.28 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2,4-Trichlorobenzene                            | ND      | 2.0 | 0.32 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,3,5-Trichlorobenzene                            | ND      | 2.0 | 0.36 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1,1-Trichloroethane                             | ND      | 2.0 | 0.34 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1,2-Trichloroethane                             | ND      | 2.0 | 0.30 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Trichloroethylene                                 | ND      | 2.0 | 0.36 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 4.0 | 0.38 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2,3-Trichloropropane                            | ND      | 4.0 | 0.62 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 2.0 | 0.48 | μg/L      | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,2,4-Trimethylbenzene                            | ND      | 2.0 | 0.20 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| 1,3,5-Trimethylbenzene                            | ND      | 2.0 | 0.20 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| Vinyl Chloride                                    | ND      | 4.0 | 0.40 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| m+p Xylene                                        | ND      | 4.0 | 0.36 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |
| o-Xylene                                          | ND      | 2.0 | 0.18 | $\mu g/L$ | 2        |           | SW-846 8260D | 11/2/21          | 11/2/21 19:22         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 87.2       | 70-130          |           | 11/2/21 19:22 |
| Toluene-d8            | 93.8       | 70-130          |           | 11/2/21 19:22 |
| 4-Bromofluorobenzene  | 98.6       | 70-130          |           | 11/2/21 19:22 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results  | RL  | DL   | Units        | Dilution | Flag/Qual | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|----------|-----|------|--------------|----------|-----------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 5.2 | 0.35 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Acenaphthylene                   | ND       | 5.2 | 0.33 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Acetophenone                     | ND       | 10  | 0.46 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Aniline                          | ND       | 5.2 | 0.85 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Anthracene                       | ND       | 5.2 | 0.41 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzidine                        | ND       | 21  | 10   | μg/L         | 1        | V-04      | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzo(a)anthracene               | ND       | 5.2 | 0.39 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzo(a)pyrene                   | ND       | 5.2 | 0.49 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzo(b)fluoranthene             | ND       | 5.2 | 0.43 | $\mu g/L$    | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzo(g,h,i)perylene             | ND       | 5.2 | 0.66 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzo(k)fluoranthene             | ND       | 5.2 | 0.38 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Benzoic Acid                     | ND       | 10  | 9.5  | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 10  | 0.45 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 10  | 0.54 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 10  | 0.62 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 10  | 0.95 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Bromophenylphenylether         | ND       | 10  | 0.39 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Butylbenzylphthalate             | ND       | 10  | 0.72 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Carbazole                        | ND       | 10  | 0.42 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Chloroaniline                  | ND       | 10  | 0.45 | μg/L         | 1        | V-34      | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 10  | 0.56 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Chloronaphthalene              | ND       | 10  | 0.27 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Chlorophenol                   | ND       | 10  | 0.39 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Chlorophenylphenylether        | ND       | 10  | 0.34 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Chrysene                         | ND       | 5.2 | 0.39 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Dibenz(a,h)anthracene            | ND       | 5.2 | 0.73 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Dibenzofuran                     | ND       | 5.2 | 0.35 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Di-n-butylphthalate              | ND       | 10  | 0.51 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,2-Dichlorobenzene              | ND       | 5.2 | 0.24 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,3-Dichlorobenzene              | ND       | 5.2 | 0.25 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,4-Dichlorobenzene              | ND       | 5.2 | 0.27 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 10  | 0.64 | μg/L         | 1        | V-34      | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4-Dichlorophenol               | ND       | 10  | 0.38 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Diethylphthalate                 | ND       | 10  | 0.50 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4-Dimethylphenol               | ND       | 10  | 1.0  | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Dimethylphthalate                | ND       | 10  | 0.41 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 10  | 6.8  | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4-Dinitrophenol                | ND       | 10  | 8.3  | μg/L         | 1        | V-04      | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4-Dinitrotoluene               | ND       | 10  | 0.63 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,6-Dinitrotoluene               | ND       | 10  | 0.52 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Di-n-octylphthalate              | ND       | 10  | 5.8  | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 10  | 0.54 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Fluoranthene                     | ND       | 5.2 | 0.34 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 8:43          | BGL     |
| Fluorene                         | ND<br>ND | 5.2 | 0.43 | μg/L<br>μg/L | 1        |           | SW-846 8270E<br>SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| - 100.0110                       | ND       | 3.4 | 0.+3 | μg/L         | 1        |           | 5 W-040 02/UE                | 11/4/41          | 11/0/21 0.43          | DOL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW72S-211027 Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

# Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 10     | 0.38  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Hexachlorobutadiene                  | ND      | 10     | 0.28  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Hexachlorocyclopentadiene            | ND      | 10     | 4.4   | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Hexachloroethane                     | ND      | 10     | 0.32  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.2    | 0.81  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Isophorone                           | ND      | 10     | 0.50  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1-Methylnaphthalene                  | ND      | 5.2    | 0.30  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Methylnaphthalene                  | ND      | 5.2    | 0.34  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Methylphenol                       | ND      | 10     | 0.38  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 3/4-Methylphenol                     | ND      | 10     | 0.39  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Naphthalene                          | ND      | 5.2    | 0.31  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Nitroaniline                       | ND      | 10     | 0.78  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 3-Nitroaniline                       | ND      | 10     | 0.52  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Nitroaniline                       | ND      | 10     | 0.51  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Nitrobenzene                         | ND      | 10     | 0.55  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2-Nitrophenol                        | ND      | 10     | 0.49  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 4-Nitrophenol                        | ND      | 10     | 2.1   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| N-Nitrosodimethylamine               | ND      | 10     | 0.85  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 10     | 0.41  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 10     | 0.55  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Pentachloronitrobenzene              | ND      | 10     | 0.66  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Pentachlorophenol                    | ND      | 10     | 3.9   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Phenanthrene                         | ND      | 5.2    | 0.41  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Phenol                               | ND      | 10     | 0.25  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Pyrene                               | ND      | 5.2    | 0.49  | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Pyridine                             | ND      | 5.2    | 2.7   | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 10     | 0.28  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 5.2    | 0.25  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 10     | 0.48  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 10     | 0.42  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 8:43          | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 37.4   |       | 15-110          |          |           |              |                  | 11/8/21 8:43          |         |
| Phenol-d6                            |         | 27.0   |       | 15-110          |          |           |              |                  | 11/8/21 8:43          |         |

45.2

49.1

64.9

68.4

30-130

30-130

15-110

30-130

11/8/21 8:43

11/8/21 8:43

11/8/21 8:43

11/8/21 8:43



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |  |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|--|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |  |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 16:39 | SFM     |  |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 16:39 | SFM     |  |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 16:39 | SFM     |  |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 16:39 | SFM     |  |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 16:39 | SFM     |  |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

Sample Flags: DL-01 Petroleum Hydrocarbons Analyses

| 1 5                           |         |        |       |                |          |           |              |          |               |         |
|-------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|----------|---------------|---------|
|                               |         |        |       |                |          |           |              | Date     | Date/Time     |         |
| Analyte                       | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Gasoline Range Organics (GRO) | ND      | 0.020  | 0.019 | mg/L           | 2        |           | SW-846 8015C | 11/5/21  | 11/6/21 8:55  | KMB     |
| Diesel Range Organics         | 4.9     | 0.22   | 0.091 | mg/L           | 1        |           | SW-846 8015C | 11/2/21  | 11/5/21 23:41 | SFM     |
| Surrogates                    |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |          |               |         |
| 1-Chloro-3-fluorobenzene      |         | 103    |       | 70-130         |          |           |              |          | 11/6/21 8:55  |         |
| 2-Fluorobiphenyl              |         | 87.5   |       | 40-140         |          |           |              |          | 11/5/21 23:41 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

# Metals Analyses (Total)

| Metais Analyses (10tal) |          |         |          |           |          |           |              |                  |                       |         |  |
|-------------------------|----------|---------|----------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|--|
| Analyte                 | Results  | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |  |
| Aluminum                | 0.086    | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | МЈН     |  |
| Antimony                | ND       | 1.0     | 0.20     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Arsenic                 | 1.7      | 0.80    | 0.46     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Barium                  | 13       | 10      | 1.2      | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Beryllium               | 0.099    | 0.40    | 0.066    | $\mu g/L$ | 1        | J         | SW-846 6020B | 11/3/21          | 11/4/21 15:16         | QNW     |  |
| Cadmium                 | 0.079    | 0.20    | 0.027    | $\mu g/L$ | 1        | J         | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Calcium                 | 180      | 0.50    | 0.11     | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | MJH     |  |
| Chromium                | ND       | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Cobalt                  | 95       | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Copper                  | 13       | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Iron                    | 180      | 0.050   | 0.032    | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | MJH     |  |
| Lead                    | 1.2      | 0.50    | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Magnesium               | 53       | 0.050   | 0.023    | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | MJH     |  |
| Manganese               | 4700     | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Mercury                 | 0.000060 | 0.00010 | 0.000050 | mg/L      | 1        | R-04, J   | SW-846 7470A | 11/2/21          | 11/3/21 9:12          | DRL     |  |
| Nickel                  | 17       | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Potassium               | 7.6      | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | MJH     |  |
| Selenium                | ND       | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Silver                  | ND       | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Sodium                  | 54       | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 15:14         | MJH     |  |
| Thallium                | ND       | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Vanadium                | ND       | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |
| Zinc                    | 26       | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 13:45         | QNW     |  |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW72S-211027** Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

# Metals Analyses (Dissolved)

|           |         |         |          | •         | ,        |           |              |                  |                       |         |
|-----------|---------|---------|----------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 0.058   | 0.050   | 0.049    | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | μg/L      | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Arsenic   | 1.4     | 0.80    | 0.46     | μg/L      | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 15:44         | QNW     |
| Barium    | 13      | 10      | 1.2      | μg/L      | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 15:44         | QNW     |
| Beryllium | 0.083   | 0.40    | 0.066    | μg/L      | 1        | J         | SW-846 6020B | 11/3/21          | 11/4/21 15:44         | QNW     |
| Cadmium   | 0.050   | 0.20    | 0.027    | μg/L      | 1        | J         | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Calcium   | 180     | 0.50    | 0.11     | mg/L      | 1        | MS-19     | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Cobalt    | 94      | 1.0     | 0.14     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Copper    | 3.3     | 1.0     | 0.27     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Iron      | 190     | 0.050   | 0.032    | mg/L      | 1        | MS-19     | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Lead      | 0.40    | 0.50    | 0.14     | $\mu g/L$ | 1        | J         | SW-846 6020B | 11/3/21          | 11/4/21 15:44         | QNW     |
| Magnesium | 58      | 0.050   | 0.023    | mg/L      | 1        | MS-19     | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Manganese | 4800    | 1.0     | 0.24     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1        |           | SW-846 7470A | 11/2/21          | 11/3/21 8:51          | DRL     |
| Nickel    | 17      | 5.0     | 0.52     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Potassium | 8.0     | 2.0     | 0.40     | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Sodium    | 58      | 2.0     | 0.56     | mg/L      | 1        |           | SW-846 6010D | 11/3/21          | 11/4/21 17:36         | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/5/21 12:36         | QNW     |
| Zinc      | 27      | 10      | 3.4      | $\mu g/L$ | 1        |           | SW-846 6020B | 11/3/21          | 11/4/21 15:44         | QNW     |
|           |         |         |          |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW72S-211027 Sampled: 10/27/2021 14:40

Sample ID: 21K0043-01
Sample Matrix: Ground Water

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte      | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N | 0.86    | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 15:14 | MMH     |
| Sulfate      | 1000    | 100  | 60    | mg/L  | 100      |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:53 | MMH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

# Volatile Organic Compounds by GC/MS

| Analyte                            | Results  | RL   | DL    | Units        | Dilution | Flag/Qual        | Method       | Date<br>Prepared | Date/Time<br>Analyzed          | Analyst    |
|------------------------------------|----------|------|-------|--------------|----------|------------------|--------------|------------------|--------------------------------|------------|
| Acetone                            | ND       | 50   | 2.4   | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Acrylonitrile                      | ND       | 5.0  | 0.69  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Benzene                            | ND       | 1.0  | 0.13  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Bromobenzene                       | ND       | 1.0  | 0.13  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Bromochloromethane                 | ND       | 1.0  | 0.36  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Bromodichloromethane               | ND       | 0.50 | 0.14  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Bromoform                          | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Bromomethane                       | ND       | 5.0  | 1.1   | μg/L         | 1        | V-34             | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9   | μg/L         | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3   | μg/L         | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| n-Butylbenzene                     | ND       | 1.0  | 0.14  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Carbon Disulfide                   | ND       | 5.0  | 1.5   | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Chlorobenzene                      | ND       | 1.0  | 0.080 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Chlorodibromomethane               | ND       | 0.50 | 0.16  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Chloroethane                       | ND       | 2.0  | 0.37  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Chloroform                         | ND       | 2.0  | 0.19  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Chloromethane                      | ND       | 2.0  | 0.38  | μg/L         | 1        | L-04, V-05, V-34 | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Dibromomethane                     | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090 | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.070 | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8   | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15  |              | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| trans-1,2-Dichloroethylene         | ND<br>ND | 1.0  | 0.13  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,2-Dichloropropane                | ND<br>ND | 1.0  | 0.17  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          |                                |            |
| 1,3-Dichloropropane                | ND<br>ND | 0.50 | 0.18  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04<br>11/2/21 18:04 | LBD<br>LBD |
| 2,2-Dichloropropane                | ND<br>ND | 1.0  |       |              | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| 1,1-Dichloropropene                |          |      | 0.31  | μg/L         |          |                  |              |                  | 11/2/21 18:04                  |            |
| cis-1,3-Dichloropropene            | ND<br>ND | 2.0  | 0.26  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          |                                | LBD        |
|                                    | ND       | 0.50 | 0.12  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| trans-1,3-Dichloropropene          | ND       | 0.50 | 0.15  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
| Diethyl Ether                      | ND       | 2.0  | 0.22  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:04                  | LBD        |
|                                    |          |      |       |              |          |                  |              |                  |                                |            |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW30S-211027** Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02 Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:04         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 86.6       | 70-130          |           | 11/2/21 18:04 |
| Toluene-d8            | 92.7       | 70-130          |           | 11/2/21 18:04 |
| 4-Bromofluorobenzene  | 100        | 70-130          |           | 11/2/21 18:04 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW30S-211027** Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|-----|------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 5.2 | 0.35 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Acenaphthylene                   | ND      | 5.2 | 0.33 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Acetophenone                     | ND      | 10  | 0.46 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Aniline                          | ND      | 5.2 | 0.85 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Anthracene                       | ND      | 5.2 | 0.41 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzidine                        | ND      | 21  | 10   | $\mu g/L$ | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzo(a)anthracene               | ND      | 5.2 | 0.39 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzo(a)pyrene                   | ND      | 5.2 | 0.49 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzo(b)fluoranthene             | ND      | 5.2 | 0.43 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzo(g,h,i)perylene             | ND      | 5.2 | 0.66 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzo(k)fluoranthene             | ND      | 5.2 | 0.38 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Benzoic Acid                     | ND      | 10  | 9.5  | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 10  | 0.45 | $\mu g/L$ | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 10  | 0.54 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 10  | 0.62 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 10  | 0.95 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Bromophenylphenylether         | ND      | 10  | 0.39 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Butylbenzylphthalate             | ND      | 10  | 0.72 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Carbazole                        | ND      | 10  | 0.42 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Chloroaniline                  | ND      | 10  | 0.45 | μg/L      | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 10  | 0.56 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Chloronaphthalene              | ND      | 10  | 0.27 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Chlorophenol                   | ND      | 10  | 0.39 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Chlorophenylphenylether        | ND      | 10  | 0.34 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Chrysene                         | ND      | 5.2 | 0.39 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Dibenz(a,h)anthracene            | ND      | 5.2 | 0.73 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Dibenzofuran                     | ND      | 5.2 | 0.35 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Di-n-butylphthalate              | ND      | 10  | 0.51 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,2-Dichlorobenzene              | ND      | 5.2 | 0.24 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,3-Dichlorobenzene              | ND      | 5.2 | 0.25 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,4-Dichlorobenzene              | ND      | 5.2 | 0.27 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 10  | 0.64 | μg/L      | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4-Dichlorophenol               | ND      | 10  | 0.38 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Diethylphthalate                 | ND      | 10  | 0.50 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4-Dimethylphenol               | ND      | 10  | 1.0  | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Dimethylphthalate                | ND      | 10  | 0.41 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 10  | 6.8  | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4-Dinitrophenol                | ND      | 10  | 8.3  | μg/L      | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4-Dinitrotoluene               | ND      | 10  | 0.63 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,6-Dinitrotoluene               | ND      | 10  | 0.52 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Di-n-octylphthalate              | ND      | 10  | 5.8  | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 10  | 0.54 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Fluoranthene                     | ND      | 5.2 | 0.38 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Fluorene                         | ND      | 5.2 | 0.43 | μg/L      | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

2,4,6-Tribromophenol

p-Terphenyl-d14

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 10     | 0.38  | μg/L            | 1        | riag/Quar | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Hexachlorobutadiene                  | ND      | 10     | 0.28  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Hexachlorocyclopentadiene            | ND      | 10     | 4.4   | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Hexachloroethane                     | ND      | 10     | 0.32  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.2    | 0.81  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Isophorone                           | ND      | 10     | 0.50  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1-Methylnaphthalene                  | ND      | 5.2    | 0.30  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Methylnaphthalene                  | ND      | 5.2    | 0.34  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Methylphenol                       | ND      | 10     | 0.38  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 3/4-Methylphenol                     | ND      | 10     | 0.39  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Naphthalene                          | ND      | 5.2    | 0.31  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Nitroaniline                       | ND      | 10     | 0.78  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 3-Nitroaniline                       | ND      | 10     | 0.52  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Nitroaniline                       | ND      | 10     | 0.51  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Nitrobenzene                         | ND      | 10     | 0.55  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2-Nitrophenol                        | ND      | 10     | 0.49  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 4-Nitrophenol                        | ND      | 10     | 2.1   | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| N-Nitrosodimethylamine               | ND      | 10     | 0.85  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 10     | 0.41  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 10     | 0.55  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Pentachloronitrobenzene              | ND      | 10     | 0.66  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Pentachlorophenol                    | ND      | 10     | 3.9   | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Phenanthrene                         | ND      | 5.2    | 0.41  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Phenol                               | ND      | 10     | 0.25  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Pyrene                               | ND      | 5.2    | 0.49  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Pyridine                             | ND      | 5.2    | 2.7   | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 10     | 0.28  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 5.2    | 0.25  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 10     | 0.48  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 10     | 0.42  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:09          | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limits | i        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 36.7   | -     | 15-110          |          | -         |              |                  | 11/8/21 9:09          |         |
| Phenol-d6                            |         | 26.2   |       | 15-110          |          |           |              |                  | 11/8/21 9:09          |         |
| Nitrobenzene-d5                      |         | 45.1   |       | 30-130          |          |           |              |                  | 11/8/21 9:09          |         |
| 2-Fluorobiphenyl                     |         | 48.1   |       | 30-130          |          |           |              |                  | 11/8/21 9:09          |         |
| 2.4.6.TO 3                           |         |        |       | 4               |          |           |              |                  | 44/0/24               |         |

68.1

76.4

15-110

30-130

11/8/21 9:09

11/8/21 9:09



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW30S-211027** Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

# Semivolatile Organic Compounds by GC

| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------|---------|----|-----|-------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte          | Results | KL | DL  | Cints | Dilution | riag/Quai | Method       | Trepareu         | Anaryzeu              | Amaryst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 11/5/21          | 11/5/21 17:03         | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 11/5/21          | 11/5/21 17:03         | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 11/5/21          | 11/5/21 17:03         | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 11/5/21          | 11/5/21 17:03         | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 11/5/21          | 11/5/21 17:03         | SFM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/5/21          | 11/6/21 7:00          | KMB     |
| Diesel Range Organics         | 0.44    | 0.22   | 0.090  | mg/L            | 1        |           | SW-846 8015C | 11/2/21          | 11/5/21 23:01         | SFM     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | 6        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 100    |        | 70-130          |          |           |              |                  | 11/6/21 7:00          |         |
| 2-Fluorobiphenyl              |         | 75.2   |        | 40-140          |          |           |              |                  | 11/5/21 23:01         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02 Sample Matrix: Ground Water

### Metals Analyses (Total)

|           |         |         |          | Metals Alia | iyses (Totai) |           |              |          |               |         |
|-----------|---------|---------|----------|-------------|---------------|-----------|--------------|----------|---------------|---------|
|           |         |         |          |             |               |           |              | Date     | Date/Time     |         |
| Analyte   | Results | RL      | DL       | Units       | Dilution      | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Arsenic   | 1.2     | 0.80    | 0.46     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Barium    | 38      | 10      | 1.2      | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 15:19 | QNW     |
| Cadmium   | 0.082   | 0.20    | 0.027    | $\mu g/L$   | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Calcium   | 120     | 0.50    | 0.11     | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Cobalt    | 17      | 1.0     | 0.14     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Copper    | 2.0     | 1.0     | 0.27     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Iron      | 1.5     | 0.050   | 0.032    | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Lead      | 0.48    | 0.50    | 0.14     | $\mu g/L$   | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Magnesium | 23      | 0.050   | 0.023    | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Manganese | 1700    | 1.0     | 0.24     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L        | 1             |           | SW-846 7470A | 11/2/21  | 11/3/21 9:14  | DRL     |
| Nickel    | 43      | 5.0     | 0.52     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Potassium | 4.3     | 2.0     | 0.40     | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Sodium    | 22      | 2.0     | 0.56     | mg/L        | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:20 | MJH     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$   | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
| Zinc      | 9.8     | 10      | 3.4      | $\mu g/L$   | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 13:47 | QNW     |
|           |         |         |          |             |               |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02 Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          | cuis muy  | ses (Dissolved) |           |              |                  |                       |         |
|-----------|---------|---------|----------|-----------|-----------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL      | DL       | Units     | Dilution        | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Arsenic   | 0.71    | 0.80    | 0.46     | μg/L      | 1               | J         | SW-846 6020B | 11/3/21          | 11/4/21 15:46         | QNW     |
| Barium    | 41      | 10      | 1.2      | μg/L      | 1               |           | SW-846 6020B | 11/3/21          | 11/4/21 15:46         | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/4/21 15:46         | QNW     |
| Cadmium   | 0.070   | 0.20    | 0.027    | $\mu g/L$ | 1               | J         | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Calcium   | 130     | 0.50    | 0.11     | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Cobalt    | 16      | 1.0     | 0.14     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Copper    | 2.1     | 1.0     | 0.27     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Iron      | 1.6     | 0.050   | 0.032    | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Lead      | 0.52    | 0.50    | 0.14     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/4/21 15:46         | QNW     |
| Magnesium | 24      | 0.050   | 0.023    | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Manganese | 1800    | 1.0     | 0.24     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1               |           | SW-846 7470A | 11/2/21          | 11/3/21 8:53          | DRL     |
| Nickel    | 42      | 5.0     | 0.52     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Potassium | 4.4     | 2.0     | 0.40     | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Sodium    | 23      | 2.0     | 0.56     | mg/L      | 1               |           | SW-846 6010D | 11/3/21          | 11/4/21 17:43         | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/5/21 12:39         | QNW     |
| Zinc      | 13      | 10      | 3.4      | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21          | 11/4/21 15:46         | QNW     |
|           |         |         |          |           |                 |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW30S-211027 Sampled: 10/27/2021 14:58

Sample ID: 21K0043-02
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte      | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N | 0.15    | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 15:14 | MMH     |
| Sulfate      | 190     | 10   | 6.0   | mg/L  | 10       |           | ASTM D516-16 | 11/2/21  | 11/2/21 10:57 | MMH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-SB210-0-1-211028** Sampled: 10/28/2021 07:30

Sample ID: 21K0043-03
Sample Matrix: Soil

Metals Analyses (Total)

|           |         |       |       | Metals Analy | yses (Total) |           |              |          |               |         |
|-----------|---------|-------|-------|--------------|--------------|-----------|--------------|----------|---------------|---------|
|           | D 1/    | DI    | DI    | WT *4        | D'I d'       | FI /O I   | M. d. J.     | Date     | Date/Time     |         |
| Analyte   | Results | RL    | DL    | Units        | Dilution     | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | 13000   | 19    | 7.0   | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Antimony  | ND      | 1.9   | 0.78  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Arsenic   | 3.0     | 3.9   | 1.4   | mg/Kg dry    | 1            | J         | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Barium    | 78      | 1.9   | 0.73  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Beryllium | 0.88    | 0.19  | 0.073 | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Cadmium   | ND      | 0.39  | 0.20  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Calcium   | 1700    | 19    | 7.5   | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Chromium  | 26      | 0.77  | 0.44  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Cobalt    | 13      | 1.9   | 0.71  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Copper    | 25      | 0.77  | 0.37  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Iron      | 28000   | 190   | 78    | mg/Kg dry    | 10           |           | SW-846 6010D | 11/4/21  | 11/6/21 16:20 | MJH     |
| Lead      | 16      | 0.58  | 0.28  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Magnesium | 2900    | 190   | 67    | mg/Kg dry    | 10           |           | SW-846 6010D | 11/4/21  | 11/6/21 16:20 | MJH     |
| Manganese | 630     | 0.39  | 0.15  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Mercury   | 0.015   | 0.031 | 0.011 | mg/Kg dry    | 1            | J         | SW-846 7471B | 11/4/21  | 11/5/21 8:45  | DRL     |
| Nickel    | 11      | 0.77  | 0.39  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Potassium | 1400    | 1900  | 730   | mg/Kg dry    | 10           | J         | SW-846 6010D | 11/4/21  | 11/6/21 16:20 | MJH     |
| Selenium  | ND      | 3.9   | 1.4   | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Silver    | ND      | 0.39  | 0.18  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Sodium    | 2500    | 190   | 75    | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Thallium  | ND      | 1.9   | 0.92  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Vanadium  | 54      | 0.77  | 0.38  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
| Zinc      | 37      | 0.77  | 0.49  | mg/Kg dry    | 1            |           | SW-846 6010D | 11/4/21  | 11/5/21 18:53 | MJH     |
|           |         |       |       |              |              |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-SB210-0-1-211028** Sampled: 10/28/2021 07:30

Sample ID: 21K0043-03

Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|            |         |         |      |      |           |          |           |              | Date     | Date/Time     |         |
|------------|---------|---------|------|------|-----------|----------|-----------|--------------|----------|---------------|---------|
|            | Analyte | Results | RL   | DL   | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| % Solids   |         | 85.7    |      |      | % Wt      | 1        |           | SM 2540G     | 11/4/21  | 11/5/21 15:09 | МЈН     |
| Cyanide    |         | ND      | 0.58 | 0.41 | mg/Kg dry | 1        |           | SW-846 9014  | 11/2/21  | 11/2/21 17:00 | DJM     |
| рН @21.6°C |         | 8.9     |      |      | pH Units  | 1        | H-03      | SW-846 9045C | 11/1/21  | 11/1/21 21:40 | DJM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW209-211028** Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                            | Results | RL   | DL    | Units     | Dilution | Flag/Qual        | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|---------|------|-------|-----------|----------|------------------|--------------|------------------|-----------------------|---------|
| Acetone                            | ND      | 50   | 2.4   | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Acrylonitrile                      | ND      | 5.0  | 0.69  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| tert-Amyl Methyl Ether (TAME)      | ND      | 0.50 | 0.15  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Benzene                            | ND      | 1.0  | 0.13  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Bromobenzene                       | ND      | 1.0  | 0.13  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Bromochloromethane                 | ND      | 1.0  | 0.36  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Bromodichloromethane               | ND      | 0.50 | 0.14  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Bromoform                          | ND      | 1.0  | 0.29  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Bromomethane                       | ND      | 5.0  | 1.1   | μg/L      | 1        | V-34             | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 2-Butanone (MEK)                   | ND      | 20   | 1.9   | μg/L      | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| tert-Butyl Alcohol (TBA)           | ND      | 20   | 5.3   | μg/L      | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| n-Butylbenzene                     | ND      | 1.0  | 0.14  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| sec-Butylbenzene                   | ND      | 1.0  | 0.10  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| tert-Butylbenzene                  | ND      | 1.0  | 0.090 | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| tert-Butyl Ethyl Ether (TBEE)      | ND      | 0.50 | 0.11  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Carbon Disulfide                   | ND      | 5.0  | 1.5   | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Carbon Tetrachloride               | ND      | 5.0  | 0.17  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Chlorobenzene                      | 1.0     | 1.0  | 0.080 | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Chlorodibromomethane               | ND      | 0.50 | 0.16  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Chloroethane                       | ND      | 2.0  | 0.37  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Chloroform                         | ND      | 2.0  | 0.19  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Chloromethane                      | ND      | 2.0  | 0.38  | μg/L      | 1        | L-04, V-05, V-34 | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 2-Chlorotoluene                    | ND      | 1.0  | 0.090 | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 4-Chlorotoluene                    | ND      | 1.0  | 0.10  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND      | 5.0  | 0.72  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2-Dibromoethane (EDB)            | ND      | 0.50 | 0.15  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Dibromomethane                     | ND      | 1.0  | 0.29  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2-Dichlorobenzene                | ND      | 1.0  | 0.10  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,3-Dichlorobenzene                | ND      | 1.0  | 0.090 | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,4-Dichlorobenzene                | ND      | 1.0  | 0.11  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| trans-1,4-Dichloro-2-butene        | ND      | 2.0  | 1.8   | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Dichlorodifluoromethane (Freon 12) | ND      | 2.0  | 0.20  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1-Dichloroethane                 | ND      | 1.0  | 0.16  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2-Dichloroethane                 | ND      | 1.0  | 0.32  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1-Dichloroethylene               | ND      | 1.0  | 0.16  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| cis-1,2-Dichloroethylene           | ND      | 1.0  | 0.15  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| trans-1,2-Dichloroethylene         | ND      | 1.0  | 0.17  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2-Dichloropropane                | ND      | 1.0  | 0.18  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,3-Dichloropropane                | ND      | 0.50 | 0.12  | $\mu g/L$ | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 2,2-Dichloropropane                | ND      | 1.0  | 0.31  | $\mu g/L$ | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1-Dichloropropene                | ND      | 2.0  | 0.26  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| cis-1,3-Dichloropropene            | ND      | 0.50 | 0.12  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| trans-1,3-Dichloropropene          | ND      | 0.50 | 0.15  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Diethyl Ether                      | ND      | 2.0  | 0.22  | μg/L      | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
|                                    |         |      |       |           |          |                  |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW209-211028** Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                              | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                             | 2.8     | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,4-Dioxane                                          | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Ethylbenzene                                         | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Hexachlorobutadiene                                  | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 2-Hexanone (MBK)                                     | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Isopropylbenzene (Cumene)                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| p-Isopropyltoluene (p-Cymene)                        | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Methyl Acetate                                       | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Methyl tert-Butyl Ether (MTBE)                       | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Methyl Cyclohexane                                   | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Methylene Chloride                                   | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 4-Methyl-2-pentanone (MIBK)                          | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Naphthalene                                          | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| n-Propylbenzene                                      | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Styrene                                              | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1,1,2-Tetrachloroethane                            | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1,2,2-Tetrachloroethane                            | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Tetrachloroethylene                                  | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Tetrahydrofuran                                      | ND      | 10   | 0.58  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Toluene                                              | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2,3-Trichlorobenzene                               | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2,4-Trichlorobenzene                               | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,3,5-Trichlorobenzene                               | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1,1-Trichloroethane                                | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1,2-Trichloroethane                                | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Trichloroethylene                                    | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Trichlorofluoromethane (Freon 11)                    | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2,3-Trichloropropane                               | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,2,4-Trimethylbenzene                               | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| 1,3,5-Trimethylbenzene                               | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| Vinyl Chloride                                       | ND      | 2.0  | 0.20  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| m+p Xylene                                           | ND      | 2.0  | 0.18  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |
| o-Xylene                                             | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:30         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 85.6       | 70-130          |           | 11/2/21 18:30 |
| Toluene-d8            | 92.8       | 70-130          |           | 11/2/21 18:30 |
| 4-Bromofluorobenzene  | 98.9       | 70-130          |           | 11/2/21 18:30 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW209-211028 Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units        | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analys |
|----------------------------------|---------|-----|------|--------------|----------|-----------|--------------|------------------|-----------------------|--------|
| Acenaphthene                     | ND      | 4.8 | 0.32 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Acenaphthylene                   | ND      | 4.8 | 0.31 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Acetophenone                     | ND      | 9.5 | 0.43 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Aniline                          | ND      | 4.8 | 0.78 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Anthracene                       | ND      | 4.8 | 0.38 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzidine                        | ND      | 19  | 9.5  | $\mu g/L$    | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzo(a)anthracene               | ND      | 4.8 | 0.36 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzo(a)pyrene                   | ND      | 4.8 | 0.46 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzo(b)fluoranthene             | ND      | 4.8 | 0.40 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzo(g,h,i)perylene             | ND      | 4.8 | 0.61 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzo(k)fluoranthene             | ND      | 4.8 | 0.35 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Benzoic Acid                     | ND      | 9.5 | 8.8  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Bis(2-chloroethoxy)methane       | ND      | 9.5 | 0.41 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Bis(2-chloroethyl)ether          | ND      | 9.5 | 0.49 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Bis(2-chloroisopropyl)ether      | ND      | 9.5 | 0.57 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Bis(2-Ethylhexyl)phthalate       | ND      | 9.5 | 0.88 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 4-Bromophenylphenylether         | ND      | 9.5 | 0.36 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Butylbenzylphthalate             | ND      | 9.5 | 0.66 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Carbazole                        | ND      | 9.5 | 0.39 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 4-Chloroaniline                  | ND      | 9.5 | 0.42 | μg/L         | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 4-Chloro-3-methylphenol          | ND      | 9.5 | 0.52 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2-Chloronaphthalene              | ND      | 9.5 | 0.25 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2-Chlorophenol                   | ND      | 9.5 | 0.36 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 4-Chlorophenylphenylether        | ND      | 9.5 | 0.32 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Chrysene                         | ND      | 4.8 | 0.36 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Dibenz(a,h)anthracene            | ND      | 4.8 | 0.68 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Dibenzofuran                     | ND      | 4.8 | 0.32 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Di-n-butylphthalate              | ND      | 9.5 | 0.47 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 1,2-Dichlorobenzene              | ND      | 4.8 | 0.22 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 1,3-Dichlorobenzene              | ND      | 4.8 | 0.23 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 1,4-Dichlorobenzene              | ND      | 4.8 | 0.25 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 3,3-Dichlorobenzidine            | ND      | 9.5 | 0.60 | μg/L         | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2,4-Dichlorophenol               | ND      | 9.5 | 0.35 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Diethylphthalate                 | ND      | 9.5 | 0.46 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2,4-Dimethylphenol               | ND      | 9.5 | 0.92 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Dimethylphthalate                | ND      | 9.5 | 0.38 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 4,6-Dinitro-2-methylphenol       | ND      | 9.5 | 6.3  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2,4-Dinitrophenol                | ND      | 9.5 | 7.6  | μg/L         | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2,4-Dinitrotoluene               | ND      | 9.5 | 0.58 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 2,6-Dinitrotoluene               | ND      | 9.5 | 0.48 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Di-n-octylphthalate              | ND      | 9.5 | 5.3  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 9.5 | 0.50 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
|                                  | ND      | 4.8 | 0.35 | μg/L<br>μg/L | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 9:36          | BGL    |
| Fluoranthene                     | INIT    |     |      |              |          |           |              |                  |                       |        |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

p-Terphenyl-d14

**Field Sample #: HRP-MW209-211028** Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

| Semivolatile | Organic | Compounds | by GC/MS |
|--------------|---------|-----------|----------|
|              |         |           |          |

| Analyte                               | Results | RL           | DL   | Units            | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed        | Analyst |
|---------------------------------------|---------|--------------|------|------------------|----------|------------|--------------|------------------|------------------------------|---------|
| Hexachlorobenzene                     | ND      | 9.5          | 0.35 | μg/L             | 1        | r rag/Quar | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Hexachlorobutadiene                   | ND      | 9.5          | 0.26 | μg/L<br>μg/L     | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Hexachlorocyclopentadiene             | ND      | 9.5          | 4.0  | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Hexachloroethane                      | ND      | 9.5          | 0.29 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Indeno(1,2,3-cd)pyrene                | ND      | 4.8          | 0.75 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Isophorone                            | ND      | 9.5          | 0.46 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 1-Methylnaphthalene                   | ND      | 4.8          | 0.28 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2-Methylnaphthalene                   | ND      | 4.8          | 0.32 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2-Methylphenol                        | ND      | 9.5          | 0.35 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 3/4-Methylphenol                      | ND      | 9.5          | 0.36 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Naphthalene                           | ND      | 4.8          | 0.28 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2-Nitroaniline                        | ND      | 9.5          | 0.72 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 3-Nitroaniline                        | ND      | 9.5          | 0.48 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 4-Nitroaniline                        | ND      | 9.5          | 0.47 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Nitrobenzene                          | ND      | 9.5          | 0.50 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2-Nitrophenol                         | ND      | 9.5          | 0.45 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 4-Nitrophenol                         | ND      | 9.5          | 2.0  | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| N-Nitrosodimethylamine                | ND      | 9.5          | 0.78 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine  | ND      | 9.5          | 0.38 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| N-Nitrosodi-n-propylamine             | ND      | 9.5          | 0.50 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Pentachloronitrobenzene               | ND      | 9.5          | 0.61 | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Pentachlorophenol                     | ND      | 9.5          | 3.6  | μg/L             | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Phenanthrene                          | ND      | 4.8          | 0.38 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Phenol                                | ND      | 9.5          | 0.24 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Pyrene                                | ND      | 4.8          | 0.45 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Pyridine                              | ND      | 4.8          | 2.5  | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 1,2,4,5-Tetrachlorobenzene            | ND      | 9.5          | 0.26 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 1,2,4-Trichlorobenzene                | ND      | 4.8          | 0.23 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2,4,5-Trichlorophenol                 | ND      | 9.5          | 0.44 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| 2,4,6-Trichlorophenol                 | ND      | 9.5          | 0.39 | $\mu g/L$        | 1        |            | SW-846 8270E | 11/2/21          | 11/8/21 9:36                 | BGL     |
| Surrogates                            |         | % Reco       | very | Recovery Limit   | s        | Flag/Qual  |              |                  |                              |         |
| 2-Fluorophenol                        |         | 41.4         |      | 15-110           |          |            |              |                  | 11/8/21 9:36                 | _       |
| Phenol-d6                             |         | 28.8         |      | 15-110           |          |            |              |                  | 11/8/21 9:36                 |         |
| Nitrobenzene-d5                       |         | 51.3         |      | 30-130           |          |            |              |                  | 11/8/21 9:36                 |         |
| 2-Fluorobiphenyl 2,4,6-Tribromophenol |         | 51.0<br>71.5 |      | 30-130<br>15-110 |          |            |              |                  | 11/8/21 9:36<br>11/8/21 9:36 |         |
| -, .,p                                |         | , 1.0        |      | 15 110           |          |            |              |                  | -1,0,21 7.30                 |         |

30-130

81.5

11/8/21 9:36



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW209-211028 Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/5/21          | 11/6/21 8:16          | KMB     |
| Diesel Range Organics         | 0.21    | 0.19   | 0.081  | mg/L            | 1        |           | SW-846 8015C | 11/4/21          | 11/5/21 23:21         | SFM     |
| Surrogates                    |         | % Reco | overy  | Recovery Limits | 6        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 103    |        | 70-130          |          |           |              |                  | 11/6/21 8:16          |         |
| 2-Fluorobiphenyl              |         | 77.1   |        | 40-140          |          |           |              |                  | 11/5/21 23:21         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW209-211028** Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |         |         |          | 1,10001311110 | lyses (Total) |           |              |                  |                       |         |
|-----------|---------|---------|----------|---------------|---------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte   | Results | RL      | DL       | Units         | Dilution      | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Aluminum  | 0.25    | 0.050   | 0.049    | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | МЈН     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Arsenic   | 6.9     | 0.80    | 0.46     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Barium    | 19      | 10      | 1.2      | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 15:21         | QNW     |
| Cadmium   | 0.78    | 0.20    | 0.027    | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Calcium   | 71      | 0.50    | 0.11     | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | MJH     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Cobalt    | 110     | 1.0     | 0.14     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Copper    | 6.0     | 1.0     | 0.27     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Iron      | 55      | 0.050   | 0.032    | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | MJH     |
| Lead      | 0.20    | 0.50    | 0.14     | $\mu g/L$     | 1             | J         | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Magnesium | 35      | 0.050   | 0.023    | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | MJH     |
| Manganese | 9500    | 1.0     | 0.24     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L          | 1             |           | SW-846 7470A | 11/2/21          | 11/3/21 9:15          | DRL     |
| Nickel    | 37      | 5.0     | 0.52     | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Potassium | 8.3     | 2.0     | 0.40     | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | MJH     |
| Selenium  | 0.94    | 5.0     | 0.78     | $\mu g/L$     | 1             | J         | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Sodium    | 450     | 2.0     | 0.56     | mg/L          | 1             |           | SW-846 6010D | 11/3/21          | 11/4/21 15:26         | MJH     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
| Zinc      | 29      | 10      | 3.4      | $\mu g/L$     | 1             |           | SW-846 6020B | 11/3/21          | 11/4/21 13:50         | QNW     |
|           |         |         |          |               |               |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW209-211028 Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         |          | cuis muij | ses (Dissolveu) |           |              |          |               |         |
|-----------|---------|---------|----------|-----------|-----------------|-----------|--------------|----------|---------------|---------|
|           |         |         |          |           |                 |           |              | Date     | Date/Time     |         |
| Analyte   | Results | RL      | DL       | Units     | Dilution        | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Arsenic   | 7.1     | 0.80    | 0.46     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:48 | QNW     |
| Barium    | 18      | 10      | 1.2      | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:48 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:48 | QNW     |
| Cadmium   | 0.52    | 0.20    | 0.027    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Calcium   | 73      | 0.50    | 0.11     | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Cobalt    | 97      | 1.0     | 0.14     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Copper    | 3.6     | 1.0     | 0.27     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Iron      | 55      | 0.050   | 0.032    | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:48 | QNW     |
| Magnesium | 37      | 0.050   | 0.023    | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Manganese | 9200    | 1.0     | 0.24     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L      | 1               |           | SW-846 7470A | 11/2/21  | 11/3/21 8:55  | DRL     |
| Nickel    | 35      | 5.0     | 0.52     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Potassium | 8.5     | 2.0     | 0.40     | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Sodium    | 470     | 2.0     | 0.56     | mg/L      | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:49 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:41 | QNW     |
| Zinc      | 30      | 10      | 3.4      | $\mu g/L$ | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:48 | QNW     |
|           |         |         |          |           |                 |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW209-211028 Sampled: 10/28/2021 09:55

Sample ID: 21K0043-04
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |     |    |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|-----|----|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL  | DL | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | 1200    | 100 | 60 | mg/L  | 100      |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:53 | MMH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                            | Results  | RL   | DL    | Units        | Dilution | Flag/Qual        | Method       | Date<br>Prepared | Date/Time<br>Analyzed          | Analyst    |
|------------------------------------|----------|------|-------|--------------|----------|------------------|--------------|------------------|--------------------------------|------------|
| Acetone                            | ND       | 50   | 2.4   | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Acrylonitrile                      | ND       | 5.0  | 0.69  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Benzene                            | ND       | 1.0  | 0.13  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Bromobenzene                       | ND       | 1.0  | 0.13  | $\mu g/L$    | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Bromochloromethane                 | ND       | 1.0  | 0.36  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Bromodichloromethane               | ND       | 0.50 | 0.14  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Bromoform                          | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Bromomethane                       | ND       | 5.0  | 1.1   | μg/L         | 1        | V-34             | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9   | μg/L         | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3   | μg/L         | 1        | V-05             | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| n-Butylbenzene                     | ND       | 1.0  | 0.14  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Carbon Disulfide                   | ND       | 5.0  | 1.5   | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Chlorobenzene                      | ND       | 1.0  | 0.080 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Chlorodibromomethane               | ND       | 0.50 | 0.16  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Chloroethane                       | ND       | 2.0  | 0.37  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Chloroform                         | ND       | 2.0  | 0.19  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Chloromethane                      | ND       | 2.0  | 0.38  | μg/L         | 1        | L-04, V-05, V-34 | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Dibromomethane                     | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090 | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.070 | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8   | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15  |              | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| trans-1,2-Dichloroethylene         | ND<br>ND | 1.0  | 0.13  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,2-Dichloropropane                | ND<br>ND | 1.0  | 0.17  | μg/L<br>μg/L | 1        |                  | SW-846 8260D | 11/2/21          |                                |            |
| 1,3-Dichloropropane                | ND<br>ND | 0.50 | 0.18  |              | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56<br>11/2/21 18:56 | LBD<br>LBD |
| 2,2-Dichloropropane                | ND<br>ND | 1.0  |       | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| 1,1-Dichloropropene                |          |      | 0.31  | μg/L         |          |                  |              |                  |                                |            |
|                                    | ND<br>ND | 2.0  | 0.26  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| cis-1,3-Dichloropropene            | ND       | 0.50 | 0.12  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| trans-1,3-Dichloropropene          | ND       | 0.50 | 0.15  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
| Diethyl Ether                      | ND       | 2.0  | 0.22  | μg/L         | 1        |                  | SW-846 8260D | 11/2/21          | 11/2/21 18:56                  | LBD        |
|                                    |          |      |       |              |          |                  |              |                  |                                |            |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 18:56         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 86.5       | 70-130          |           | 11/2/21 18:56 |
| Toluene-d8            | 92.9       | 70-130          |           | 11/2/21 18:56 |
| 4-Bromofluorobenzene  | 101        | 70-130          |           | 11/2/21 18:56 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW100S-211028 Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL  | DL   | Units        | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analys |
|----------------------------------|---------|-----|------|--------------|----------|-----------|--------------|------------------|-----------------------|--------|
| Acenaphthene                     | ND      | 5.1 | 0.34 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Acenaphthylene                   | ND      | 5.1 | 0.33 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Acetophenone                     | ND      | 10  | 0.46 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Aniline                          | ND      | 5.1 | 0.84 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Anthracene                       | ND      | 5.1 | 0.40 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzidine                        | ND      | 20  | 10   | μg/L         | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzo(a)anthracene               | ND      | 5.1 | 0.39 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzo(a)pyrene                   | ND      | 5.1 | 0.49 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzo(b)fluoranthene             | ND      | 5.1 | 0.43 | $\mu g/L$    | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzo(g,h,i)perylene             | ND      | 5.1 | 0.65 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzo(k)fluoranthene             | ND      | 5.1 | 0.38 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Benzoic Acid                     | ND      | 10  | 9.4  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Bis(2-chloroethoxy)methane       | ND      | 10  | 0.44 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Bis(2-chloroethyl)ether          | ND      | 10  | 0.53 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Bis(2-chloroisopropyl)ether      | ND      | 10  | 0.61 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Bis(2-Ethylhexyl)phthalate       | ND      | 10  | 0.94 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 4-Bromophenylphenylether         | ND      | 10  | 0.39 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Butylbenzylphthalate             | ND      | 10  | 0.71 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Carbazole                        | ND      | 10  | 0.42 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 4-Chloroaniline                  | ND      | 10  | 0.45 | μg/L         | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 4-Chloro-3-methylphenol          | ND      | 10  | 0.55 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2-Chloronaphthalene              | ND      | 10  | 0.27 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2-Chlorophenol                   | ND      | 10  | 0.38 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 4-Chlorophenylphenylether        | ND      | 10  | 0.34 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Chrysene                         | ND      | 5.1 | 0.38 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Dibenz(a,h)anthracene            | ND      | 5.1 | 0.72 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Dibenzofuran                     | ND      | 5.1 | 0.35 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Di-n-butylphthalate              | ND      | 10  | 0.51 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 1,2-Dichlorobenzene              | ND      | 5.1 | 0.24 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 1,3-Dichlorobenzene              | ND      | 5.1 | 0.24 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 1,4-Dichlorobenzene              | ND      | 5.1 | 0.27 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 3,3-Dichlorobenzidine            | ND      | 10  | 0.64 | μg/L         | 1        | V-34      | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2,4-Dichlorophenol               | ND      | 10  | 0.37 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Diethylphthalate                 | ND      | 10  | 0.49 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2,4-Dimethylphenol               | ND      | 10  | 0.99 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Dimethylphthalate                | ND      | 10  | 0.41 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 4,6-Dinitro-2-methylphenol       | ND      | 10  | 6.7  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2,4-Dinitrophenol                | ND      | 10  | 8.2  | μg/L         | 1        | V-04      | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2,4-Dinitrotoluene               | ND      | 10  | 0.62 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 2,6-Dinitrotoluene               | ND      | 10  | 0.51 | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Di-n-octylphthalate              | ND      | 10  | 5.7  | μg/L         | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 10  | 0.54 | μg/L<br>μg/L | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
| Fluoranthene                     | ND      | 5.1 | 0.38 | μg/L<br>μg/L | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL    |
|                                  |         |     | 2.20 | ro L         | •        |           | 0.0 02/0L    |                  | 11.0.03               | 232    |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 10     | 0.37 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Hexachlorobutadiene                  | ND      | 10     | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 10     | 4.3  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Hexachloroethane                     | ND      | 10     | 0.32 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 5.1    | 0.81 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Isophorone                           | ND      | 10     | 0.50 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 1-Methylnaphthalene                  | ND      | 5.1    | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2-Methylnaphthalene                  | ND      | 5.1    | 0.34 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2-Methylphenol                       | ND      | 10     | 0.37 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 3/4-Methylphenol                     | ND      | 10     | 0.39 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Naphthalene                          | ND      | 5.1    | 0.30 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2-Nitroaniline                       | ND      | 10     | 0.77 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 3-Nitroaniline                       | ND      | 10     | 0.52 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 4-Nitroaniline                       | ND      | 10     | 0.50 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Nitrobenzene                         | ND      | 10     | 0.54 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2-Nitrophenol                        | ND      | 10     | 0.48 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 4-Nitrophenol                        | ND      | 10     | 2.1  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| N-Nitrosodimethylamine               | ND      | 10     | 0.84 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 10     | 0.41 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 10     | 0.54 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Pentachloronitrobenzene              | ND      | 10     | 0.65 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Pentachlorophenol                    | ND      | 10     | 3.8  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Phenanthrene                         | ND      | 5.1    | 0.41 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Phenol                               | ND      | 10     | 0.25 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Pyrene                               | ND      | 5.1    | 0.48 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Pyridine                             | ND      | 5.1    | 2.6  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 10     | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 5.1    | 0.25 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 10     | 0.47 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 10     | 0.42 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:03         | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 46.3   |      | 15-110          |          |           |              |                  | 11/8/21 10:03         |         |
| Phenol-d6                            |         | 33.6   |      | 15-110          |          |           |              |                  | 11/8/21 10:03         |         |

30-130

30-130

15-110

30-130

54.1

55.0

76.9

90.1

11/8/21 10:03

11/8/21 10:03

11/8/21 10:03

11/8/21 10:03



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 17:27 | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 17:27 | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 17:27 | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 17:27 | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 11/5/21  | 11/5/21 17:27 | SFM     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW100S-211028 Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

| Analyte                       | Results | RL     | DL     | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------|---------|--------|--------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Gasoline Range Organics (GRO) | ND      | 0.010  | 0.0094 | mg/L            | 1        |           | SW-846 8015C | 11/5/21          | 11/6/21 7:38          | KMB     |
| Diesel Range Organics         | 0.13    | 0.21   | 0.087  | mg/L            | 1        | J         | SW-846 8015C | 11/4/21          | 11/5/21 22:21         | SFM     |
| Surrogates                    |         | % Reco | very   | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 1-Chloro-3-fluorobenzene      |         | 105    |        | 70-130          |          |           |              |                  | 11/6/21 7:38          |         |
| 2-Fluorobiphenyl              |         | 83.6   |        | 40-140          |          |           |              |                  | 11/5/21 22:21         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |         |         |          | Mictals Alia | iyses (Totai) |           |              |          |               |         |
|-----------|---------|---------|----------|--------------|---------------|-----------|--------------|----------|---------------|---------|
|           |         |         |          | ***          |               | T. (0. 1  |              | Date     | Date/Time     |         |
| Analyte   | Results | RL      | DL       | Units        | Dilution      | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Barium    | 49      | 10      | 1.2      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Beryllium | 0.71    | 0.40    | 0.066    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 15:23 | QNW     |
| Cadmium   | 12      | 0.20    | 0.027    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Calcium   | 61      | 0.50    | 0.11     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Cobalt    | 360     | 1.0     | 0.14     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Copper    | 2.0     | 1.0     | 0.27     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Iron      | 15      | 0.050   | 0.032    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Lead      | 0.16    | 0.50    | 0.14     | $\mu g/L$    | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Magnesium | 43      | 0.050   | 0.023    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Manganese | 9900    | 1.0     | 0.24     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L         | 1             |           | SW-846 7470A | 11/2/21  | 11/3/21 9:17  | DRL     |
| Nickel    | 220     | 5.0     | 0.52     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Potassium | 4.4     | 2.0     | 0.40     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Selenium  | 1.6     | 5.0     | 0.78     | $\mu g/L$    | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Sodium    | 66      | 2.0     | 0.56     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:33 | MJH     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
| Zinc      | 440     | 10      | 3.4      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 13:53 | QNW     |
|           |         |         |          |              |               |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-MW100S-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Metals Analyses (Dissolved)

|           |         |         | 141      | ictais Amarys | ses (Dissolveu) |           |              |          |               |         |
|-----------|---------|---------|----------|---------------|-----------------|-----------|--------------|----------|---------------|---------|
|           |         |         |          |               |                 |           |              | Date     | Date/Time     |         |
| Analyte   | Results | RL      | DL       | Units         | Dilution        | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Arsenic   | 0.91    | 0.80    | 0.46     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:50 | QNW     |
| Barium    | 50      | 10      | 1.2      | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:50 | QNW     |
| Beryllium | 0.94    | 0.40    | 0.066    | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:50 | QNW     |
| Cadmium   | 11      | 0.20    | 0.027    | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Calcium   | 60      | 0.50    | 0.11     | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Cobalt    | 410     | 1.0     | 0.14     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Copper    | 3.0     | 1.0     | 0.27     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Iron      | 31      | 0.050   | 0.032    | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Lead      | 0.17    | 0.50    | 0.14     | $\mu g/L$     | 1               | J         | SW-846 6020B | 11/3/21  | 11/4/21 15:50 | QNW     |
| Magnesium | 46      | 0.050   | 0.023    | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Manganese | 13000   | 10      | 2.4      | $\mu g/L$     | 10              |           | SW-846 6020B | 11/3/21  | 11/5/21 14:14 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L          | 1               |           | SW-846 7470A | 11/2/21  | 11/3/21 8:57  | DRL     |
| Nickel    | 210     | 5.0     | 0.52     | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Potassium | 4.3     | 2.0     | 0.40     | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Selenium  | 1.2     | 5.0     | 0.78     | $\mu g/L$     | 1               | J         | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Sodium    | 67      | 2.0     | 0.56     | mg/L          | 1               |           | SW-846 6010D | 11/3/21  | 11/4/21 17:57 | QNW     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/5/21 12:44 | QNW     |
| Zinc      | 400     | 10      | 3.4      | $\mu g/L$     | 1               |           | SW-846 6020B | 11/3/21  | 11/4/21 15:50 | QNW     |
|           |         |         |          |               |                 |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

Field Sample #: HRP-MW100S-211028 Sampled: 10/28/2021 09:50

Sample ID: 21K0043-05
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |      |       |       |          |           |              | Date     | Date/Time     |         |
|--------------|---------|------|-------|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte      | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Ammonia as N | ND      | 0.10 | 0.056 | mg/L  | 1        |           | EPA 350.1    | 11/3/21  | 11/4/21 15:15 | MMH     |
| Sulfate      | 380     | 25   | 15    | mg/L  | 25       |           | ASTM D516-16 | 11/2/21  | 11/2/21 11:04 | MMH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-TB08-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-06
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                            | Results  | RL   | DL    | Units        | Dilution | Flag/Qual        | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------------|----------|------|-------|--------------|----------|------------------|------------------------------|------------------|-----------------------|---------|
| Acetone                            | ND       | 50   | 2.4   | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Acrylonitrile                      | ND       | 5.0  | 0.69  | $\mu g/L$    | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50 | 0.15  | $\mu g/L$    | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Benzene                            | ND       | 1.0  | 0.13  | $\mu g/L$    | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Bromobenzene                       | ND       | 1.0  | 0.13  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Bromochloromethane                 | ND       | 1.0  | 0.36  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Bromodichloromethane               | ND       | 0.50 | 0.14  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Bromoform                          | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Bromomethane                       | ND       | 5.0  | 1.1   | μg/L         | 1        | V-34             | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 2-Butanone (MEK)                   | ND       | 20   | 1.9   | μg/L         | 1        | V-05             | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| tert-Butyl Alcohol (TBA)           | ND       | 20   | 5.3   | μg/L         | 1        | V-05             | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| n-Butylbenzene                     | ND       | 1.0  | 0.14  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| sec-Butylbenzene                   | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| tert-Butylbenzene                  | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50 | 0.11  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Carbon Disulfide                   | ND       | 5.0  | 1.5   | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Carbon Tetrachloride               | ND       | 5.0  | 0.17  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Chlorobenzene                      | ND       | 1.0  | 0.080 | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Chlorodibromomethane               | ND       | 0.50 | 0.16  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Chloroethane                       | ND       | 2.0  | 0.37  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Chloroform                         | ND       | 2.0  | 0.19  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Chloromethane                      | ND       | 2.0  | 0.38  | μg/L         | 1        | L-04, V-05, V-34 | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 2-Chlorotoluene                    | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 4-Chlorotoluene                    | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0  | 0.72  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50 | 0.15  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Dibromomethane                     | ND       | 1.0  | 0.29  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2-Dichlorobenzene                | ND       | 1.0  | 0.10  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,3-Dichlorobenzene                | ND       | 1.0  | 0.090 | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,4-Dichlorobenzene                | ND       | 1.0  | 0.11  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0  | 1.8   | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0  | 0.20  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1-Dichloroethane                 | ND       | 1.0  | 0.16  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2-Dichloroethane                 | ND       | 1.0  | 0.32  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1-Dichloroethylene               | ND       | 1.0  | 0.16  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| cis-1,2-Dichloroethylene           | ND       | 1.0  | 0.15  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| trans-1,2-Dichloroethylene         | ND       | 1.0  | 0.17  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2-Dichloropropane                | ND       | 1.0  | 0.17  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,3-Dichloropropane                | ND       | 0.50 | 0.10  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 2,2-Dichloropropane                | ND       | 1.0  | 0.12  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1-Dichloropropene                | ND       | 2.0  | 0.26  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| cis-1,3-Dichloropropene            | ND<br>ND | 0.50 | 0.20  | μg/L<br>μg/L | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |
| trans-1,3-Dichloropropene          | ND<br>ND | 0.50 | 0.12  |              | 1        |                  | SW-846 8260D<br>SW-846 8260D |                  |                       | LBD     |
| Diethyl Ether                      |          |      |       | μg/L         |          |                  |                              | 11/2/21          | 11/2/21 17:38         |         |
| Diemyl Eulei                       | ND       | 2.0  | 0.22  | μg/L         | 1        |                  | SW-846 8260D                 | 11/2/21          | 11/2/21 17:38         | LBD     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-TB08-211028** Sampled: 10/28/2021 09:50

Sample ID: 21K0043-06
Sample Matrix: Ground Water

## Volatile Organic Compounds by GC/MS

| Analyte                                           | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diisopropyl Ether (DIPE)                          | ND      | 0.50 | 0.15  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,4-Dioxane                                       | ND      | 50   | 22    | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Ethylbenzene                                      | ND      | 1.0  | 0.090 | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Hexachlorobutadiene                               | ND      | 0.60 | 0.41  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 2-Hexanone (MBK)                                  | ND      | 10   | 1.4   | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Isopropylbenzene (Cumene)                         | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| p-Isopropyltoluene (p-Cymene)                     | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Methyl Acetate                                    | ND      | 1.0  | 0.39  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Methyl tert-Butyl Ether (MTBE)                    | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Methyl Cyclohexane                                | ND      | 1.0  | 0.33  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Methylene Chloride                                | ND      | 5.0  | 0.30  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 4-Methyl-2-pentanone (MIBK)                       | ND      | 10   | 1.6   | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Naphthalene                                       | ND      | 2.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| n-Propylbenzene                                   | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Styrene                                           | ND      | 1.0  | 0.080 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1,1,2-Tetrachloroethane                         | ND      | 1.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1,2,2-Tetrachloroethane                         | ND      | 0.50 | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Tetrachloroethylene                               | ND      | 1.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Tetrahydrofuran                                   | ND      | 10   | 0.58  | $\mu g/L$ | 1        | V-05      | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Toluene                                           | ND      | 1.0  | 0.11  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2,3-Trichlorobenzene                            | ND      | 5.0  | 0.14  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2,4-Trichlorobenzene                            | ND      | 1.0  | 0.16  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,3,5-Trichlorobenzene                            | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1,1-Trichloroethane                             | ND      | 1.0  | 0.17  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1,2-Trichloroethane                             | ND      | 1.0  | 0.15  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Trichloroethylene                                 | ND      | 1.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Trichlorofluoromethane (Freon 11)                 | ND      | 2.0  | 0.19  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2,3-Trichloropropane                            | ND      | 2.0  | 0.31  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND      | 1.0  | 0.24  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,2,4-Trimethylbenzene                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| 1,3,5-Trimethylbenzene                            | ND      | 1.0  | 0.10  | μg/L      | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| Vinyl Chloride                                    | ND      | 2.0  | 0.20  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| m+p Xylene                                        | ND      | 2.0  | 0.18  | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |
| o-Xylene                                          | ND      | 1.0  | 0.090 | $\mu g/L$ | 1        |           | SW-846 8260D | 11/2/21          | 11/2/21 17:38         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 88.1       | 70-130          |           | 11/2/21 17:38 |
| Toluene-d8            | 93.1       | 70-130          |           | 11/2/21 17:38 |
| 4-Bromofluorobenzene  | 99.6       | 70-130          |           | 11/2/21 17:38 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-EB08-211028** Sampled: 10/28/2021 11:40

Sample ID: 21K0043-07
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results  | RL  | DL   | Units        | Dilution | Flag/Qual | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|----------|-----|------|--------------|----------|-----------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 4.8 | 0.32 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Acenaphthylene                   | ND       | 4.8 | 0.31 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Acetophenone                     | ND       | 9.5 | 0.43 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Aniline                          | ND       | 4.8 | 0.78 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Anthracene                       | ND       | 4.8 | 0.38 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzidine                        | ND       | 19  | 9.5  | μg/L         | 1        | V-04      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzo(a)anthracene               | ND       | 4.8 | 0.36 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzo(a)pyrene                   | ND       | 4.8 | 0.46 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzo(b)fluoranthene             | ND       | 4.8 | 0.40 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzo(g,h,i)perylene             | ND       | 4.8 | 0.61 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzo(k)fluoranthene             | ND       | 4.8 | 0.35 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Benzoic Acid                     | ND       | 9.5 | 8.8  | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 9.5 | 0.41 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 9.5 | 0.49 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 9.5 | 0.57 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 9.5 | 0.88 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Bromophenylphenylether         | ND       | 9.5 | 0.36 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Butylbenzylphthalate             | ND       | 9.5 | 0.66 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Carbazole                        | ND       | 9.5 | 0.39 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Chloroaniline                  | ND       | 9.5 | 0.42 | μg/L         | 1        | V-34      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 9.5 | 0.52 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Chloronaphthalene              | ND       | 9.5 | 0.25 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Chlorophenol                   | ND       | 9.5 | 0.36 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Chlorophenylphenylether        | ND       | 9.5 | 0.32 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Chrysene                         | ND       | 4.8 | 0.36 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Dibenz(a,h)anthracene            | ND       | 4.8 | 0.68 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Dibenzofuran                     | ND       | 4.8 | 0.32 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Di-n-butylphthalate              | ND       | 9.5 | 0.47 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,2-Dichlorobenzene              | ND       | 4.8 | 0.22 | μg/L<br>μg/L | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,3-Dichlorobenzene              | ND       | 4.8 | 0.22 |              | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,4-Dichlorobenzene              | ND<br>ND | 4.8 | 0.25 | μg/L<br>μg/L | 1        |           | SW-846 8270E<br>SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 9.5 | 0.60 | μg/L<br>μg/L | 1        | V-34      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4-Dichlorophenol               | ND       | 9.5 | 0.35 | μg/L<br>μg/L | 1        | V-34      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Diethylphthalate                 | ND<br>ND | 9.5 | 0.33 | μg/L<br>μg/L | 1        |           | SW-846 8270E<br>SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4-Dimethylphenol               |          |     |      |              |          |           |                              |                  |                       |         |
| Dimethylphthalate                | ND       | 9.5 | 0.92 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 9.5 | 0.38 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4-Dinitrophenol                | ND       | 9.5 | 6.3  | μg/L         | 1        | V-04      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4-Dinitrophenoi                | ND<br>ND | 9.5 | 7.6  | μg/L         | 1        | v-U4      | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
|                                  | ND       | 9.5 | 0.58 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,6-Dinitrotoluene               | ND       | 9.5 | 0.48 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Di-n-octylphthalate              | ND       | 9.5 | 5.3  | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 9.5 | 0.50 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Fluoranthene                     | ND       | 4.8 | 0.35 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |
| Fluorene                         | ND       | 4.8 | 0.40 | μg/L         | 1        |           | SW-846 8270E                 | 11/2/21          | 11/8/21 10:30         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-EB08-211028** Sampled: 10/28/2021 11:40

Sample ID: 21K0043-07
Sample Matrix: Ground Water

## Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL   | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 9.5    | 0.35 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Hexachlorobutadiene                  | ND      | 9.5    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 9.5    | 4.0  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Hexachloroethane                     | ND      | 9.5    | 0.29 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 4.8    | 0.75 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Isophorone                           | ND      | 9.5    | 0.46 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1-Methylnaphthalene                  | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Methylnaphthalene                  | ND      | 4.8    | 0.32 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Methylphenol                       | ND      | 9.5    | 0.35 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 3/4-Methylphenol                     | ND      | 9.5    | 0.36 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Naphthalene                          | ND      | 4.8    | 0.28 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Nitroaniline                       | ND      | 9.5    | 0.72 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 3-Nitroaniline                       | ND      | 9.5    | 0.48 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Nitroaniline                       | ND      | 9.5    | 0.47 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Nitrobenzene                         | ND      | 9.5    | 0.50 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2-Nitrophenol                        | ND      | 9.5    | 0.45 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 4-Nitrophenol                        | ND      | 9.5    | 2.0  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| N-Nitrosodimethylamine               | ND      | 9.5    | 0.78 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 9.5    | 0.38 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 9.5    | 0.50 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Pentachloronitrobenzene              | ND      | 9.5    | 0.61 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Pentachlorophenol                    | ND      | 9.5    | 3.6  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Phenanthrene                         | ND      | 4.8    | 0.38 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Phenol                               | ND      | 9.5    | 0.24 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Pyrene                               | ND      | 4.8    | 0.45 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Pyridine                             | ND      | 4.8    | 2.5  | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 9.5    | 0.26 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 4.8    | 0.23 | μg/L            | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 9.5    | 0.44 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 9.5    | 0.39 | $\mu g/L$       | 1        |           | SW-846 8270E | 11/2/21          | 11/8/21 10:30         | BGL     |
| Surrogates                           |         | % Reco | very | Recovery Limits | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 42.4   |      | 15-110          |          |           |              |                  | 11/8/21 10:30         |         |
| Phenol-d6                            |         | 30.0   |      | 15-110          |          |           |              |                  | 11/8/21 10:30         |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 42.4       | 15-110          |           | 11/8/21 10:30 |
| Phenol-d6            | 30.0       | 15-110          |           | 11/8/21 10:30 |
| Nitrobenzene-d5      | 52.1       | 30-130          |           | 11/8/21 10:30 |
| 2-Fluorobiphenyl     | 52.4       | 30-130          |           | 11/8/21 10:30 |
| 2,4,6-Tribromophenol | 76.5       | 15-110          |           | 11/8/21 10:30 |
| p-Terphenyl-d14      | 89.4       | 30-130          |           | 11/8/21 10:30 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-EB08-211028** Sampled: 10/28/2021 11:40

Sample ID: 21K0043-07
Sample Matrix: Ground Water

## Petroleum Hydrocarbons Analyses

| Analyte               | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Diesel Range Organics | ND      | 0.19   | 0.082 | mg/L            | 1        |           | SW-846 8015C | 11/4/21          | 11/5/21 22:41         | SFM     |
| Surrogates            |         | % Reco | very  | Recovery Limits | 5        | Flag/Qual |              |                  |                       |         |
| 2-Fluorobiphenyl      |         | 80.1   |       | 40-140          |          |           |              |                  | 11/5/21 22:41         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-EB08-211028** Sampled: 10/28/2021 11:40

Sample ID: 21K0043-07
Sample Matrix: Ground Water

## Metals Analyses (Total)

|           |         |         |          | Mictais Alia | iyses (Totai) |           |              |          |               |         |
|-----------|---------|---------|----------|--------------|---------------|-----------|--------------|----------|---------------|---------|
|           |         |         |          |              |               |           |              | Date     | Date/Time     |         |
| Analyte   | Results | RL      | DL       | Units        | Dilution      | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Aluminum  | ND      | 0.050   | 0.049    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Antimony  | ND      | 1.0     | 0.20     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Arsenic   | ND      | 0.80    | 0.46     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Barium    | ND      | 10      | 1.2      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Beryllium | ND      | 0.40    | 0.066    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 15:25 | QNW     |
| Cadmium   | ND      | 0.20    | 0.027    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Calcium   | ND      | 0.50    | 0.11     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Chromium  | ND      | 1.0     | 0.92     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Cobalt    | ND      | 1.0     | 0.14     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Copper    | ND      | 1.0     | 0.27     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Iron      | ND      | 0.050   | 0.032    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Lead      | ND      | 0.50    | 0.14     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Magnesium | ND      | 0.050   | 0.023    | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Manganese | 0.32    | 1.0     | 0.24     | $\mu g/L$    | 1             | J         | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Mercury   | ND      | 0.00010 | 0.000050 | mg/L         | 1             |           | SW-846 7470A | 11/2/21  | 11/3/21 9:19  | DRL     |
| Nickel    | ND      | 5.0     | 0.52     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Potassium | ND      | 2.0     | 0.40     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Selenium  | ND      | 5.0     | 0.78     | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Silver    | ND      | 0.20    | 0.026    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Sodium    | ND      | 2.0     | 0.56     | mg/L         | 1             |           | SW-846 6010D | 11/3/21  | 11/4/21 15:51 | MJH     |
| Thallium  | ND      | 0.20    | 0.067    | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Vanadium  | ND      | 5.0     | 3.5      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
| Zinc      | ND      | 10      | 3.4      | $\mu g/L$    | 1             |           | SW-846 6020B | 11/3/21  | 11/4/21 14:02 | QNW     |
|           |         |         |          |              |               |           |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21K0043

Date Received: 11/1/2021

**Field Sample #: HRP-EB08-211028** Sampled: 10/28/2021 11:40

Sample ID: 21K0043-07
Sample Matrix: Ground Water

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|         |         |         |     |      |       |          |           |              | Date     | Date/Time     |         |
|---------|---------|---------|-----|------|-------|----------|-----------|--------------|----------|---------------|---------|
|         | Analyte | Results | RL  | DL   | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Sulfate |         | ND      | 1.0 | 0.60 | mg/L  | 1        |           | ASTM D516-16 | 11/2/21  | 11/2/21 10:45 | MMH     |



## **Sample Extraction Data**

## ASTM D516-16

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293753 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293753 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293753 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293753 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-07 [HRP-EB08-211028]   | B293753 | 10.0         | 10.0       | 11/02/21 |

### EPA 350.1

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293898 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293898 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293898 | 50.0         | 50.0       | 11/03/21 |

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]             | Batch   | Date     |
|-----------------------------------|---------|----------|
| 21K0043-03 [HRP-SB210-0-1-211028] | B294016 | 11/04/21 |

Prep Method: SW-846 3050B Analytical Method: SW-846 6010D

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21K0043-03 [HRP-SB210-0-1-211028] | B293980 | 1.51        | 50.0       | 11/04/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |  |
|--------------------------------|---------|--------------|------------|----------|--|
| 21K0043-01 [HRP-MW72S-211027]  | B293917 | 50.0         | 50.0       | 11/03/21 |  |
| 21K0043-02 [HRP-MW30S-211027]  | B293917 | 50.0         | 50.0       | 11/03/21 |  |
| 21K0043-04 [HRP-MW209-211028]  | B293917 | 50.0         | 50.0       | 11/03/21 |  |
| 21K0043-05 [HRP-MW100S-211028] | B293917 | 50.0         | 50.0       | 11/03/21 |  |
| 21K0043-07 [HRP-EB08-211028]   | B293917 | 50.0         | 50.0       | 11/03/21 |  |

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6010D

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293930 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293930 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293930 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293930 | 50.0         | 50.0       | 11/03/21 |

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293919 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293919 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293919 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293919 | 50.0         | 50.0       | 11/03/21 |



## **Sample Extraction Data**

Prep Method: SW-846 3005A Analytical Method: SW-846 6020B

| Lab Number [Field ID]        | Batch   | Initial [mL] | Final [mL] | Date     |
|------------------------------|---------|--------------|------------|----------|
| 21K0043-07 [HRP-EB08-211028] | B293919 | 50.0         | 50.0       | 11/03/21 |

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6020B

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293931 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293931 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293931 | 50.0         | 50.0       | 11/03/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293931 | 50.0         | 50.0       | 11/03/21 |

Prep Method: SW-846 7470A Dissolved Analytical Method: SW-846 7470A

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293821 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293821 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293821 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293821 | 10.0         | 10.0       | 11/02/21 |

Prep Method: SW-846 7470A Prep Analytical Method: SW-846 7470A

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293822 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293822 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293822 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293822 | 10.0         | 10.0       | 11/02/21 |
| 21K0043-07 [HRP-EB08-211028]   | B293822 | 10.0         | 10.0       | 11/02/21 |

Prep Method: SW-846 7471 Analytical Method: SW-846 7471B

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21K0043-03 [HRP-SB210-0-1-211028] | B294008 | 0.562       | 50.0       | 11/04/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8015C

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027] | B293763 | 920          | 1.00       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027] | B293763 | 930          | 1.00       | 11/02/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8015C

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-04 [HRP-MW209-211028]  | B293957 | 1040         | 1.00       | 11/04/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293957 | 970          | 1.00       | 11/04/21 |
| 21K0043-07 [HRP-EB08-211028]   | B293957 | 1030         | 1.00       | 11/04/21 |



## **Sample Extraction Data**

Prep Method: SW-846 5030B Analytical Method: SW-846 8015C

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B294072 | 2.5          | 5.00       | 11/05/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B294072 | 5            | 5.00       | 11/05/21 |
| 21K0043-04 [HRP-MW209-211028]  | B294072 | 5            | 5.00       | 11/05/21 |
| 21K0043-05 [HRP-MW100S-211028] | B294072 | 5            | 5.00       | 11/05/21 |

Prep Method: Alcohol Prep Analytical Method: SW-846 8015C

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |  |
|--------------------------------|---------|--------------|------------|----------|--|
| 21K0043-01 [HRP-MW72S-211027]  | B294074 | 1.00         | 1.00       | 11/05/21 |  |
| 21K0043-02 [HRP-MW30S-211027]  | B294074 | 1.00         | 1.00       | 11/05/21 |  |
| 21K0043-05 [HRP-MW100S-211028] | B294074 | 1.00         | 1.00       | 11/05/21 |  |

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293778 | 2.5          | 5.00       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293778 | 5            | 5.00       | 11/02/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293778 | 5            | 5.00       | 11/02/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293778 | 5            | 5.00       | 11/02/21 |
| 21K0043-06 [HRP-TB08-211028]   | B293778 | 5            | 5.00       | 11/02/21 |

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

| Lab Number [Field ID]          | Batch   | Initial [mL] | Final [mL] | Date     |
|--------------------------------|---------|--------------|------------|----------|
| 21K0043-01 [HRP-MW72S-211027]  | B293790 | 970          | 1.00       | 11/02/21 |
| 21K0043-02 [HRP-MW30S-211027]  | B293790 | 970          | 1.00       | 11/02/21 |
| 21K0043-04 [HRP-MW209-211028]  | B293790 | 1050         | 1.00       | 11/02/21 |
| 21K0043-05 [HRP-MW100S-211028] | B293790 | 980          | 1.00       | 11/02/21 |
| 21K0043-07 [HRP-EB08-211028]   | B293790 | 1050         | 1.00       | 11/02/21 |

Prep Method: SW-846 9010C Analytical Method: SW-846 9014

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21K0043-03 [HRP-SB210-0-1-211028] | B293766 | 1.01        | 50.0       | 11/02/21 |

# SW-846 9045C

| Lab Number [Field ID]             | Batch   | Initial [g] | Date     |
|-----------------------------------|---------|-------------|----------|
| 21K0043-03 [HRP-SB210-0-1-211028] | B293749 | 20.0        | 11/01/21 |



Methyl Acetate

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# QUALITY CONTROL

# Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                            | Result   | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD           | RPD<br>Limit   | Notes            |
|------------------------------------|----------|--------------------|------------------|----------------|------------------|--------|----------------|---------------|----------------|------------------|
| Batch B293778 - SW-846 5030B       |          |                    |                  |                |                  |        |                |               |                |                  |
| Blank (B293778-BLK1)               |          |                    |                  | Prepared & A   | Analyzed: 11/    | /02/21 |                |               |                |                  |
| Acetone                            | ND       | 50                 | μg/L             |                |                  |        |                | _ <del></del> | _ <del>_</del> |                  |
| Acrylonitrile                      | ND       | 5.0                | $\mu \text{g/L}$ |                |                  |        |                |               |                |                  |
| tert-Amyl Methyl Ether (TAME)      | ND       | 0.50               | $\mu \text{g/L}$ |                |                  |        |                |               |                |                  |
| Benzene                            | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Bromobenzene                       | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Bromochloromethane                 | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Bromodichloromethane               | ND       | 0.50               | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Bromoform                          | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| Bromomethane                       | ND       | 2.0                | μg/L             |                |                  |        |                |               |                | V-34             |
| 2-Butanone (MEK)                   | ND       | 20                 | μg/L             |                |                  |        |                |               |                | V-05             |
| tert-Butyl Alcohol (TBA)           | ND       | 20                 | μg/L             |                |                  |        |                |               |                | V-05             |
| n-Butylbenzene                     | ND       | 1.0                | $\mu \text{g/L}$ |                |                  |        |                |               |                |                  |
| sec-Butylbenzene                   | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| tert-Butylbenzene                  | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| tert-Butyl Ethyl Ether (TBEE)      | ND       | 0.50               | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Carbon Disulfide                   | ND       | 5.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Carbon Tetrachloride               | ND       | 5.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Chlorobenzene                      | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Chlorodibromomethane               | ND       | 0.50               | $\mu \text{g}/L$ |                |                  |        |                |               |                |                  |
| Chloroethane                       | ND       | 2.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Chloroform                         | ND       | 2.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| Chloromethane                      | ND       | 2.0                | μg/L             |                |                  |        |                |               |                | L-04, V-05, V-34 |
| 2-Chlorotoluene                    | ND       | 1.0                | $\mu g/L$        |                |                  |        |                |               |                |                  |
| 4-Chlorotoluene                    | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,2-Dibromo-3-chloropropane (DBCP) | ND       | 5.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,2-Dibromoethane (EDB)            | ND       | 0.50               | μg/L             |                |                  |        |                |               |                |                  |
| Dibromomethane                     | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,2-Dichlorobenzene                | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,3-Dichlorobenzene                | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,4-Dichlorobenzene                | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| trans-1,4-Dichloro-2-butene        | ND       | 2.0                | μg/L             |                |                  |        |                |               |                |                  |
| Dichlorodifluoromethane (Freon 12) | ND       | 2.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,1-Dichloroethane                 | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,2-Dichloroethane                 | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,1-Dichloroethylene               | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| cis-1,2-Dichloroethylene           | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| trans-1,2-Dichloroethylene         | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,2-Dichloropropane                | ND       | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,3-Dichloropropane                | ND       | 0.50               | μg/L             |                |                  |        |                |               |                |                  |
| 2,2-Dichloropropane                | ND<br>ND | 1.0                | μg/L             |                |                  |        |                |               |                |                  |
| 1,1-Dichloropropene                | ND<br>ND | 2.0                | μg/L             |                |                  |        |                |               |                |                  |
| cis-1,3-Dichloropropene            | ND       | 0.50               | μg/L             |                |                  |        |                |               |                |                  |
| trans-1,3-Dichloropropene          | ND<br>ND | 0.50               | μg/L             |                |                  |        |                |               |                |                  |
| Diethyl Ether                      | ND<br>ND | 2.0                | μg/L             |                |                  |        |                |               |                |                  |
| Diisopropyl Ether (DIPE)           | ND       | 0.50               | μg/L             |                |                  |        |                |               |                |                  |
| 1,4-Dioxane                        | ND<br>ND | 50                 | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| Ethylbenzene                       | ND<br>ND | 1.0                | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| Hexachlorobutadiene                | ND<br>ND | 0.60               | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| 2-Hexanone (MBK)                   | ND<br>ND | 10                 | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| (sopropylbenzene (Cumene)          | ND<br>ND | 1.0                | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| p-Isopropyltoluene (p-Cymene)      | ND<br>ND | 1.0                | μg/L<br>μg/L     |                |                  |        |                |               |                |                  |
| Made Assets                        | MD       | 1.0                |                  |                |                  |        |                |               |                |                  |

ND

1.0

μg/L

V-05



# QUALITY CONTROL

| Analyte                                     | Result       | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit | Notes            |
|---------------------------------------------|--------------|--------------------|-------------------|----------------|------------------|--------------|------------------|-----|--------------|------------------|
| Batch B293778 - SW-846 5030B                |              |                    |                   |                |                  |              |                  |     |              |                  |
| Blank (B293778-BLK1)                        |              |                    |                   | Prepared &     | Analyzed: 11     | /02/21       |                  |     |              |                  |
| Methyl tert-Butyl Ether (MTBE)              | ND           | 1.0                | $\mu g/L$         |                |                  |              |                  |     |              |                  |
| Methyl Cyclohexane                          | ND           | 1.0                | $\mu g \! / \! L$ |                |                  |              |                  |     |              |                  |
| Methylene Chloride                          | ND           | 5.0                | $\mu g/L$         |                |                  |              |                  |     |              |                  |
| 4-Methyl-2-pentanone (MIBK)                 | ND           | 10                 | μg/L              |                |                  |              |                  |     |              |                  |
| Naphthalene                                 | ND           | 2.0                | μg/L              |                |                  |              |                  |     |              |                  |
| -Propylbenzene                              | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              |                  |
| styrene                                     | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              |                  |
| ,1,1,2-Tetrachloroethane                    | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              |                  |
| ,1,2,2-Tetrachloroethane                    | ND           | 0.50               | μg/L              |                |                  |              |                  |     |              |                  |
| Cetrachloroethylene                         | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              | 17.05            |
| etrahydrofuran<br>Foluene                   | ND           | 10                 | μg/L<br>μα/Ι      |                |                  |              |                  |     |              | V-05             |
| ,2,3-Trichlorobenzene                       | ND           | 1.0<br>5.0         | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| ,2,4-Trichlorobenzene                       | ND<br>ND     | 1.0                | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| ,3,5-Trichlorobenzene                       |              | 1.0                | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| ,1,1-Trichloroethane                        | ND<br>ND     | 1.0                | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| ,1,2-Trichloroethane                        | ND<br>ND     | 1.0                | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| Frichloroethylene                           | ND<br>ND     | 1.0                | μg/L<br>μg/L      |                |                  |              |                  |     |              |                  |
| richlorofluoromethane (Freon 11)            | ND           | 2.0                | μg/L              |                |                  |              |                  |     |              |                  |
| ,2,3-Trichloropropane                       | ND           | 2.0                | μg/L              |                |                  |              |                  |     |              |                  |
| ,1,2-Trichloro-1,2,2-trifluoroethane (Freon | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              |                  |
| 13)                                         | 1,2          |                    |                   |                |                  |              |                  |     |              |                  |
| ,2,4-Trimethylbenzene                       | ND           | 1.0                | $\mu g/L$         |                |                  |              |                  |     |              |                  |
| ,3,5-Trimethylbenzene                       | ND           | 1.0                | $\mu g/L$         |                |                  |              |                  |     |              |                  |
| inyl Chloride                               | ND           | 2.0                | $\mu g/L$         |                |                  |              |                  |     |              |                  |
| n+p Xylene                                  | ND           | 2.0                | μg/L              |                |                  |              |                  |     |              |                  |
| -Xylene                                     | ND           | 1.0                | μg/L              |                |                  |              |                  |     |              |                  |
| Surrogate: 1,2-Dichloroethane-d4            | 21.7         |                    | $\mu g/L$         | 25.0           |                  | 86.9         | 70-130           |     |              |                  |
| Surrogate: Toluene-d8                       | 23.2         |                    | μg/L              | 25.0           |                  | 93.0         | 70-130           |     |              |                  |
| Surrogate: 4-Bromofluorobenzene             | 24.9         |                    | μg/L              | 25.0           |                  | 99.7         | 70-130           |     |              |                  |
| LCS (B293778-BS1)                           |              |                    |                   | Prepared &     | Analyzed: 11     | /02/21       |                  |     |              |                  |
| acetone                                     | 78.6         | 50                 | $\mu g\!/\!L$     | 100            |                  | 78.6         | 70-160           |     |              |                  |
| Acrylonitrile                               | 8.36         | 5.0                | $\mu g/L$         | 10.0           |                  | 83.6         | 70-130           |     |              |                  |
| ert-Amyl Methyl Ether (TAME)                | 8.56         | 0.50               | μg/L              | 10.0           |                  | 85.6         | 70-130           |     |              |                  |
| Benzene                                     | 9.09         | 1.0                | $\mu g/L$         | 10.0           |                  | 90.9         | 70-130           |     |              |                  |
| Bromobenzene                                | 10.8         | 1.0                | μg/L              | 10.0           |                  | 108          | 70-130           |     |              |                  |
| Bromochloromethane                          | 11.1         | 1.0                | μg/L              | 10.0           |                  | 111          | 70-130           |     |              |                  |
| Bromodichloromethane                        | 10.3         | 0.50               | μg/L              | 10.0           |                  | 103          | 70-130           |     |              |                  |
| Bromoform                                   | 10.6         | 1.0                | μg/L              | 10.0           |                  | 106          | 70-130           |     |              |                  |
| Bromomethane                                | 17.9         | 2.0                | μg/L              | 10.0           |                  | 179 *        |                  |     |              | L-02, V-20, V-34 |
| -Butanone (MEK)                             | 79.8         | 20                 | μg/L              | 100            |                  | 79.8         | 40-160           |     |              | V-05             |
| ert-Butyl Alcohol (TBA)                     | 80.6         | 20                 | μg/L<br>ug/I      | 100            |                  | 80.6         | 40-160           |     |              | V-05             |
| -Butylbenzene<br>ec-Butylbenzene            | 9.66         | 1.0                | μg/L<br>μα/Ι      | 10.0           |                  | 96.6         | 70-130           |     |              |                  |
| ec-Butylbenzene<br>ert-Butylbenzene         | 9.61         | 1.0<br>1.0         | μg/L<br>μg/I      | 10.0           |                  | 96.1         | 70-130           |     |              |                  |
| ert-Butyl Ethyl Ether (TBEE)                | 10.3         | 0.50               | μg/L<br>μg/L      | 10.0           |                  | 103<br>87.0  | 70-130<br>70-130 |     |              |                  |
| Carbon Disulfide                            | 8.70         | 5.0                | μg/L<br>μg/L      | 10.0<br>100    |                  | 87.0<br>85.8 | 70-130<br>70-130 |     |              |                  |
| Carbon Distringe Carbon Tetrachloride       | 85.8         | 5.0                | μg/L<br>μg/L      |                |                  |              | 70-130<br>70-130 |     |              |                  |
| Chlorobenzene                               | 10.0         | 1.0                | μg/L<br>μg/L      | 10.0<br>10.0   |                  | 100<br>110   | 70-130<br>70-130 |     |              |                  |
| Chlorodibromomethane                        | 11.0<br>10.6 | 0.50               | μg/L<br>μg/L      | 10.0           |                  | 106          | 70-130<br>70-130 |     |              |                  |
|                                             |              |                    | μg/L<br>μg/L      | 10.0           |                  | 92.5         | 70-130           |     |              |                  |
| Chloroethane                                | 9.25         | 2.0                | 110/1.            |                |                  | 47.5         |                  |     |              |                  |



# QUALITY CONTROL

| Analyte                            | Result       | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD | RPD<br>Limit | Notes            |
|------------------------------------|--------------|--------------------|-------------------|----------------|------------------|--------|----------------|-----|--------------|------------------|
| Batch B293778 - SW-846 5030B       |              |                    |                   |                |                  |        |                |     |              |                  |
| LCS (B293778-BS1)                  |              |                    |                   | Prepared &     | Analyzed: 11/    | 02/21  |                |     |              |                  |
| Chloromethane                      | 3.64         | 2.0                | μg/L              | 10.0           |                  | 36.4 * | 40-160         |     |              | L-04, V-05, V-34 |
| 2-Chlorotoluene                    | 10.6         | 1.0                | μg/L              | 10.0           |                  | 106    | 70-130         |     |              |                  |
| 4-Chlorotoluene                    | 11.2         | 1.0                | $\mu g/L$         | 10.0           |                  | 112    | 70-130         |     |              |                  |
| 1,2-Dibromo-3-chloropropane (DBCP) | 9.13         | 5.0                | $\mu g/L$         | 10.0           |                  | 91.3   | 70-130         |     |              |                  |
| 1,2-Dibromoethane (EDB)            | 10.2         | 0.50               | $\mu g/L$         | 10.0           |                  | 102    | 70-130         |     |              |                  |
| Dibromomethane                     | 10.7         | 1.0                | μg/L              | 10.0           |                  | 107    | 70-130         |     |              |                  |
| 1,2-Dichlorobenzene                | 9.81         | 1.0                | μg/L              | 10.0           |                  | 98.1   | 70-130         |     |              |                  |
| 1,3-Dichlorobenzene                | 10.0         | 1.0                | μg/L              | 10.0           |                  | 100    | 70-130         |     |              |                  |
| 1,4-Dichlorobenzene                | 9.97         | 1.0                | μg/L              | 10.0           |                  | 99.7   | 70-130         |     |              |                  |
| trans-1,4-Dichloro-2-butene        | 9.39         | 2.0                | μg/L              | 10.0           |                  | 93.9   | 70-130         |     |              |                  |
| Dichlorodifluoromethane (Freon 12) | 8.96         | 2.0                | μg/L              | 10.0           |                  | 89.6   | 40-160         |     |              |                  |
| 1,1-Dichloroethane                 | 9.00         | 1.0                | μg/L              | 10.0           |                  | 90.0   | 70-130         |     |              |                  |
| 1,2-Dichloroethane                 | 10.6         | 1.0                | μg/L              | 10.0           |                  | 106    | 70-130         |     |              |                  |
| 1,1-Dichloroethylene               | 9.47         | 1.0                | μg/L              | 10.0           |                  | 94.7   | 70-130         |     |              |                  |
| cis-1,2-Dichloroethylene           | 9.69         | 1.0                | μg/L              | 10.0           |                  | 96.9   | 70-130         |     |              |                  |
| trans-1,2-Dichloroethylene         | 9.94         | 1.0                | μg/L              | 10.0           |                  | 99.4   | 70-130         |     |              |                  |
| 1,2-Dichloropropane                | 9.96         | 1.0                | μg/L              | 10.0           |                  | 99.6   | 70-130         |     |              |                  |
| 1,3-Dichloropropane                | 9.86         | 0.50               | μg/L              | 10.0           |                  | 98.6   | 70-130         |     |              |                  |
| 2,2-Dichloropropane                | 9.86<br>9.47 | 1.0                | μg/L<br>μg/L      | 10.0           |                  | 94.7   | 40-130         |     |              |                  |
| 1,1-Dichloropropene                | 9.47         | 2.0                | μg/L              | 10.0           |                  | 92.6   | 70-130         |     |              |                  |
| cis-1,3-Dichloropropene            |              | 0.50               | μg/L<br>μg/L      | 10.0           |                  | 100    | 70-130         |     |              |                  |
| trans-1,3-Dichloropropene          | 10.0         | 0.50               | μg/L<br>μg/L      | 10.0           |                  | 98.3   | 70-130         |     |              |                  |
| Diethyl Ether                      | 9.83         | 2.0                | μg/L<br>μg/L      | 10.0           |                  | 81.8   | 70-130         |     |              |                  |
| Diisopropyl Ether (DIPE)           | 8.18         | 0.50               | μg/L<br>μg/L      |                |                  |        |                |     |              |                  |
| 1,4-Dioxane                        | 8.33         | 50                 |                   | 10.0           |                  | 83.3   | 70-130         |     |              |                  |
| Ethylbenzene                       | 93.5         | 1.0                | μg/L              | 100            |                  | 93.5   | 40-130         |     |              |                  |
| Hexachlorobutadiene                | 10.6         | 0.60               | μg/L              | 10.0           |                  | 106    | 70-130         |     |              |                  |
|                                    | 10.1         |                    | μg/L              | 10.0           |                  | 101    | 70-130         |     |              |                  |
| 2-Hexanone (MBK)                   | 90.4         | 10                 | μg/L              | 100            |                  | 90.4   | 70-160         |     |              |                  |
| Isopropylbenzene (Cumene)          | 10.8         | 1.0                | μg/L              | 10.0           |                  | 108    | 70-130         |     |              |                  |
| p-Isopropyltoluene (p-Cymene)      | 10.1         | 1.0                | μg/L              | 10.0           |                  | 101    | 70-130         |     |              |                  |
| Methyl Acetate                     | 8.17         | 1.0                | μg/L              | 10.0           |                  | 81.7   | 70-130         |     |              | V-05             |
| Methyl tert-Butyl Ether (MTBE)     | 8.60         | 1.0                | μg/L              | 10.0           |                  | 86.0   | 70-130         |     |              |                  |
| Methyl Cyclohexane                 | 9.38         | 1.0                | μg/L              | 10.0           |                  | 93.8   | 70-130         |     |              |                  |
| Methylene Chloride                 | 8.64         | 5.0                | μg/L              | 10.0           |                  | 86.4   | 70-130         |     |              |                  |
| 4-Methyl-2-pentanone (MIBK)        | 95.0         | 10                 | μg/L              | 100            |                  | 95.0   | 70-160         |     |              |                  |
| Naphthalene                        | 9.01         | 2.0                | μg/L              | 10.0           |                  | 90.1   | 40-130         |     |              |                  |
| n-Propylbenzene                    | 10.6         | 1.0                | μg/L              | 10.0           |                  | 106    | 70-130         |     |              |                  |
| Styrene                            | 11.0         | 1.0                | μg/L              | 10.0           |                  | 110    | 70-130         |     |              |                  |
| 1,1,1,2-Tetrachloroethane          | 11.8         | 1.0                | μg/L              | 10.0           |                  | 118    | 70-130         |     |              |                  |
| 1,1,2,2-Tetrachloroethane          | 10.0         | 0.50               | μg/L              | 10.0           |                  | 100    | 70-130         |     |              |                  |
| Tetrachloroethylene                | 11.1         | 1.0                | μg/L              | 10.0           |                  | 111    | 70-130         |     |              |                  |
| Tetrahydrofuran                    | 8.10         | 10                 | μg/L              | 10.0           |                  | 81.0   | 70-130         |     |              | V-05, J          |
| Toluene                            | 10.2         | 1.0                | μg/L              | 10.0           |                  | 102    | 70-130         |     |              |                  |
| 1,2,3-Trichlorobenzene             | 9.29         | 5.0                | μg/L              | 10.0           |                  | 92.9   | 70-130         |     |              |                  |
| 1,2,4-Trichlorobenzene             | 10.1         | 1.0                | μg/L              | 10.0           |                  | 101    | 70-130         |     |              |                  |
| 1,3,5-Trichlorobenzene             | 9.88         | 1.0                | $\mu g/L$         | 10.0           |                  | 98.8   | 70-130         |     |              |                  |
| 1,1,1-Trichloroethane              | 9.69         | 1.0                | $\mu g \! / \! L$ | 10.0           |                  | 96.9   | 70-130         |     |              |                  |
| 1,1,2-Trichloroethane              | 10.1         | 1.0                | μg/L              | 10.0           |                  | 101    | 70-130         |     |              |                  |
| Trichloroethylene                  | 10.9         | 1.0                | $\mu g/L$         | 10.0           |                  | 109    | 70-130         |     |              |                  |
| Trichlorofluoromethane (Freon 11)  | 9.28         | 2.0                | μg/L              | 10.0           |                  | 92.8   | 70-130         |     |              |                  |
| 1,2,3-Trichloropropane             | 10.9         | 2.0                | μg/L              | 10.0           |                  | 109    | 70-130         |     |              |                  |



# QUALITY CONTROL

| Analyte                                      | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes            |
|----------------------------------------------|--------------|--------------------|--------------|----------------|------------------|--------|----------------|-------|--------------|------------------|
| Batch B293778 - SW-846 5030B                 |              |                    |              |                |                  |        |                |       |              |                  |
| LCS (B293778-BS1)                            |              |                    |              | Prepared &     | Analyzed: 11     | /02/21 |                |       |              |                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon | 8.61         | 1.0                | μg/L         | 10.0           |                  | 86.1   | 70-130         |       |              |                  |
| 113)<br>1,2,4-Trimethylbenzene               | 0.00         | 1.0                | μg/L         | 10.0           |                  | 99.8   | 70-130         |       |              |                  |
| 1,3,5-Trimethylbenzene                       | 9.98<br>11.0 | 1.0                | μg/L<br>μg/L | 10.0           |                  | 110    | 70-130         |       |              |                  |
| Vinyl Chloride                               | 8.59         | 2.0                | μg/L<br>μg/L | 10.0           |                  | 85.9   | 40-160         |       |              |                  |
| m+p Xylene                                   | 21.9         | 2.0                | μg/L<br>μg/L | 20.0           |                  | 110    | 70-130         |       |              |                  |
| o-Xylene                                     | 10.9         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 109    | 70-130         |       |              |                  |
| Surrogate: 1,2-Dichloroethane-d4             | 21.5         |                    | μg/L         | 25.0           |                  | 86.0   | 70-130         |       |              |                  |
| Surrogate: Toluene-d8                        | 23.6         |                    | μg/L<br>μg/L | 25.0           |                  | 94.6   | 70-130         |       |              |                  |
| Surrogate: 4-Bromofluorobenzene              | 25.1         |                    | μg/L<br>μg/L | 25.0           |                  | 100    | 70-130         |       |              |                  |
| LCS Dup (B293778-BSD1)                       |              |                    |              | Prepared & A   | Analyzed: 11     | /02/21 |                |       |              |                  |
| Acetone                                      | 79.2         | 50                 | μg/L         | 100            |                  | 79.2   | 70-160         | 0.748 | 25           |                  |
| Acrylonitrile                                | 79.2<br>8.00 | 5.0                | μg/L<br>μg/L | 10.0           |                  | 80.0   | 70-130         | 4.40  | 25           |                  |
| tert-Amyl Methyl Ether (TAME)                | 8.38         | 0.50               | μg/L<br>μg/L | 10.0           |                  | 83.8   | 70-130         | 2.13  | 25           |                  |
| Benzene                                      | 8.98         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 89.8   | 70-130         | 1.22  | 25           |                  |
| Bromobenzene                                 | 10.6         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 106    | 70-130         | 1.87  | 25           |                  |
| Bromochloromethane                           | 10.7         | 1.0                | μg/L<br>μg/L | 10.0           |                  | 107    | 70-130         | 3.30  | 25           |                  |
| Bromodichloromethane                         | 10.3         | 0.50               | μg/L         | 10.0           |                  | 103    | 70-130         | 0.00  | 25           |                  |
| Bromoform                                    | 10.5         | 1.0                | μg/L         | 10.0           |                  | 105    | 70-130         | 0.474 | 25           |                  |
| Bromomethane                                 | 17.3         | 2.0                | μg/L         | 10.0           |                  | 173 *  | 40-160         | 3.47  | 25           | L-02, V-20, V-34 |
| -Butanone (MEK)                              | 79.6         | 20                 | μg/L         | 100            |                  | 79.6   | 40-160         | 0.326 | 25           | V-05             |
| ert-Butyl Alcohol (TBA)                      | 81.2         | 20                 | μg/L         | 100            |                  | 81.2   | 40-160         | 0.742 | 25           | V-05             |
| Butylbenzene                                 | 9.23         | 1.0                | μg/L         | 10.0           |                  | 92.3   | 70-130         | 4.55  | 25           |                  |
| ec-Butylbenzene                              | 9.36         | 1.0                | μg/L         | 10.0           |                  | 93.6   | 70-130         | 2.64  | 25           |                  |
| ert-Butylbenzene                             | 10.1         | 1.0                | μg/L         | 10.0           |                  | 101    | 70-130         | 2.45  | 25           |                  |
| ert-Butyl Ethyl Ether (TBEE)                 | 8.33         | 0.50               | μg/L         | 10.0           |                  | 83.3   | 70-130         | 4.35  | 25           |                  |
| Carbon Disulfide                             | 87.4         | 5.0                | μg/L         | 100            |                  | 87.4   | 70-130         | 1.80  | 25           |                  |
| Carbon Tetrachloride                         | 9.92         | 5.0                | μg/L         | 10.0           |                  | 99.2   | 70-130         | 1.10  | 25           |                  |
| Chlorobenzene                                | 10.8         | 1.0                | μg/L         | 10.0           |                  | 108    | 70-130         | 2.20  | 25           |                  |
| Chlorodibromomethane                         | 10.7         | 0.50               | μg/L         | 10.0           |                  | 107    | 70-130         | 0.375 | 25           |                  |
| Chloroethane                                 | 9.01         | 2.0                | μg/L         | 10.0           |                  | 90.1   | 70-130         | 2.63  | 25           |                  |
| Chloroform                                   | 9.35         | 2.0                | $\mu g/L$    | 10.0           |                  | 93.5   | 70-130         | 0.958 | 25           |                  |
| Chloromethane                                | 3.70         | 2.0                | $\mu g/L$    | 10.0           |                  | 37.0 * | 40-160         | 1.63  | 25           | L-04, V-05, V-34 |
| -Chlorotoluene                               | 10.6         | 1.0                | $\mu g/L$    | 10.0           |                  | 106    | 70-130         | 0.471 | 25           |                  |
| -Chlorotoluene                               | 10.8         | 1.0                | $\mu g/L$    | 10.0           |                  | 108    | 70-130         | 3.92  | 25           |                  |
| ,2-Dibromo-3-chloropropane (DBCP)            | 8.93         | 5.0                | $\mu g/L$    | 10.0           |                  | 89.3   | 70-130         | 2.21  | 25           |                  |
| ,2-Dibromoethane (EDB)                       | 10.3         | 0.50               | $\mu g/L$    | 10.0           |                  | 103    | 70-130         | 0.978 | 25           |                  |
| Dibromomethane                               | 10.8         | 1.0                | $\mu g/L$    | 10.0           |                  | 108    | 70-130         | 1.49  | 25           |                  |
| ,2-Dichlorobenzene                           | 9.77         | 1.0                | $\mu g/L$    | 10.0           |                  | 97.7   | 70-130         | 0.409 | 25           |                  |
| ,3-Dichlorobenzene                           | 9.87         | 1.0                | $\mu g/L$    | 10.0           |                  | 98.7   | 70-130         | 1.51  | 25           |                  |
| ,4-Dichlorobenzene                           | 9.71         | 1.0                | μg/L         | 10.0           |                  | 97.1   | 70-130         | 2.64  | 25           |                  |
| rans-1,4-Dichloro-2-butene                   | 9.75         | 2.0                | μg/L         | 10.0           |                  | 97.5   | 70-130         | 3.76  | 25           |                  |
| pichlorodifluoromethane (Freon 12)           | 9.05         | 2.0                | μg/L         | 10.0           |                  | 90.5   | 40-160         | 0.999 | 25           |                  |
| ,1-Dichloroethane                            | 9.01         | 1.0                | μg/L         | 10.0           |                  | 90.1   | 70-130         | 0.111 | 25           |                  |
| ,2-Dichloroethane                            | 10.4         | 1.0                | μg/L         | 10.0           |                  | 104    | 70-130         | 2.09  | 25           |                  |
| ,1-Dichloroethylene                          | 9.23         | 1.0                | μg/L         | 10.0           |                  | 92.3   | 70-130         | 2.57  | 25           |                  |
| is-1,2-Dichloroethylene                      | 9.41         | 1.0                | μg/L         | 10.0           |                  | 94.1   | 70-130         | 2.93  | 25           |                  |
| rans-1,2-Dichloroethylene                    | 9.71         | 1.0                | μg/L         | 10.0           |                  | 97.1   | 70-130         | 2.34  | 25           |                  |
| ,2-Dichloropropane                           | 9.55         | 1.0                | μg/L         | 10.0           |                  | 95.5   | 70-130         | 4.20  | 25           |                  |
| ,3-Dichloropropane                           | 9.83         | 0.50               | μg/L         | 10.0           |                  | 98.3   | 70-130         | 0.305 | 25           |                  |
| 2,2-Dichloropropane                          | 9.95         | 1.0                | μg/L         | 10.0           |                  | 99.5   | 40-130         | 4.94  | 25           |                  |
| 1,1-Dichloropropene                          | 9.18         | 2.0                | μg/L         | 10.0           |                  | 91.8   | 70-130         | 0.868 | 25           |                  |



# QUALITY CONTROL

| Barch RESPITE - SW-446 503081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                           | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes   |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|---------|-----|
| cis-13-Dichloropropene         9.96         0.50         μg/L         10.0         99.6         70.13         0.700         25           trum-13-Dichloropropene         9.90         0.50         μg/L         10.0         99.0         70.13         0.710         25           Disopropyl Ether (DIPE)         8.15         0.50         μg/L         10.0         81.5         70.130         2.11         25           Libopromy Ether (DIPE)         8.15         0.50         μg/L         10.0         81.5         70.130         2.12         2.5           Ethybenzer         10.7         1.0         μg/L         10.0         10.7         70.130         1.12         2.5           Ethybenzer         10.7         1.0         μg/L         10.0         98.6         70.130         1.12         2.5           2-Hexahorouldince         9.80         0.60         μg/L         10.0         98.6         70.130         1.11         2.5         2.5           2-Hexahorouldince         9.81         1.0         μg/L         10.0         98.6         70.130         1.11         2.5         4.5           Soprophleazer (Cumene)         10.7         1.0         μg/L         10.0         98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Batch B293778 - SW-846 5030B      |        |                    |           |                |                  |        |                |       |              |         |     |
| trans-1.3-Dichlordpropener   9,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LCS Dup (B293778-BSD1)            |        |                    |           | Prepared & A   | Analyzed: 11     | /02/21 |                |       |              |         |     |
| Dechy Ether (DIPS)   1.5   0.50   1.6   1.00   1.00   1.10   2.5   1.10   1.10   2.5   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   | cis-1,3-Dichloropropene           | 9.96   | 0.50               | μg/L      | 10.0           |                  | 99.6   | 70-130         | 0.700 | 25           |         |     |
| Disappropyl Ether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trans-1,3-Dichloropropene         | 9.90   | 0.50               | $\mu g/L$ | 10.0           |                  | 99.0   | 70-130         | 0.710 | 25           |         |     |
| 1.4 Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diethyl Ether                     | 8.09   | 2.0                | μg/L      | 10.0           |                  | 80.9   | 70-130         | 1.11  | 25           |         |     |
| Eltybenzene 10.7 1.0 µg/L 10.0 10.7 70.130 1.12 25   Hexachlorobutadiene 9.86 0.60 µg/L 10.0 98.6 70.130 2.50 25   Fernander (MBK) 90.2 100 µg/L 10.0 98.6 70.130 2.50 25   Fernander (MBK) 90.2 100 µg/L 10.0 10.7 70.130 1.11 25   Fernander (MBK) 90.2 100 µg/L 10.0 10.7 70.130 1.11 25   Fernander (Cumene) 10.7 1.0 µg/L 10.0 10.7 70.130 1.11 25   Fernander (Cumene) 9.82 1.0 µg/L 10.0 98.2 70.130 2.51 25   Fernander (Fernander (Frenander (F | Diisopropyl Ether (DIPE)          | 8.15   | 0.50               | $\mu g/L$ | 10.0           |                  | 81.5   | 70-130         | 2.18  | 25           |         |     |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-Dioxane                       | 88.3   | 50                 | $\mu g/L$ | 100            |                  | 88.3   | 40-130         | 5.70  | 50           |         | † : |
| 2-Hexanone (MBK) 90.2 10 μg/L 100 90.2 70.160 0.233 25 Isopropylbenzene (Cumeno) 10.7 1.0 μg/L 10.0 107 70.130 1.11 25 Isopropylbenzene (Cymeno) 9.82 1.0 μg/L 10.0 98.2 70.160 2.51 25 Methyl Acetate 7.79 1.0 μg/L 10.0 85.4 70.130 2.51 25 Methyl Acetate 9.81 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Steric (MTBE) 8.54 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 9.81 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 9.81 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 9.81 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 9.81 1.0 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 10.4 10 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 10.4 10 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 10.4 10 μg/L 10.0 85.4 70.130 0.700 2.5 Methyl Cyclebcame 10.7 1.1 μg/L 10.0 10.4 70.130 0.730 2.5 Methyl Cyclebcame 10.7 1.1 μg/L 10.0 10.4 70.130 0.730 2.5 Methyl Cyclebcame 10.7 μg/L 10.0 10.4 70.130 1.33 2.5 Methyl Cyclebcame 11.6 1.0 μg/L 10.0 10.4 70.130 1.33 2.5 Methyl Cyclebcame 11.1 μg/L 10.0 10.4 70.130 1.33 2.5 Methyl Cyclebcame 11.1 μg/L 10.0 10.4 70.130 1.30 1.30 2.5 Methyl Cyclebcame 11.2 10.4 μg/L 10.0 10.4 70.130 1.30 2.5 Methyl Cyclebcame 11.2 10.4 μg/L 10.0 10.4 70.130 1.6 2.5 Methyl Cyclebcame 11.2 10.4 μg/L 10.0 10.4 70.130 1.6 2.5 Methyl Cyclebcame 11.3 μg/L 10.0 10.4 70.130 1.6 2.5 Methyl Cyclebcame 11.3 μg/L 10.0 10.4 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.3 μg/L 10.0 10.4 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.4 μg/L 10.0 10.4 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.4 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μg/L 10.0 10.5 70.130 1.5 1.5 2.5 Methyl Cyclebcame 11.5 μ  | Ethylbenzene                      | 10.7   | 1.0                | $\mu g/L$ | 10.0           |                  | 107    | 70-130         | 1.12  | 25           |         |     |
| Suppropyllehezene (Cumene)   10.7   1.0   µg/L   10.0   107   70-130   1.11   25   P-Isopropyllehezene (pr-Cymene)   9.82   1.0   µg/L   10.0   98.2   70-130   2.51   25   V-OS   Methyl (certae)   7.79   1.0   µg/L   10.0   85.4   70-130   0.700   25   V-OS   Methyl (certae)   8.54   1.0   µg/L   10.0   85.4   70-130   0.700   25   V-OS   Methyl (certae)   8.54   1.0   µg/L   10.0   85.4   70-130   0.700   25   V-OS   Methyl (certae)   8.54   1.0   µg/L   10.0   85.4   70-130   0.700   25   V-OS   Methyl (certae)   8.54   1.0   µg/L   10.0   84.1   70-130   2.70   25   V-OS   Methyl-cyclobexane   8.41   5.0   µg/L   10.0   84.1   70-130   2.70   25   V-OS     | Hexachlorobutadiene               | 9.86   | 0.60               | μg/L      | 10.0           |                  | 98.6   | 70-130         | 2.50  | 25           |         |     |
| p-Lospropylloluene (p-Cymene) 982 1.0 µg/L 10.0 98.2 70.130 2.51 25 V.05 Methyl Acetate 7.79 1.0 µg/L 10.0 77.9 70.130 4.76 25 V.05 Methyl Acetate 9.81 1.0 µg/L 10.0 77.9 70.130 4.76 25 V.05 Methyl Cyclobexane 981 1.0 µg/L 10.0 98.1 70.130 4.48 25 Methyl Cyclobexane 981 1.0 µg/L 10.0 98.1 70.130 4.48 25 Methyl Cyclobexane 981 1.0 µg/L 10.0 98.1 70.130 4.48 25 Methyl Cyclobexane 98.1 1.0 µg/L 10.0 84.1 70.130 2.70 25 Methyl Cyclobexane 98.1 1.0 µg/L 10.0 84.1 70.130 2.70 25 Methyl Cyclobexane 1.0 µg/L 10.0 84.1 70.130 2.70 25 Methylence Chloride 8.44 5.0 µg/L 10.0 84.1 70.130 2.70 25 Methylence MIBK) 94.4 10.0 µg/L 10.0 10.4 70.130 0.780 25 Maphhalene 1.0 µg/L 10.0 10.4 70.130 1.33 25 Maphhalene 1.0 µg/L 10.0 10.4 70.130 1.33 25 Maphhalene 1.0 µg/L 10.0 10.4 70.130 1.33 25 Maphhalene 1.1 µg/L 10.0 10.0 10.0 70.130 1.80 25 Maphhalene 1.1 µg/L 10.0 10.0 10.0 70.130 1.80 25 Maphhalene 1.1 µg/L 10.0 11.0 10.0 10.0 10.0 1.80 25 Maphhalene 1.1 µg/L 10.0 11.0 10.0 10.0 10.0 1.80 25 Maphhalene 1.1 µg/L 10.0 11.0 10.0 10.0 10.0 1.80 25 Maphhalene 1.1 µg/L 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Hexanone (MBK)                  | 90.2   | 10                 | $\mu g/L$ | 100            |                  | 90.2   | 70-160         | 0.233 | 25           |         | †   |
| Methyl Acetate         7,79         1.0         µg/L         10.0         77.9         70-130         4.76         25         V-05           Methyl Ether (MTBE)         8,54         1.0         µg/L         10.0         85.4         70-130         4.86         25         V-05           Methyl Cyclobcane         9,81         1.0         µg/L         10.0         84.1         70-130         4.86         25           Methylene Chloride         8,41         5.0         µg/L         10.0         84.1         70-130         2.70         25           4-Methyl-2-pentanone (MIBK)         94.4         10         µg/L         10.0         94.4         70-160         0.63         25           Naphthalene         8,94         2.0         µg/L         10.0         104         70-130         1.33         25           Naphthalene         10.7         1.0         µg/L         10.0         101         70-130         1.80         25           Naphthalene         10.1         µg/L         10.0         101         70-130         1.80         25           Styrene         10.7         1.0         µg/L         10.0         10.0         70-130         1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Isopropylbenzene (Cumene)         | 10.7   | 1.0                | $\mu g/L$ | 10.0           |                  | 107    | 70-130         | 1.11  | 25           |         |     |
| Methyl tert-Buryl Ether (MTBE)         8.54         1.0         µg/L         10.0         85.4         70-130         0.700         25           Methyl Cyclohexane         9.81         1.0         µg/L         10.0         98.1         70-130         4.48         25           Methylen Chloride         8.41         5.0         µg/L         10.0         84.1         70-160         0.623         25           4-Methyl-2-pentanone (MIBK)         94.4         10         µg/L         100         89.4         70-130         0.623         25           Naphthalene         8.94         2.0         µg/L         10.0         104         70-130         0.683         25           Styrene         10.7         1.0         µg/L         10.0         116         70-130         2.68         25           Styrene         10.7         1.0         µg/L         10.0         116         70-130         2.68         25           I.1,1.2-Tetrachlorochtane         11.6         1.0         µg/L         10.0         112         70-130         0.88         25           Tetrachlorochtane         11.2         1.2         10         µg/L         10.0         11.2         70-130 <th< td=""><td>p-Isopropyltoluene (p-Cymene)</td><td>9.82</td><td>1.0</td><td><math display="block">\mu g/L</math></td><td>10.0</td><td></td><td>98.2</td><td>70-130</td><td>2.51</td><td>25</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p-Isopropyltoluene (p-Cymene)     | 9.82   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.2   | 70-130         | 2.51  | 25           |         |     |
| Methyl Cyclohexane         9,81         1.0         μg/L         10.0         98.1         70-130         4.48         25           Methylene Chloride         8.41         5.0         μg/L         10.0         84.1         70-130         2.70         25           Alwelhyl-2-pentanone (MIBK)         94.4         10         μg/L         100         98.4         40-130         0.780         25           Naphthalene         8.94         2.0         μg/L         10.0         104         70-130         2.68         25           Naphthalene         10.7         1.0         μg/L         10.0         104         70-130         2.68         25           Naphthalene         10.7         1.0         μg/L         10.0         116         70-130         2.68         25           1.1,1.2-Tetrachlorochane         11.6         1.0         μg/L         10.0         116         70-130         1.80         25           Tetrachlorochane         11.2         1.0         μg/L         10.0         112         70-130         3.52         25         V-05, J           Tetrachlorochane         10.0         μg/L         10.0         110         70-130         1.68         25 </td <td>Methyl Acetate</td> <td>7.79</td> <td>1.0</td> <td><math display="block">\mu g/L</math></td> <td>10.0</td> <td></td> <td>77.9</td> <td>70-130</td> <td>4.76</td> <td>25</td> <td>V-05</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methyl Acetate                    | 7.79   | 1.0                | $\mu g/L$ | 10.0           |                  | 77.9   | 70-130         | 4.76  | 25           | V-05    |     |
| Methylene Chloride         8.41         5.0         µg/L         10.0         84.1         70-130         2.70         25           4-Methyl-2-pentanone (MIBK)         94.4         10         µg/L         100         94.4         70-160         0.623         25           Naphthalene         8.94         2.0         µg/L         10.0         10.4         40-130         0.780         25           n-Propylbenzene         10.4         1.0         µg/L         10.0         107         70-130         2.68         25           Styrene         10.7         1.0         µg/L         10.0         116         70-130         2.68         25           L1,1,2-Tettachloroethane         11.6         1.0         µg/L         10.0         116         70-130         1.60         25           Tetrabylorothane         11.2         1.0         µg/L         10.0         112         70-130         0.988         25           Tetrabylorothylene         11.2         1.0         µg/L         10.0         110         70-130         0.988         25           Tetrabylorothylene         9.1         1.0         µg/L         10.0         91.0         70-130         0.10         20 </td <td>Methyl tert-Butyl Ether (MTBE)</td> <td>8.54</td> <td>1.0</td> <td><math display="block">\mu g/L</math></td> <td>10.0</td> <td></td> <td>85.4</td> <td>70-130</td> <td>0.700</td> <td>25</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl tert-Butyl Ether (MTBE)    | 8.54   | 1.0                | $\mu g/L$ | 10.0           |                  | 85.4   | 70-130         | 0.700 | 25           |         |     |
| 4-Methyl-2-pentanone (MIBK) 94.4 10 μg/L 100 94.4 70-160 0.623 25 Naphthalene 8.94 2.0 μg/L 10.0 89.4 40-130 0.780 25 Naphthalene 10.4 1.0 μg/L 10.0 104 70-130 1.33 25 Naphthalene 10.7 1.0 μg/L 10.0 104 70-130 1.33 25 Naphthalene 10.7 1.0 μg/L 10.0 104 70-130 1.33 25 Naphthalene 10.7 1.0 μg/L 10.0 104 70-130 1.33 25 Naphthalene 11.6 1.0 μg/L 10.0 116 70-130 1.80 25 Naphthalene 11.6 1.0 μg/L 10.0 116 70-130 1.80 25 Naphthalene 11.6 1.0 μg/L 10.0 116 70-130 1.80 25 Naphthalene 11.6 1.0 μg/L 10.0 112 70-130 1.80 25 Naphthalene 11.2 1.0 μg/L 10.0 112 70-130 1.80 25 Naphthalene 11.2 1.0 μg/L 10.0 112 70-130 1.80 25 Naphthalene 11.2 1.0 μg/L 10.0 112 70-130 1.80 25 Naphthalene 11.2 1.0 μg/L 10.0 112 70-130 1.80 25 Naphthalene 11.2 N  | Methyl Cyclohexane                | 9.81   | 1.0                | $\mu g/L$ | 10.0           |                  | 98.1   | 70-130         | 4.48  | 25           |         |     |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Methylene Chloride                | 8.41   | 5.0                | μg/L      | 10.0           |                  | 84.1   | 70-130         | 2.70  | 25           |         |     |
| n-Propylbenzene 10.4 1.0 μg/L 10.0 104 70-130 1.33 25 Styrene 10.7 1.0 μg/L 10.0 107 70-130 2.68 25 L1,1,1,2-Tetachloroethane 11.6 1.0 μg/L 10.0 116 70-130 1.80 2.5 L1,1,1,2-Tetachloroethylene 11.2 1.0 μg/L 10.0 116 70-130 1.80 2.5 Tetachloroethylene 11.2 1.0 μg/L 10.0 112 70-130 0.988 25 Tetachloroethylene 11.2 1.0 μg/L 10.0 112 70-130 0.988 25 Tetachloroethylene 11.2 1.0 μg/L 10.0 100 70-130 1.61 25 Tetachloroethylene 11.2 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 1.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 μg/L 10.0 100 70-130 1.68 25 Tetachloroethylene 10.0 μg/L 10.0 100 70-130 1.69 25 Tetachloroethylene 10.0 μg/L 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Methyl-2-pentanone (MIBK)       | 94.4   | 10                 | μg/L      | 100            |                  | 94.4   | 70-160         | 0.623 | 25           |         | †   |
| Styrene 10.7 1.0 µg/L 10.0 107 70.130 2.68 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Naphthalene                       | 8.94   | 2.0                | μg/L      | 10.0           |                  | 89.4   | 40-130         | 0.780 | 25           |         | †   |
| Styrene   10.7   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n-Propylbenzene                   | 10.4   | 1.0                | μg/L      | 10.0           |                  | 104    | 70-130         | 1.33  | 25           |         |     |
| 1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Styrene                           |        | 1.0                | μg/L      | 10.0           |                  | 107    | 70-130         | 2.68  | 25           |         |     |
| Tetrachloroethylene 11.2 1.0 µg/L 10.0 112 70-130 0.988 25 Tetrahydrofuran 7.82 10 µg/L 10.0 78.2 70-130 3.52 25 V-05, J Toluene 10.0 1.0 µg/L 10.0 100 70-130 1.68 25 1,2,3-Trichlorobenzene 9.10 5.0 µg/L 10.0 91.0 70-130 1.68 25 1,2,3-Trichlorobenzene 9.57 1.0 µg/L 10.0 95.7 70-130 5.19 25 1,3,5-Trichlorobenzene 9.17 1.0 µg/L 10.0 91.7 70-130 5.19 25 1,1,1-Trichloroethane 9.57 1.0 µg/L 10.0 95.7 70-130 1.25 25 1,1,2-Trichloroethane 9.97 1.0 µg/L 10.0 99.7 70-130 1.25 25 1,1,2-Trichloroethane (Freon 11) 8.92 2.0 µg/L 10.0 99.7 70-130 1.39 25 Trichloroethylene 10.8 1.0 µg/L 10.0 108 70-130 1.29 25 Trichloroethylene 11.0 2.0 µg/L 10.0 108 70-130 3.96 25 1,1,2-Trichloroethane (Freon 11) 8.92 2.0 µg/L 10.0 100 39.7 70-130 3.96 25 1,1,2-Trichloroethane (Freon 11) 8.92 1.0 µg/L 10.0 100 39.2 70-130 3.96 25 1,1,2-Trichloroethane (Freon 11) 8.92 1.0 µg/L 10.0 100 39.2 70-130 3.96 25 1,1,2-Trichloroethylene 10.0 µg/L 10.0 100 39.2 70-130 3.96 25 1,1,2-Trichloroethylene 10.0 µg/L 10.0 100 39.2 70-130 3.96 25 1,1,2-Trichloroethylene 10.0 µg/L 10.0 100 39.2 70-130 3.96 25 1,1,3-Trichloroethylene 10.0 µg/L 10.0 100 39.3 25 113) 1,2-Trichloroethylene 10.0 µg/L 10.0 100 39.5 70-130 3.43 25 113) 1,3-Trimethylbenzene 3.85 1.0 µg/L 10.0 38.5 70-130 3.43 25 113) 1,3-Trimethylbenzene 10.6 1.0 µg/L 10.0 38.5 70-130 3.43 25 113) 114,4-Trimethylbenzene 10.6 1.0 µg/L 10.0 106 70-130 3.43 25 115 116,1-Trimethylbenzene 10.6 1.0 µg/L 10.0 106 70-130 3.43 25 117 118,5-Trimethylbenzene 10.6 1.0 µg/L 10.0 106 70-130 3.43 25 119 119 119 119 119 119 119 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,1,2-Tetrachloroethane         |        | 1.0                | μg/L      | 10.0           |                  | 116    | 70-130         | 1.80  | 25           |         |     |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2,2-Tetrachloroethane         | 9.88   | 0.50               | μg/L      | 10.0           |                  | 98.8   | 70-130         | 1.61  | 25           |         |     |
| Tetrahydrofuran   7.82   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachloroethylene               |        | 1.0                | μg/L      | 10.0           |                  | 112    | 70-130         | 0.988 | 25           |         |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrahydrofuran                   |        | 10                 | μg/L      | 10.0           |                  | 78.2   | 70-130         | 3.52  | 25           | V-05, J |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Toluene                           | 10.0   | 1.0                | μg/L      | 10.0           |                  | 100    | 70-130         | 1.68  | 25           |         |     |
| 1,2,4-Trichlorobenzene 9,57 1.0 μg/L 10.0 95.7 70-130 5.19 25 1,3,5-Trichlorobenzene 9,17 1.0 μg/L 10.0 91.7 70-130 7.45 25 1,1,1-Trichloroethane 9,57 1.0 μg/L 10.0 95.7 70-130 1.25 25 1,1,1-Trichloroethane 9,57 1.0 μg/L 10.0 95.7 70-130 1.25 25 1,1,2-Trichloroethane 9,97 1.0 μg/L 10.0 99.7 70-130 1.25 25 1,1,2-Trichloroethane (Freon 11) 8,92 2.0 μg/L 10.0 108 70-130 3.96 25 1,2,3-Trichloropropane 11.0 2.0 μg/L 10.0 110 70-130 0.366 25 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 11) μg/L 10.0 110 70-130 0.366 25 1,3,5-Trimethylbenzene 9,85 1.0 μg/L 10.0 98.5 70-130 1.31 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 98.5 70-130 1.31 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 106 70-130 3.43 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 20.0 110 70-130 0.410 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 20.0 110 70-130 0.410 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 86.6 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 86.6 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 86.6 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 93.2 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 93.2 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 93.2 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 93.2 70-130 1.39 25 1,3,5-Trimethylbenzene 10.8 1.0 μg/L 25.0 93.2 70-130 1.39 25 1,3,5-Trimethylbenzene 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.                                                                                                                | 1,2,3-Trichlorobenzene            |        | 5.0                | μg/L      | 10.0           |                  | 91.0   | 70-130         | 2.07  | 25           |         |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2,4-Trichlorobenzene            | 9.57   | 1.0                | μg/L      | 10.0           |                  | 95.7   | 70-130         | 5.19  | 25           |         |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3,5-Trichlorobenzene            |        | 1.0                | μg/L      | 10.0           |                  | 91.7   | 70-130         | 7.45  | 25           |         |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1-Trichloroethane             |        | 1.0                |           | 10.0           |                  | 95.7   | 70-130         | 1.25  | 25           |         |     |
| Trichloroethylene 10.8 1.0 μg/L 10.0 108 70-130 1.29 25 Trichlorofluoromethane (Freon 11) 8.92 2.0 μg/L 10.0 89.2 70-130 3.96 25 1,2,3-Trichloropropane 11.0 2.0 μg/L 10.0 110 70-130 0.366 25 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 9.00 1.0 μg/L 10.0 90.0 70-130 4.43 25 11.3) 1,2,4-Trimethylbenzene 9.85 1.0 μg/L 10.0 98.5 70-130 1.31 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 98.5 70-130 3.43 25 Vinyl Chloride 8.41 2.0 μg/L 10.0 106 70-130 3.43 25 wh-p Xylene 22.0 2.0 μg/L 20.0 110 70-130 0.410 25 o-Xylene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25 Surrogate: 1,2-Dichloroethane-d4 21.6 μg/L 25.0 86.6 70-130 Surrogate: Toluene-d8 23.3 μg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,2-Trichloroethane             |        | 1.0                | μg/L      | 10.0           |                  | 99.7   | 70-130         | 1.39  | 25           |         |     |
| Trichlorofluoromethane (Freon 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichloroethylene                 |        | 1.0                |           | 10.0           |                  | 108    | 70-130         | 1.29  | 25           |         |     |
| 1,2,3-Trichloropropane 11,0 2,0 μg/L 10,0 110 70-130 0,366 25 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,0,6 1,0 μg/L 1,0,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trichlorofluoromethane (Freon 11) |        | 2.0                | μg/L      | 10.0           |                  | 89.2   | 70-130         | 3.96  | 25           |         |     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1,2,2-trifluoroethane (Freon  | 1,2,3-Trichloropropane            |        | 2.0                | μg/L      | 10.0           |                  | 110    | 70-130         | 0.366 | 25           |         |     |
| 1,2,4-Trimethylbenzene 9,85 1.0 μg/L 10.0 98.5 70-130 1.31 25 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 106 70-130 3.43 25 Vinyl Chloride 8.41 2.0 μg/L 10.0 84.1 40-160 2.12 25 m+p Xylene 22.0 2.0 μg/L 20.0 110 70-130 0.410 25 ο-Xylene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25 Surrogate: 1,2-Dichloroethane-d4 21.6 μg/L 25.0 86.6 70-130 Surrogate: Toluene-d8 23.3 μg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |        | 1.0                |           |                |                  |        |                |       |              |         |     |
| 1,3,5-Trimethylbenzene 10.6 1.0 μg/L 10.0 106 70-130 3.43 25 Vinyl Chloride 8.41 2.0 μg/L 10.0 84.1 40-160 2.12 25 m+p Xylene 22.0 2.0 μg/L 20.0 110 70-130 0.410 25 ο-Xylene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25 Surrogate: 1,2-Dichloroethane-d4 21.6 μg/L 25.0 86.6 70-130 Surrogate: Toluene-d8 23.3 μg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | 9.85   | 1.0                | μg/L      | 10.0           |                  | 98.5   | 70-130         | 1.31  | 25           |         |     |
| Vinyl Chloride       8.41       2.0       μg/L       10.0       84.1       40-160       2.12       25         m+p Xylene       22.0       2.0       μg/L       20.0       110       70-130       0.410       25         o-Xylene       10.8       1.0       μg/L       10.0       108       70-130       1.39       25         Surrogate: 1,2-Dichloroethane-d4       21.6       μg/L       25.0       86.6       70-130         Surrogate: Toluene-d8       23.3       μg/L       25.0       93.2       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3,5-Trimethylbenzene            |        |                    |           |                |                  |        |                |       |              |         |     |
| m+p Xylene 22.0 2.0 μg/L 20.0 110 70-130 0.410 25 o-Xylene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25 Surrogate: 1,2-Dichloroethane-d4 21.6 μg/L 25.0 86.6 70-130 Surrogate: Toluene-d8 23.3 μg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |        |                    |           |                |                  |        |                |       |              |         | †   |
| 0-Xylene 10.8 1.0 μg/L 10.0 108 70-130 1.39 25<br>Surrogate: 1,2-Dichloroethane-d4 21.6 μg/L 25.0 86.6 70-130<br>Surrogate: Toluene-d8 23.3 μg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                 |        |                    |           |                |                  |        |                |       |              |         | '   |
| Surrogate: Toluene-d8 23.3 µg/L 25.0 93.2 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • •                               |        |                    |           |                |                  |        |                |       |              |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: 1,2-Dichloroethane-d4  | 21.6   |                    | μg/L      | 25.0           |                  | 86.6   | 70-130         |       |              |         |     |
| Surrogate: 4-Bromofluorobenzene 25.1 μg/L 25.0 100 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surrogate: Toluene-d8             | 23.3   |                    | $\mu g/L$ | 25.0           |                  | 93.2   | 70-130         |       |              |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate: 4-Bromofluorobenzene   | 25.1   |                    | $\mu g/L$ | 25.0           |                  | 100    | 70-130         |       |              |         |     |



## QUALITY CONTROL

# Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                | Result   | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|--------------------------------------------------------|----------|--------------------|-------------------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| Batch B293790 - SW-846 3510C                           |          |                    |                   |                |                  |               |                |     |              |            |
| Blank (B293790-BLK1)                                   |          |                    |                   | Prepared: 11   | /02/21 Analy     | yzed: 11/03/2 | 1              |     |              |            |
| Acenaphthene                                           | ND       | 5.0                | μg/L              |                |                  | ·             |                |     |              |            |
| Acenaphthylene                                         | ND       | 5.0                | $\mu g/L$         |                |                  |               |                |     |              |            |
| Acetophenone                                           | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| Aniline                                                | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Anthracene                                             | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzidine                                              | ND       | 20                 | μg/L              |                |                  |               |                |     |              | V-04       |
| Benzo(a)anthracene                                     | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(a)pyrene                                         | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(b)fluoranthene                                   | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(g,h,i)perylene                                   | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzo(k)fluoranthene                                   | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Benzoic Acid                                           | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Bis(2-chloroethoxy)methane                             | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Bis(2-chloroethyl)ether                                | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Bis(2-chloroisopropyl)ether                            | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Bis(2-Ethylhexyl)phthalate<br>4-Bromophenylphenylether | ND       | 10                 | μg/L<br>μg/I      |                |                  |               |                |     |              |            |
| 4-Bromopnenyipnenyietner<br>Butylbenzylphthalate       | ND       | 10<br>10           | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| Butytoenzytphthalate<br>Carbazole                      | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| 4-Chloroaniline                                        | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| 4-Chloro-3-methylphenol                                | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| 2-Chloronaphthalene                                    | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| 2-Chlorophenol                                         | ND<br>ND | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 4-Chlorophenylphenylether                              | ND<br>ND | 10                 | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| Chrysene                                               | ND<br>ND | 5.0                | μg/L<br>μg/L      |                |                  |               |                |     |              |            |
| Dibenz(a,h)anthracene                                  | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Dibenzofuran                                           | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Di-n-butylphthalate                                    | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 1,2-Dichlorobenzene                                    | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 1,3-Dichlorobenzene                                    | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 1,4-Dichlorobenzene                                    | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| 3,3-Dichlorobenzidine                                  | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 2,4-Dichlorophenol                                     | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| Diethylphthalate                                       | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| 2,4-Dimethylphenol                                     | ND       | 10                 | $\mu g/L$         |                |                  |               |                |     |              |            |
| Dimethylphthalate                                      | ND       | 10                 | $\mu g \! / \! L$ |                |                  |               |                |     |              |            |
| 4,6-Dinitro-2-methylphenol                             | ND       | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |              |            |
| 2,4-Dinitrophenol                                      | ND       | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |              | V-04, V-20 |
| 2,4-Dinitrotoluene                                     | ND       | 10                 | $\mu \text{g/L}$  |                |                  |               |                |     |              | V-20       |
| 2,6-Dinitrotoluene                                     | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Di-n-octylphthalate                                    | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 1,2-Diphenylhydrazine/Azobenzene                       | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Fluoranthene                                           | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Fluorene                                               | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Hexachlorobenzene                                      | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Hexachlorobutadiene                                    | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Hexachlorocyclopentadiene                              | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Hexachloroethane                                       | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| Indeno(1,2,3-cd)pyrene                                 | ND       | 5.0                | μg/L              |                |                  |               |                |     |              |            |
| Isophorone  Mathylpophthologo                          | ND       | 10                 | μg/L              |                |                  |               |                |     |              |            |
| 1-Methylnaphthalene<br>2-Methylnaphthalene             | ND       | 5.0<br>5.0         | μg/L<br>μg/L      |                |                  |               |                |     |              |            |



## QUALITY CONTROL

Spike

Source

%REC

RPD

# Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                                       | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------------------|----------|--------------------|--------------|----------------|------------------|--------------|----------------|-----|--------------|-------|
|                                               | Kesuit   | LIIIII             | Omis         | Level          | resuit           | /UKEC        | Lillits        | NED | Finnt        | notes |
| Batch B293790 - SW-846 3510C                  |          |                    |              |                |                  |              |                |     |              |       |
| Blank (B293790-BLK1)                          |          |                    |              | Prepared: 11   | /02/21 Analy     | zed: 11/03/2 | 1              |     |              |       |
| -Methylphenol                                 | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| /4-Methylphenol                               | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| Japhthalene                                   | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |       |
| -Nitroaniline                                 | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| -Nitroaniline                                 | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| -Nitroaniline                                 | ND       | 10                 | μg/L         |                |                  |              |                |     |              | V-20  |
| litrobenzene                                  | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| -Nitrophenol                                  | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| -Nitrophenol                                  | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| I-Nitrosodimethylamine                        | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| I-Nitrosodiphenylamine/Diphenylamine          | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| I-Nitrosodi-n-propylamine                     | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| entachloronitrobenzene                        | ND       | 10                 | μg/L         |                |                  |              |                |     |              |       |
| entachlorophenol                              | ND       | 10<br>5.0          | μg/L<br>α/I  |                |                  |              |                |     |              |       |
| henanthrene                                   | ND       | 5.0                | μg/L<br>α/I  |                |                  |              |                |     |              |       |
| henol                                         | ND       | 10<br>5.0          | μg/L         |                |                  |              |                |     |              |       |
| yrene                                         | ND       | 5.0                | μg/L         |                |                  |              |                |     |              |       |
| yridine 2.4.5 Tetrachlorobenzene              | ND       | 5.0<br>10          | μg/L<br>μg/I |                |                  |              |                |     |              |       |
| 2,4,5-Tetrachlorobenzene                      | ND       |                    | μg/L<br>μg/I |                |                  |              |                |     |              |       |
| ,2,4-Trichlorobenzene<br>,4,5-Trichlorophenol | ND       | 5.0<br>10          | μg/L<br>μg/I |                |                  |              |                |     |              |       |
| 4,6-Trichlorophenol                           | ND<br>ND | 10                 | μg/L<br>μg/L |                |                  |              |                |     |              |       |
| urrogate: 2-Fluorophenol                      | 99.8     |                    | μg/L         | 200            |                  | 49.9         | 15-110         |     |              |       |
| urrogate: Phenol-d6                           | 73.7     |                    | $\mu g/L$    | 200            |                  | 36.9         | 15-110         |     |              |       |
| urrogate: Nitrobenzene-d5                     | 65.3     |                    | $\mu g/L$    | 100            |                  | 65.3         | 30-130         |     |              |       |
| urrogate: 2-Fluorobiphenyl                    | 62.6     |                    | $\mu g/L$    | 100            |                  | 62.6         | 30-130         |     |              |       |
| urrogate: 2,4,6-Tribromophenol                | 149      |                    | $\mu g/L$    | 200            |                  | 74.4         | 15-110         |     |              |       |
| urrogate: p-Terphenyl-d14                     | 96.6     |                    | μg/L         | 100            |                  | 96.6         | 30-130         |     |              |       |
| CS (B293790-BS1)                              |          |                    |              |                | /02/21 Analy     |              |                |     |              |       |
| cenaphthene                                   | 36.8     | 5.0                | μg/L         | 50.0           |                  | 73.7         | 40-140         |     |              |       |
| cenaphthylene                                 | 38.4     | 5.0                | μg/L         | 50.0           |                  | 76.7         | 40-140         |     |              |       |
| cetophenone                                   | 37.5     | 10                 | μg/L         | 50.0           |                  | 75.1         | 40-140         |     |              |       |
| miline                                        | 36.4     | 5.0                | μg/L         | 50.0           |                  | 72.8         | 40-140         |     |              |       |
| Anthracene                                    | 38.1     | 5.0                | μg/L         | 50.0           |                  | 76.2         | 40-140         |     |              |       |
| enzidine                                      | 41.9     | 20                 | μg/L         | 50.0           |                  | 83.8         | 40-140         |     |              | V-04  |
| denzo(a)anthracene                            | 36.7     | 5.0                | μg/L         | 50.0           |                  | 73.4         | 40-140         |     |              |       |
| Benzo(a)pyrene                                | 41.3     | 5.0                | μg/L         | 50.0           |                  | 82.6         | 40-140         |     |              |       |
| Benzo(b)fluoranthene                          | 38.0     | 5.0                | μg/L         | 50.0           |                  | 76.0         | 40-140         |     |              |       |
| Benzo(g,h,i)perylene                          | 42.8     | 5.0                | μg/L         | 50.0           |                  | 85.6         | 40-140         |     |              |       |
| enzo(k)fluoranthene                           | 40.7     | 5.0                | μg/L         | 50.0           |                  | 81.4         | 40-140         |     |              |       |
| denzoic Acid                                  | 20.1     | 10                 | μg/L         | 50.0           |                  | 40.3         | 10-130         |     |              |       |
| is(2-chloroethoxy)methane                     | 38.1     | 10                 | μg/L         | 50.0           |                  | 76.2         | 40-140         |     |              |       |
| is(2-chloroethyl)ether                        | 36.7     | 10                 | μg/L         | 50.0           |                  | 73.3         | 40-140         |     |              |       |
| is(2-chloroisopropyl)ether                    | 45.0     | 10                 | μg/L         | 50.0           |                  | 90.0         | 40-140         |     |              |       |
| is(2-Ethylhexyl)phthalate                     | 42.4     | 10                 | μg/L         | 50.0           |                  | 84.9         | 40-140         |     |              |       |
| -Bromophenylphenylether                       | 35.2     | 10                 | μg/L         | 50.0           |                  | 70.4         | 40-140         |     |              |       |
| utylbenzylphthalate                           | 40.2     | 10                 | μg/L         | 50.0           |                  | 80.4         | 40-140         |     |              |       |
| arbazole                                      | 38.1     | 10                 | μg/L         | 50.0           |                  | 76.2         | 40-140         |     |              |       |
| -Chloroaniline                                | 35.9     | 10                 | μg/L         | 50.0           |                  | 71.8         | 40-140         |     |              |       |
| -Chloro-3-methylphenol                        | 38.1     | 10                 | $\mu g/L$    | 50.0           |                  | 76.2         | 30-130         |     |              |       |
| -Chloronaphthalene                            | 30.4     | 10                 | μg/L         | 50.0           |                  | 60.8         | 40-140         |     |              |       |



# QUALITY CONTROL

| Analyte                              | Result       | Reporting<br>Limit | Units            | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|--------------------------------------|--------------|--------------------|------------------|----------------|------------------|--------------|----------------|-----|--------------|------------|
| Batch B293790 - SW-846 3510C         |              |                    |                  |                |                  |              |                |     |              |            |
| LCS (B293790-BS1)                    |              |                    |                  | Prepared: 11   | /02/21 Analy     | zed: 11/03/2 | 21             |     |              |            |
| 2-Chlorophenol                       | 32.0         | 10                 | $\mu g/L$        | 50.0           |                  | 63.9         | 30-130         |     |              |            |
| 4-Chlorophenylphenylether            | 35.4         | 10                 | $\mu g/L$        | 50.0           |                  | 70.7         | 40-140         |     |              |            |
| Chrysene                             | 37.8         | 5.0                | $\mu g/L$        | 50.0           |                  | 75.6         | 40-140         |     |              |            |
| Dibenz(a,h)anthracene                | 43.1         | 5.0                | $\mu g/L$        | 50.0           |                  | 86.2         | 40-140         |     |              |            |
| Dibenzofuran                         | 37.8         | 5.0                | $\mu g/L$        | 50.0           |                  | 75.7         | 40-140         |     |              |            |
| Di-n-butylphthalate                  | 36.7         | 10                 | $\mu g/L$        | 50.0           |                  | 73.4         | 40-140         |     |              |            |
| 1,2-Dichlorobenzene                  | 29.6         | 5.0                | $\mu g/L$        | 50.0           |                  | 59.1         | 40-140         |     |              |            |
| 1,3-Dichlorobenzene                  | 28.4         | 5.0                | μg/L             | 50.0           |                  | 56.7         | 40-140         |     |              |            |
| 1,4-Dichlorobenzene                  | 28.8         | 5.0                | $\mu g/L$        | 50.0           |                  | 57.7         | 40-140         |     |              |            |
| 3,3-Dichlorobenzidine                | 40.3         | 10                 | μg/L             | 50.0           |                  | 80.6         | 40-140         |     |              |            |
| 2,4-Dichlorophenol                   | 34.5         | 10                 | $\mu g/L$        | 50.0           |                  | 69.0         | 30-130         |     |              |            |
| Diethylphthalate                     | 37.2         | 10                 | $\mu g/L$        | 50.0           |                  | 74.5         | 40-140         |     |              |            |
| 2,4-Dimethylphenol                   | 33.9         | 10                 | $\mu g/L$        | 50.0           |                  | 67.8         | 30-130         |     |              |            |
| Dimethylphthalate                    | 37.0         | 10                 | $\mu g/L$        | 50.0           |                  | 74.0         | 40-140         |     |              |            |
| 4,6-Dinitro-2-methylphenol           | 39.2         | 10                 | $\mu \text{g/L}$ | 50.0           |                  | 78.3         | 30-130         |     |              |            |
| 2,4-Dinitrophenol                    | 51.8         | 10                 | $\mu g/L$        | 50.0           |                  | 104          | 30-130         |     |              | V-04, V-06 |
| 2,4-Dinitrotoluene                   | 44.5         | 10                 | $\mu g/L$        | 50.0           |                  | 89.1         | 40-140         |     |              | V-06       |
| 2,6-Dinitrotoluene                   | 44.3         | 10                 | μg/L             | 50.0           |                  | 88.6         | 40-140         |     |              |            |
| Di-n-octylphthalate                  | 40.3         | 10                 | $\mu g/L$        | 50.0           |                  | 80.7         | 40-140         |     |              |            |
| 1,2-Diphenylhydrazine/Azobenzene     | 41.4         | 10                 | μg/L             | 50.0           |                  | 82.7         | 40-140         |     |              |            |
| Fluoranthene                         | 36.5         | 5.0                | μg/L             | 50.0           |                  | 73.1         | 40-140         |     |              |            |
| Fluorene                             | 38.4         | 5.0                | μg/L             | 50.0           |                  | 76.9         | 40-140         |     |              |            |
| Hexachlorobenzene                    | 37.1         | 10                 | μg/L             | 50.0           |                  | 74.1         | 40-140         |     |              |            |
| Hexachlorobutadiene                  | 28.0         | 10                 | μg/L             | 50.0           |                  | 56.0         | 40-140         |     |              |            |
| Hexachlorocyclopentadiene            | 28.6         | 10                 | μg/L             | 50.0           |                  | 57.3         | 30-140         |     |              |            |
| Hexachloroethane                     | 29.4         | 10                 | μg/L             | 50.0           |                  | 58.8         | 40-140         |     |              |            |
| Indeno(1,2,3-cd)pyrene               | 46.3         | 5.0                | μg/L             | 50.0           |                  | 92.6         | 40-140         |     |              |            |
| Isophorone                           | 42.4         | 10                 | $\mu g/L$        | 50.0           |                  | 84.9         | 40-140         |     |              |            |
| l-Methylnaphthalene                  | 32.3         | 5.0                | μg/L             | 50.0           |                  | 64.6         | 40-140         |     |              |            |
| 2-Methylnaphthalene                  | 39.4         | 5.0                | μg/L             | 50.0           |                  | 78.7         | 40-140         |     |              |            |
| 2-Methylphenol                       | 33.6         | 10                 | μg/L             | 50.0           |                  | 67.3         | 30-130         |     |              |            |
| 3/4-Methylphenol                     | 32.6         | 10                 | μg/L             | 50.0           |                  | 65.2         | 30-130         |     |              |            |
| Naphthalene                          | 35.6         | 5.0                | μg/L             | 50.0           |                  | 71.1         | 40-140         |     |              |            |
| 2-Nitroaniline                       | 55.1         | 10                 | μg/L             | 50.0           |                  | 110          | 40-140         |     |              |            |
| 3-Nitroaniline                       | 41.2         | 10                 | μg/L             | 50.0           |                  | 82.5         | 40-140         |     |              |            |
| 4-Nitroaniline                       | 44.0         | 10                 | μg/L             | 50.0           |                  | 87.9         | 40-140         |     |              | V-06       |
| Nitrobenzene                         | 35.7         | 10                 | μg/L             | 50.0           |                  | 71.5         | 40-140         |     |              | . ••       |
| 2-Nitrophenol                        | 38.3         | 10                 | μg/L             | 50.0           |                  | 76.6         | 30-130         |     |              |            |
| 4-Nitrophenol                        | 22.2         | 10                 | μg/L             | 50.0           |                  | 44.4         | 10-130         |     |              |            |
| N-Nitrosodimethylamine               | 23.8         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 47.7         | 40-140         |     |              |            |
| N-Nitrosodiphenylamine/Diphenylamine | 39.1         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 78.2         | 40-140         |     |              |            |
| N-Nitrosodi-n-propylamine            | 41.9         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 83.8         | 40-140         |     |              |            |
| Pentachloronitrobenzene              | 37.9         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 75.8         | 40-140         |     |              |            |
| Pentachlorophenol                    | 34.9         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 69.9         | 30-130         |     |              |            |
| Phenanthrene                         | 34.9<br>37.5 | 5.0                | μg/L<br>μg/L     | 50.0           |                  | 75.0         | 40-140         |     |              |            |
| Phenol                               | 17.5         | 10                 | μg/L             | 50.0           |                  | 34.9         | 20-130         |     |              |            |
| Pyrene                               | 37.8         | 5.0                | μg/L<br>μg/L     | 50.0           |                  | 75.7         | 40-140         |     |              |            |
| Pyridine                             |              | 5.0                | μg/L<br>μg/L     | 50.0           |                  | 32.5         | 10-140         |     |              |            |
| 1,2,4,5-Tetrachlorobenzene           | 16.3         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 66.4         | 40-140         |     |              |            |
| 1,2,4-Trichlorobenzene               | 33.2         | 5.0                | μg/L<br>μg/L     | 50.0           |                  | 59.6         | 40-140         |     |              |            |
| 2,4,5-Trichlorophenol                | 29.8         | 10                 | μg/L<br>μg/L     | 50.0           |                  | 75.9         | 30-130         |     |              |            |
| 2,4,6-Trichlorophenol                | 38.0<br>37.0 | 10                 | μg/L<br>μg/L     | 50.0           |                  | 75.9<br>74.1 | 30-130         |     |              |            |



## QUALITY CONTROL

| Analyte                          | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|----------------------------------|--------|--------------------|-------------------|----------------|------------------|---------------|----------------|-------|--------------|------------|---|
| Batch B293790 - SW-846 3510C     |        |                    |                   |                |                  |               |                |       |              |            | _ |
| LCS (B293790-BS1)                |        |                    |                   | Prepared: 11   | /02/21 Analy     | yzed: 11/03/2 | 1              |       |              |            |   |
| Surrogate: 2-Fluorophenol        | 98.3   |                    | μg/L              | 200            |                  | 49.1          | 15-110         |       |              |            | _ |
| Surrogate: Phenol-d6             | 72.2   |                    | $\mu g/L$         | 200            |                  | 36.1          | 15-110         |       |              |            |   |
| Surrogate: Nitrobenzene-d5       | 62.7   |                    | $\mu g/L$         | 100            |                  | 62.7          | 30-130         |       |              |            |   |
| Surrogate: 2-Fluorobiphenyl      | 65.5   |                    | $\mu g/L$         | 100            |                  | 65.5          | 30-130         |       |              |            |   |
| Surrogate: 2,4,6-Tribromophenol  | 172    |                    | $\mu g/L$         | 200            |                  | 85.9          | 15-110         |       |              |            |   |
| Surrogate: p-Terphenyl-d14       | 92.3   |                    | μg/L              | 100            |                  | 92.3          | 30-130         |       |              |            |   |
| LCS Dup (B293790-BSD1)           |        |                    |                   | Prepared: 11   | /02/21 Analy     | yzed: 11/03/2 | 1              |       |              |            | _ |
| Acenaphthene                     | 38.5   | 5.0                | μg/L              | 50.0           |                  | 76.9          | 40-140         | 4.30  | 20           |            |   |
| Acenaphthylene                   | 39.2   | 5.0                | μg/L              | 50.0           |                  | 78.4          | 40-140         | 2.24  | 20           |            |   |
| Acetophenone                     | 38.4   | 10                 | μg/L              | 50.0           |                  | 76.8          | 40-140         | 2.24  | 20           |            |   |
| Aniline                          | 38.7   | 5.0                | μg/L              | 50.0           |                  | 77.4          | 40-140         | 6.20  | 50           |            | 1 |
| Anthracene                       | 41.1   | 5.0                | μg/L              | 50.0           |                  | 82.2          | 40-140         | 7.60  | 20           |            |   |
| Benzidine                        | 37.6   | 20                 | μg/L              | 50.0           |                  | 75.1          | 40-140         | 11.0  | 20           | V-04       |   |
| Benzo(a)anthracene               | 39.4   | 5.0                | μg/L              | 50.0           |                  | 78.7          | 40-140         | 6.99  | 20           |            |   |
| Benzo(a)pyrene                   | 45.1   | 5.0                | μg/L              | 50.0           |                  | 90.2          | 40-140         | 8.79  | 20           |            |   |
| Benzo(b)fluoranthene             | 40.8   | 5.0                | μg/L              | 50.0           |                  | 81.7          | 40-140         | 7.21  | 20           |            |   |
| Benzo(g,h,i)perylene             | 44.6   | 5.0                | μg/L              | 50.0           |                  | 89.2          | 40-140         | 4.17  | 20           |            |   |
| Benzo(k)fluoranthene             | 43.9   | 5.0                | μg/L              | 50.0           |                  | 87.8          | 40-140         | 7.56  | 20           |            |   |
| Benzoic Acid                     | 22.9   | 10                 | μg/L              | 50.0           |                  | 45.8          | 10-130         | 12.9  | 50           |            | † |
| Bis(2-chloroethoxy)methane       | 39.1   | 10                 | μg/L              | 50.0           |                  | 78.3          | 40-140         | 2.67  | 20           |            |   |
| Bis(2-chloroethyl)ether          | 37.7   | 10                 | μg/L              | 50.0           |                  | 75.4          | 40-140         | 2.80  | 20           |            |   |
| Bis(2-chloroisopropyl)ether      | 44.2   | 10                 | μg/L              | 50.0           |                  | 88.4          | 40-140         | 1.75  | 20           |            |   |
| Bis(2-Ethylhexyl)phthalate       | 43.2   | 10                 | μg/L              | 50.0           |                  | 86.3          | 40-140         | 1.71  | 20           |            |   |
| 4-Bromophenylphenylether         | 37.7   | 10                 | μg/L              | 50.0           |                  | 75.3          | 40-140         | 6.81  | 20           |            |   |
| Butylbenzylphthalate             | 42.0   | 10                 | μg/L              | 50.0           |                  | 84.0          | 40-140         | 4.33  | 20           |            |   |
| Carbazole                        | 41.4   | 10                 | $\mu g/L$         | 50.0           |                  | 82.8          | 40-140         | 8.35  | 20           |            |   |
| 4-Chloroaniline                  | 37.8   | 10                 | $\mu g/L$         | 50.0           |                  | 75.6          | 40-140         | 5.21  | 20           |            |   |
| 4-Chloro-3-methylphenol          | 39.7   | 10                 | $\mu g/L$         | 50.0           |                  | 79.4          | 30-130         | 4.11  | 20           |            |   |
| 2-Chloronaphthalene              | 30.3   | 10                 | $\mu g/L$         | 50.0           |                  | 60.6          | 40-140         | 0.363 | 20           |            |   |
| 2-Chlorophenol                   | 33.1   | 10                 | $\mu g/L$         | 50.0           |                  | 66.2          | 30-130         | 3.50  | 20           |            |   |
| 4-Chlorophenylphenylether        | 36.8   | 10                 | $\mu g/L$         | 50.0           |                  | 73.7          | 40-140         | 4.13  | 20           |            |   |
| Chrysene                         | 40.8   | 5.0                | $\mu g/L$         | 50.0           |                  | 81.5          | 40-140         | 7.61  | 20           |            |   |
| Dibenz(a,h)anthracene            | 47.2   | 5.0                | $\mu g/L$         | 50.0           |                  | 94.4          | 40-140         | 9.06  | 20           |            |   |
| Dibenzofuran                     | 39.6   | 5.0                | $\mu g/L$         | 50.0           |                  | 79.1          | 40-140         | 4.44  | 20           |            |   |
| Di-n-butylphthalate              | 40.0   | 10                 | $\mu g/L$         | 50.0           |                  | 80.1          | 40-140         | 8.73  | 20           |            |   |
| 1,2-Dichlorobenzene              | 30.2   | 5.0                | $\mu g/L$         | 50.0           |                  | 60.4          | 40-140         | 2.14  | 20           |            |   |
| 1,3-Dichlorobenzene              | 28.7   | 5.0                | $\mu g/L$         | 50.0           |                  | 57.4          | 40-140         | 1.19  | 20           |            |   |
| 1,4-Dichlorobenzene              | 29.4   | 5.0                | $\mu g/L$         | 50.0           |                  | 58.8          | 40-140         | 1.86  | 20           |            |   |
| 3,3-Dichlorobenzidine            | 42.7   | 10                 | $\mu g/L$         | 50.0           |                  | 85.4          | 40-140         | 5.76  | 20           |            |   |
| 2,4-Dichlorophenol               | 36.2   | 10                 | $\mu g/L$         | 50.0           |                  | 72.4          | 30-130         | 4.78  | 20           |            |   |
| Diethylphthalate                 | 39.1   | 10                 | $\mu g/L$         | 50.0           |                  | 78.3          | 40-140         | 4.92  | 20           |            |   |
| 2,4-Dimethylphenol               | 35.4   | 10                 | $\mu g/L$         | 50.0           |                  | 70.9          | 30-130         | 4.50  | 20           |            |   |
| Dimethylphthalate                | 40.4   | 10                 | $\mu g/L$         | 50.0           |                  | 80.7          | 40-140         | 8.63  | 50           |            |   |
| 4,6-Dinitro-2-methylphenol       | 43.3   | 10                 | $\mu g/L$         | 50.0           |                  | 86.5          | 30-130         | 9.97  | 50           |            |   |
| 2,4-Dinitrophenol                | 60.3   | 10                 | $\mu g \! / \! L$ | 50.0           |                  | 121           | 30-130         | 15.1  | 50           | V-04, V-06 |   |
| 2,4-Dinitrotoluene               | 50.2   | 10                 | $\mu g \! / \! L$ | 50.0           |                  | 100           | 40-140         | 11.8  | 20           | V-06       |   |
| 2,6-Dinitrotoluene               | 47.4   | 10                 | $\mu g/L$         | 50.0           |                  | 94.8          | 40-140         | 6.81  | 20           |            |   |
| Di-n-octylphthalate              | 41.8   | 10                 | $\mu g/L$         | 50.0           |                  | 83.5          | 40-140         | 3.46  | 20           |            |   |
| 1,2-Diphenylhydrazine/Azobenzene | 41.8   | 10                 | $\mu \text{g}/L$  | 50.0           |                  | 83.7          | 40-140         | 1.15  | 20           |            |   |
| Fluoranthene                     | 41.5   | 5.0                | μg/L              | 50.0           |                  | 82.9          | 40-140         | 12.6  | 20           |            |   |
| Fluorene                         | 40.9   | 5.0                | μg/L              | 50.0           |                  | 81.7          | 40-140         | 6.08  | 20           |            |   |



## QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |     |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|-----|
| Batch B293790 - SW-846 3510C         |        |                    |           |                |                  |               |                |       |              |       |     |
| LCS Dup (B293790-BSD1)               |        |                    |           | Prepared: 11   | /02/21 Anal      | yzed: 11/03/2 | 21             |       |              |       |     |
| Hexachlorobenzene                    | 39.0   | 10                 | μg/L      | 50.0           |                  | 78.0          | 40-140         | 5.02  | 20           |       |     |
| Hexachlorobutadiene                  | 28.7   | 10                 | $\mu g/L$ | 50.0           |                  | 57.4          | 40-140         | 2.50  | 20           |       |     |
| Hexachlorocyclopentadiene            | 29.8   | 10                 | $\mu g/L$ | 50.0           |                  | 59.6          | 30-140         | 4.07  | 50           |       | † ‡ |
| Hexachloroethane                     | 29.5   | 10                 | $\mu g/L$ | 50.0           |                  | 59.1          | 40-140         | 0.407 | 50           |       | ‡   |
| Indeno(1,2,3-cd)pyrene               | 49.2   | 5.0                | $\mu g/L$ | 50.0           |                  | 98.3          | 40-140         | 6.01  | 50           |       | ‡   |
| Isophorone                           | 42.9   | 10                 | $\mu g/L$ | 50.0           |                  | 85.9          | 40-140         | 1.15  | 20           |       |     |
| 1-Methylnaphthalene                  | 34.1   | 5.0                | $\mu g/L$ | 50.0           |                  | 68.2          | 40-140         | 5.42  | 20           |       |     |
| 2-Methylnaphthalene                  | 39.6   | 5.0                | μg/L      | 50.0           |                  | 79.3          | 40-140         | 0.709 | 20           |       |     |
| 2-Methylphenol                       | 34.8   | 10                 | μg/L      | 50.0           |                  | 69.7          | 30-130         | 3.56  | 20           |       |     |
| 3/4-Methylphenol                     | 34.1   | 10                 | $\mu g/L$ | 50.0           |                  | 68.2          | 30-130         | 4.53  | 20           |       |     |
| Naphthalene                          | 34.9   | 5.0                | μg/L      | 50.0           |                  | 69.8          | 40-140         | 1.82  | 20           |       |     |
| 2-Nitroaniline                       | 59.3   | 10                 | μg/L      | 50.0           |                  | 119           | 40-140         | 7.26  | 20           |       |     |
| 3-Nitroaniline                       | 45.2   | 10                 | μg/L      | 50.0           |                  | 90.3          | 40-140         | 9.05  | 20           |       |     |
| 4-Nitroaniline                       | 49.7   | 10                 | μg/L      | 50.0           |                  | 99.3          | 40-140         | 12.2  | 20           | V-06  |     |
| Nitrobenzene                         | 37.0   | 10                 | μg/L      | 50.0           |                  | 73.9          | 40-140         | 3.36  | 20           |       |     |
| 2-Nitrophenol                        | 40.2   | 10                 | μg/L      | 50.0           |                  | 80.5          | 30-130         | 4.94  | 20           |       |     |
| 4-Nitrophenol                        | 25.4   | 10                 | μg/L      | 50.0           |                  | 50.8          | 10-130         | 13.5  | 50           |       | † ‡ |
| N-Nitrosodimethylamine               | 24.6   | 10                 | μg/L      | 50.0           |                  | 49.1          | 40-140         | 2.89  | 20           |       |     |
| N-Nitrosodiphenylamine/Diphenylamine | 41.8   | 10                 | μg/L      | 50.0           |                  | 83.7          | 40-140         | 6.72  | 20           |       |     |
| N-Nitrosodi-n-propylamine            | 41.8   | 10                 | μg/L      | 50.0           |                  | 83.6          | 40-140         | 0.287 | 20           |       |     |
| Pentachloronitrobenzene              | 42.5   | 10                 | μg/L      | 50.0           |                  | 85.1          | 40-140         | 11.6  | 20           |       |     |
| Pentachlorophenol                    | 38.4   | 10                 | μg/L      | 50.0           |                  | 76.9          | 30-130         | 9.54  | 50           |       | ‡   |
| Phenanthrene                         | 40.6   | 5.0                | μg/L      | 50.0           |                  | 81.2          | 40-140         | 7.86  | 20           |       |     |
| Phenol                               | 18.4   | 10                 | μg/L      | 50.0           |                  | 36.8          | 20-130         | 5.13  | 20           |       | †   |
| Pyrene                               | 40.6   | 5.0                | μg/L      | 50.0           |                  | 81.2          | 40-140         | 7.01  | 20           |       |     |
| Pyridine                             | 15.4   | 5.0                | μg/L      | 50.0           |                  | 30.9          | 10-140         | 5.23  | 50           |       | † ‡ |
| 1,2,4,5-Tetrachlorobenzene           | 33.1   | 10                 | μg/L      | 50.0           |                  | 66.1          | 40-140         | 0.453 | 20           |       |     |
| 1,2,4-Trichlorobenzene               | 31.4   | 5.0                | μg/L      | 50.0           |                  | 62.7          | 40-140         | 5.04  | 20           |       |     |
| 2,4,5-Trichlorophenol                | 40.4   | 10                 | μg/L      | 50.0           |                  | 80.7          | 30-130         | 6.10  | 20           |       |     |
| 2,4,6-Trichlorophenol                | 39.5   | 10                 | μg/L      | 50.0           |                  | 79.0          | 30-130         | 6.51  | 50           |       | ‡   |
| Surrogate: 2-Fluorophenol            | 101    |                    | μg/L      | 200            |                  | 50.5          | 15-110         |       |              |       |     |
| Surrogate: Phenol-d6                 | 76.2   |                    | μg/L      | 200            |                  | 38.1          | 15-110         |       |              |       |     |
| Surrogate: Nitrobenzene-d5           | 66.7   |                    | μg/L      | 100            |                  | 66.7          | 30-130         |       |              |       |     |
| Surrogate: 2-Fluorobiphenyl          | 66.0   |                    | μg/L      | 100            |                  | 66.0          | 30-130         |       |              |       |     |
| Surrogate: 2,4,6-Tribromophenol      | 190    |                    | μg/L      | 200            |                  | 94.8          | 15-110         |       |              |       |     |
| Surrogate: p-Terphenyl-d14           | 98.2   |                    | μg/L      | 100            |                  | 98.2          | 30-130         |       |              |       |     |



# QUALITY CONTROL

|                              | <b>.</b> | Reporting    | TT 1: | Spike      | Source       | 0/DEC  | %REC   | DDD    | RPD   | 37.4  |
|------------------------------|----------|--------------|-------|------------|--------------|--------|--------|--------|-------|-------|
| Analyte                      | Result   | Limit        | Units | Level      | Result       | %REC   | Limits | RPD    | Limit | Notes |
| Batch B294074 - Alcohol Prep |          |              |       |            |              |        |        |        |       |       |
| Blank (B294074-BLK1)         |          |              |       | Prepared & | Analyzed: 11 | /05/21 |        |        |       |       |
| Methanol                     | ND       | 10           | mg/L  |            |              |        |        |        |       |       |
| Isopropanol                  | ND       | 10           | mg/L  |            |              |        |        |        |       |       |
| Ethanol                      | ND       | 10           | mg/L  |            |              |        |        |        |       |       |
| Propylene glycol             | ND       | 10           | mg/L  |            |              |        |        |        |       |       |
| Ethylene glycol              | ND       | 10           | mg/L  |            |              |        |        |        |       |       |
| LCS (B294074-BS1)            |          |              |       | Prepared & | Analyzed: 11 | /05/21 |        |        |       |       |
| Methanol                     | 115      | 10           | mg/L  | 100        |              | 115    | 40-140 |        |       |       |
| Isopropanol                  | 106      | 10           | mg/L  | 100        |              | 106    | 40-140 |        |       |       |
| Ethanol                      | 123      | 10           | mg/L  | 100        |              | 123    | 40-140 |        |       |       |
| Propylene glycol             | 122      | 10           | mg/L  | 100        |              | 122    | 40-140 |        |       |       |
| Ethylene glycol              | 106      | 10           | mg/L  | 100        |              | 106    | 40-140 |        |       |       |
| LCS Dup (B294074-BSD1)       |          |              |       | Prepared & | Analyzed: 11 | /05/21 |        |        |       |       |
| Methanol                     | 110      | 10           | mg/L  | 100        |              | 110    | 40-140 | 3.61   | 50    |       |
| Isopropanol                  | 95.8     | 10           | mg/L  | 100        |              | 95.8   | 40-140 | 9.76   | 50    |       |
| Ethanol                      | 124      | 10           | mg/L  | 100        |              | 124    | 40-140 | 0.716  | 50    |       |
| Propylene glycol             | 119      | 10           | mg/L  | 100        |              | 119    | 40-140 | 2.06   | 50    |       |
| Ethylene glycol              | 106      | 10           | mg/L  | 100        |              | 106    | 40-140 | 0.0634 | 50    |       |
| Duplicate (B294074-DUP1)     | Sour     | ce: 21K0043- | 02    | Prepared & | Analyzed: 11 | /05/21 |        |        |       |       |
| Methanol                     | ND       | 10           | mg/L  |            | ND           | )      |        | NC     | 50    |       |
| Isopropanol                  | ND       | 10           | mg/L  |            | ND           | )      |        | NC     | 50    |       |
| Ethanol                      | ND       | 10           | mg/L  |            | ND           | )      |        | NC     | 50    |       |
| Propylene glycol             | ND       | 10           | mg/L  |            | ND           | )      |        | NC     | 50    |       |
| Ethylene glycol              | ND       | 10           | mg/L  |            | ND           | )      |        | NC     | 50    |       |
| Matrix Spike (B294074-MS1)   | Sour     | ce: 21K0043- | 02    | Prepared & | Analyzed: 11 | /05/21 |        |        |       |       |
| Methanol                     | 107      | 10           | mg/L  | 100        | ND           | 107    | 40-140 |        |       |       |
| Isopropanol                  | 92.9     | 10           | mg/L  | 100        | ND           | 92.9   | 40-140 |        |       |       |
| Ethanol                      | 113      | 10           | mg/L  | 100        | ND           | 113    | 40-140 |        |       |       |
| Propylene glycol             | 88.1     | 10           | mg/L  | 100        | ND           | 88.1   | 40-140 |        |       |       |
| Ethylene glycol              | 68.0     | 10           | mg/L  | 100        | ND           | 68.0   | 40-140 |        |       |       |



## QUALITY CONTROL

## Petroleum Hydrocarbons Analyses - Quality Control

|                                     | <b>5</b> 1. | Reporting | TT '- | Spike       | Source       | 0/855         | %REC   | nnn  | RPD   | NT ·  |
|-------------------------------------|-------------|-----------|-------|-------------|--------------|---------------|--------|------|-------|-------|
| Analyte                             | Result      | Limit     | Units | Level       | Result       | %REC          | Limits | RPD  | Limit | Notes |
| Batch B293763 - SW-846 3510C        |             |           |       |             |              |               |        |      |       |       |
| Blank (B293763-BLK1)                |             |           |       | Prepared: 1 | 1/02/21 Anal | yzed: 11/03/2 | 21     |      |       |       |
| Diesel Range Organics               | ND          | 0.20      | mg/L  |             |              |               |        |      |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0777      |           | mg/L  | 0.100       |              | 77.7          | 40-140 |      |       |       |
| LCS (B293763-BS1)                   |             |           |       | Prepared: 1 | 1/02/21 Anal | yzed: 11/04/2 | 21     |      |       |       |
| Diesel Range Organics               | 0.752       | 0.20      | mg/L  | 1.00        |              | 75.2          | 40-140 |      |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0772      |           | mg/L  | 0.100       |              | 77.2          | 40-140 |      |       |       |
| LCS Dup (B293763-BSD1)              |             |           |       | Prepared: 1 | 1/02/21 Anal | yzed: 11/04/2 | 21     |      |       |       |
| Diesel Range Organics               | 0.719       | 0.20      | mg/L  | 1.00        |              | 71.9          | 40-140 | 4.51 | 30    |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0714      |           | mg/L  | 0.100       |              | 71.4          | 40-140 |      |       |       |
| Batch B293957 - SW-846 3510C        |             |           |       |             |              |               |        |      |       |       |
| Blank (B293957-BLK1)                |             |           |       | Prepared: 1 | 1/04/21 Anal | yzed: 11/05/2 | 21     |      |       |       |
| Diesel Range Organics               | ND          | 0.20      | mg/L  |             |              |               |        |      |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0742      |           | mg/L  | 0.100       |              | 74.2          | 40-140 |      |       |       |
| LCS (B293957-BS1)                   |             |           |       | Prepared: 1 | 1/04/21 Anal | yzed: 11/05/2 | 21     |      |       |       |
| Diesel Range Organics               | 0.876       | 0.20      | mg/L  | 1.00        |              | 87.6          | 40-140 |      |       |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0938      |           | mg/L  | 0.100       |              | 93.8          | 40-140 |      |       |       |
| LCS Dup (B293957-BSD1)              |             |           |       | Prepared: 1 | 1/04/21 Anal | yzed: 11/05/2 | 21     |      |       |       |
| Diesel Range Organics               | 0.801       | 0.20      | mg/L  | 1.00        |              | 80.1          | 40-140 | 8.94 | 30    |       |
| Surrogate: 2-Fluorobiphenyl         | 0.0799      |           | mg/L  | 0.100       |              | 79.9          | 40-140 |      |       |       |
| Batch B294072 - SW-846 5030B        |             |           |       |             |              |               |        |      |       |       |
| Blank (B294072-BLK1)                |             |           |       | Prepared: 1 | 1/05/21 Anal | yzed: 11/06/2 | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | ND          | 0.010     | mg/L  |             |              |               |        |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 16.0        |           | μg/L  | 15.0        |              | 107           | 70-130 |      |       |       |
| LCS (B294072-BS1)                   |             |           |       | Prepared: 1 | 1/05/21 Anal | yzed: 11/06/2 | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 0.239       | 0.010     | mg/L  | 0.250       |              | 95.7          | 80-120 |      |       |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.7        |           | μg/L  | 15.0        |              | 98.2          | 70-130 |      |       |       |
| LCS Dup (B294072-BSD1)              |             |           |       | Prepared: 1 | 1/05/21 Anal | yzed: 11/06/2 | 21     |      |       |       |
| Gasoline Range Organics (GRO)       | 0.231       | 0.010     | mg/L  | 0.250       |              | 92.2          | 80-120 | 3.66 | 30    |       |
| Surrogate: 1-Chloro-3-fluorobenzene | 14.9        |           | μg/L  | 15.0        |              | 99.1          | 70-130 |      |       |       |
|                                     |             |           |       |             |              |               |        |      |       |       |



## QUALITY CONTROL

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | D                  |              | C:1            | G.               |               | 0/DEC            |                | DDD          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|--------------|----------------|------------------|---------------|------------------|----------------|--------------|---------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result       | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD            | RPD<br>Limit | Notes   |
| satch B293822 - SW-846 7470A Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |              |                |                  |               |                  |                |              |         |
| lank (B293822-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                    |              | Prepared: 11   | /02/21 Analy     | /zed: 11/03/2 | 21               |                |              |         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           | 0.00010            | mg/L         |                |                  | <u> </u>      |                  |                |              |         |
| CC (B202921 BC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                    |              | Dramaradi 11   | /02/21 Amala     | wad: 11/02/   | 21               |                |              |         |
| LCS (B293822-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00450      | 0.00010            | mg/L         |                | /02/21 Analy     |               |                  |                |              |         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00450      | 0.00010            | mg/L         | 0.00402        |                  | 112           | 80-120           |                |              |         |
| LCS Dup (B293822-BSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                    |              | Prepared: 11   | /02/21 Analy     | zed: 11/03/2  | 21               |                |              |         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00452      | 0.00010            | mg/L         | 0.00402        |                  | 112           | 80-120           | 0.412          | 20           |         |
| Ouplicate (B293822-DUP1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sour         | ce: 21K0043-       | 01           | Prepared: 11   | /02/21 Analy     | zed: 11/03/2  | 21               |                |              |         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000762    | 0.00010            | mg/L         |                | 0.0000603        |               |                  | 23.3           | * 20         | R-04, J |
| Matrix Spike (B293822-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Som          | ce: 21K0043-       | .01          | Prepared: 11   | /02/21 Analy     | zed: 11/03/   | 21               |                |              |         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00445      | 0.00010            | mg/L         | 0.00402        | 0.0000603        |               | 75-125           |                |              |         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.000        |                    | J            |                |                  |               | -                |                |              |         |
| Batch B293917 - SW-846 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |              |                |                  |               |                  |                |              |         |
| Blank (B293917-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |              | Prepared: 11   | /03/21 Analy     | zed: 11/04/2  | 21               |                |              |         |
| luminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           | 0.050              | mg/L         |                |                  |               |                  |                |              |         |
| alcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND           | 0.50               | mg/L         |                |                  |               |                  |                |              |         |
| on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND           | 0.050              | mg/L         |                |                  |               |                  |                |              |         |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | 0.050              | mg/L         |                |                  |               |                  |                |              |         |
| otassium<br>odium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | 2.0<br>2.0         | mg/L<br>mg/L |                |                  |               |                  |                |              |         |
| odidiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           | 2.0                | mg/L         |                |                  |               |                  |                |              |         |
| .CS (B293917-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |              | Prepared: 11   | /03/21 Analy     | zed: 11/04/2  | 21               |                |              |         |
| lluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.512        | 0.050              | mg/L         | 0.500          |                  | 102           | 80-120           |                |              |         |
| alcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.01         | 0.50               | mg/L         | 4.00           |                  | 100           | 80-120           |                |              |         |
| on<br>Garage in the second of the | 3.92         | 0.050              | mg/L         | 4.00           |                  | 98.1          | 80-120           |                |              |         |
| lagnesium<br>otassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.84         | 0.050<br>2.0       | mg/L<br>mg/L | 4.00<br>4.00   |                  | 95.9<br>96.0  | 80-120<br>80-120 |                |              |         |
| odium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.84<br>4.06 | 2.0                | mg/L         | 4.00           |                  | 101           | 80-120           |                |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00         |                    | J            |                |                  |               |                  |                |              |         |
| CS Dup (B293917-BSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 0.050              | 77           | Prepared: 11   | /03/21 Analy     |               |                  |                |              |         |
| luminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.503        | 0.050              | mg/L         | 0.500          |                  | 101           | 80-120           | 1.72           | 20           |         |
| alcium<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.98<br>3.92 | 0.50<br>0.050      | mg/L<br>mg/L | 4.00<br>4.00   |                  | 99.6<br>97.9  | 80-120<br>80-120 | 0.530<br>0.139 | 20<br>20     |         |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.92         | 0.050              | mg/L         | 4.00           |                  | 97.9<br>95.7  | 80-120<br>80-120 | 0.139          | 20           |         |
| otassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.85         | 2.0                | mg/L         | 4.00           |                  | 96.2          | 80-120           | 0.162          | 20           |         |
| odium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.97         | 2.0                | mg/L         | 4.00           |                  | 99.2          | 80-120           | 2.18           | 20           |         |
| atch B293919 - SW-846 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                    |              |                |                  |               |                  |                |              |         |
| Blank (B293919-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |              | Prepared: 11   | /03/21 Analy     | /zed: 11/04/2 | 21               |                |              |         |
| antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND           | 1.0                | μg/L         |                |                  |               |                  |                |              |         |
| rsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND           | 0.80               | $\mu g/L$    |                |                  |               |                  |                |              |         |
| arium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND           | 10                 | μg/L         |                |                  |               |                  |                |              |         |
| eryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND           | 0.40               | μg/L         |                |                  |               |                  |                |              |         |
| admium<br>hromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | 0.20               | μg/L         |                |                  |               |                  |                |              |         |
| obalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND     | 1.0<br>1.0         | μg/L<br>μg/L |                |                  |               |                  |                |              |         |
| opper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>ND     | 1.0                | μg/L<br>μg/L |                |                  |               |                  |                |              |         |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND<br>ND     | 0.50               | μg/L<br>μg/L |                |                  |               |                  |                |              |         |
| Лanganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND     | 1.0                | μg/L         |                |                  |               |                  |                |              |         |
| Vickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND           | 5.0                | μg/L         |                |                  |               |                  |                |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                    |              |                |                  |               |                  |                |              |         |



# QUALITY CONTROL

|                              |          | Danartin -         |              | Çm:1           | 6                |               | 0/DEC          |       | DDL          |       |
|------------------------------|----------|--------------------|--------------|----------------|------------------|---------------|----------------|-------|--------------|-------|
| Analyte                      | Result   | Reporting<br>Limit | Units        | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
| Batch B293919 - SW-846 3005A |          | <u></u>            |              |                |                  |               |                |       |              |       |
| Blank (B293919-BLK1)         |          |                    |              | Prepared: 11   | /03/21 Analy     | /zed: 11/04/2 | 21             |       |              |       |
| Silver                       | ND       | 0.20               | μg/L         |                |                  |               |                |       |              |       |
| Thallium                     | ND<br>ND | 0.20               | μg/L         |                |                  |               |                |       |              |       |
| Vanadium                     | ND       | 5.0                | μg/L         |                |                  |               |                |       |              |       |
| Zinc                         | ND       | 10                 | μg/L         |                |                  |               |                |       |              |       |
| LCS (B293919-BS1)            |          |                    |              | Prepared: 11   | /03/21 Analy     | zed: 11/04/2  | 21             |       |              |       |
| Antimony                     | 527      | 10                 | $\mu g/L$    | 500            |                  | 105           | 80-120         |       |              |       |
| Arsenic                      | 502      | 8.0                | $\mu g/L$    | 500            |                  | 100           | 80-120         |       |              |       |
| Barium                       | 489      | 100                | $\mu g/L$    | 500            |                  | 97.7          | 80-120         |       |              |       |
| Beryllium                    | 487      | 4.0                | $\mu g/L$    | 500            |                  | 97.4          | 80-120         |       |              |       |
| Cadmium                      | 490      | 2.0                | $\mu g/L$    | 500            |                  | 98.0          | 80-120         |       |              |       |
| Chromium                     | 495      | 10                 | $\mu g/L$    | 500            |                  | 99.0          | 80-120         |       |              |       |
| Cobalt                       | 505      | 10                 | $\mu g/L$    | 500            |                  | 101           | 80-120         |       |              |       |
| Copper                       | 971      | 10                 | $\mu g/L$    | 1000           |                  | 97.1          | 80-120         |       |              |       |
| Lead                         | 472      | 5.0                | μg/L         | 500            |                  | 94.5          | 80-120         |       |              |       |
| Manganese                    | 502      | 10                 | μg/L         | 500            |                  | 100           | 80-120         |       |              |       |
| Nickel                       | 489      | 50                 | μg/L         | 500            |                  | 97.8          | 80-120         |       |              |       |
| Selenium                     | 503      | 50                 | μg/L         | 500            |                  | 101           | 80-120         |       |              |       |
| Silver                       | 489      | 2.0                | μg/L         | 500            |                  | 97.7          | 80-120         |       |              |       |
| Thallium                     | 489      | 2.0                | μg/L         | 500            |                  | 97.8          | 80-120         |       |              |       |
| Vanadium                     | 531      | 50                 | μg/L         | 500            |                  | 106           | 80-120         |       |              |       |
| Zinc                         | 978      | 100                | μg/L         | 1000           |                  | 97.8          | 80-120         |       |              |       |
| LCS Dup (B293919-BSD1)       |          |                    |              | Prepared: 11   | /03/21 Analy     | zed: 11/04/2  | 21             |       |              |       |
| Antimony                     | 520      | 10                 | μg/L         | 500            |                  | 104           | 80-120         | 1.29  | 20           |       |
| Arsenic                      | 486      | 8.0                | μg/L         | 500            |                  | 97.2          | 80-120         | 3.17  | 20           |       |
| Barium                       | 485      | 100                | μg/L         | 500            |                  | 96.9          | 80-120         | 0.829 | 20           |       |
| Beryllium                    | 475      | 4.0                | μg/L         | 500            |                  | 95.1          | 80-120         | 2.41  | 20           |       |
| Cadmium                      | 481      | 2.0                | μg/L         | 500            |                  | 96.1          | 80-120         | 1.95  | 20           |       |
| Chromium                     | 489      | 10                 | μg/L         | 500            |                  | 97.9          | 80-120         | 1.12  | 20           |       |
| Cobalt                       | 494      | 10                 | μg/L         | 500            |                  | 98.8          | 80-120         | 2.15  | 20           |       |
| Copper                       | 954      | 10                 | μg/L         | 1000           |                  | 95.4          | 80-120         | 1.80  | 20           |       |
| Lead                         | 470      | 5.0                | μg/L         | 500            |                  | 94.1          | 80-120         | 0.421 | 20           |       |
| Manganese                    | 500      | 10                 | μg/L         | 500            |                  | 100           | 80-120         | 0.439 | 20           |       |
| Nickel                       | 477      | 50                 | μg/L         | 500            |                  | 95.5          | 80-120         | 2.41  | 20           |       |
| Selenium                     | 489      | 50                 | μg/L         | 500            |                  | 97.8          | 80-120         | 2.79  | 20           |       |
| Silver                       | 476      | 2.0                | μg/L         | 500            |                  | 95.3          | 80-120         | 2.55  | 20           |       |
| Thallium                     | 482      | 2.0                | μg/L         | 500            |                  | 96.4          | 80-120         | 1.51  | 20           |       |
| Vanadium                     | 523      | 50                 | μg/L         | 500            |                  | 105           | 80-120         | 1.48  | 20           |       |
| Zinc                         | 957      | 100                | μg/L<br>μg/L | 1000           |                  | 95.7          | 80-120         | 2.10  | 20           |       |
| Batch B293980 - SW-846 3050B |          |                    |              |                |                  |               |                |       |              |       |
| Blank (B293980-BLK1)         |          |                    |              | Prepared: 11   | /04/21 Analy     | /zed: 11/05/2 | 21             |       |              |       |
| Aluminum                     | ND       | 17                 | mg/Kg wet    |                |                  |               |                |       |              |       |
| Antimony                     | ND       | 1.7                | mg/Kg wet    |                |                  |               |                |       |              |       |
| Arsenic                      | ND       | 3.3                | mg/Kg wet    |                |                  |               |                |       |              |       |
| Barium                       | ND       | 1.7                | mg/Kg wet    |                |                  |               |                |       |              |       |
| Beryllium                    | ND<br>ND | 0.17               | mg/Kg wet    |                |                  |               |                |       |              |       |
| Cadmium                      | ND<br>ND | 0.33               | mg/Kg wet    |                |                  |               |                |       |              |       |
| Calcium                      | ND<br>ND | 17                 | mg/Kg wet    |                |                  |               |                |       |              |       |
| Chromium                     | ND<br>ND | 0.67               | mg/Kg wet    |                |                  |               |                |       |              |       |
| Cobalt                       |          | 1.7                | mg/Kg wet    |                |                  |               |                |       |              |       |
| Cooun                        | ND       | 1./                | mg/Kg wel    |                |                  |               |                |       |              |       |



# QUALITY CONTROL

| Analyte                               | Result      | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits           | RPD          | RPD<br>Limit | Notes |
|---------------------------------------|-------------|--------------------|------------------------|----------------|------------------|-------------|--------------------------|--------------|--------------|-------|
| Batch B293980 - SW-846 3050B          |             |                    |                        |                |                  |             |                          |              |              |       |
| Blank (B293980-BLK1)                  |             |                    |                        | Prepared: 11   | /04/21 Analy     | zed: 11/05/ | 21                       |              |              |       |
| Copper                                | ND          | 0.67               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| ron                                   | ND          | 17                 | mg/Kg wet              |                |                  |             |                          |              |              |       |
| ead                                   | ND          | 0.50               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| lagnesium                             | ND          | 17                 | mg/Kg wet              |                |                  |             |                          |              |              |       |
| Ianganese                             | ND          | 0.33               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| ickel                                 | ND          | 0.67               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| otassium                              | ND          | 170                | mg/Kg wet              |                |                  |             |                          |              |              |       |
| elenium                               | ND          | 3.3                | mg/Kg wet              |                |                  |             |                          |              |              |       |
| ilver                                 | ND          | 0.33               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| odium<br>hallium                      | ND          | 170                | mg/Kg wet              |                |                  |             |                          |              |              |       |
| anadium                               | ND          | 1.7                | mg/Kg wet<br>mg/Kg wet |                |                  |             |                          |              |              |       |
| inc                                   | ND          | 0.67<br>0.67       | mg/Kg wet              |                |                  |             |                          |              |              |       |
|                                       | ND          | 0.07               | mg/Kg wet              |                |                  |             |                          |              |              |       |
| CS (B293980-BS1)                      |             |                    |                        |                | /04/21 Analy     |             |                          |              |              |       |
| luminum                               | 8210        | 48                 | mg/Kg wet              | 8110           |                  | 101         | 48.1-151.7               |              |              |       |
| ntimony                               | 31.2        | 4.8                | mg/Kg wet              | 134            |                  | 23.3        | 1.9-200.7                |              |              |       |
| rsenic                                | 165         | 9.6                | mg/Kg wet              | 170            |                  | 97.3        | 82.9-117.6               |              |              |       |
| arium                                 | 195         | 4.8                | mg/Kg wet              | 183            |                  | 106         | 82.5-117.5               |              |              |       |
| eryllium                              | 123         | 0.48               | mg/Kg wet              | 116            |                  | 106         | 83.4-116.4               |              |              |       |
| admium                                | 96.6        | 0.96               | mg/Kg wet              | 89.5           |                  | 108         | 82.8-117.3               |              |              |       |
| alcium                                | 5020        | 48                 | mg/Kg wet              | 4810           |                  | 104         | 81.7-118.1               |              |              |       |
| nromium                               | 103         | 1.9                | mg/Kg wet              | 101            |                  | 102         | 82.1-117.8               |              |              |       |
| bbalt                                 | 91.2        | 4.8                | mg/Kg wet              | 84.8           |                  | 108         | 83.5-116.5               |              |              |       |
| opper                                 | 157         | 1.9                | mg/Kg wet              | 149            |                  | 105         | 83.9-116.1               |              |              |       |
| on                                    | 11500       | 48                 | mg/Kg wet              | 14100          |                  | 81.3        | 60-139.7                 |              |              |       |
| ead                                   | 140         | 1.4                | mg/Kg wet              | 140            |                  | 100         | 82.9-117.1               |              |              |       |
| agnesium<br>anganese                  | 2380        | 48<br>0.96         | mg/Kg wet<br>mg/Kg wet | 2350           |                  | 101         | 76.2-123.8               |              |              |       |
| ickel                                 | 653         | 1.9                | mg/Kg wet              | 648<br>68.3    |                  | 101<br>106  | 81.8-118.2<br>82.1-117.7 |              |              |       |
| otassium                              | 72.5        | 480                | mg/Kg wet              | 2050           |                  | 100         | 69.8-129.8               |              |              |       |
| elenium                               | 2190<br>186 | 9.6                | mg/Kg wet              | 182            |                  | 107         | 79.7-120.3               |              |              |       |
| lver                                  | 44.3        | 0.96               | mg/Kg wet              | 50.1           |                  | 88.4        | 80.2-120.3               |              |              |       |
| odium                                 | 135         | 480                | mg/Kg wet              | 136            |                  | 99.0        | 71.6-127.9               |              |              | J     |
| hallium                               | 97.4        | 4.8                |                        | 87.7           |                  | 111         | 81.1-118.6               |              |              | J     |
| anadium                               | 155         | 1.9                | mg/Kg wet              | 153            |                  | 101         | 79.1-120.9               |              |              |       |
| nc                                    | 238         | 1.9                | mg/Kg wet              | 228            |                  | 104         | 80.7-118.9               |              |              |       |
|                                       | 250         |                    |                        |                | (04/21 4 1       |             |                          |              |              |       |
| CS Dup (B293980-BSD1)                 | 7510        | 10                 | mg/Kg wet              |                | /04/21 Analy     |             |                          | 0.07         | 20           |       |
| uminum<br>ntimony                     | 7510        | 48                 | mg/Kg wet              | 8110           |                  | 92.6        | 48.1-151.7               | 8.86         | 30           |       |
| rsenic                                | 30.0        | 4.8<br>9.6         | mg/Kg wet              | 134            |                  | 22.4        | 1.9-200.7                | 3.82         | 30           |       |
| arium                                 | 158         | 4.8                | mg/Kg wet              | 170<br>183     |                  | 92.8<br>105 | 82.9-117.6<br>82.5-117.5 | 4.71<br>1.19 | 30<br>20     |       |
| eryllium                              | 192<br>120  | 0.48               | mg/Kg wet              | 116            |                  | 103         | 83.4-116.4               | 2.40         | 30           |       |
| admium                                | 98.2        | 0.46               | mg/Kg wet              | 89.5           |                  | 110         | 82.8-117.3               | 1.64         | 20           |       |
| alcium                                | 4830        | 48                 | mg/Kg wet              | 4810           |                  | 101         | 81.7-118.1               | 3.68         | 30           |       |
| hromium                               | 103         | 1.9                | mg/Kg wet              | 101            |                  | 101         | 82.1-117.8               | 0.0385       | 30           |       |
| bbalt                                 | 90.2        | 4.8                | mg/Kg wet              | 84.8           |                  | 102         | 83.5-116.5               | 1.09         | 20           |       |
| opper                                 | 152         | 1.9                | mg/Kg wet              | 149            |                  | 100         | 83.9-116.1               | 3.58         | 30           |       |
| on                                    | 11200       | 48                 | mg/Kg wet              | 14100          |                  | 79.8        | 60-139.7                 | 1.96         | 30           |       |
| ead                                   | 133         | 1.4                | mg/Kg wet              | 14100          |                  | 95.1        | 82.9-117.1               | 5.14         | 30           |       |
| agnesium                              | 2210        | 48                 | mg/Kg wet              | 2350           |                  | 94.0        | 76.2-123.8               | 7.39         | 30           |       |
| ··· · · · · · · · · · · · · · · · · · | 628         | 0.96               | mg/Kg wet              | 648            |                  | ) T.U       | 81.8-118.2               | 1.37         | 30           |       |



## QUALITY CONTROL

|                                    |        | Reporting |           | Spike        | Source       |              | %REC       |      | RPD   |       |
|------------------------------------|--------|-----------|-----------|--------------|--------------|--------------|------------|------|-------|-------|
| Analyte                            | Result | Limit     | Units     | Level        | Result       | %REC         | Limits     | RPD  | Limit | Notes |
| Batch B293980 - SW-846 3050B       |        |           |           |              |              |              |            |      |       |       |
| LCS Dup (B293980-BSD1)             |        |           |           | Prepared: 11 | /04/21 Anal  | yzed: 11/05/ | /21        |      |       |       |
| Nickel                             | 71.4   | 1.9       | mg/Kg wet | 68.3         |              | 105          | 82.1-117.7 | 1.43 | 30    |       |
| Potassium                          | 2030   | 480       | mg/Kg wet | 2050         |              | 98.8         | 69.8-129.8 | 7.89 | 30    |       |
| Selenium                           | 183    | 9.6       | mg/Kg wet | 182          |              | 101          | 79.7-120.3 | 1.44 | 30    |       |
| Silver                             | 43.1   | 0.96      | mg/Kg wet | 50.1         |              | 86.0         | 80.2-120   | 2.76 | 30    |       |
| Sodium                             | 129    | 480       | mg/Kg wet | 136          |              | 95.0         | 71.6-127.9 | 4.03 | 30    | J     |
| Thallium                           | 94.5   | 4.8       | mg/Kg wet | 87.7         |              | 108          | 81.1-118.6 | 3.05 | 30    |       |
| Vanadium                           | 152    | 1.9       | mg/Kg wet | 153          |              | 99.1         | 79.1-120.9 | 2.13 | 30    |       |
| Zinc                               | 229    | 1.9       | mg/Kg wet | 228          |              | 100          | 80.7-118.9 | 3.91 | 30    |       |
| Reference (B293980-SRM1) MRL CHECK |        |           |           | Prepared: 11 | /04/21 Anal  | yzed: 11/05/ | /21        |      |       |       |
| Lead                               | 0.544  | 0.50      | mg/Kg wet | 0.500        |              | 109          | 80-120     |      |       |       |
| Batch B294008 - SW-846 7471        |        |           |           |              |              |              |            |      |       |       |
| Blank (B294008-BLK1)               |        |           |           | Prepared: 11 | /04/21 Anal  | yzed: 11/05/ | /21        |      |       |       |
| Mercury                            | ND     | 0.025     | mg/Kg wet |              |              |              |            |      |       |       |
| LCS (B294008-BS1)                  |        |           |           | Prepared: 11 | /04/21 Anal  | yzed: 11/05/ | /21        |      |       |       |
| Mercury                            | 16.5   | 0.75      | mg/Kg wet | 15.6         |              | 106          | 59.3-140.4 |      |       |       |
| LCS Dup (B294008-BSD1)             |        |           |           | Prepared: 11 | /04/21 Analy | yzed: 11/05/ | /21        |      |       |       |
| Mercury                            | 17.3   | 0.75      | mg/Kg wet | 15.6         |              | 111          | 59.3-140.4 | 4.75 | 20    |       |
| Batch B294113 - SW-846 3050B       |        |           |           |              |              |              |            |      |       |       |
| Blank (B294113-BLK1)               |        |           |           | Prepared: 11 | /05/21 Analy | yzed: 11/06/ | /21        |      |       |       |
| Silver                             | ND     | 0.33      | mg/Kg wet |              |              |              |            |      |       |       |
| LCS (B294113-BS1)                  |        |           |           | Prepared: 11 | /05/21 Analy | yzed: 11/06/ | /21        |      |       |       |
| Silver                             | 49.2   | 1.0       | mg/Kg wet | 50.1         |              | 98.2         | 80.2-120   |      |       |       |
|                                    |        |           |           |              |              |              |            |      |       |       |
| LCS Dup (B294113-BSD1)             |        |           |           | Prepared: 11 | /05/21 Analy | yzed: 11/06/ | /21        |      |       |       |



## QUALITY CONTROL

## Metals Analyses (Dissolved) - Quality Control

|                                        |         | Reporting     |       | Spike        | Source             |              | %REC   |       | RPD   |       |
|----------------------------------------|---------|---------------|-------|--------------|--------------------|--------------|--------|-------|-------|-------|
| Analyte                                | Result  | Limit         | Units | Level        | Result             | %REC         | Limits | RPD   | Limit | Notes |
| Batch B293821 - SW-846 7470A Dissolved |         |               |       |              |                    |              |        |       |       |       |
| Blank (B293821-BLK1)                   |         |               |       | Prepared: 11 | /02/21 Analy       | zed: 11/03/  | 21     |       |       |       |
| Mercury                                | ND      | 0.00010       | mg/L  |              |                    |              |        |       |       |       |
| LCS (B293821-BS1)                      |         |               |       | Prepared: 11 | /02/21 Analy       | zed: 11/03/  | 21     |       |       |       |
| Mercury                                | 0.00446 | 0.00010       | mg/L  | 0.00402      |                    | 111          | 80-120 |       |       |       |
| LCS Dup (B293821-BSD1)                 |         |               |       | Prepared: 11 | /02/21 Anal        | vzed: 11/03/ | 21     |       |       |       |
| Mercury                                | 0.00453 | 0.00010       | mg/L  | 0.00402      | -                  | 113          | 80-120 | 1.64  | 20    |       |
| Duplicate (B293821-DUP1)               | Sou     | rce: 21K0043- | Λ1    | Prenared: 11 | /02/21 Analy       | vzed: 11/03/ | 21     |       |       |       |
| Mercury                                | ND      | 0.00010       | mg/L  | Trepared. Tr | ND                 |              | 21     | NC    | 20    |       |
| M 4 * C *                              |         | 21770042      | _     | D            |                    |              | 21     |       |       |       |
| Matrix Spike (B293821-MS1) Mercury     |         | 0.00010       | mg/L  | 0.00402      | /02/21 Analy<br>ND |              | 75-125 |       |       |       |
| Wickery                                | 0.00447 | 0.00010       | mg/L  | 0.00402      | NL                 | 111          | 75-125 |       |       |       |
| Batch B293930 - SW-846 3005A Dissolved |         |               |       |              |                    |              |        |       |       |       |
| Blank (B293930-BLK1)                   |         |               |       | Prepared: 11 | /03/21 Analy       | yzed: 11/04/ | 21     |       |       |       |
| Aluminum                               | ND      | 0.050         | mg/L  |              |                    |              |        |       |       |       |
| Calcium                                | ND      | 0.50          | mg/L  |              |                    |              |        |       |       |       |
| Iron                                   | ND      | 0.050         | mg/L  |              |                    |              |        |       |       |       |
| Magnesium                              | ND      | 0.050         | mg/L  |              |                    |              |        |       |       |       |
| Potassium                              | ND      | 2.0           | mg/L  |              |                    |              |        |       |       |       |
| Sodium                                 | ND      | 2.0           | mg/L  |              |                    |              |        |       |       |       |
| LCS (B293930-BS1)                      |         |               |       | Prepared: 11 | /03/21 Analy       | yzed: 11/04/ | 21     |       |       |       |
| Aluminum                               | 0.536   | 0.050         | mg/L  | 0.500        |                    | 107          | 80-120 |       |       |       |
| Calcium                                | 4.08    | 0.50          | mg/L  | 4.00         |                    | 102          | 80-120 |       |       |       |
| Iron                                   | 4.01    | 0.050         | mg/L  | 4.00         |                    | 100          | 80-120 |       |       |       |
| Magnesium                              | 3.92    | 0.050         | mg/L  | 4.00         |                    | 98.0         | 80-120 |       |       |       |
| Potassium                              | 3.89    | 2.0           | mg/L  | 4.00         |                    | 97.3         | 80-120 |       |       |       |
| Sodium                                 | 4.04    | 2.0           | mg/L  | 4.00         |                    | 101          | 80-120 |       |       |       |
| LCS Dup (B293930-BSD1)                 |         |               |       | Prepared: 11 | /03/21 Anal        | yzed: 11/04/ | 21     |       |       |       |
| Aluminum                               | 0.527   | 0.050         | mg/L  | 0.500        | <u> </u>           | 105          | 80-120 | 1.73  | 20    |       |
| Calcium                                | 4.11    | 0.50          | mg/L  | 4.00         |                    | 103          | 80-120 | 0.752 | 20    |       |
| Iron                                   | 4.04    | 0.050         | mg/L  | 4.00         |                    | 101          | 80-120 | 0.814 | 20    |       |
| Magnesium                              | 3.94    | 0.050         | mg/L  | 4.00         |                    | 98.5         | 80-120 | 0.520 | 20    |       |
| Potassium                              | 3.94    | 2.0           | mg/L  | 4.00         |                    | 98.5         | 80-120 | 1.25  | 20    |       |
| Sodium                                 | 4.01    | 2.0           | mg/L  | 4.00         |                    | 100          | 80-120 | 0.754 | 20    |       |
| Duplicate (B293930-DUP1)               | Sou     | rce: 21K0043- | 01    | Prepared: 11 | /03/21 Analy       | yzed: 11/04/ | 21     |       |       |       |
| Aluminum                               | 0.0528  | 0.050         | mg/L  |              | 0.0578             |              |        | 9.01  | 20    |       |
| Calcium                                | 180     | 0.50          | mg/L  |              | 185                |              |        | 2.85  | 20    |       |
| Iron                                   | 182     | 0.050         | mg/L  |              | 188                |              |        | 3.44  | 20    |       |
| Magnesium                              | 54.9    | 0.050         | mg/L  |              | 57.5               |              |        | 4.73  | 20    |       |
| Potassium                              | 7.89    | 2.0           | mg/L  |              | 8.04               |              |        | 1.86  | 20    |       |
|                                        | ,,      |               | _     |              | 0.01               |              |        |       |       |       |



## QUALITY CONTROL

## Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------------------|--------|--------------------|-------------------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Batch B293930 - SW-846 3005A Dissolved |        |                    |                   |                |                  |              |                |     |              |       |
| Matrix Spike (B293930-MS1)             | Sou    | rce: 21K0043-      | 01                | Prepared: 11   | /03/21 Analy     | zed: 11/04/2 | 21             |     |              |       |
| Aluminum                               | 0.563  | 0.050              | mg/L              | 0.500          | 0.0578           | 101          | 75-125         |     |              |       |
| Calcium                                | 185    | 0.50               | mg/L              | 4.00           | 185              | -0.863 *     | 75-125         |     |              | MS-19 |
| Iron                                   | 187    | 0.050              | mg/L              | 4.00           | 188              | -35.3 *      | 75-125         |     |              | MS-19 |
| Magnesium                              | 58.7   | 0.050              | mg/L              | 4.00           | 57.5             | 30.1 *       | 75-125         |     |              | MS-19 |
| Potassium                              | 11.8   | 2.0                | mg/L              | 4.00           | 8.04             | 93.7         | 75-125         |     |              |       |
| Sodium                                 | 59.2   | 2.0                | mg/L              | 4.00           | 57.7             | 37.4 *       | 75-125         |     |              |       |
| Batch B293931 - SW-846 3005A Dissolved |        |                    |                   |                |                  |              |                |     |              |       |
| Blank (B293931-BLK1)                   |        |                    |                   | Prepared: 11   | /03/21 Analy     | zed: 11/05/2 | 21             |     |              |       |
| Antimony                               | ND     | 1.0                | μg/L              |                |                  |              |                |     |              |       |
| Arsenic                                | ND     | 0.80               | $\mu \text{g/L}$  |                |                  |              |                |     |              |       |
| Barium                                 | ND     | 10                 | $\mu \text{g/L}$  |                |                  |              |                |     |              |       |
| Beryllium                              | ND     | 0.40               | $\mu \text{g/L}$  |                |                  |              |                |     |              |       |
| Cadmium                                | ND     | 0.20               | $\mu g \! / \! L$ |                |                  |              |                |     |              |       |
| Chromium                               | ND     | 1.0                | $\mu g \! / \! L$ |                |                  |              |                |     |              |       |
| Cobalt                                 | ND     | 1.0                | μg/L              |                |                  |              |                |     |              |       |
| Copper                                 | ND     | 1.0                | $\mu g\!/\!L$     |                |                  |              |                |     |              |       |
| Lead                                   | ND     | 0.50               | μg/L              |                |                  |              |                |     |              |       |
| Manganese                              | ND     | 1.0                | μg/L              |                |                  |              |                |     |              |       |
| Nickel                                 | ND     | 5.0                | μg/L              |                |                  |              |                |     |              |       |
| Selenium                               | ND     | 5.0                | μg/L              |                |                  |              |                |     |              |       |
| Silver                                 | ND     | 0.20               | μg/L              |                |                  |              |                |     |              |       |
| Thallium                               | ND     | 0.20               | μg/L              |                |                  |              |                |     |              |       |
| Vanadium                               | ND     | 5.0                | μg/L              |                |                  |              |                |     |              |       |
| Zine                                   | ND     | 10                 | μg/L              |                |                  |              |                |     |              |       |
| LCS (B293931-BS1)                      |        |                    |                   | Prepared: 11   | /03/21 Analy     | zed: 11/05/2 | 21             |     |              |       |
| Antimony                               | 537    | 10                 | μg/L              | 500            |                  | 107          | 80-120         |     |              |       |
| Arsenic                                | 534    | 8.0                | μg/L              | 500            |                  | 107          | 80-120         |     |              |       |
| Barium                                 | 530    | 100                | μg/L              | 500            |                  | 106          | 80-120         |     |              |       |
| Beryllium                              | 506    | 4.0                | μg/L              | 500            |                  | 101          | 80-120         |     |              |       |
| Cadmium                                | 505    | 2.0                | μg/L              | 500            |                  | 101          | 80-120         |     |              |       |
| Chromium                               | 525    | 10                 | μg/L              | 500            |                  | 105          | 80-120         |     |              |       |
| Cobalt                                 | 521    | 10                 | μg/L              | 500            |                  | 104          | 80-120         |     |              |       |
| Copper                                 | 1020   | 10                 | μg/L              | 1000           |                  | 102          | 80-120         |     |              |       |
| Lead                                   | 543    | 5.0                | μg/L              | 500            |                  | 109          | 80-120         |     |              |       |
| Manganese                              | 540    | 10                 | μg/L              | 500            |                  | 108          | 80-120         |     |              |       |
| Nickel<br>Selenium                     | 503    | 50                 | μg/L              | 500            |                  | 101          | 80-120         |     |              |       |
|                                        | 498    | 50                 | μg/L              | 500            |                  | 99.5         | 80-120         |     |              |       |
| Silver<br>Thallium                     | 503    | 2.0                | μg/L              | 500            |                  | 101          | 80-120         |     |              |       |
|                                        | 491    | 2.0                | μg/L              | 500            |                  | 98.3         | 80-120         |     |              |       |
| Vanadium                               | 528    | 50<br>100          | μg/L              | 500            |                  | 106          | 80-120         |     |              |       |
| Zinc                                   | 1090   | 100                | μg/L              | 1000           |                  | 109          | 80-120         |     |              |       |



## QUALITY CONTROL

## Metals Analyses (Dissolved) - Quality Control

| Analyte                                | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD     | RPD<br>Limit | Notes |
|----------------------------------------|--------|--------------------|-------------------|----------------|------------------|-------------|----------------|---------|--------------|-------|
| Batch B293931 - SW-846 3005A Dissolved |        |                    |                   |                |                  |             |                |         |              |       |
| LCS Dup (B293931-BSD1)                 |        |                    |                   | Prepared: 11   | /03/21 Analyz    | zed: 11/05/ | 21             |         |              |       |
| Antimony                               | 544    | 10                 | μg/L              | 500            |                  | 109         | 80-120         | 1.17    | 20           |       |
| Arsenic                                | 527    | 8.0                | $\mu g/L$         | 500            |                  | 105         | 80-120         | 1.41    | 20           |       |
| Barium                                 | 521    | 100                | $\mu \text{g/L}$  | 500            |                  | 104         | 80-120         | 1.81    | 20           |       |
| Beryllium                              | 506    | 4.0                | $\mu g \! / \! L$ | 500            |                  | 101         | 80-120         | 0.104   | 20           |       |
| Cadmium                                | 505    | 2.0                | $\mu \text{g/L}$  | 500            |                  | 101         | 80-120         | 0.00465 | 20           |       |
| Chromium                               | 508    | 10                 | $\mu \text{g/L}$  | 500            |                  | 102         | 80-120         | 3.17    | 20           |       |
| Cobalt                                 | 508    | 10                 | μg/L              | 500            |                  | 102         | 80-120         | 2.60    | 20           |       |
| Copper                                 | 996    | 10                 | μg/L              | 1000           |                  | 99.6        | 80-120         | 2.45    | 20           |       |
| Lead                                   | 543    | 5.0                | μg/L              | 500            |                  | 109         | 80-120         | 0.0229  | 20           |       |
| Manganese                              | 520    | 10                 | μg/L              | 500            |                  | 104         | 80-120         | 3.77    | 20           |       |
| Nickel                                 | 490    | 50                 | $\mu g/L$         | 500            |                  | 97.9        | 80-120         | 2.63    | 20           |       |
| Selenium                               | 502    | 50                 | $\mu g/L$         | 500            |                  | 100         | 80-120         | 0.893   | 20           |       |
| Silver                                 | 507    | 2.0                | μg/L              | 500            |                  | 101         | 80-120         | 0.748   | 20           |       |
| Thallium                               | 508    | 2.0                | μg/L              | 500            |                  | 102         | 80-120         | 3.27    | 20           |       |
| Vanadium                               | 511    | 50                 | μg/L              | 500            |                  | 102         | 80-120         | 3.37    | 20           |       |
| Zinc                                   | 1080   | 100                | μg/L              | 1000           |                  | 108         | 80-120         | 1.20    | 20           |       |
| Duplicate (B293931-DUP1)               | Sou    | rce: 21K0043-      | 01                | Prepared: 11   | /03/21 Analyz    | zed: 11/05/ | 21             |         |              |       |
| Antimony                               | ND     | 1.0                | μg/L              |                | ND               |             |                | NC      | 20           |       |
| Arsenic                                | 1.46   | 0.80               | $\mu \text{g/L}$  |                | 1.40             |             |                | 4.36    | 20           |       |
| Barium                                 | 12.6   | 10                 | $\mu \text{g/L}$  |                | 13.0             |             |                | 3.31    | 20           |       |
| Beryllium                              | 0.0797 | 0.40               | $\mu \text{g/L}$  |                | 0.0833           |             |                | 4.37    | 20           | J     |
| Cadmium                                | 0.0546 | 0.20               | $\mu g \! / \! L$ |                | 0.0503           |             |                | 8.32    | 20           | J     |
| Chromium                               | ND     | 1.0                | μg/L              |                | ND               |             |                | NC      | 20           |       |
| Cobalt                                 | 94.1   | 1.0                | μg/L              |                | 93.8             |             |                | 0.256   | 20           |       |
| Copper                                 | 3.23   | 1.0                | μg/L              |                | 3.26             |             |                | 0.775   | 20           |       |
| Lead                                   | 0.393  | 0.50               | μg/L              |                | 0.397            |             |                | 1.02    | 20           | J     |
| Manganese                              | 4740   | 1.0                | μg/L              |                | 4790             |             |                | 1.07    | 20           |       |
| Nickel                                 | 17.3   | 5.0                | μg/L              |                | 17.2             |             |                | 0.172   | 20           |       |
| Selenium                               | 0.825  | 5.0                | μg/L              |                | ND               |             |                | NC      | 20           | J     |
| Silver                                 | ND     | 0.20               | μg/L              |                | ND               |             |                | NC      | 20           |       |
| Thallium                               | 0.125  | 0.20               | μg/L              |                | ND               |             |                | NC      | 20           | J     |
| Vanadium                               | ND     | 5.0                | μg/L              |                | ND               |             |                | NC      | 20           |       |
| Zinc                                   | 26.0   | 10                 | μg/L              |                | 27.1             |             |                | 4.14    | 20           |       |
| Matrix Spike (B293931-MS1)             | Sou    | rce: 21K0043-      | 01                | Prepared: 11   | /03/21 Analyz    | zed: 11/05/ | 21             |         |              |       |
| Antimony                               | 528    | 10                 | $\mu g/L$         | 500            | ND               | 106         | 75-125         |         |              |       |
| Arsenic                                | 529    | 8.0                | $\mu g/L$         | 500            | ND               | 106         | 75-125         |         |              |       |
| Barium                                 | 530    | 100                | $\mu g/L$         | 500            | 13.0             | 103         | 75-125         |         |              |       |
| Beryllium                              | 495    | 4.0                | $\mu g/L$         | 500            | ND               | 98.9        | 75-125         |         |              |       |
| Cadmium                                | 505    | 2.0                | μg/L              | 500            | ND               | 101         | 75-125         |         |              |       |
| Chromium                               | 497    | 10                 | μg/L              | 500            | ND               | 99.4        | 75-125         |         |              |       |
| Cobalt                                 | 592    | 10                 | μg/L              | 500            | 93.8             | 99.6        | 75-125         |         |              |       |
| Copper                                 | 992    | 10                 | μg/L              | 1000           | 3.26             | 98.9        | 75-125         |         |              |       |
| Lead                                   | 533    | 5.0                | μg/L              | 500            | ND               | 107         | 75-125         |         |              |       |
| Manganese                              | 5420   | 10                 | μg/L              | 500            | 4790             | 125         | 75-125         |         |              |       |
| Nickel                                 | 496    | 50                 | μg/L              | 500            | 17.2             | 95.8        | 75-125         |         |              |       |
| Selenium                               | 500    | 50                 | μg/L              | 500            | ND               | 99.9        | 75-125         |         |              |       |
| Silver                                 | 458    | 2.0                | μg/L              | 500            | ND               | 91.7        | 75-125         |         |              |       |
| Thallium                               | 489    | 2.0                | μg/L              | 500            | ND               | 97.7        | 75-125         |         |              |       |
| Vanadium                               | 511    | 50                 | μg/L              | 500            | ND               | 102         | 75-125         |         |              |       |
| Zinc                                   | 1080   | 100                | μg/L              | 1000           | ND               | 108         | 75-125         |         |              |       |



## QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                         | Result  | Reporting<br>Limit | Units     | Spike<br>Level                | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|---------------------------------|---------|--------------------|-----------|-------------------------------|------------------|---------------|----------------|-------|--------------|-------|
| Batch B293749 - SW-846 9045C    | 1100011 | Zmit               |           |                               |                  | ,             |                |       |              |       |
| LCS (B293749-BS1)               |         |                    |           | Prepared &                    | Analyzed: 11     | /01/21        |                |       |              |       |
| рН                              | 6.03    |                    | pH Units  | 6.00                          | -                | 101           | 90-110         |       |              |       |
| Duplicate (B293749-DUP1)        | Sou     | rce: 21K0043       | 3-03      | Prepared &                    | Analyzed: 11     | /01/21        |                |       |              |       |
| рН                              | 8.8     |                    | pH Units  |                               | 8.9              | )             |                | 0.587 | 10           |       |
| Batch B293753 - ASTM D516-16    |         |                    |           |                               |                  |               |                |       |              |       |
| Blank (B293753-BLK1)            |         |                    |           | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Sulfate                         | ND      | 1.0                | mg/L      |                               |                  |               |                |       |              |       |
| LCS (B293753-BS1)               |         |                    |           | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Sulfate                         | 12      | 1.0                | mg/L      | 12.5                          |                  | 98.1          | 90-110         |       |              |       |
| LCS Dup (B293753-BSD1)          |         |                    |           | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Sulfate                         | 13      | 1.0                | mg/L      | 12.5                          |                  | 102           | 90-110         | 3.42  | 20           |       |
| Duplicate (B293753-DUP2)        | Sou     | rce: 21K0043       | 3-07      | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Sulfate                         | ND      | 1.0                | mg/L      |                               | ND               | •             |                | NC    | 20           |       |
| Matrix Spike (B293753-MS2)      | Sou     | rce: 21K0043       | 3-07      | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Sulfate                         | 13      | 1.0                | mg/L      | 12.5                          | ND               | 103           | 90-110         |       |              |       |
| Batch B293766 - SW-846 9010C    |         |                    |           |                               |                  |               |                |       |              |       |
| Blank (B293766-BLK1)            |         |                    |           | Prepared & Analyzed: 11/02/21 |                  |               |                |       |              |       |
| Cyanide                         | ND      | 0.46               | mg/Kg wet |                               |                  |               |                |       |              |       |
| LCS (B293766-BS1)               |         |                    |           | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Cyanide                         | 81      | 2.5                | mg/Kg wet | 69.8                          |                  | 116           | 80-120         |       |              |       |
| LCS Dup (B293766-BSD1)          |         |                    |           | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Cyanide                         | 83      | 2.5                | mg/Kg wet | 69.8                          |                  | 119           | 80-120         | 2.54  | 20           |       |
| Matrix Spike (B293766-MS1)      | Sou     | rce: 21K0043       | 3-03      | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Cyanide                         | 21      | 0.55               | mg/Kg dry | 20.7                          | ND               | 102           | 75-125         |       |              | ·     |
| Matrix Spike Dup (B293766-MSD1) | Sou     | rce: 21K0043       | 3-03      | Prepared &                    | Analyzed: 11     | /02/21        |                |       |              |       |
| Cyanide                         | 21      | 0.55               | mg/Kg dry | 20.7                          | ND               | 104           | 75-125         | 2.23  | 35           |       |
| Batch B293898 - EPA 350.1       |         |                    |           |                               |                  |               |                |       |              |       |
| Blank (B293898-BLK1)            |         |                    |           | Prepared: 11                  | /03/21 Analy     | yzed: 11/04/2 | 21             |       |              |       |
| Ammonia as N                    | ND      | 0.10               | mg/L      |                               |                  |               |                |       |              |       |



## QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                   | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |
|---------------------------|--------|--------------------|-------|----------------|------------------|--------------|----------------|--------|--------------|-------|
| Batch B293898 - EPA 350.1 |        |                    |       |                |                  |              |                |        |              |       |
| LCS (B293898-BS1)         |        |                    |       | Prepared: 11   | /03/21 Analy     | zed: 11/04/2 | 21             |        |              |       |
| Ammonia as N              | 1.7    | 0.10               | mg/L  | 2.00           |                  | 86.1 *       | 90-110         |        |              | L-07A |
| LCS Dup (B293898-BSD1)    |        |                    |       | Prepared: 11   | /03/21 Analy     | zed: 11/04/2 | 21             |        |              |       |
| Ammonia as N              | 2.1    | 0.10               | mg/L  | 2.00           |                  | 106          | 90-110         | 20.5 * | 20           | L-07A |



# FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                                                   |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                                                        |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                                                       |
| ND    | Not Detected                                                                                                                                                                                                                                               |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                      |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                                |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                                                  |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                                     |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                      |
| DL-01 | Elevated reporting limits for all volatile compounds due to foaming sample matrix.                                                                                                                                                                         |
| H-03  | Sample received after recommended holding time was exceeded.                                                                                                                                                                                               |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                        |
| L-02  | Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits.  Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. |
| L-04  | Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits.  Reported value for this compound is likely to be biased on the low side.                                                              |
| L-07A | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.    |
| MS-19 | Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.                                                                  |
| R-04  | Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).                                                                                                  |
| V-04  | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                                                                  |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                                             |
| V-06  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                                                                            |
| V-20  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                                                   |
| V-34  | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                                                  |



Barium

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

| Certified Analyses included in this Report | CERTIFICATIONS                |
|--------------------------------------------|-------------------------------|
| Analyte                                    | Certifications                |
| ASTM D516-16 in Water                      |                               |
| Sulfate                                    | NC,NY,MA,VA,ME,NH,CT,RI       |
| EPA 350.1 in Water                         | 140,111,1111,1111,1111,01,111 |
|                                            | NG NIVA (A NIL DI ME VA       |
| Ammonia as N <b>SW-846 6010D in Soil</b>   | NC,NY,MA,NH,RI,ME,VA          |
|                                            |                               |
| Aluminum                                   | CT,NH,NY,ME,VA,NC             |
| Antimony                                   | CT,NH,NY,ME,VA,NC             |
| Arsenic                                    | CT,NH,NY,ME,VA,NC             |
| Barium                                     | CT,NH,NY,ME,VA,NC             |
| Beryllium                                  | CT,NH,NY,ME,VA,NC             |
| Cadmium                                    | CT,NH,NY,ME,VA,NC             |
| Calcium                                    | CT,NH,NY,ME,VA,NC             |
| Chromium                                   | CT,NH,NY,ME,VA,NC             |
| Cobalt                                     | CT,NH,NY,ME,VA,NC             |
| Copper                                     | CT,NH,NY,ME,VA,NC             |
| Iron                                       | CT,NH,NY,ME,VA,NC             |
| Lead                                       | CT,NH,NY,AIHA,ME,VA,NC        |
| Magnesium                                  | CT,NH,NY,ME,VA,NC             |
| Manganese                                  | CT,NH,NY,ME,VA,NC             |
| Nickel                                     | CT,NH,NY,ME,VA,NC             |
| Potassium                                  | CT,NH,NY,ME,VA,NC             |
| Selenium                                   | CT,NH,NY,ME,VA,NC             |
| Silver                                     | CT,NH,NY,ME,VA,NC             |
| Sodium                                     | CT,NH,NY,ME,VA,NC             |
| Thallium                                   | CT,NH,NY,ME,VA,NC             |
| Vanadium                                   | CT,NH,NY,ME,VA,NC             |
| Zinc                                       | CT,NH,NY,ME,VA,NC             |
| SW-846 6010D in Water                      |                               |
| Aluminum                                   | CT,NY,NH,ME,VA,NC             |
| Aluminum                                   | CT,NH,NY,ME,VA,NC             |
| Calcium                                    | CT,NH,NY,ME,VA,NC             |
| Calcium                                    | CT,NH,NY,NC,ME,VA             |
| Iron                                       | CT,NH,NY,ME,VA,NC             |
| Iron                                       | CT,NH,NY,ME,NC,VA             |
| Magnesium                                  | CT,NH,NY,ME,VA,NC             |
| Magnesium                                  | CT,NH,NY,NC,ME,VA             |
| Potassium                                  | CT,NH,NY,ME,VA,NC             |
| Potassium                                  | CT,NH,NY,ME,NC,VA             |
| Sodium                                     | CT,NH,NY,NC,ME,VA             |
| Sodium                                     | CT,NH,NY,ME,VA,NC             |
| SW-846 6020B in Water                      |                               |
| Antimony                                   | CT,NH,NY,ME,VA,NC             |
| Antimony                                   | CT,NH,NY,ME,VA,NC             |
| Arsenic                                    | CT,NH,NY,ME,VA,NC             |
| Arsenic                                    | CT,NH,NY,NC,ME,VA             |
| Augenic                                    | Organity Composited to        |

CT,NH,NY,ME,VA,NC



# CERTIFICATIONS

| Analyte                       | Certifications       |
|-------------------------------|----------------------|
| SW-846 6020B in Water         |                      |
| Barium                        | MA,NY,CT,NC,NH,ME,VA |
| Beryllium                     | CT,NH,NY,ME,VA,NC    |
| Beryllium                     | CT,NH,NY,NC,ME,VA    |
| Cadmium                       | CT,NH,NY,NC,ME,VA    |
| Cadmium                       | CT,NH,NY,RI,ME,VA,NC |
| Chromium                      | CT,NH,NY,NC,ME,VA    |
| Chromium                      | CT,NH,NY,ME,VA,NC    |
| Cobalt                        | CT,NH,NY,ME,VA,NC    |
| Cobalt                        | CT,NH,NY,NC,ME,VA    |
| Copper                        | CT,NH,NY,ME,VA,NC    |
| Copper                        | CT,NH,NY,NC,ME,VA    |
| Lead                          | CT,NH,NY,ME,VA,NC    |
| Lead                          | CT,NH,NY,NC,ME,VA    |
| Manganese                     | CT,NH,NY,NC,ME,VA    |
| Manganese                     | CT,NH,NY,ME,VA,NC    |
| Nickel                        | CT,NH,NY,NC,ME,VA    |
| Nickel                        | CT,NH,NY,ME,VA,NC    |
| Selenium                      | CT,NH,NY,ME,VA,NC    |
| Selenium                      | CT,NH,NY,NC,ME,VA    |
| Silver                        | CT,NH,NY,ME,VA,NC    |
| Silver                        | CT,NC,NH,NY,ME,VA    |
| Thallium                      | CT,NH,NY,ME,VA,NC    |
| Thallium                      | CT,NH,NY,NC,ME,VA    |
| Vanadium                      | CT,NH,NY,NC,ME,VA    |
| Vanadium                      | CT,NH,NY,ME,VA,NC    |
| Zinc                          | CT,NH,NY,NC,ME,VA    |
| Zinc                          | CT,NH,NY,ME,VA,NC    |
| SW-846 7470A in Water         |                      |
| Mercury                       | CT,NH,NY,NC,ME,VA    |
| Mercury                       | CT,NH,NY,NC,ME,VA    |
| SW-846 7471B in Soil          |                      |
| Mercury                       | CT,NH,NY,NC,ME,VA    |
| SW-846 8015C in Soil          |                      |
| Diesel Range Organics         | NY,VA,NH,NC          |
| SW-846 8015C in Water         |                      |
| Gasoline Range Organics (GRO) | NY,VA,NH,NC          |
| Diesel Range Organics         | NY,VA,NH,NC          |
| Ethanol                       | NY                   |
| Ethylene glycol               | NY                   |
| SW-846 8260D in Water         |                      |
| Acetone                       | CT,ME,NH,VA,NY       |
| Acrylonitrile                 | CT,ME,NH,VA,NY       |
| tert-Amyl Methyl Ether (TAME) | ME,NH,VA,NY          |
| Benzene                       | CT,ME,NH,VA,NY       |
| Bromobenzene                  | ME,NY                |
|                               |                      |



# CERTIFICATIONS

| Analyte                            | Certifications |
|------------------------------------|----------------|
| SW-846 8260D in Water              |                |
| Bromochloromethane                 | ME,NH,VA,NY    |
| Bromodichloromethane               | CT,ME,NH,VA,NY |
| Bromoform                          | CT,ME,NH,VA,NY |
| Bromomethane                       | CT,ME,NH,VA,NY |
| 2-Butanone (MEK)                   | CT,ME,NH,VA,NY |
| tert-Butyl Alcohol (TBA)           | ME,NH,VA,NY    |
| n-Butylbenzene                     | ME,VA,NY       |
| sec-Butylbenzene                   | ME,VA,NY       |
| tert-Butylbenzene                  | ME,VA,NY       |
| tert-Butyl Ethyl Ether (TBEE)      | ME,NH,VA,NY    |
| Carbon Disulfide                   | CT,ME,NH,VA,NY |
| Carbon Tetrachloride               | CT,ME,NH,VA,NY |
| Chlorobenzene                      | CT,ME,NH,VA,NY |
| Chlorodibromomethane               | CT,ME,NH,VA,NY |
| Chloroethane                       | CT,ME,NH,VA,NY |
| Chloroform                         | CT,ME,NH,VA,NY |
| Chloromethane                      | CT,ME,NH,VA,NY |
| 2-Chlorotoluene                    | ME,NH,VA,NY    |
| 4-Chlorotoluene                    | ME,NH,VA,NY    |
| 1,2-Dibromo-3-chloropropane (DBCP) | ME,NY          |
| 1,2-Dibromoethane (EDB)            | ME,NY          |
| Dibromomethane                     | ME,NH,VA,NY    |
| 1,2-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,3-Dichlorobenzene                | CT,ME,NH,VA,NY |
| 1,4-Dichlorobenzene                | CT,ME,NH,VA,NY |
| trans-1,4-Dichloro-2-butene        | ME,NH,VA,NY    |
| Dichlorodifluoromethane (Freon 12) | ME,NH,VA,NY    |
| 1,1-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,2-Dichloroethane                 | CT,ME,NH,VA,NY |
| 1,1-Dichloroethylene               | CT,ME,NH,VA,NY |
| cis-1,2-Dichloroethylene           | ME,NY          |
| trans-1,2-Dichloroethylene         | CT,ME,NH,VA,NY |
| 1,2-Dichloropropane                | CT,ME,NH,VA,NY |
| 1,3-Dichloropropane                | ME,VA,NY       |
| 2,2-Dichloropropane                | ME,NH,VA,NY    |
| 1,1-Dichloropropene                | ME,NH,VA,NY    |
| cis-1,3-Dichloropropene            | CT,ME,NH,VA,NY |
| trans-1,3-Dichloropropene          | CT,ME,NH,VA,NY |
| Diethyl Ether                      | ME,NY          |
| Diisopropyl Ether (DIPE)           | ME,NH,VA,NY    |
| 1,4-Dioxane                        | ME,NY          |
| Ethylbenzene                       | CT,ME,NH,VA,NY |
| Hexachlorobutadiene                | CT,ME,NH,VA,NY |
| 2-Hexanone (MBK)                   | CT,ME,NH,VA,NY |
| Isopropylbenzene (Cumene)          | ME,VA,NY       |
| p-Isopropyltoluene (p-Cymene)      | CT,ME,NH,VA,NY |
| Methyl Acetate                     | ME,NY          |



# CERTIFICATIONS

| Analyte                                             | Certifications                          |
|-----------------------------------------------------|-----------------------------------------|
| SW-846 8260D in Water                               |                                         |
| Methyl tert-Butyl Ether (MTBE)                      | CT,ME,NH,VA,NY                          |
| Methyl Cyclohexane                                  | NY                                      |
| Methylene Chloride                                  | CT,ME,NH,VA,NY                          |
| 4-Methyl-2-pentanone (MIBK)                         | CT,ME,NH,VA,NY                          |
| Naphthalene                                         | ME,NH,VA,NY                             |
| n-Propylbenzene                                     | CT,ME,NH,VA,NY                          |
| Styrene                                             | CT,ME,NH,VA,NY                          |
| 1,1,1,2-Tetrachloroethane                           | CT,ME,NH,VA,NY                          |
| 1,1,2,2-Tetrachloroethane                           | CT,ME,NH,VA,NY                          |
| Tetrachloroethylene                                 | CT,ME,NH,VA,NY                          |
| Toluene                                             | CT,ME,NH,VA,NY                          |
| 1,2,3-Trichlorobenzene                              | ME,NH,VA,NY                             |
| 1,2,4-Trichlorobenzene                              | CT,ME,NH,VA,NY                          |
| 1,3,5-Trichlorobenzene                              | ME                                      |
| 1,1,1-Trichloroethane                               | CT,ME,NH,VA,NY                          |
| 1,1,2-Trichloroethane                               | CT,ME,NH,VA,NY                          |
| Trichloroethylene                                   | CT,ME,NH,VA,NY                          |
| Trichlorofluoromethane (Freon 11)                   | CT,ME,NH,VA,NY                          |
| 1,2,3-Trichloropropane                              | ME,NH,VA,NY                             |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)   | VA,NY                                   |
| 1,2,4-Trimethylbenzene                              | ME,VA,NY                                |
| 1,3,5-Trimethylbenzene                              | ME,VA,NY                                |
| Vinyl Chloride                                      | CT,ME,NH,VA,NY                          |
| m+p Xylene                                          | CT,ME,NH,VA,NY                          |
| o-Xylene                                            | CT,ME,NH,VA,NY                          |
| SW-846 8270E in Water                               |                                         |
| Acenaphthene                                        | CT,NY,NC,ME,NH,VA                       |
| Acenaphthylene                                      | CT,NY,NC,ME,NH,VA                       |
| Acetophenone                                        | NY,NC                                   |
| Aniline                                             | CT,NY,NC,ME,VA                          |
| Anthracene                                          | CT,NY,NC,ME,NH,VA                       |
| Benzidine                                           | CT,NY,NC,ME,NH,VA                       |
| Benzo(a)anthracene                                  | CT,NY,NC,ME,NH,VA                       |
| Benzo(a)pyrene                                      | CT,NY,NC,ME,NH,VA                       |
| Benzo(b)fluoranthene                                | CT,NY,NC,ME,NH,VA                       |
| Benzo(g,h,i)perylene                                | CT,NY,NC,ME,NH,VA                       |
| Benzo(k)fluoranthene                                | CT,NY,NC,ME,NH,VA                       |
| Benzoic Acid Bis(2-chloroethoxy)methane             | NY,NC,ME,NH,VA                          |
| ,                                                   | CT,NY,NC,ME,NH,VA<br>CT,NY,NC,ME,NH,VA  |
| Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether | CT,NY,NC,ME,NH, VA<br>CT,NY,NC,ME,NH,VA |
| Bis(2-Ethylhexyl)phthalate                          | CT,NY,NC,ME,NH, VA<br>CT,NY,NC,ME,NH,VA |
| 4-Bromophenylphenylether                            | CT,NY,NC,ME,NH, VA<br>CT,NY,NC,ME,NH,VA |
| Butylbenzylphthalate                                | CT,NY,NC,ME,NH, VA                      |
| Carbazole                                           | NC                                      |
| 4-Chloroaniline                                     | CT,NY,NC,ME,NH,VA                       |
|                                                     |                                         |



# CERTIFICATIONS

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Water            |                   |
| 4-Chloro-3-methylphenol          | CT,NY,NC,ME,NH,VA |
| 2-Chloronaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Chlorophenol                   | CT,NY,NC,ME,NH,VA |
| 4-Chlorophenylphenylether        | CT,NY,NC,ME,NH,VA |
| Chrysene                         | CT,NY,NC,ME,NH,VA |
| Dibenz(a,h)anthracene            | CT,NY,NC,ME,NH,VA |
| Dibenzofuran                     | CT,NY,NC,ME,NH,VA |
| Di-n-butylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,3-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,4-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 3,3-Dichlorobenzidine            | CT,NY,NC,ME,NH,VA |
| 2,4-Dichlorophenol               | CT,NY,NC,ME,NH,VA |
| Diethylphthalate                 | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol               | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate                | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol                | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |
| Fluorene                         | NY,NC,ME,NH,VA    |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |
| Isophorone                       | CT,NY,NC,ME,NH,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |
| Pentachloronitrobenzene          | NC                |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |
| Phenanthrene                     | CT,NY,NC,ME,NH,VA |
| Phenol                           | CT,NY,NC,ME,NH,VA |



## CERTIFICATIONS

# Certified Analyses included in this Report

**Analyte** Certifications

SW-846 8270E in Water

Pyrene CT,NY,NC,ME,NH,VA
Pyridine CT,NY,NC,ME,NH,VA

1,2,4,5-Tetrachlorobenzene NY,NC

1,2,4-TrichlorobenzeneCT,NY,NC,ME,NH,VA2,4,5-TrichlorophenolCT,NY,NC,ME,NH,VA2,4,6-TrichlorophenolCT,NY,NC,ME,NH,VA

2-Fluorophenol SW-846 9014 in Soil

Cyanide NY,CT,NC,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

NC

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Public Health      | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

21K0043

| / <b>*</b> _/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40               | U                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | http://www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | w.pacelab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s.com                                   |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doc         | H 204              |                                              |              |                    |                                                  |             |                     |                |            |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|----------------------------------------------|--------------|--------------------|--------------------------------------------------|-------------|---------------------|----------------|------------|-----------------------------------------------------------|
| / Pace Analyti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>Cal</i> ® Pho | ne: 413-525-2332            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN OF CUST                              | 10000110000                                      | ,                              | 39 Spr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uce Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOC 1       | # 38T              | Rev 5_                                       | 07/13        | 2021               |                                                  |             |                     |                |            |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 413-525-6405                |                        | The Control of the Co | With the control of t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | OUY REC                                          | lord                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ongmeado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28          |                    |                                              |              |                    |                                                  |             |                     |                |            | Page of                                                   |
| SHEASTH COMMISSION OF THE COMM | Acces            | s COC's and Support Re      | quests                 | 7-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | les estet für                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Control of the Contro |                                         | 4                                                | 10                             | ived Alex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ISASTO P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              | ANALY        | SIS R              | EQUI                                             | ESTE        | D                   |                |            | rage 01                                                   |
| Company Name: Ram Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VI               |                             |                        | PFAS 10-Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ny (std)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | و طمير ود                               | 1                                                |                                | Field Filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 北工          | T                  | NI                                           | NT           | <b>11</b> 1        | Clin                                             | 7/67        |                     | 工              | 7          | 3 0                                                       |
| Address: 4350 N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fairfax          | Dr. Arlington               | γΔ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Due Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te:                                     | 0                                                | Wilder Designation and Company | Lab to F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              | <del></del>  | -                  |                                                  | -124        | - <del>  -1</del> - | +-             |            |                                                           |
| 100 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ ~ 5 X S        | Ü                           |                        | 1-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rush Approv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                       |                                                  | Ortho                          | phosphal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te Samule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                    |                                              | -            |                    |                                                  |             |                     |                |            | Courier Use Only                                          |
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HRP-L            | RGIS-SCR                    | ·                      | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 닐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 0                                                |                                | Field Filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATT THE PERSON NAMED OF TH |             |                    |                                              | 9            |                    |                                                  |             |                     |                |            | Total Number Or:                                          |
| Project Location: 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N. Royal         | St., Alexan                 | dia va                 | 2-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 0                                                |                                | Lab to F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ilter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              | ਰ            |                    |                                                  |             |                     |                |            |                                                           |
| Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Hogai          | ON, MIXIN                   | HA TH                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data De                                 | livery                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    | -0                                           | Metal        |                    |                                                  | 1           |                     |                | ١.         | VIALS                                                     |
| Project Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grose            | ····                        | ···········            | Format:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PDF 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXCEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Y</b>                                |                                                  |                                | PCB O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VLΥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              | <u> </u>     | Ì                  |                                                  |             |                     |                | 9          | GLASS                                                     |
| Pace Quote Name/Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHOOL            | ····                        |                        | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oll E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                      | SOX                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ           | ļ                  | 49.                                          | <del></del>  |                    |                                                  |             |                     |                | anid       | PLASTIC                                                   |
| Invoice Recipient: Sóster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | taca D           | and all                     |                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ita Pkg Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a .                                     | 7301                                             | ILE I                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _                  | Metal                                        | <u>ə</u>     | A A A              | 2 0                                              | ) c         | sĺ.                 |                | a          | BACTERIA                                                  |
| Sampled By: Anne Kell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100              | ambon.com                   |                        | Email To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> 508te</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rtay@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ramboll                                 | tom                                              | DOVI                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì           | 3                  |                                              | 13Salve      | K G                | <u>ح ارد</u>                                     | framorio de | Sylfate             | Glycols        | 3          | ENCORE                                                    |
| Pace Pace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | or Carrollis                | unhOsterlag            | Fax To #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | - INOM                                           | SUXH                           | LEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>VOCs</b> | SYOC               | lotal                                        |              |                    | 70                                               | 기울          | ੂਰ                  | 3              |            |                                                           |
| Work Order#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client Sa        | mple ID / Description       | Beginning<br>Date/Time | Ending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMP/GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc Code                               | 10116                                            | T T                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X           | $\geq$             |                                              |              | FIZ                | ╡≉                                               | - 2         | 土                   | . ] 글          | סד,        | Glassware in the fridge?                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100             |                             |                        | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conc Code                               | VIALS                                            | GLASS                          | PLASTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BACTERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≶           | in                 |                                              |              | E                  | ### ### ### ### ### ### ### ### ### ##           | 4           | 1,3                 |                | # 0        | Y/N                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HKP-M            | W723-211027                 | 10/27                  | 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                       | 9                                                | 4                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | · ·                | <u>.                                    </u> |              | 1                  | $+\Gamma$                                        | +           | V                   |                | <u>.</u>   |                                                           |
| l 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HRP - M          | W303-211027                 | 10/27                  | IU Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ——————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                             | ~ <del> </del>                                   | <del></del>                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | X                  | X                                            | X   )        | (   X              | ΙX                                               | (  <b>X</b> | X                   | X              | Į          | Glassware in freezer? Y / I                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100 000         | COCO Alluat                 | 1 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 9                                                | 시                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | X                  | X                                            | ΧX           | Y                  | V                                                |             | X                   | γ              |            |                                                           |
| and the same of th | HUL 209          | 10-0-1-211028               | 10/28                  | 0730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                       |                                                  | 1                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~           |                    |                                              | ^            | 누스                 | <u> </u>                                         | 1           | X                   | X              |            | Prepackaged Cooler? Y/                                    |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOP-MWD          | 09-211028                   | 0.28.21                | 60.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                | <del> </del>                                     | 1                              | <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    | X                                            |              |                    |                                                  |             |                     |                | X          | *Pace Analytical is not                                   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                | 6                                                | 4                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | x                  | $\mathbf{x}$                                 | X X          | U X                | X                                                | T           | Х                   |                | _          | responsible for missing sample                            |
| and the same of th | MKI~ [I)(J)      | OUS-211028                  | 10/28                  | 0950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                                     | 9                                                | 4                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V           | $\circlearrowleft$ |                                              |              | <del> </del>       |                                                  | 1           | 1                   | <del> </del>   |            | from prepacked coolers                                    |
| $ \varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TO HRP-TI        | 308-211028                  | 10/28                  | 0950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>C.</u>                               | <del>                                     </del> |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | $\Delta ot$        | X L                                          | X L X        | $\perp \mathbf{X}$ | X                                                | X           | X                   | X              |            | 1 Matrix Codes:                                           |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ب</u>                                | 2                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΧĹ          |                    |                                              |              |                    | İ                                                |             | -                   | 7              |            | GW = Ground Water                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ומש- דאנו        | 18-211028                   | 10.28.21               | 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O-FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 C                                     |                                                  | 4                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | X                  | <b>√</b>                                     | $\neg$       | 17                 | <del>                                     </del> |             | <del> </del>        | $\vdash$       |            | WW = Waste Water<br>DW = Drinking Water                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  | <b></b> -                      | <del>  ~</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $\Delta \mu$       | 4                                            | -            | X                  | <del> </del>                                     | <u> </u>    | X                   |                | X          | A = Air                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ                                       | ļ                                                | ļ                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    | İ                                            |              |                    | l                                                | ]           |                     | , [            |            | S = Soil                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | į į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ţ           |                    | $\neg$                                       |              | 1                  | <u> </u>                                         | 1           |                     | -+             |            | SL = Sludge<br>SOL = Solid                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <b></b> }-         |                                              | +-           | _                  | <del> </del>                                     | ļ           |                     |                |            | O = Other (please                                         |
| Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Date/Time:                  | Client Comm            | nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )-1-2110<br>Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •1                                      | ـــــا                                           |                                | لــــِــــا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              |              | 1                  |                                                  |             |                     |                |            | define)                                                   |
| AMILLATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 10.28.21 /1256              | HKY-5                  | B210-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1-2110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28; Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oil sai                                 | mple                                             | colle                          | ccted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lL a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lmbe        |                    | jar                                          | Sinc         |                    | we                                               | har         | 1 "                 |                | $\neg$     | <sup>2</sup> Preservation Codes:                          |
| Received by: (pgnature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Date/Time: 1215/-           | TB: Trip               | D) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ر کا کی اور                             | } let                                            | +, K                           | m f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>7   2   -</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 164-        | Lai                | 9                                            | TAL          | Me                 | ta (                                             | 5 1         | Н.                  | and            |            | =  ced                                                    |
| S. Rupusu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 10/28/21 (200               | FR Equ                 | ismunt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                       | ~ .                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              |              |                    | •                                                | 71          | ,                   |                |            | · · · · · · · · · · · · · · · · · · ·                     |
| Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Date/Time:                  | Detecti                | an Limit Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marie mente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24T-34700***************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                    |                                              |              |                    |                                                  |             |                     |                |            | H = HCL                                                   |
| <u>X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                             | MA                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                | unemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              |              |                    |                                                  |             |                     |                | $\dashv$   | M = Methanol                                              |
| Received by (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Date/Time:                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ···                                              | ···                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MA MCP R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | ed                 | Pleas                                        | e use t      | he foll            | owing                                            | code:       | s to in             | dicate         | .          |                                                           |
| S. Mufuser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Date/Time:<br>10 2821 15:45 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                  |                                | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CP Certifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1                  | USSIDIE                                      | sampt :<br>م | e conc<br>ode co   | entra                                            | tion w      | rithin i            | the Co.        | лс         | N = Nitric Acid                                           |
| Relinguished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Date/Time:                  | .CT                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CT RCP R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | equir       | ed <sub>H</sub>    | l - High                                     | : M - N      | ledium             | itumn<br>1 - 1                                   | above       | 11<br>C - CI        | ean; U         | .          | S = Sulfuric Acid                                         |
| Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CP Certifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ition Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Regutr      | ed                 | -                                            |              |                    | iknow                                            |             | C - C(0             | zan, u         | , -        |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V.E              | Date/fime:                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····                                    |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u>           |                                              | <u>-</u> -   |                    |                                                  |             |                     |                |            | B = Sodium Bisulfate                                      |
| Relinquished by: [Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ve</u>        | 19/28/21/59                 | Other:                 | VAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PWSID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tate DW Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | quirec      | 1                  | Singer values in                             |              |                    |                                                  |             |                     |                |            | X = Sodium Hydroxide                                      |
| (Candasired by Islandanie)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200              | Date/Time:                  | roject Entit           | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    | NEL                                          | AC and       | AIHA-              | LAP,                                             | LLC A       | ccred               | lited          |            | an an an an an an                                         |
| Perelyeday: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uc.              | 407/01/10                   | <b>9</b> (             | Government                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Municipali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ty                                      | 177                                              | I                              | MWRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Whe         | _                  | -1                                           |              | Other              |                                                  |             |                     |                |            | T = Sodium<br>Thiosulfate                                 |
| Carry, Signature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4110             | Date/Time:                  | F                      | ederal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                  |                                | School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WRTA        | L                  | J                                            |              |                    |                                                  | Chrom       | atogra              | алп            |            |                                                           |
| Lab Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1               | 11/1/21 692                 | <u> </u>               | ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brownfield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | }                                       | n                                                |                                | MBTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | []<br>["]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              |              |                    |                                                  | 41HA-L      | AP,LL               | LC .           | 1          | 0 = Other (please                                         |
| July Committee (CS.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 455              |                             | and the A              | Mr. La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | 5-104                                            | T                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |                                              |              |                    |                                                  |             |                     |                |            | define)                                                   |
| Burgaria da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 TD 4           | 0000 45 541 500             | . TD- 4-               | ر<br>الفعد تأثير في                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 44 #                                 | 0/04                                             | 100                            | Disclain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ier: Pace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al is i     | not re             | espon                                        | sible fo     | or any             | omit                                             | rtad i      | -6                  |                |            | he Chain of Custody. The                                  |
| Per client only run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I I B IOF        | o∠ou ao not rur             | 1 1 68 10              | ır sampı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es -ua m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rougn -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·12   1/0                               | 5/ <b>Z</b> I                                    |                                | Chain of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is a legal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i docı      | ımen               | t that                                       | must         | be co              | mole                                             | te an       | q seei              | lation         | on t       | he Chain of Custody. The<br>s used to determine what      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                | anaiyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the labor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atory wil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ll per      | form               | . Апу                                        | missir       | e info             | rmat                                             | ion is      | u auu               | tho in         | ang :      | s used to determine what<br>ory's responsibility. Pace    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                | Anatytica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al values y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | your part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tnersi      | nip oi             | n each                                       | proje        | ct and             | Jiw b                                            | trv t       | n assi              | int wit        | burai      | ory's responsibility. Pace<br>ssing information, but will |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arter (1916) a distribution (1916).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                | Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Personal Per | en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de<br>La companya de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Algeberer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    | , no                                         | t be h       | eld ac             | ссоиг                                            | itable      | <br>?,              | 1110           | ., ( () [} | one mornation, but will                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1 2 2              |                                              |              |                    | -                                                |             | 100                 | المراسع المسار | m.,        | A State Control of the Control                            |



#### TRACK ANOTHER SHIPMENT

775065519588

ADD NICKNAME

Delivered

THIS IS 1 OF 4 PIECES

## DELIVERED

Signed for by: R.PIETRIAS
GET STATUS UPDATES

**OBTAIN PROOF OF DELIVERY** 

FROM

Mechanicsville, VA US

TO

EAST LONGMEADOW, MAUS

MANAGE DELIVERY ~

4 Piece Shipment

| TRACKING ID           | STATUS           | SHIP<br>Date | DELIVERY<br>Date | HANDLING PIECE<br>UNITS | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|-----------------------|------------------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 775065519588 (master) | Delivered        | 10/29/21     | 11/1/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775065517725          | Delivered        | 10/29/21     | 10/30/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775065519658          | <b>Delivered</b> | 10/29/21     | 11/1/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 775065519989          | Delivered        | 10/29/21     | 11/1/21          | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

Travel History

TIME ZONE Local Scan Time



| I Have Not Confirmed Sample Container       |
|---------------------------------------------|
| Numbers With Lab Staff Before Relinquishing |
| Over Samples                                |



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client <u></u>                                 | Sampall                |              |                                                             |                |            |                        |            |             |  |  |
|------------------------------------------------|------------------------|--------------|-------------------------------------------------------------|----------------|------------|------------------------|------------|-------------|--|--|
| Received By                                    |                        |              | Date                                                        | 11112          | <u> </u>   | Time                   | 0922       | ···         |  |  |
| How were the samp                              | les In Cooler          | 4            | No Cooler                                                   |                | On Ice     |                        | No Ice     |             |  |  |
| received?                                      | Direct from Sam        | pling        | •                                                           |                | Ambient    |                        | Melted Ice | <del></del> |  |  |
| 14/                                            |                        | By Gun #     | <del></del>                                                 |                | Actual Tem | 1p-13.4,               | 1400145    | •           |  |  |
| Were samples with<br>Temperature? 2-6°         |                        | By Blank #   |                                                             |                |            | <del></del>            |            |             |  |  |
|                                                |                        | ····· [      | 18/0                                                        |                | Actual Tem | <del></del>            | - 1-2      |             |  |  |
| Was Custody Seal Intact? Was COC Relinguished? |                        | N/a          | Were Samples Tampered with?  Does Chain Agree With Samples? |                |            | - na                   |            |             |  |  |
|                                                | •                      | 1            | •                                                           | s Chain Agr    | ee with Sa | mpies ?                |            |             |  |  |
|                                                | en/leaking/loose cap   | s on any sam | •                                                           |                |            | -i-i                   |            |             |  |  |
| Is COC in ink/ Legib Did COC include a         |                        | _            |                                                             | npies receiv   |            | olding time?           | <u> </u>   |             |  |  |
|                                                |                        |              | . Analysis<br>iD's                                          | <u> </u>       | •          | er Name<br>Dates/Times | <u>_</u>   |             |  |  |
| pertinent Information                          |                        |              | . 108 .                                                     | 1              | Collection | Dates/Times            | <u> </u>   |             |  |  |
|                                                | illed out and legible? |              | •                                                           | 1441           | P.C. 10    |                        |            |             |  |  |
| Are there Lab to Filters?                      |                        |              | Who was notified?                                           |                |            |                        |            |             |  |  |
| Are there Rushes?                              | 0                      | <u>—É</u>    | •                                                           |                | notified?  |                        |            |             |  |  |
| Are there Short Hold                           |                        | T            | •                                                           | Who was        | notified?  |                        |            |             |  |  |
| Is there enough Volu                           |                        |              |                                                             |                |            |                        |            |             |  |  |
| Is there Headspace                             | • •                    |              | •                                                           | MS/MSD?        | <u> </u>   | <b>.</b>               |            |             |  |  |
| Proper Media/Contai                            |                        | T            | •                                                           | Is splitting s |            | quired?                | <u> </u>   |             |  |  |
| Were trip blanks reco                          |                        |              |                                                             | On COC?        | T          | <u>-</u>               | 1          |             |  |  |
| Do all samples have                            | the proper pH?         |              | Acid                                                        | <u> </u>       |            | Base                   |            |             |  |  |
| Vials #                                        | Containers:            | #            |                                                             |                | #          |                        |            | #           |  |  |
| Unp- 9                                         | 1 Liter Amb.           | <u> </u>     | 1 Liter                                                     |                | <u> </u>   | <del></del>            | z Amb.     |             |  |  |
| HCL- 기존                                        |                        |              | 500 mL                                                      |                |            | <del></del>            | nb/Clear   |             |  |  |
| Meoh-                                          | 250 mL Amb.            |              | 250 mL Plastic                                              |                | 17         | 4oz Amb/Clear          |            |             |  |  |
| Bisulfate-                                     | Flashpoint             |              | Col./Bacteria                                               |                |            | 2oz Amb/Clear          |            |             |  |  |
| DI-                                            | Other Glass            |              | Other Plastic                                               |                |            | Encore                 |            |             |  |  |
| Thiosulfate-                                   | SOC Kit                |              |                                                             | Plastic Bag    |            | Frozen:                |            |             |  |  |
| Sulfuric-                                      | Perchlorate            |              | Ziplo                                                       | оск            |            |                        |            |             |  |  |
| Unused Media                                   |                        |              |                                                             |                |            |                        |            |             |  |  |
| Vials #                                        | Containers:            | #            |                                                             |                | #          |                        |            | #           |  |  |
| Unp-                                           | 1 Liter Amb.           | 1            | 1 Liter                                                     |                |            |                        | z Amb.     |             |  |  |
| HCL-                                           | 500 mL Amb.            |              | 500 mL                                                      |                |            | 4                      | nb/Clear   |             |  |  |
| Meoh-                                          | 250 mL Amb.            | -            | 250 mL                                                      |                |            | <del></del>            | nb/Clear   |             |  |  |
| Bisulfate-                                     | Col./Bacteria          |              | Flash                                                       | <del></del>    |            |                        | nb/Clear   |             |  |  |
| DI-                                            | Other Plastic          |              | Other                                                       |                |            |                        | core       |             |  |  |
| Thiosulfate-                                   | SOC Kit                |              | Plastic                                                     |                |            | Frozen:                |            |             |  |  |
| Sulfuric-                                      | Perchlorate            |              | Ziplo                                                       | ock            |            |                        |            |             |  |  |
| Comments:                                      |                        |              |                                                             |                |            |                        |            |             |  |  |
| Pit post hdQ.                                  | Received               | 5 extra      | sels o                                                      | of top         | blooks 1   | not listed             | on coc     |             |  |  |



December 8, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21L0083

Enclosed are results of analyses for samples as received by the laboratory on December 1, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 12/8/2021

ORCHASE ORBER NOMBER

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21L0083

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB206-0-1-211012   | 21L0083-01 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB206-5-7-211012   | 21L0083-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB206-15-17-211012 | 21L0083-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB207-0-1-211013   | 21L0083-04 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB207-6-8-211013   | 21L0083-05 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-DUP03-6-8-211013   | 21L0083-06 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB207-16-18-211013 | 21L0083-07 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |

#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

#### SW-846 8270E

#### Qualifications:

H-10

Analysis was requested after the recommended holding time had passed.

#### Analyte & Samples(s) Qualified:

 $21L0083-01[HRP-SB206-0-1-211012], 21L0083-02[HRP-SB206-5-7-211012], 21L0083-03[HRP-SB206-15-17-211012], 21L0083-04[HRP-SB207-0-1-211013], \\ 21L0083-05[HRP-SB207-6-8-211013], 21L0083-06[HRP-DUP03-6-8-211013], 21L0083-07[HRP-SB207-16-18-211013]$ 

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

#### Analyte & Samples(s) Qualified:

3-Nitroaniline

B296234-BS1, B296234-BSD1

4-Chloroaniline

B296234-BS1, B296234-BSD1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

## Analyte & Samples(s) Qualified:

#### 3-Nitroaniline

 $21L0083-01[HRP-SB206-0-1-211012], 21L0083-02[HRP-SB206-5-7-211012], 21L0083-03[HRP-SB206-15-17-211012], 21L0083-04[HRP-SB207-0-1-211013], \\21L0083-05[HRP-SB207-6-8-211013], 21L0083-06[HRP-DUP03-6-8-211013], 21L0083-07[HRP-SB207-16-18-211013], B296234-BLK1$ 

#### 4-Chloroaniline

 $21L0083-01[HRP-SB206-0-1-211012], 21L0083-02[HRP-SB206-5-7-211012], 21L0083-03[HRP-SB206-15-17-211012], 21L0083-04[HRP-SB207-0-1-211013], \\ 21L0083-05[HRP-SB207-6-8-211013], 21L0083-06[HRP-DUP03-6-8-211013], 21L0083-07[HRP-SB207-16-18-211013], B296234-BLK1$ 

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

#### Analyte & Samples(s) Qualified:

#### 4-Chloroaniline

 $21L0083-01[HRP-SB206-0-1-211012], 21L0083-02[HRP-SB206-5-7-211012], 21L0083-03[HRP-SB206-15-17-211012], 21L0083-04[HRP-SB207-0-1-211013], \\ 21L0083-05[HRP-SB207-6-8-211013], 21L0083-06[HRP-DUP03-6-8-211013], 21L0083-07[HRP-SB207-16-18-211013], \\ 8296234-BLK1, 8296234-BSD1, 829624-BSD1, 829624-BSD1, 829624-BSD1, 829624-BSD1, 829624-BSD$ 

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

## Analyte & Samples(s) Qualified:

#### Benzidine

21L0083-01[HRP-SB206-0-1-211012], 21L0083-02[HRP-SB206-5-7-211012], 21L0083-03[HRP-SB206-15-17-211012], 21L0083-04[HRP-SB207-0-1-211013], 21L0083-05[HRP-SB207-6-8-211013], 21L0083-06[HRP-DUP03-6-8-211013], 21L0083-07[HRP-SB207-16-18-211013], B296234-BLK1, B296234-BS1, B296234-BSD1



The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watslengten



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-0-1-211012** Sampled: 10/12/2021 12:43

Sample ID: 21L0083-01
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method        | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|------------|---------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.19 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Acenaphthylene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Acetophenone                     | ND      | 0.38 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Aniline                          | ND      | 0.38 | 0.080 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Anthracene                       | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzidine                        | ND      | 0.75 | 0.18  | mg/Kg dry | 1        | V-35       | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzo(a)anthracene               | ND      | 0.19 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.19 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.19 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.19 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.46  | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.38 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.38 | 0.087 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.38 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.38 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Butylbenzylphthalate             | ND      | 0.38 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Carbazole                        | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 4-Chloroaniline                  | ND      | 0.75 | 0.051 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.75 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.38 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2-Chlorophenol                   | ND      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.38 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Chrysene                         | ND      | 0.19 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.19 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Dibenzofuran                     | ND      | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Di-n-butylphthalate              | ND      | 0.38 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.38 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.38 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.38 | 0.040 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Diethylphthalate                 | ND      | 0.38 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.38 | 0.10  | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Dimethylphthalate                | ND      | 0.38 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.38 | 0.26  | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.75 | 0.33  | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.38 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.38 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Di-n-octylphthalate              | ND      | 0.38 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.38 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Fluoranthene                     | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
| Fluorene                         | ND      | 0.19 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E  | 12/7/21          | 12/8/21 10:25         | BGL     |
|                                  | ND      | 0.17 | 0.005 | mg ng my  |          |            | 511 010 02/0L | 12///21          | 12/0/21 10.23         | DOL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB206-0-1-211012 Sampled: 10/12/2021 12:43

Sample ID: 21L0083-01
Sample Matrix: Soil

2,4,6-Tribromophenol

p-Terphenyl-d14

| ample Flags: H-10   | Semivolatile Organic Compounds by GC/MS  |
|---------------------|------------------------------------------|
| ample 1 lags. 11-10 | Semi-volutile organic compounds by Germs |

62.1

78.9

30-130

30-130

12/8/21 10:25

12/8/21 10:25

| Ameliate                             | Results | RL     | DI    | II                 | Dilution | El/Ol     | M-4b-1                       | Date    | Date/Time                 | A I           |
|--------------------------------------|---------|--------|-------|--------------------|----------|-----------|------------------------------|---------|---------------------------|---------------|
| Analyte Hexachlorobenzene            | ND      | 0.38   | 0.052 | Units<br>mg/Kg dry | 1        | Flag/Qual | Method<br>SW-846 8270E       | 12/7/21 | Analyzed<br>12/8/21 10:25 | Analys<br>BGL |
| Hexachlorobutadiene                  | ND      | 0.38   | 0.032 | mg/Kg dry          | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/7/21 | 12/8/21 10:25             | BGL           |
| Hexachlorocyclopentadiene            | ND      | 0.38   | 0.049 | mg/Kg dry          | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/7/21 | 12/8/21 10:25             | BGL           |
| Hexachloroethane                     |         |        |       | 0 0 1              |          |           |                              |         |                           |               |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.38   | 0.046 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| ***                                  | ND      | 0.19   | 0.087 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Isophorone                           | ND      | 0.38   | 0.064 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 1-Methylnaphthalene                  | 0.10    | 0.19   | 0.053 | mg/Kg dry          | 1        | J         | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2-Methylnaphthalene                  | 0.17    | 0.19   | 0.061 | mg/Kg dry          | 1        | J         | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2-Methylphenol                       | ND      | 0.38   | 0.071 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 3/4-Methylphenol                     | ND      | 0.38   | 0.062 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Naphthalene                          | 0.11    | 0.19   | 0.052 | mg/Kg dry          | 1        | J         | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2-Nitroaniline                       | ND      | 0.38   | 0.082 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 3-Nitroaniline                       | ND      | 0.38   | 0.065 | mg/Kg dry          | 1        | V-20      | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 4-Nitroaniline                       | ND      | 0.38   | 0.082 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Nitrobenzene                         | ND      | 0.38   | 0.056 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2-Nitrophenol                        | ND      | 0.38   | 0.060 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 4-Nitrophenol                        | ND      | 0.75   | 0.16  | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| N-Nitrosodimethylamine               | ND      | 0.38   | 0.057 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.38   | 0.058 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| N-Nitrosodi-n-propylamine            | ND      | 0.38   | 0.053 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Pentachloronitrobenzene              | ND      | 0.38   | 0.065 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Pentachlorophenol                    | ND      | 0.38   | 0.17  | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Phenanthrene                         | 0.088   | 0.19   | 0.061 | mg/Kg dry          | 1        | J         | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Phenol                               | ND      | 0.38   | 0.055 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Pyrene                               | ND      | 0.19   | 0.061 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Pyridine                             | ND      | 0.38   | 0.039 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.38   | 0.050 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 1,2,4-Trichlorobenzene               | ND      | 0.38   | 0.048 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2,4,5-Trichlorophenol                | ND      | 0.38   | 0.060 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| 2,4,6-Trichlorophenol                | ND      | 0.38   | 0.059 | mg/Kg dry          | 1        |           | SW-846 8270E                 | 12/7/21 | 12/8/21 10:25             | BGL           |
| Surrogates                           |         | % Reco | very  | Recovery Limits    | 1        | Flag/Qual |                              |         |                           |               |
| 2-Fluorophenol                       |         | 65.0   |       | 30-130             |          |           |                              |         | 12/8/21 10:25             |               |
| Phenol-d6                            |         | 69.6   |       | 30-130             |          |           |                              |         | 12/8/21 10:25             |               |
| Nitrobenzene-d5                      |         | 68.5   |       | 30-130             |          |           |                              |         | 12/8/21 10:25             |               |
| 2-Fluorobiphenyl                     |         | 72.0   |       | 30-130             |          |           |                              |         | 12/8/21 10:25             |               |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-0-1-211012** Sampled: 10/12/2021 12:43

Sample ID: 21L0083-01
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 86.8    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | MJH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-5-7-211012** Sampled: 10/12/2021 12:58

Sample ID: 21L0083-02
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Acenaphthylene                  | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Acetophenone                    | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Aniline                         | ND      | 0.40 | 0.083 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Anthracene                      | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzidine                       | ND      | 0.77 | 0.18  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzo(a)anthracene              | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Benzoic Acid                    | ND      | 1.2  | 0.47  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.40 | 0.090 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Bromophenylphenylether        | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Butylbenzylphthalate            | ND      | 0.40 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Carbazole                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Chloroaniline                 | ND      | 0.77 | 0.053 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Chloro-3-methylphenol         | ND      | 0.77 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Chlorophenol                  | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Chlorophenylphenylether       | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Chrysene                        | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.20 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Dibenzofuran                    | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Di-n-butylphthalate             | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1,2-Dichlorobenzene             | ND      | 0.40 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1,3-Dichlorobenzene             | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Diethylphthalate                | ND      | 0.40 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Dimethylphthalate               | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4,6-Dinitro-2-methylphenol      | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4-Dinitrophenol               | ND      | 0.77 | 0.34  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.40 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Di-n-octylphthalate             | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Fluoranthene                    | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
| Fluorene                        | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 10:52         | BGL     |
|                                 |         |      |       |           |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB206-5-7-211012 Sampled: 10/12/2021 12:58

Sample ID: 21L0083-02
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method        | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|---------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.40   | 0.054 | mg/Kg dry       | 1        | 1 mg/ Qum | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Hexachloroethane                     | ND      | 0.40   | 0.047 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.40   | 0.047 |                 | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Isophorone                           |         |        |       | mg/Kg dry       |          |           |               |                  |                       |         |
| •                                    | ND      | 0.40   | 0.066 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Methylphenol                       | ND      | 0.40   | 0.074 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Naphthalene                          | ND      | 0.20   | 0.054 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.085 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.068 | mg/Kg dry       | 1        | V-20      | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.085 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Nitrobenzene                         | ND      | 0.40   | 0.058 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 4-Nitrophenol                        | ND      | 0.77   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.067 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Pentachlorophenol                    | ND      | 0.40   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Phenanthrene                         | ND      | 0.20   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Phenol                               | ND      | 0.40   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Pyrene                               | ND      | 0.20   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Pyridine                             | ND      | 0.40   | 0.041 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.052 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.050 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E  | 12/7/21          | 12/8/21 10:52         | BGL     |
| Surrogates                           | TVD     | % Reco |       | Recovery Limits |          | Flag/Qual | 5 W-040 02/0L | 12///21          | 12/0/21 10.32         | DOL     |
| 2-Fluorophenol                       |         | 52.1   | 3     | 30-130          | -        | B. 4      |               |                  | 12/8/21 10:52         |         |
| Phenol-d6                            |         | 54.6   |       | 30-130          |          |           |               |                  | 12/8/21 10:52         |         |
| Nitrobenzene-d5                      |         | 50.6   |       | 30-130          |          |           |               |                  | 12/8/21 10:52         |         |
| 2-Fluorobiphenyl                     |         | 54.0   |       | 30-130          |          |           |               |                  | 12/8/21 10:52         |         |
| 2,4,6-Tribromophenol                 |         | 57.6   |       | 30-130          |          |           |               |                  | 12/8/21 10:52         |         |
| p-Terphenyl-d14                      |         | 61.4   |       | 30-130          |          |           |               |                  | 12/8/21 10:52         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-5-7-211012** Sampled: 10/12/2021 12:58

Sample ID: 21L0083-02
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.3    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | MJH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-15-17-211012** Sampled: 10/12/2021 13:45

Sample ID: 21L0083-03
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.22 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Acenaphthylene                  | ND      | 0.22 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Acetophenone                    | ND      | 0.44 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Aniline                         | ND      | 0.44 | 0.092 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Anthracene                      | ND      | 0.22 | 0.072 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzidine                       | ND      | 0.86 | 0.20  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzo(a)anthracene              | ND      | 0.22 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.22 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.22 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.22 | 0.093 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.22 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Benzoic Acid                    | ND      | 1.3  | 0.53  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.44 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.44 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.44 | 0.10  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.44 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 4-Bromophenylphenylether        | ND      | 0.44 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Butylbenzylphthalate            | ND      | 0.44 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Carbazole                       | ND      | 0.22 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1-Chloroaniline                 | ND      | 0.86 | 0.059 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 4-Chloro-3-methylphenol         | ND      | 0.86 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.44 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| -Chlorophenol                   | ND      | 0.44 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1-Chlorophenylphenylether       | ND      | 0.44 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Chrysene                        | ND      | 0.22 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.22 | 0.090 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Dibenzofuran                    | ND      | 0.44 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Di-n-butylphthalate             | ND      | 0.44 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| ,2-Dichlorobenzene              | ND      | 0.44 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| ,3-Dichlorobenzene              | ND      | 0.44 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.44 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.22 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.44 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Diethylphthalate                | ND      | 0.44 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.44 | 0.12  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Dimethylphthalate               | ND      | 0.44 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| ,6-Dinitro-2-methylphenol       | ND      | 0.44 | 0.30  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| ,4-Dinitrophenol                | ND      | 0.86 | 0.38  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.44 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.44 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Di-n-octylphthalate             | ND      | 0.44 | 0.16  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.44 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Fluoranthene                    | ND      | 0.22 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Fluorene                        | ND      | 0.22 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
|                                 |         |      |       | 2 2 3     |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB206-15-17-211012 Sampled: 10/12/2021 13:45

Sample ID: 21L0083-03
Sample Matrix: Soil

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    |                                         |

68.4

69.4

75.0

30-130

30-130

30-130

12/8/21 11:18

12/8/21 11:18

12/8/21 11:18

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.44   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.44   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.44   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Hexachloroethane                     | ND      | 0.44   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.22   | 0.10  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Isophorone                           | ND      | 0.44   | 0.074 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.22   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2-Methylnaphthalene                  | 0.071   | 0.22   | 0.070 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2-Methylphenol                       | ND      | 0.44   | 0.082 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.44   | 0.071 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Naphthalene                          | ND      | 0.22   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2-Nitroaniline                       | ND      | 0.44   | 0.094 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 3-Nitroaniline                       | ND      | 0.44   | 0.075 | mg/Kg dry      | 1        | V-20      | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 4-Nitroaniline                       | ND      | 0.44   | 0.095 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Nitrobenzene                         | ND      | 0.44   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2-Nitrophenol                        | ND      | 0.44   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 4-Nitrophenol                        | ND      | 0.86   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.44   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.44   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.44   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.44   | 0.074 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Pentachlorophenol                    | ND      | 0.44   | 0.19  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Phenanthrene                         | ND      | 0.22   | 0.070 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Phenol                               | ND      | 0.44   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Pyrene                               | ND      | 0.22   | 0.070 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Pyridine                             | ND      | 0.44   | 0.045 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.44   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.44   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.44   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.44   | 0.068 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 11:18         | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 65.9   |       | 30-130         | <u> </u> |           |              |                  | 12/8/21 11:18         |         |
| Phenol-d6                            |         | 68.5   |       | 30-130         |          |           |              |                  | 12/8/21 11:18         |         |
| Nitrobenzene-d5                      |         | 64.6   |       | 30-130         |          |           |              |                  | 12/8/21 11:18         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB206-15-17-211012** Sampled: 10/12/2021 13:45

Sample ID: 21L0083-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 75.4    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | МЈН     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB207-0-1-211013 Sampled: 10/13/2021 08:37

Sample ID: 21L0083-04
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Acenaphthylene                  | ND      | 0.21 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Acetophenone                    | ND      | 0.42 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Aniline                         | ND      | 0.42 | 0.088 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Anthracene                      | ND      | 0.21 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzidine                       | ND      | 0.82 | 0.19  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzo(a)anthracene              | 0.11    | 0.21 | 0.058 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzo(a)pyrene                  | 0.083   | 0.21 | 0.065 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzo(b)fluoranthene            | 0.11    | 0.21 | 0.064 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.21 | 0.088 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.21 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Benzoic Acid                    | ND      | 1.2  | 0.50  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.42 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.42 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.42 | 0.096 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.42 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1-Bromophenylphenylether        | ND      | 0.42 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Butylbenzylphthalate            | ND      | 0.42 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Carbazole                       | ND      | 0.21 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1-Chloroaniline                 | ND      | 0.82 | 0.056 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| l-Chloro-3-methylphenol         | ND      | 0.82 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.42 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Chlorophenol                  | ND      | 0.42 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1-Chlorophenylphenylether       | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Chrysene                        | 0.12    | 0.21 | 0.061 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.21 | 0.085 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Dibenzofuran                    | ND      | 0.42 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Di-n-butylphthalate             | ND      | 0.42 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,2-Dichlorobenzene             | ND      | 0.42 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,3-Dichlorobenzene             | ND      | 0.42 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.42 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.21 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.42 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Diethylphthalate                | ND      | 0.42 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.42 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Dimethylphthalate               | ND      | 0.42 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,6-Dinitro-2-methylphenol      | ND      | 0.42 | 0.28  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4-Dinitrophenol               | ND      | 0.82 | 0.36  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.42 | 0.082 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.42 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Di-n-octylphthalate             | ND      | 0.42 | 0.15  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Fluoranthene                    | 0.22    | 0.21 | 0.067 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Fluorene                        | ND      | 0.21 | 0.071 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
|                                 |         |      |       |           |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB207-0-1-211013 Sampled: 10/13/2021 08:37

Sample ID: 21L0083-04
Sample Matrix: Soil

Sample Flags: H-10

2,4,6-Tribromophenol

p-Terphenyl-d14

|  | Semivolatile Organic Compounds by GC/MS |
|--|-----------------------------------------|
|--|-----------------------------------------|

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|------------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.42   | 0.057 | mg/Kg dry       | 1        | r iag/Quai | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.42   | 0.054 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.42   | 0.18  | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Hexachloroethane                     | ND      | 0.42   | 0.050 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.21   | 0.095 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Isophorone                           | ND      | 0.42   | 0.070 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1-Methylnaphthalene                  | 0.080   | 0.21   | 0.058 | mg/Kg dry       | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Methylnaphthalene                  | 0.13    | 0.21   | 0.067 | mg/Kg dry       | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Methylphenol                       | ND      | 0.42   | 0.078 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.42   | 0.068 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Naphthalene                          | 0.077   | 0.21   | 0.057 | mg/Kg dry       | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Nitroaniline                       | ND      | 0.42   | 0.090 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 3-Nitroaniline                       | ND      | 0.42   | 0.072 | mg/Kg dry       | 1        | V-20       | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 4-Nitroaniline                       | ND      | 0.42   | 0.090 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Nitrobenzene                         | ND      | 0.42   | 0.061 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2-Nitrophenol                        | ND      | 0.42   | 0.066 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 4-Nitrophenol                        | ND      | 0.82   | 0.17  | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.42   | 0.063 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.42   | 0.063 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.42   | 0.058 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.42   | 0.071 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Pentachlorophenol                    | ND      | 0.42   | 0.18  | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Phenanthrene                         | 0.25    | 0.21   | 0.066 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Phenol                               | ND      | 0.42   | 0.060 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Pyrene                               | 0.19    | 0.21   | 0.067 | mg/Kg dry       | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Pyridine                             | ND      | 0.42   | 0.043 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.42   | 0.055 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.42   | 0.053 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.42   | 0.065 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.42   | 0.065 | mg/Kg dry       | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 11:44         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limits |          | Flag/Qual  |              |                  |                       |         |
| 2-Fluorophenol                       |         | 62.3   |       | 30-130          |          |            |              |                  | 12/8/21 11:44         |         |
| Phenol-d6                            |         | 65.7   |       | 30-130          |          |            |              |                  | 12/8/21 11:44         |         |
| Nitrobenzene-d5                      |         | 62.6   |       | 30-130          |          |            |              |                  | 12/8/21 11:44         |         |
| 2-Fluorobiphenyl                     |         | 68.7   |       | 30-130          |          |            |              |                  | 12/8/21 11:44         |         |

30-130

30-130

73.7

12/8/21 11:44

12/8/21 11:44



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB207-0-1-211013** Sampled: 10/13/2021 08:37

Sample ID: 21L0083-04
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 80.5    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | MJH     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB207-6-8-211013 Sampled: 10/13/2021 09:15

Sample ID: 21L0083-05
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.19 | 0.060 | mg/Kg dry | 1        | <u> </u>   | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Acenaphthylene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Acetophenone                     | ND      | 0.38 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Aniline                          | ND      | 0.38 | 0.080 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Anthracene                       | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzidine                        | ND      | 0.74 | 0.18  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzo(a)anthracene               | ND      | 0.19 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.19 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.19 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.19 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.46  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.38 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.38 | 0.087 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.38 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.38 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Butylbenzylphthalate             | ND      | 0.38 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Carbazole                        | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Chloroaniline                  | ND      | 0.74 | 0.051 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.74 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.38 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Chlorophenol                   | ND      | 0.38 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.38 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Chrysene                         | ND      | 0.19 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.19 | 0.078 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Dibenzofuran                     | ND      | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Di-n-butylphthalate              | ND      | 0.38 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.38 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.38 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.38 | 0.040 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.38 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Diethylphthalate                 | ND      | 0.38 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.38 | 0.10  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Dimethylphthalate                | ND      | 0.38 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.38 | 0.26  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.74 | 0.33  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.38 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.38 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Di-n-octylphthalate              | ND      | 0.38 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.38 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Fluoranthene                     | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Fluorene                         | ND      | 0.19 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| •                                | 110     | V.17 | 0.000 |           | •        |            | 5 5.0 02/0E  | / // _ 1         | -2,0,21 12.11         | 2 JL    |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB207-6-8-211013** Sampled: 10/13/2021 09:15

Sample ID: 21L0083-05
Sample Matrix: Soil

2,4,6-Tribromophenol

p-Terphenyl-d14

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
| • -                |                                         |

66.2

73.5

30-130

30-130

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analysi |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.38   | 0.052 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.38   | 0.049 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.38   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Hexachloroethane                     | ND      | 0.38   | 0.046 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.087 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Isophorone                           | ND      | 0.38   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.19   | 0.053 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.19   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Methylphenol                       | ND      | 0.38   | 0.071 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.38   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Naphthalene                          | ND      | 0.19   | 0.052 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Nitroaniline                       | ND      | 0.38   | 0.082 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 3-Nitroaniline                       | ND      | 0.38   | 0.065 | mg/Kg dry       | 1        | V-20      | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Nitroaniline                       | ND      | 0.38   | 0.082 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Nitrobenzene                         | ND      | 0.38   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2-Nitrophenol                        | ND      | 0.38   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 4-Nitrophenol                        | ND      | 0.74   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.38   | 0.057 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.38   | 0.058 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.38   | 0.053 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.38   | 0.065 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Pentachlorophenol                    | ND      | 0.38   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Phenanthrene                         | ND      | 0.19   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Phenol                               | ND      | 0.38   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Pyrene                               | ND      | 0.19   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Pyridine                             | ND      | 0.38   | 0.039 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.38   | 0.050 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.38   | 0.048 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.38   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.38   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 12:11         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limits |          | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 66.1   |       | 30-130          |          |           |              |                  | 12/8/21 12:11         |         |
| Phenol-d6                            |         | 67.6   |       | 30-130          |          |           |              |                  | 12/8/21 12:11         |         |
| Nitrobenzene-d5                      |         | 63.6   |       | 30-130          |          |           |              |                  | 12/8/21 12:11         |         |
| 2-Fluorobiphenyl                     |         | 65.0   |       | 30-130          |          |           |              |                  | 12/8/21 12:11         |         |

12/8/21 12:11

12/8/21 12:11



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB207-6-8-211013** Sampled: 10/13/2021 09:15

Sample ID: 21L0083-05
Sample Matrix: Soil

### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 86.3    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | МЈН     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-DUP03-6-8-211013 Sampled: 10/13/2021 09:25

Sample ID: 21L0083-06
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Acenaphthylene                  | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Acetophenone                    | ND      | 0.41 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Aniline                         | ND      | 0.41 | 0.086 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Anthracene                      | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzidine                       | ND      | 0.80 | 0.19  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzo(a)anthracene              | ND      | 0.21 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.21 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.21 | 0.087 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.21 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Benzoic Acid                    | ND      | 1.2  | 0.49  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.41 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.41 | 0.094 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.41 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 4-Bromophenylphenylether        | ND      | 0.41 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Butylbenzylphthalate            | ND      | 0.41 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Carbazole                       | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 4-Chloroaniline                 | ND      | 0.80 | 0.055 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 4-Chloro-3-methylphenol         | ND      | 0.80 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.41 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2-Chlorophenol                  | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 1-Chlorophenylphenylether       | ND      | 0.41 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Chrysene                        | ND      | 0.21 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.21 | 0.084 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Dibenzofuran                    | ND      | 0.41 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Di-n-butylphthalate             | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 1,2-Dichlorobenzene             | ND      | 0.41 | 0.047 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 1,3-Dichlorobenzene             | ND      | 0.41 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.41 | 0.043 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.21 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.41 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Diethylphthalate                | ND      | 0.41 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.41 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Dimethylphthalate               | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 4,6-Dinitro-2-methylphenol      | ND      | 0.41 | 0.28  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2,4-Dinitrophenol               | ND      | 0.80 | 0.36  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.41 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.41 | 0.069 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Di-n-octylphthalate             | ND      | 0.41 | 0.15  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.41 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Fluoranthene                    | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
| Fluorene                        | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 12:38         | BGL     |
|                                 |         |      |       |           |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-DUP03-6-8-211013 Sampled: 10/13/2021 09:25

Sample ID: 21L0083-06
Sample Matrix: Soil

| Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS |         |        |       |                |          |           |              |          |               |         |
|------------------------------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|----------|---------------|---------|
|                                                            |         |        |       |                |          |           |              | Date     | Date/Time     |         |
| Analyte                                                    | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Hexachlorobenzene                                          | ND      | 0.41   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Hexachlorobutadiene                                        | ND      | 0.41   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Hexachlorocyclopentadiene                                  | ND      | 0.41   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Hexachloroethane                                           | ND      | 0.41   | 0.049 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Indeno(1,2,3-cd)pyrene                                     | ND      | 0.21   | 0.094 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Isophorone                                                 | ND      | 0.41   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 1-Methylnaphthalene                                        | ND      | 0.21   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2-Methylnaphthalene                                        | ND      | 0.21   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2-Methylphenol                                             | ND      | 0.41   | 0.077 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 3/4-Methylphenol                                           | ND      | 0.41   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Naphthalene                                                | ND      | 0.21   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2-Nitroaniline                                             | ND      | 0.41   | 0.088 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 3-Nitroaniline                                             | ND      | 0.41   | 0.070 | mg/Kg dry      | 1        | V-20      | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 4-Nitroaniline                                             | ND      | 0.41   | 0.089 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Nitrobenzene                                               | ND      | 0.41   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2-Nitrophenol                                              | ND      | 0.41   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 4-Nitrophenol                                              | ND      | 0.80   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| N-Nitrosodimethylamine                                     | ND      | 0.41   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine                       | ND      | 0.41   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| N-Nitrosodi-n-propylamine                                  | ND      | 0.41   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Pentachloronitrobenzene                                    | ND      | 0.41   | 0.070 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Pentachlorophenol                                          | ND      | 0.41   | 0.18  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Phenanthrene                                               | ND      | 0.21   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Phenol                                                     | ND      | 0.41   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Pyrene                                                     | ND      | 0.21   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Pyridine                                                   | ND      | 0.41   | 0.042 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 1,2,4,5-Tetrachlorobenzene                                 | ND      | 0.41   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 1,2,4-Trichlorobenzene                                     | ND      | 0.41   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2,4,5-Trichlorophenol                                      | ND      | 0.41   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| 2,4,6-Trichlorophenol                                      | ND      | 0.41   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 12:38 | BGL     |
| Surrogates                                                 |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |          |               |         |
| 2-Fluorophenol                                             |         | 62.6   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |
| Phenol-d6                                                  |         | 64.3   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |
| Nitrobenzene-d5                                            |         | 61.3   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |
| 2-Fluorobiphenyl                                           |         | 63.4   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |
| 2,4,6-Tribromophenol                                       |         | 64.1   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |
| p-Terphenyl-d14                                            |         | 72.1   |       | 30-130         |          |           |              |          | 12/8/21 12:38 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-DUP03-6-8-211013** Sampled: 10/13/2021 09:25

Sample ID: 21L0083-06
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 81.4    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | МЈН     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

Field Sample #: HRP-SB207-16-18-211013 Sampled: 10/13/2021 09:32

Sample ID: 21L0083-07
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.18 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Acenaphthylene                  | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Acetophenone                    | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Aniline                         | ND      | 0.36 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Anthracene                      | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzidine                       | ND      | 0.70 | 0.16  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzo(a)anthracene              | ND      | 0.18 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.18 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.18 | 0.076 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.18 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Benzoic Acid                    | ND      | 1.1  | 0.43  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| is(2-chloroethoxy)methane       | ND      | 0.36 | 0.047 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| sis(2-chloroethyl)ether         | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.36 | 0.082 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.36 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Bromophenylphenylether         | ND      | 0.36 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Butylbenzylphthalate            | ND      | 0.36 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| arbazole                        | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Chloroaniline                  | ND      | 0.70 | 0.048 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Chloro-3-methylphenol          | ND      | 0.70 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Chloronaphthalene              | ND      | 0.36 | 0.042 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Chlorophenol                   | ND      | 0.36 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| -Chlorophenylphenylether        | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Chrysene                        | ND      | 0.18 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.18 | 0.073 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Dibenzofuran                    | ND      | 0.36 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Di-n-butylphthalate             | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,2-Dichlorobenzene              | ND      | 0.36 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,3-Dichlorobenzene              | ND      | 0.36 | 0.040 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,4-Dichlorobenzene              | ND      | 0.36 | 0.038 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,3-Dichlorobenzidine            | ND      | 0.18 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,4-Dichlorophenol               | ND      | 0.36 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Piethylphthalate                | ND      | 0.36 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,4-Dimethylphenol               | ND      | 0.36 | 0.098 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Dimethylphthalate               | ND      | 0.36 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,6-Dinitro-2-methylphenol       | ND      | 0.36 | 0.24  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,4-Dinitrophenol                | ND      | 0.70 | 0.31  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,4-Dinitrotoluene               | ND      | 0.36 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,6-Dinitrotoluene               | ND      | 0.36 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| Di-n-octylphthalate             | ND      | 0.36 | 0.13  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.36 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| luoranthene                     | ND      | 0.18 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |
| luorene                         | ND      | 0.18 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 13:04         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21L0083-07
Sample Matrix: Soil

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    |                                         |

| Sample Flags: H-10                      |         |              | Semivo | latile Organic Co | ompounds by | GC/MS     |              |                  |                          |         |
|-----------------------------------------|---------|--------------|--------|-------------------|-------------|-----------|--------------|------------------|--------------------------|---------|
| Analyte                                 | Results | RL           | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed    | Analyst |
| Hexachlorobenzene                       | ND      | 0.36         | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Hexachlorobutadiene                     | ND      | 0.36         | 0.046  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Hexachlorocyclopentadiene               | ND      | 0.36         | 0.15   | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Hexachloroethane                        | ND      | 0.36         | 0.043  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Indeno(1,2,3-cd)pyrene                  | ND      | 0.18         | 0.082  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Isophorone                              | ND      | 0.36         | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 1-Methylnaphthalene                     | ND      | 0.18         | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2-Methylnaphthalene                     | ND      | 0.18         | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2-Methylphenol                          | ND      | 0.36         | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 3/4-Methylphenol                        | ND      | 0.36         | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Naphthalene                             | ND      | 0.18         | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2-Nitroaniline                          | ND      | 0.36         | 0.077  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 3-Nitroaniline                          | ND      | 0.36         | 0.061  | mg/Kg dry         | 1           | V-20      | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 4-Nitroaniline                          | ND      | 0.36         | 0.077  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Nitrobenzene                            | ND      | 0.36         | 0.052  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2-Nitrophenol                           | ND      | 0.36         | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 4-Nitrophenol                           | ND      | 0.70         | 0.15   | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| N-Nitrosodimethylamine                  | ND      | 0.36         | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.36         | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| N-Nitrosodi-n-propylamine               | ND      | 0.36         | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Pentachloronitrobenzene                 | ND      | 0.36         | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Pentachlorophenol                       | ND      | 0.36         | 0.16   | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Phenanthrene                            | ND      | 0.18         | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Phenol                                  | ND      | 0.36         | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Pyrene                                  | ND      | 0.18         | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Pyridine                                | ND      | 0.36         | 0.037  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.36         | 0.047  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 1,2,4-Trichlorobenzene                  | ND      | 0.36         | 0.045  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2,4,5-Trichlorophenol                   | ND      | 0.36         | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| 2,4,6-Trichlorophenol                   | ND      | 0.36         | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/7/21          | 12/8/21 13:04            | BGL     |
| Surrogates                              |         | % Reco       | very   | Recovery Limit    | s           | Flag/Qual |              |                  |                          |         |
| 2-Fluorophenol                          |         | 63.1         |        | 30-130            | <u> </u>    |           |              |                  | 12/8/21 13:04            |         |
| Phenol-d6                               |         | 66.1         |        | 30-130            |             |           |              |                  | 12/8/21 13:04            |         |
| Nitrobenzene-d5                         |         | 61.4         |        | 30-130            |             |           |              |                  | 12/8/21 13:04            |         |
| 2-Fluorobiphenyl                        |         | 65.9         |        | 30-130            |             |           |              |                  | 12/8/21 13:04            |         |
| · · ·                                   |         |              |        |                   |             |           |              |                  |                          |         |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 66.2<br>72.6 |        | 30-130<br>30-130  |             |           |              |                  | 12/8/21 13<br>12/8/21 13 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0083

Date Received: 12/1/2021

**Field Sample #: HRP-SB207-16-18-211013** Sampled: 10/13/2021 09:32

Sample ID: 21L0083-07
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 91.6    |    | % Wt  | 1        |           | SM 2540G | 10/19/21 | 10/20/21 13:31 | МЈН     |



### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21L0083-01 [HRP-SB206-0-1-211012]   | B292726 | 10/19/21 |
| 21L0083-02 [HRP-SB206-5-7-211012]   | B292726 | 10/19/21 |
| 21L0083-03 [HRP-SB206-15-17-211012] | B292726 | 10/19/21 |
| 21L0083-04 [HRP-SB207-0-1-211013]   | B292726 | 10/19/21 |
| 21L0083-05 [HRP-SB207-6-8-211013]   | B292726 | 10/19/21 |
| 21L0083-06 [HRP-DUP03-6-8-211013]   | B292726 | 10/19/21 |
| 21L0083-07 [HRP-SB207-16-18-211013] | B292726 | 10/19/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------------|---------|-------------|------------|----------|
| 21L0083-01 [HRP-SB206-0-1-211012]   | B296234 | 30.6        | 1.00       | 12/07/21 |
| 21L0083-02 [HRP-SB206-5-7-211012]   | B296234 | 30.1        | 1.00       | 12/07/21 |
| 21L0083-03 [HRP-SB206-15-17-211012] | B296234 | 30.6        | 1.00       | 12/07/21 |
| 21L0083-04 [HRP-SB207-0-1-211013]   | B296234 | 30.1        | 1.00       | 12/07/21 |
| 21L0083-05 [HRP-SB207-6-8-211013]   | B296234 | 30.8        | 1.00       | 12/07/21 |
| 21L0083-06 [HRP-DUP03-6-8-211013]   | B296234 | 30.3        | 1.00       | 12/07/21 |
| 21L0083-07 [HRP-SB207-16-18-211013] | B296234 | 30.9        | 1.00       | 12/07/21 |



# QUALITY CONTROL

| Analyte                                             | Result   | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|-----------------------------------------------------|----------|--------------------|------------------------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| Batch B296234 - SW-846 3546                         |          |                    |                        |                |                  |               |                |     |              |            |
| Blank (B296234-BLK1)                                |          |                    | 1                      | Prepared: 12   | 2/07/21 Anal     | yzed: 12/08/2 | 1              |     |              |            |
| Acenaphthene                                        | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Acenaphthylene                                      | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Acetophenone                                        | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Aniline                                             | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Anthracene                                          | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzidine                                           | ND       | 0.66               | mg/Kg wet              |                |                  |               |                |     |              | V-35       |
| Benzo(a)anthracene                                  | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzo(a)pyrene                                      | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzo(b)fluoranthene                                | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzo(g,h,i)perylene                                | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzo(k)fluoranthene                                | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Benzoic Acid                                        | ND       | 1.0                | mg/Kg wet              |                |                  |               |                |     |              |            |
| Bis(2-chloroethoxy)methane                          | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether | ND       | 0.34<br>0.34       | mg/Kg wet<br>mg/Kg wet |                |                  |               |                |     |              |            |
| Bis(2-Ethylhexyl)phthalate                          | ND       |                    |                        |                |                  |               |                |     |              |            |
| -Bromophenylphenylether                             | ND       | 0.34<br>0.34       | mg/Kg wet<br>mg/Kg wet |                |                  |               |                |     |              |            |
| Butylbenzylphthalate                                | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Carbazole                                           | ND<br>ND | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| -Chloroaniline                                      | ND<br>ND | 0.66               | mg/Kg wet              |                |                  |               |                |     |              | V-20, V-34 |
| -Chloro-3-methylphenol                              | ND<br>ND | 0.66               | mg/Kg wet              |                |                  |               |                |     |              | V-20, V-34 |
| -Chloronaphthalene                                  | ND<br>ND | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| -Chlorophenol                                       | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| -Chlorophenylphenylether                            | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Chrysene                                            | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Dibenz(a,h)anthracene                               | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Dibenzofuran                                        | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Di-n-butylphthalate                                 | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,2-Dichlorobenzene                                  | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzene                                  | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,4-Dichlorobenzene                                  | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzidine                                | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,4-Dichlorophenol                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Diethylphthalate                                    | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,4-Dimethylphenol                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Dimethylphthalate                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,6-Dinitro-2-methylphenol                           | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,4-Dinitrophenol                                    | ND       | 0.66               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,4-Dinitrotoluene                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,6-Dinitrotoluene                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Di-n-octylphthalate                                 | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ,2-Diphenylhydrazine/Azobenzene                     | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| luoranthene                                         | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| luorene                                             | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Hexachlorobenzene                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Iexachlorobutadiene                                 | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Hexachlorocyclopentadiene                           | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Hexachloroethane                                    | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| ndeno(1,2,3-cd)pyrene                               | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |
| Mothylpophthologo                                   | ND       | 0.34               | mg/Kg wet              |                |                  |               |                |     |              |            |
| -Methylnaphthalene                                  | ND       | 0.17               | mg/Kg wet              |                |                  |               |                |     |              |            |



# QUALITY CONTROL

| Analyte                              | Result        | Reporting<br>Limit | Units      | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD | RPD<br>Limit | Notes      |
|--------------------------------------|---------------|--------------------|------------|----------------|------------------|---------------|------------------|-----|--------------|------------|
| Satch B296234 - SW-846 3546          |               |                    |            |                |                  |               |                  |     |              |            |
| Blank (B296234-BLK1)                 |               |                    | 1          | Prepared: 12   | 2/07/21 Analy    | zed: 12/08/2/ | .1               |     |              |            |
| -Methylphenol                        | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| /4-Methylphenol                      | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| Japhthalene                          | ND            | 0.17               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| -Nitroaniline                        | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| -Nitroaniline                        | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              | V-20       |
| -Nitroaniline                        | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| Vitrobenzene                         | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| -Nitrophenol                         | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| -Nitrophenol                         | ND            | 0.66               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| J-Nitrosodimethylamine               | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| I-Nitrosodiphenylamine/Diphenylamine | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| I-Nitrosodi-n-propylamine            | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| entachloronitrobenzene               | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| entachlorophenol                     | ND<br>ND      | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| henanthrene                          | ND<br>ND      | 0.17               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| henol                                |               | 0.17               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| 'yrene                               | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| yridine                              | ND            | 0.17               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| •                                    | ND            |                    |            |                |                  |               |                  |     |              |            |
| ,2,4,5-Tetrachlorobenzene            | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| ,2,4-Trichlorobenzene                | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| ,4,5-Trichlorophenol                 | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| ,4,6-Trichlorophenol                 | ND            | 0.34               | mg/Kg wet  |                |                  |               |                  |     |              |            |
| urrogate: 2-Fluorophenol             | 5.33          |                    | mg/Kg wet  | 6.67           |                  | 80.0          | 30-130           |     |              |            |
| urrogate: Phenol-d6                  | 5.44          |                    | mg/Kg wet  | 6.67           |                  | 81.5          | 30-130           |     |              |            |
| urrogate: Nitrobenzene-d5            | 2.59          |                    | mg/Kg wet  | 3.33           |                  | 77.7          | 30-130           |     |              |            |
| urrogate: 2-Fluorobiphenyl           | 2.68          |                    | mg/Kg wet  | 3.33           |                  | 80.5          | 30-130           |     |              |            |
| urrogate: 2,4,6-Tribromophenol       | 5.77          |                    | mg/Kg wet  | 6.67           |                  | 86.6          | 30-130           |     |              |            |
| urrogate: p-Terphenyl-d14            | 3.23          |                    | mg/Kg wet  | 3.33           |                  | 96.9          | 30-130           |     |              |            |
| CS (B296234-BS1)                     |               |                    | ]          | Prepared: 12   | 2/07/21 Analy    | zed: 12/08/2  | .1               |     |              |            |
| cenaphthene                          | 1.21          | 0.17               | mg/Kg wet  | 1.67           |                  | 72.4          | 40-140           |     |              |            |
| acenaphthylene                       | 1.29          | 0.17               | mg/Kg wet  | 1.67           |                  | 77.4          | 40-140           |     |              |            |
| cetophenone                          | 1.27          | 0.34               | mg/Kg wet  | 1.67           |                  | 76.2          | 40-140           |     |              |            |
| aniline                              | 0.988         | 0.34               | mg/Kg wet  | 1.67           |                  | 59.3          | 10-140           |     |              |            |
| anthracene                           | 1.38          | 0.17               | mg/Kg wet  | 1.67           |                  | 82.6          | 40-140           |     |              |            |
| Benzidine                            | 2.05          | 0.66               | mg/Kg wet  | 1.67           |                  | 123           | 40-140           |     |              | V-35       |
| Benzo(a)anthracene                   | 1.29          | 0.17               | mg/Kg wet  | 1.67           |                  | 77.4          | 40-140           |     |              |            |
| Benzo(a)pyrene                       | 1.41          | 0.17               | mg/Kg wet  | 1.67           |                  | 84.5          | 40-140           |     |              |            |
| Benzo(b)fluoranthene                 | 1.33          | 0.17               | mg/Kg wet  | 1.67           |                  | 79.7          | 40-140           |     |              |            |
| enzo(g,h,i)perylene                  | 1.35          | 0.17               | mg/Kg wet  | 1.67           |                  | 80.8          | 40-140           |     |              |            |
| Benzo(k)fluoranthene                 | 1.42          | 0.17               | mg/Kg wet  | 1.67           |                  | 85.1          | 40-140           |     |              |            |
| enzoic Acid                          | 0.709         | 1.0                | mg/Kg wet  | 1.67           |                  | 42.5          | 30-130           |     |              | J          |
| is(2-chloroethoxy)methane            | 1.25          | 0.34               | mg/Kg wet  | 1.67           |                  | 75.2          | 40-140           |     |              |            |
| sis(2-chloroethyl)ether              | 1.21          | 0.34               | mg/Kg wet  | 1.67           |                  | 72.7          | 40-140           |     |              |            |
| is(2-chloroisopropyl)ether           | 1.39          | 0.34               | mg/Kg wet  | 1.67           |                  | 83.5          | 40-140           |     |              |            |
| is(2-Ethylhexyl)phthalate            | 1.35          | 0.34               | mg/Kg wet  | 1.67           |                  | 81.2          | 40-140           |     |              |            |
| -Bromophenylphenylether              | 1.26          | 0.34               | mg/Kg wet  | 1.67           |                  | 75.4          | 40-140           |     |              |            |
| utylbenzylphthalate                  |               | 0.34               | mg/Kg wet  | 1.67           |                  | 78.3          | 40-140           |     |              |            |
| at 1100112 y 1piititatate            | 1.31          | 0.17               | mg/Kg wet  |                |                  |               |                  |     |              |            |
|                                      |               | U.1/               | mg/reg wet | 1.67           |                  | 80.9          | 40-140           |     |              |            |
| Carbazole                            | 1.35          |                    |            | 1.67           |                  | 50.0          | 10 140           |     |              | 1106 112   |
|                                      | 0.997<br>1.24 | 0.66<br>0.66       | mg/Kg wet  | 1.67<br>1.67   |                  | 59.8<br>74.6  | 10-140<br>30-130 |     |              | V-06, V-34 |



### QUALITY CONTROL

|                                                 |              | Reporting    |                        | Spike        | Source       |              | %REC             |     | RPD   |       |  |
|-------------------------------------------------|--------------|--------------|------------------------|--------------|--------------|--------------|------------------|-----|-------|-------|--|
| Analyte                                         | Result       | Limit        | Units                  | Level        | Result       | %REC         | Limits           | RPD | Limit | Notes |  |
| Batch B296234 - SW-846 3546                     |              |              |                        |              |              |              |                  |     |       |       |  |
| LCS (B296234-BS1)                               |              |              |                        | Prepared: 12 | /07/21 Analy | zed: 12/08/2 | 1                |     |       |       |  |
| 2-Chlorophenol                                  | 1.18         | 0.34         | mg/Kg wet              | 1.67         |              | 70.5         | 30-130           |     |       |       |  |
| 4-Chlorophenylphenylether                       | 1.22         | 0.34         | mg/Kg wet              | 1.67         |              | 73.1         | 40-140           |     |       |       |  |
| Chrysene                                        | 1.35         | 0.17         | mg/Kg wet              | 1.67         |              | 81.1         | 40-140           |     |       |       |  |
| Dibenz(a,h)anthracene                           | 1.42         | 0.17         | mg/Kg wet              | 1.67         |              | 85.1         | 40-140           |     |       |       |  |
| Dibenzofuran Di a hatalahtalata                 | 1.34         | 0.34         | mg/Kg wet              | 1.67         |              | 80.6         | 40-140           |     |       |       |  |
| Di-n-butylphthalate                             | 1.32         | 0.34         | mg/Kg wet              | 1.67         |              | 79.0         | 40-140           |     |       |       |  |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene         | 1.18         | 0.34         | mg/Kg wet              | 1.67         |              | 71.0         | 40-140           |     |       |       |  |
| 1,4-Dichlorobenzene                             | 1.13         | 0.34         | mg/Kg wet              | 1.67         |              | 67.9         | 40-140           |     |       |       |  |
| 3,3-Dichlorobenzidine                           | 1.15         | 0.34         | mg/Kg wet              | 1.67         |              | 69.0         | 40-140           |     |       |       |  |
| 2,4-Dichlorophenol                              | 1.00         | 0.17<br>0.34 | mg/Kg wet<br>mg/Kg wet | 1.67<br>1.67 |              | 60.2<br>71.9 | 20-140<br>30-130 |     |       |       |  |
| Diethylphthalate                                | 1.20         | 0.34         | mg/Kg wet              | 1.67         |              | 74.6         | 40-140           |     |       |       |  |
| 2,4-Dimethylphenol                              | 1.24<br>1.21 | 0.34         | mg/Kg wet              | 1.67         |              | 72.8         | 30-130           |     |       |       |  |
| Dimethylphthalate                               |              | 0.34         | mg/Kg wet              | 1.67         |              | 74.4         | 40-140           |     |       |       |  |
| 4,6-Dinitro-2-methylphenol                      | 1.24<br>1.19 | 0.34         | mg/Kg wet              | 1.67         |              | 71.6         | 30-130           |     |       |       |  |
| 2,4-Dinitrophenol                               | 0.882        | 0.66         | mg/Kg wet              | 1.67         |              | 52.9         | 30-130           |     |       |       |  |
| 2,4-Dinitrotoluene                              | 1.36         | 0.34         | mg/Kg wet              | 1.67         |              | 81.6         | 40-140           |     |       |       |  |
| 2,6-Dinitrotoluene                              | 1.39         | 0.34         | mg/Kg wet              | 1.67         |              | 83.2         | 40-140           |     |       |       |  |
| Di-n-octylphthalate                             | 1.29         | 0.34         | mg/Kg wet              | 1.67         |              | 77.5         | 40-140           |     |       |       |  |
| 1,2-Diphenylhydrazine/Azobenzene                | 1.46         | 0.34         | mg/Kg wet              | 1.67         |              | 87.4         | 40-140           |     |       |       |  |
| Fluoranthene                                    | 1.33         | 0.17         | mg/Kg wet              | 1.67         |              | 79.6         | 40-140           |     |       |       |  |
| Fluorene                                        | 1.31         | 0.17         | mg/Kg wet              | 1.67         |              | 78.7         | 40-140           |     |       |       |  |
| Hexachlorobenzene                               | 1.38         | 0.34         | mg/Kg wet              | 1.67         |              | 82.7         | 40-140           |     |       |       |  |
| Hexachlorobutadiene                             | 1.17         | 0.34         | mg/Kg wet              | 1.67         |              | 70.4         | 40-140           |     |       |       |  |
| Hexachlorocyclopentadiene                       | 1.12         | 0.34         | mg/Kg wet              | 1.67         |              | 67.5         | 40-140           |     |       |       |  |
| Hexachloroethane                                | 1.18         | 0.34         | mg/Kg wet              | 1.67         |              | 70.7         | 40-140           |     |       |       |  |
| Indeno(1,2,3-cd)pyrene                          | 1.43         | 0.17         | mg/Kg wet              | 1.67         |              | 85.5         | 40-140           |     |       |       |  |
| Isophorone                                      | 1.36         | 0.34         | mg/Kg wet              | 1.67         |              | 81.8         | 40-140           |     |       |       |  |
| 1-Methylnaphthalene                             | 1.17         | 0.17         | mg/Kg wet              | 1.67         |              | 70.1         | 40-140           |     |       |       |  |
| 2-Methylnaphthalene                             | 1.40         | 0.17         | mg/Kg wet              | 1.67         |              | 84.1         | 40-140           |     |       |       |  |
| 2-Methylphenol                                  | 1.31         | 0.34         | mg/Kg wet              | 1.67         |              | 78.3         | 30-130           |     |       |       |  |
| 3/4-Methylphenol                                | 1.32         | 0.34         | mg/Kg wet              | 1.67         |              | 79.4         | 30-130           |     |       |       |  |
| Naphthalene                                     | 1.23         | 0.17         | mg/Kg wet              | 1.67         |              | 74.0         | 40-140           |     |       |       |  |
| 2-Nitroaniline                                  | 1.69         | 0.34         | mg/Kg wet              | 1.67         |              | 101          | 40-140           |     |       |       |  |
| 3-Nitroaniline                                  | 1.29         | 0.34         | mg/Kg wet              | 1.67         |              | 77.4         | 30-140           |     |       | V-06  |  |
| 4-Nitroaniline                                  | 1.44         | 0.34         | mg/Kg wet              | 1.67         |              | 86.1         | 40-140           |     |       |       |  |
| Nitrobenzene                                    | 1.25         | 0.34         | mg/Kg wet              | 1.67         |              | 74.9         | 40-140           |     |       |       |  |
| 2-Nitrophenol                                   | 1.19         | 0.34         | mg/Kg wet              | 1.67         |              | 71.5         | 30-130           |     |       |       |  |
| 4-Nitrophenol                                   | 1.22         | 0.66         | mg/Kg wet              | 1.67         |              | 73.0         | 30-130           |     |       |       |  |
| N-Nitrosodimethylamine                          | 1.20         | 0.34         | mg/Kg wet              | 1.67         |              | 72.1         | 40-140           |     |       |       |  |
| N-Nitrosodiphenylamine/Diphenylamine            | 1.39         | 0.34         | mg/Kg wet              | 1.67         |              | 83.4         | 40-140           |     |       |       |  |
| N-Nitrosodi-n-propylamine                       | 1.26         | 0.34         | mg/Kg wet              | 1.67         |              | 75.4         | 40-140           |     |       |       |  |
| Pentachloronitrobenzene                         | 1.34         | 0.34         | mg/Kg wet              | 1.67         |              | 80.1         | 40-140           |     |       |       |  |
| Pentachlorophenol                               | 1.12         | 0.34         | mg/Kg wet              | 1.67         |              | 67.2         | 30-130           |     |       |       |  |
| Phenanthrene                                    | 1.36         | 0.17         | mg/Kg wet              | 1.67         |              | 81.6         | 40-140           |     |       |       |  |
| Phenol                                          | 1.18         | 0.34         | mg/Kg wet              | 1.67         |              | 71.0         | 30-130           |     |       |       |  |
| Pyrene                                          | 1.37         | 0.17         | mg/Kg wet              | 1.67         |              | 82.4         | 40-140           |     |       |       |  |
| Pyridine                                        | 0.800        | 0.34         | mg/Kg wet              | 1.67         |              | 48.0         | 30-140           |     |       |       |  |
| 1,2,4,5-Tetrachlorobenzene                      | 1.17         | 0.34         | mg/Kg wet              | 1.67         |              | 70.0         | 40-140           |     |       |       |  |
| 1,2,4-Trichlorobenzene<br>2,4,5-Trichlorophenol | 1.19         | 0.34<br>0.34 | mg/Kg wet<br>mg/Kg wet | 1.67         |              | 71.5         | 40-140           |     |       |       |  |
| 2,4,5-1richlorophenol                           | 1.33<br>1.23 | 0.34         | mg/Kg wet              | 1.67<br>1.67 |              | 79.6<br>73.7 | 30-130<br>30-130 |     |       |       |  |



# QUALITY CONTROL

| Analyte                          | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|----------------------------------|--------------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|------------|---|
| Batch B296234 - SW-846 3546      |              |                    |           |                |                  |               |                |       |              |            | _ |
| LCS (B296234-BS1)                |              |                    |           | Prepared: 12   | 2/07/21 Anal     | yzed: 12/08/2 | 21             |       |              |            |   |
| Surrogate: 2-Fluorophenol        | 5.04         |                    | mg/Kg wet | 6.67           |                  | 75.5          | 30-130         |       |              |            | _ |
| Surrogate: Phenol-d6             | 5.05         |                    | mg/Kg wet | 6.67           |                  | 75.8          | 30-130         |       |              |            |   |
| Surrogate: Nitrobenzene-d5       | 2.54         |                    | mg/Kg wet | 3.33           |                  | 76.2          | 30-130         |       |              |            |   |
| Surrogate: 2-Fluorobiphenyl      | 2.54         |                    | mg/Kg wet | 3.33           |                  | 76.2          | 30-130         |       |              |            |   |
| Surrogate: 2,4,6-Tribromophenol  | 5.60         |                    | mg/Kg wet | 6.67           |                  | 84.0          | 30-130         |       |              |            |   |
| Surrogate: p-Terphenyl-d14       | 2.86         |                    | mg/Kg wet | 3.33           |                  | 85.9          | 30-130         |       |              |            |   |
| LCS Dup (B296234-BSD1)           |              |                    |           | Prepared: 12   | 2/07/21 Anal     | yzed: 12/08/2 | 21             |       |              |            |   |
| Acenaphthene                     | 1.23         | 0.17               | mg/Kg wet | 1.67           |                  | 73.8          | 40-140         | 1.89  | 30           |            | _ |
| Acenaphthylene                   | 1.32         | 0.17               | mg/Kg wet | 1.67           |                  | 79.5          | 40-140         | 2.57  | 30           |            |   |
| Acetophenone                     | 1.27         | 0.34               | mg/Kg wet | 1.67           |                  | 76.4          | 40-140         | 0.236 | 30           |            |   |
| Aniline                          | 1.03         | 0.34               | mg/Kg wet | 1.67           |                  | 61.7          | 10-140         | 4.07  | 50           |            | † |
| Anthracene                       | 1.39         | 0.17               | mg/Kg wet | 1.67           |                  | 83.7          | 40-140         | 1.32  | 30           |            |   |
| Benzidine                        | 2.14         | 0.66               | mg/Kg wet | 1.67           |                  | 128           | 40-140         | 4.23  | 30           | V-35       |   |
| Benzo(a)anthracene               | 1.32         | 0.17               | mg/Kg wet | 1.67           |                  | 79.4          | 40-140         | 2.55  | 30           |            |   |
| Benzo(a)pyrene                   | 1.44         | 0.17               | mg/Kg wet | 1.67           |                  | 86.1          | 40-140         | 1.83  | 30           |            |   |
| Benzo(b)fluoranthene             | 1.34         | 0.17               | mg/Kg wet | 1.67           |                  | 80.3          | 40-140         | 0.775 | 30           |            |   |
| Benzo(g,h,i)perylene             | 1.36         | 0.17               | mg/Kg wet | 1.67           |                  | 81.7          | 40-140         | 1.08  | 30           |            |   |
| Benzo(k)fluoranthene             | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 86.0          | 40-140         | 0.982 | 30           |            |   |
| Benzoic Acid                     | 0.794        | 1.0                | mg/Kg wet | 1.67           |                  | 47.6          | 30-130         | 11.4  | 50           | J          |   |
| Bis(2-chloroethoxy)methane       | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.9          | 40-140         | 0.873 | 30           |            |   |
| Bis(2-chloroethyl)ether          | 1.19         | 0.34               | mg/Kg wet | 1.67           |                  | 71.3          | 40-140         | 1.92  | 30           |            |   |
| Bis(2-chloroisopropyl)ether      | 1.37         | 0.34               | mg/Kg wet | 1.67           |                  | 82.5          | 40-140         | 1.23  | 30           |            |   |
| Bis(2-Ethylhexyl)phthalate       | 1.38         | 0.34               | mg/Kg wet | 1.67           |                  | 83.0          | 40-140         | 2.19  | 30           |            |   |
| 4-Bromophenylphenylether         | 1.28         | 0.34               | mg/Kg wet | 1.67           |                  | 77.1          | 40-140         | 2.18  | 30           |            |   |
| Butylbenzylphthalate             | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.9          | 40-140         | 1.95  | 30           |            |   |
| Carbazole                        | 1.37         | 0.17               | mg/Kg wet | 1.67           |                  | 82.0          | 40-140         | 1.40  | 30           |            |   |
| 4-Chloroaniline                  | 1.01         | 0.66               | mg/Kg wet | 1.67           |                  | 60.5          | 10-140         | 1.20  | 30           | V-06, V-34 | † |
| 4-Chloro-3-methylphenol          | 1.28         | 0.66               | mg/Kg wet | 1.67           |                  | 76.8          | 30-130         | 2.88  | 30           |            |   |
| 2-Chloronaphthalene              | 1.11         | 0.34               | mg/Kg wet | 1.67           |                  | 66.5          | 40-140         | 2.25  | 30           |            |   |
| 2-Chlorophenol                   | 1.17         | 0.34               | mg/Kg wet | 1.67           |                  | 70.2          | 30-130         | 0.455 | 30           |            |   |
| 4-Chlorophenylphenylether        | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.6          | 40-140         | 3.36  | 30           |            |   |
| Chrysene                         | 1.38         | 0.17               | mg/Kg wet | 1.67           |                  | 82.9          | 40-140         | 2.20  | 30           |            |   |
| Dibenz(a,h)anthracene            | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 85.8          | 40-140         | 0.749 | 30           |            |   |
| Dibenzofuran                     | 1.39         | 0.34               | mg/Kg wet | 1.67           |                  | 83.6          | 40-140         | 3.65  | 30           |            |   |
| Di-n-butylphthalate              | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.7          | 40-140         | 0.832 | 30           |            |   |
| 1,2-Dichlorobenzene              | 1.18         | 0.34               | mg/Kg wet | 1.67           |                  | 71.1          | 40-140         | 0.113 | 30           |            |   |
| 1,3-Dichlorobenzene              | 1.13         | 0.34               | mg/Kg wet | 1.67           |                  | 67.6          | 40-140         | 0.561 | 30           |            |   |
| 1,4-Dichlorobenzene              | 1.14         | 0.34               | mg/Kg wet | 1.67           |                  | 68.6          | 40-140         | 0.640 | 30           |            |   |
| 3,3-Dichlorobenzidine            | 1.04         | 0.17               | mg/Kg wet | 1.67           |                  | 62.7          | 20-140         | 4.04  | 50           |            | † |
| 2,4-Dichlorophenol               | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.3          | 30-130         | 2.04  | 30           |            | ' |
| Diethylphthalate                 | 1.29         | 0.34               | mg/Kg wet | 1.67           |                  | 77.7          | 40-140         | 4.02  | 30           |            |   |
| 2,4-Dimethylphenol               | 1.23         | 0.34               | mg/Kg wet | 1.67           |                  | 74.0          | 30-130         | 1.61  | 30           |            |   |
| Dimethylphthalate                | 1.30         | 0.34               | mg/Kg wet | 1.67           |                  | 77.8          | 40-140         | 4.44  | 30           |            |   |
| 4,6-Dinitro-2-methylphenol       | 1.30         | 0.34               | mg/Kg wet | 1.67           |                  | 74.1          | 30-130         | 3.40  | 30           |            |   |
| 2,4-Dinitrophenol                | 0.950        | 0.66               | mg/Kg wet | 1.67           |                  | 57.0          | 30-130         | 7.42  | 30           |            |   |
| 2,4-Dinitrotoluene               | 1.40         | 0.34               | mg/Kg wet | 1.67           |                  | 84.0          | 40-140         | 2.95  | 30           |            |   |
| 2,6-Dinitrotoluene               | 1.43         | 0.34               | mg/Kg wet | 1.67           |                  | 86.0          | 40-140         | 3.31  | 30           |            |   |
| Di-n-octylphthalate              | 1.43         | 0.34               | mg/Kg wet | 1.67           |                  | 78.0          | 40-140         | 0.566 | 30           |            |   |
| 1,2-Diphenylhydrazine/Azobenzene | 1.47         | 0.34               | mg/Kg wet | 1.67           |                  | 88.0          | 40-140         | 0.752 | 30           |            |   |
| Fluoranthene                     |              | 0.17               | mg/Kg wet | 1.67           |                  | 82.5          | 40-140         | 3.53  | 30           |            |   |
| Fluorantiene                     | 1.37<br>1.35 | 0.17               | mg/Kg wet | 1.67           |                  | 82.3          | 40-140         | 3.33  | 30           |            |   |



### QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|---|
| Batch B296234 - SW-846 3546          |        |                    |           |                |                  |               |                |       |              |       | _ |
| LCS Dup (B296234-BSD1)               |        |                    |           | Prepared: 12   | /07/21 Analy     | yzed: 12/08/2 | 21             |       |              |       | _ |
| Hexachlorobenzene                    | 1.42   | 0.34               | mg/Kg wet | 1.67           |                  | 85.3          | 40-140         | 3.02  | 30           |       |   |
| Hexachlorobutadiene                  | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.8          | 40-140         | 0.567 | 30           |       |   |
| Hexachlorocyclopentadiene            | 1.14   | 0.34               | mg/Kg wet | 1.67           |                  | 68.6          | 40-140         | 1.70  | 30           |       |   |
| Hexachloroethane                     | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.6          | 40-140         | 0.142 | 30           |       |   |
| Indeno(1,2,3-cd)pyrene               | 1.43   | 0.17               | mg/Kg wet | 1.67           |                  | 85.9          | 40-140         | 0.373 | 30           |       |   |
| Isophorone                           | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.8          | 40-140         | 1.14  | 30           |       |   |
| 1-Methylnaphthalene                  | 1.19   | 0.17               | mg/Kg wet | 1.67           |                  | 71.4          | 40-140         | 1.84  | 30           |       |   |
| 2-Methylnaphthalene                  | 1.43   | 0.17               | mg/Kg wet | 1.67           |                  | 85.9          | 40-140         | 2.02  | 30           |       |   |
| 2-Methylphenol                       | 1.28   | 0.34               | mg/Kg wet | 1.67           |                  | 77.0          | 30-130         | 1.73  | 30           |       |   |
| 3/4-Methylphenol                     | 1.33   | 0.34               | mg/Kg wet | 1.67           |                  | 80.1          | 30-130         | 0.828 | 30           |       |   |
| Naphthalene                          | 1.25   | 0.17               | mg/Kg wet | 1.67           |                  | 75.0          | 40-140         | 1.37  | 30           |       |   |
| 2-Nitroaniline                       | 1.73   | 0.34               | mg/Kg wet | 1.67           |                  | 104           | 40-140         | 2.46  | 30           |       |   |
| 3-Nitroaniline                       | 1.32   | 0.34               | mg/Kg wet | 1.67           |                  | 79.2          | 30-140         | 2.27  | 30           | V-06  | † |
| 4-Nitroaniline                       | 1.49   | 0.34               | mg/Kg wet | 1.67           |                  | 89.1          | 40-140         | 3.42  | 30           |       |   |
| Nitrobenzene                         | 1.27   | 0.34               | mg/Kg wet | 1.67           |                  | 75.9          | 40-140         | 1.41  | 30           |       |   |
| 2-Nitrophenol                        | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.1          | 30-130         | 2.16  | 30           |       |   |
| 4-Nitrophenol                        | 1.25   | 0.66               | mg/Kg wet | 1.67           |                  | 74.9          | 30-130         | 2.57  | 50           |       |   |
| N-Nitrosodimethylamine               | 1.17   | 0.34               | mg/Kg wet | 1.67           |                  | 70.3          | 40-140         | 2.42  | 30           |       |   |
| N-Nitrosodiphenylamine/Diphenylamine | 1.42   | 0.34               | mg/Kg wet | 1.67           |                  | 85.0          | 40-140         | 1.90  | 30           |       |   |
| N-Nitrosodi-n-propylamine            | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 74.8          | 40-140         | 0.799 | 30           |       |   |
| Pentachloronitrobenzene              | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.7          | 40-140         | 3.14  | 30           |       |   |
| Pentachlorophenol                    | 1.16   | 0.34               | mg/Kg wet | 1.67           |                  | 69.6          | 30-130         | 3.54  | 30           |       |   |
| Phenanthrene                         | 1.39   | 0.17               | mg/Kg wet | 1.67           |                  | 83.2          | 40-140         | 2.01  | 30           |       |   |
| Phenol                               | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.8          | 30-130         | 0.367 | 30           |       |   |
| Pyrene                               | 1.38   | 0.17               | mg/Kg wet | 1.67           |                  | 83.0          | 40-140         | 0.798 | 30           |       |   |
| Pyridine                             | 0.781  | 0.34               | mg/Kg wet | 1.67           |                  | 46.8          | 30-140         | 2.40  | 30           |       | † |
| 1,2,4,5-Tetrachlorobenzene           | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 71.8          | 40-140         | 2.57  | 30           |       |   |
| 1,2,4-Trichlorobenzene               | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 71.7          | 40-140         | 0.251 | 30           |       |   |
| 2,4,5-Trichlorophenol                | 1.36   | 0.34               | mg/Kg wet | 1.67           |                  | 81.7          | 30-130         | 2.50  | 30           |       |   |
| 2,4,6-Trichlorophenol                | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.4          | 30-130         | 2.23  | 30           |       |   |
| Surrogate: 2-Fluorophenol            | 4.99   |                    | mg/Kg wet | 6.67           |                  | 74.8          | 30-130         |       |              |       |   |
| Surrogate: Phenol-d6                 | 4.99   |                    | mg/Kg wet | 6.67           |                  | 74.8          | 30-130         |       |              |       |   |
| Surrogate: Nitrobenzene-d5           | 2.54   |                    | mg/Kg wet | 3.33           |                  | 76.3          | 30-130         |       |              |       |   |
| Surrogate: 2-Fluorobiphenyl          | 2.58   |                    | mg/Kg wet | 3.33           |                  | 77.5          | 30-130         |       |              |       |   |
| Surrogate: 2,4,6-Tribromophenol      | 5.91   |                    | mg/Kg wet | 6.67           |                  | 88.6          | 30-130         |       |              |       |   |
| Surrogate: p-Terphenyl-d14           | 2.90   |                    | mg/Kg wet | 3.33           |                  | 87.0          | 30-130         |       |              |       |   |



# FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                                                                                                                             |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                                                                                                                  |
| #    | Data exceeded client recommended or regulatory level                                                                                                                                                                                                 |
| ND   | Not Detected                                                                                                                                                                                                                                         |
| RL   | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                |
| DL   | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                          |
| MCL  | Maximum Contaminant Level                                                                                                                                                                                                                            |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                               |
|      | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                |
| H-10 | Analysis was requested after the recommended holding time had passed.                                                                                                                                                                                |
| J    | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                  |
| V-06 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                                                                      |
| V-20 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.                                                                                                                                        |
| V-34 | Data validation is not affected since sample result was "not detected" for this compound.  Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated. |
| V-35 | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.                                                                                           |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Soil             |                   |
| Acenaphthene                     | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                   | CT,NY,NH,ME,NC,VA |
| Acetophenone                     | NY,NH,ME,NC,VA    |
| Aniline                          | NY,NH,ME,NC,VA    |
| Anthracene                       | CT,NY,NH,ME,NC,VA |
| Benzidine                        | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene               | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                   | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene             | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                     | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane       | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether          | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroisopropyl)ether      | CT,NY,NH,ME,NC,VA |
| Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                    | Certifications    |  |
|----------------------------|-------------------|--|
| SW-846 8270E in Soil       |                   |  |
| Hexachloroethane           | CT,NY,NH,ME,NC,VA |  |
| Indeno(1,2,3-cd)pyrene     | CT,NY,NH,ME,NC,VA |  |
| Isophorone                 | CT,NY,NH,ME,NC,VA |  |
| 1-Methylnaphthalene        | NC                |  |
| 2-Methylnaphthalene        | CT,NY,NH,ME,NC,VA |  |
| 2-Methylphenol             | CT,NY,NH,ME,NC,VA |  |
| 3/4-Methylphenol           | CT,NY,NH,ME,NC,VA |  |
| Naphthalene                | CT,NY,NH,ME,NC,VA |  |
| 2-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 3-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 4-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| Nitrobenzene               | CT,NY,NH,ME,NC,VA |  |
| 2-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| 4-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodimethylamine     | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodi-n-propylamine  | CT,NY,NH,ME,NC,VA |  |
| Pentachloronitrobenzene    | NY,NC             |  |
| Pentachlorophenol          | CT,NY,NH,ME,NC,VA |  |
| Phenanthrene               | CT,NY,NH,ME,NC,VA |  |
| Phenol                     | CT,NY,NH,ME,NC,VA |  |
| Pyrene                     | CT,NY,NH,ME,NC,VA |  |
| Pyridine                   | CT,NY,NH,ME,NC,VA |  |
| 1,2,4,5-Tetrachlorobenzene | NY,NC             |  |
| 1,2,4-Trichlorobenzene     | CT,NY,NH,ME,NC,VA |  |
| 2,4,5-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2,4,6-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2-Fluorophenol             | NC                |  |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires 03/1/2022 |  |  |
|-------|----------------------------------------------|---------------|-------------------|--|--|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        |                   |  |  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022        |  |  |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022        |  |  |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022         |  |  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022         |  |  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021        |  |  |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021        |  |  |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022        |  |  |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022        |  |  |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022        |  |  |
| ME    | State of Maine                               | MA00100       | 06/9/2023         |  |  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021        |  |  |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022         |  |  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022        |  |  |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022        |  |  |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022        |  |  |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022         |  |  |



December 8, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21L0084

Enclosed are results of analyses for samples as received by the laboratory on December 1, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager



Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

PURCHASE ORDER NUMBER:

REPORT DATE: 12/8/2021

ATTN: Sarah Ostertag

PROJECT NUMBER: [none]

### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21L0084

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

 FIELD SAMPLE #
 LAB ID:
 MATRIX
 SAMPLE DESCRIPTION
 TEST
 SUB LAB

 HRP-SB210-0-1-211028
 21L0084-01
 Soil
 SM 2540G
 SW-846 8270E



### CASE NARRATIVE SUMMARY

| reported results are |  |  |  |  |  |
|----------------------|--|--|--|--|--|
|                      |  |  |  |  |  |
|                      |  |  |  |  |  |



#### SW-846 8270E

#### **Qualifications:**

H-10

Analysis was requested after the recommended holding time had passed.

#### Analyte & Samples(s) Qualified:

21L0084-01[HRP-SB210-0-1-211028]

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

Benzidine

21L0084-01[HRP-SB210-0-1-211028], B296051-MS1, B296051-MSD1

Benzoic Acid

21L0084-01[HRP-SB210-0-1-211028], B296051-MS1, B296051-MSD1

Pyridine

21L0084-01[HRP-SB210-0-1-211028], B296051-MS1, B296051-MSD1

MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.

Analyte & Samples(s) Qualified:

#### Pentachlorophenol

B296051-MS1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1, B296051-BS1, B296051-BSD1, B296051-MS1, B296051-MSD1, B296051-MS

Bis(2-chloroisopropyl)ether

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1, B296051-BS1, B296051-BSD1, B296051-MSD1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

#### Analyte & Samples(s) Qualified:

Dibenz(a,h)anthracene

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1, B296051-BS1, B296051-BSD1, B296051-MSD1, B296051-MSD1

Isophorone

B296051-BS1, B296051-BSD1, B296051-MS1, B296051-MSD1

N-Nitrosodi-n-propylamine

B296051-BS1, B296051-BSD1, B296051-MS1, B296051-MSD1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Isophorone

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1

N-Nitrosodi-n-propylamine

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is

# Analyte & Samples(s) Qualified:

#### Benzidine

21L0084-01[HRP-SB210-0-1-211028], B296051-BLK1, B296051-BS1, B296051-BSD1, B296051-MS1, B296051-MSD1, B296051-MS



The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0084

Date Received: 12/1/2021

Field Sample #: HRP-SB210-0-1-211028 Sampled: 10/28/2021 07:30

Sample ID: 21L0084-01
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual         | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-------------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Acetophenone                     | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Aniline                          | ND      | 0.40 | 0.082 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzidine                        | ND      | 0.77 | 0.18  | mg/Kg dry | 1        | MS-09, V-05, V-35 | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.053 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.47  | mg/Kg dry | 1        | MS-09             | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.090 | mg/Kg dry | 1        | V-05              | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.050 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.063 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Chloroaniline                  | ND      | 0.77 | 0.053 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.77 | 0.066 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.080 | mg/Kg dry | 1        | V-06              | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Dibenzofuran                     | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.045 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.043 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.041 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Diethylphthalate                 | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Dimethylphthalate                | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.77 | 0.34  | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.077 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.067 |           | 1        |                   | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1 Idoloile                       | ND      | 0.20 | 0.007 | mg/Kg dry | 1        |                   | 3W-040 02/UE | 12/3/21          | 12/0/21 21.4/         | DOL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0084

Date Received: 12/1/2021

Field Sample #: HRP-SB210-0-1-211028 Sampled: 10/28/2021 07:30

Sample ID: 21L0084-01
Sample Matrix: Soil

2,4,6-Tribromophenol

p-Terphenyl-d14

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|

71.5

72.7

30-130

30-130

12/6/21 21:47

12/6/21 21:47

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.40   | 0.054 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.050 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Hexachloroethane                     | ND      | 0.40   | 0.047 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.089 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Isophorone                           | ND      | 0.40   | 0.066 | mg/Kg dry       | 1        | V-20      | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Methylphenol                       | ND      | 0.40   | 0.073 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.064 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Naphthalene                          | ND      | 0.20   | 0.054 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.084 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.067 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.085 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Nitrobenzene                         | ND      | 0.40   | 0.057 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 4-Nitrophenol                        | ND      | 0.77   | 0.16  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.054 | mg/Kg dry       | 1        | V-20      | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.066 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Pentachlorophenol                    | ND      | 0.40   | 0.17  | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Phenanthrene                         | ND      | 0.20   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Phenol                               | ND      | 0.40   | 0.056 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Pyrene                               | ND      | 0.20   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Pyridine                             | ND      | 0.40   | 0.040 | mg/Kg dry       | 1        | MS-09     | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.051 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.050 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:47         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limits | S        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 58.1   |       | 30-130          |          |           |              |                  | 12/6/21 21:47         |         |
| Phenol-d6                            |         | 67.7   |       | 30-130          |          |           |              |                  | 12/6/21 21:47         |         |
| Nitrobenzene-d5                      |         | 55.1   |       | 30-130          |          |           |              |                  | 12/6/21 21:47         |         |
| 2-Fluorobiphenyl                     |         | 60.7   |       | 30-130          |          |           |              |                  | 12/6/21 21:47         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0084

Date Received: 12/1/2021

**Field Sample #: HRP-SB210-0-1-211028** Sampled: 10/28/2021 07:30

Sample ID: 21L0084-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time     |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|---------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed      | Analyst |
| % Solids |         | 85.7    |    | % Wt  | 1        |           | SM 2540G | 11/4/21  | 11/5/21 15:24 | МЈН     |



#### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]             | Batch   | Date     |
|-----------------------------------|---------|----------|
| 21L0084-01 [HRP-SB210-0-1-211028] | B294016 | 11/04/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]             | Batch   | Initial [g] | Final [mL] | Date     |
|-----------------------------------|---------|-------------|------------|----------|
| 21L0084-01 [HRP-SB210-0-1-211028] | B296051 | 30.1        | 1.00       | 12/03/21 |



# QUALITY CONTROL

| Analyte                                                | Result   | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|--------------------------------------------------------|----------|--------------------|------------------------|----------------|------------------|--------------|----------------|-----|--------------|------------|
| Batch B296051 - SW-846 3546                            |          |                    |                        |                |                  |              |                |     |              |            |
| Blank (B296051-BLK1)                                   |          |                    |                        | Prepared: 12   | 2/03/21 Analy    | zed: 12/06/2 | 1              |     |              |            |
| Acenaphthene                                           | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Acenaphthylene                                         | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Acetophenone                                           | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Aniline                                                | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Anthracene                                             | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzidine                                              | ND       | 0.66               | mg/Kg wet              |                |                  |              |                |     |              | V-05, V-35 |
| Benzo(a)anthracene                                     | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzo(a)pyrene                                         | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzo(b)fluoranthene                                   | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzo(g,h,i)perylene                                   | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzo(k)fluoranthene                                   | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Benzoic Acid                                           | ND       | 1.0                | mg/Kg wet              |                |                  |              |                |     |              |            |
| Bis(2-chloroethoxy)methane                             | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Bis(2-chloroethyl)ether                                | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              | 1105       |
| Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              | V-05       |
| 4-Bromophenylphenylether                               | ND       | 0.34<br>0.34       | mg/Kg wet<br>mg/Kg wet |                |                  |              |                |     |              |            |
| Butylbenzylphthalate                                   | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Carbazole                                              | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 4-Chloroaniline                                        | ND<br>ND | 0.66               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 4-Chloro-3-methylphenol                                | ND<br>ND | 0.66               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2-Chloronaphthalene                                    | ND<br>ND | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2-Chlorophenol                                         | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 4-Chlorophenylphenylether                              | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Chrysene                                               | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Dibenz(a,h)anthracene                                  | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              | V-06       |
| Dibenzofuran                                           | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Di-n-butylphthalate                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 1,2-Dichlorobenzene                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 1,3-Dichlorobenzene                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 1,4-Dichlorobenzene                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 3,3-Dichlorobenzidine                                  | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2,4-Dichlorophenol                                     | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Diethylphthalate                                       | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2,4-Dimethylphenol                                     | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Dimethylphthalate                                      | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 4,6-Dinitro-2-methylphenol                             | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2,4-Dinitrophenol                                      | ND       | 0.66               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2,4-Dinitrotoluene                                     | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 2,6-Dinitrotoluene                                     | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Di-n-octylphthalate                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| 1,2-Diphenylhydrazine/Azobenzene                       | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Fluoranthene                                           | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Fluorene                                               | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Hexachlorobenzene                                      | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Hexachlorobutadiene                                    | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Hexachlorocyclopentadiene                              | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Hexachloroethane                                       | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Indeno(1,2,3-cd)pyrene                                 | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| Sophorone                                              | ND       | 0.34               | mg/Kg wet              |                |                  |              |                |     |              | V-20       |
| -Methylnaphthalene                                     | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
| -Methylnaphthalene                                     | ND       | 0.17               | mg/Kg wet              |                |                  |              |                |     |              |            |
|                                                        |          |                    |                        |                |                  |              |                |     |              |            |



# QUALITY CONTROL

Spike

Source

%REC

RPD

# Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                             | Result   | Limit | Units     | Level        | Result       | %REC          | Limits | RPD | Limit | Notes      |
|-------------------------------------|----------|-------|-----------|--------------|--------------|---------------|--------|-----|-------|------------|
| Batch B296051 - SW-846 3546         |          |       |           |              |              |               |        |     |       |            |
| Blank (B296051-BLK1)                |          |       |           | Prepared: 12 | /03/21 Analy | yzed: 12/06/2 | 1      |     |       |            |
| -Methylphenol                       | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| /4-Methylphenol                     | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| Japhthalene                         | ND       | 0.17  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitroaniline                       | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitroaniline                       | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitroaniline                       | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| itrobenzene                         | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrophenol                        | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| Nitrophenol                         | ND       | 0.66  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodimethylamine               | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodiphenylamine/Diphenylamine | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodi-n-propylamine            | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       | V-20       |
| entachloronitrobenzene              | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| entachlorophenol                    | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| henanthrene                         | ND       | 0.17  | mg/Kg wet |              |              |               |        |     |       |            |
| henol                               | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| yrene                               | ND       | 0.17  | mg/Kg wet |              |              |               |        |     |       |            |
| yridine                             | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| 2,4,5-Tetrachlorobenzene            | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| 2,4-Trichlorobenzene                | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| 4,5-Trichlorophenol                 | ND       | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| 4,6-Trichlorophenol                 | ND<br>ND | 0.34  | mg/Kg wet |              |              |               |        |     |       |            |
| urrogate: 2-Fluorophenol            | 4.46     |       | mg/Kg wet | 6.67         |              | 67.0          | 30-130 |     |       |            |
| urrogate: Phenol-d6                 | 4.72     |       | mg/Kg wet | 6.67         |              | 70.8          | 30-130 |     |       |            |
| urrogate: Nitrobenzene-d5           | 2.20     |       | mg/Kg wet | 3.33         |              | 65.9          | 30-130 |     |       |            |
| urrogate: 2-Fluorobiphenyl          | 2.25     |       | mg/Kg wet | 3.33         |              | 67.6          | 30-130 |     |       |            |
| urrogate: 2,4,6-Tribromophenol      | 5.35     |       | mg/Kg wet | 6.67         |              | 80.2          | 30-130 |     |       |            |
| urrogate: p-Terphenyl-d14           | 2.59     |       | mg/Kg wet | 3.33         |              | 77.8          | 30-130 |     |       |            |
| CS (B296051-BS1)                    |          |       |           | Prepared: 12 | /03/21 Analy | yzed: 12/06/2 | 1      |     |       |            |
| cenaphthene                         | 1.19     | 0.17  | mg/Kg wet | 1.67         |              | 71.5          | 40-140 |     |       |            |
| cenaphthylene                       | 1.25     | 0.17  | mg/Kg wet | 1.67         |              | 75.0          | 40-140 |     |       |            |
| cetophenone                         | 1.23     | 0.34  | mg/Kg wet | 1.67         |              | 74.0          | 40-140 |     |       |            |
| niline                              | 1.16     | 0.34  | mg/Kg wet | 1.67         |              | 69.5          | 10-140 |     |       |            |
| nthracene                           | 1.23     | 0.17  | mg/Kg wet | 1.67         |              | 73.9          | 40-140 |     |       |            |
| enzidine                            | 2.10     | 0.66  | mg/Kg wet | 1.67         |              | 126           | 40-140 |     |       | V-05, V-35 |
| enzo(a)anthracene                   | 1.19     | 0.17  | mg/Kg wet | 1.67         |              | 71.5          | 40-140 |     |       |            |
| enzo(a)pyrene                       | 1.32     | 0.17  | mg/Kg wet | 1.67         |              | 79.3          | 40-140 |     |       |            |
| enzo(b)fluoranthene                 | 1.31     | 0.17  | mg/Kg wet | 1.67         |              | 78.5          | 40-140 |     |       |            |
| enzo(g,h,i)perylene                 | 1.24     | 0.17  | mg/Kg wet | 1.67         |              | 74.2          | 40-140 |     |       |            |
| enzo(k)fluoranthene                 | 1.40     | 0.17  | mg/Kg wet | 1.67         |              | 83.8          | 40-140 |     |       |            |
| enzoic Acid                         | 0.854    | 1.0   | mg/Kg wet | 1.67         |              | 51.2          | 30-130 |     |       | J          |
| is(2-chloroethoxy)methane           | 1.24     | 0.34  | mg/Kg wet | 1.67         |              | 74.7          | 40-140 |     |       |            |
| is(2-chloroethyl)ether              | 1.15     | 0.34  | mg/Kg wet | 1.67         |              | 69.0          | 40-140 |     |       |            |
| is(2-chloroisopropyl)ether          | 1.07     | 0.34  | mg/Kg wet | 1.67         |              | 64.5          | 40-140 |     |       | V-05       |
| is(2-Ethylhexyl)phthalate           | 1.24     | 0.34  | mg/Kg wet | 1.67         |              | 74.3          | 40-140 |     |       |            |
| Bromophenylphenylether              | 1.13     | 0.34  | mg/Kg wet | 1.67         |              | 67.9          | 40-140 |     |       |            |
| utylbenzylphthalate                 | 1.22     | 0.34  | mg/Kg wet | 1.67         |              | 72.9          | 40-140 |     |       |            |
| arbazole                            | 1.22     | 0.17  | mg/Kg wet | 1.67         |              | 73.2          | 40-140 |     |       |            |
| -Chloroaniline                      | 1.25     | 0.66  | mg/Kg wet | 1.67         |              | 75.0          | 10-140 |     |       |            |
| -Chloro-3-methylphenol              | 1.25     | 0.66  | mg/Kg wet | 1.67         |              | 80.6          | 30-130 |     |       |            |
| -Chloronaphthalene                  | 1.04     | 0.34  | mg/Kg wet | 1.67         |              | 62.7          | 40-140 |     |       |            |



# QUALITY CONTROL

| Analyte                              | Result        | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------------|---------------|--------------------|-----------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Batch B296051 - SW-846 3546          |               |                    |           |                |                  |              |                |     |              |       |
| LCS (B296051-BS1)                    |               |                    |           | Prepared: 12   | 2/03/21 Analyz   | zed: 12/06/2 | 21             |     |              |       |
| 2-Chlorophenol                       | 1.10          | 0.34               | mg/Kg wet | 1.67           |                  | 66.3         | 30-130         |     |              |       |
| 1-Chlorophenylphenylether            | 1.22          | 0.34               | mg/Kg wet | 1.67           |                  | 73.1         | 40-140         |     |              |       |
| Chrysene                             | 1.28          | 0.17               | mg/Kg wet | 1.67           |                  | 77.0         | 40-140         |     |              |       |
| Dibenz(a,h)anthracene                | 1.30          | 0.17               | mg/Kg wet | 1.67           |                  | 77.7         | 40-140         |     |              | V-06  |
| Dibenzofuran                         | 1.37          | 0.34               | mg/Kg wet | 1.67           |                  | 82.0         | 40-140         |     |              |       |
| Di-n-butylphthalate                  | 1.24          | 0.34               | mg/Kg wet | 1.67           |                  | 74.5         | 40-140         |     |              |       |
| ,2-Dichlorobenzene                   | 1.05          | 0.34               | mg/Kg wet | 1.67           |                  | 62.9         | 40-140         |     |              |       |
| ,3-Dichlorobenzene                   | 1.00          | 0.34               | mg/Kg wet | 1.67           |                  | 60.2         | 40-140         |     |              |       |
| ,4-Dichlorobenzene                   | 1.02          | 0.34               | mg/Kg wet | 1.67           |                  | 61.4         | 40-140         |     |              |       |
| 3,3-Dichlorobenzidine                | 1.26          | 0.17               | mg/Kg wet | 1.67           |                  | 75.4         | 20-140         |     |              |       |
| ,4-Dichlorophenol                    | 1.20          | 0.34               | mg/Kg wet | 1.67           |                  | 72.2         | 30-130         |     |              |       |
| Diethylphthalate                     | 1.33          | 0.34               | mg/Kg wet | 1.67           |                  | 79.8         | 40-140         |     |              |       |
| ,4-Dimethylphenol                    | 1.22          | 0.34               | mg/Kg wet | 1.67           |                  | 73.1         | 30-130         |     |              |       |
| Dimethylphthalate                    | 1.28          | 0.34               | mg/Kg wet | 1.67           |                  | 76.9         | 40-140         |     |              |       |
| ,6-Dinitro-2-methylphenol            | 1.15          | 0.34               | mg/Kg wet | 1.67           |                  | 69.1         | 30-130         |     |              |       |
| ,4-Dinitrophenol                     | 1.06          | 0.66               | mg/Kg wet | 1.67           |                  | 63.9         | 30-130         |     |              |       |
| ,4-Dinitrotoluene                    | 1.41          | 0.34               | mg/Kg wet | 1.67           |                  | 84.4         | 40-140         |     |              |       |
| ,6-Dinitrotoluene                    | 1.33          | 0.34               | mg/Kg wet | 1.67           |                  | 79.8         | 40-140         |     |              |       |
| i-n-octylphthalate                   | 1.19          | 0.34               | mg/Kg wet | 1.67           |                  | 71.3         | 40-140         |     |              |       |
| ,2-Diphenylhydrazine/Azobenzene      | 1.33          | 0.34               | mg/Kg wet | 1.67           |                  | 80.1         | 40-140         |     |              |       |
| luoranthene                          | 1.26          | 0.17               | mg/Kg wet | 1.67           |                  | 75.6         | 40-140         |     |              |       |
| luorene                              | 1.34          | 0.17               | mg/Kg wet | 1.67           |                  | 80.1         | 40-140         |     |              |       |
| exachlorobenzene                     | 1.19          | 0.34               | mg/Kg wet | 1.67           |                  | 71.4         | 40-140         |     |              |       |
| exachlorobutadiene                   | 1.21          | 0.34               | mg/Kg wet | 1.67           |                  | 72.3         | 40-140         |     |              |       |
| exachlorocyclopentadiene             | 0.961         | 0.34               | mg/Kg wet | 1.67           |                  | 57.7         | 40-140         |     |              |       |
| exachloroethane                      | 1.12          | 0.34               | mg/Kg wet | 1.67           |                  | 67.3         | 40-140         |     |              |       |
| ndeno(1,2,3-cd)pyrene                | 1.25          | 0.17               | mg/Kg wet | 1.67           |                  | 75.2         | 40-140         |     |              |       |
| sophorone                            | 1.46          | 0.34               | mg/Kg wet | 1.67           |                  | 87.5         | 40-140         |     |              | V-06  |
| -Methylnaphthalene                   | 1.21          | 0.17               | mg/Kg wet | 1.67           |                  | 72.8         | 40-140         |     |              |       |
| -Methylnaphthalene                   | 1.44          | 0.17               | mg/Kg wet | 1.67           |                  | 86.1         | 40-140         |     |              |       |
| -Methylphenol                        | 1.28          | 0.34               | mg/Kg wet | 1.67           |                  | 76.8         | 30-130         |     |              |       |
| /4-Methylphenol                      | 1.31          | 0.34               | mg/Kg wet | 1.67           |                  | 78.5         | 30-130         |     |              |       |
| Japhthalene                          | 1.18          | 0.17               | mg/Kg wet | 1.67           |                  | 70.6         | 40-140         |     |              |       |
| -Nitroaniline                        | 1.78          | 0.34               | mg/Kg wet | 1.67           |                  | 107          | 40-140         |     |              |       |
| -Nitroaniline                        | 1.26          | 0.34               | mg/Kg wet | 1.67           |                  | 75.5         | 30-140         |     |              |       |
| -Nitroaniline                        | 1.45          | 0.34               | mg/Kg wet | 1.67           |                  | 87.0         | 40-140         |     |              |       |
| litrobenzene                         | 1.28          | 0.34               | mg/Kg wet | 1.67           |                  | 76.8         | 40-140         |     |              |       |
| -Nitrophenol                         | 1.08          | 0.34               | mg/Kg wet | 1.67           |                  | 65.0         | 30-130         |     |              |       |
| -Nitrophenol                         | 1.39          | 0.66               | mg/Kg wet | 1.67           |                  | 83.5         | 30-130         |     |              |       |
| I-Nitrosodimethylamine               | 1.22          | 0.34               | mg/Kg wet | 1.67           |                  | 72.9         | 40-140         |     |              |       |
| J-Nitrosodiphenylamine/Diphenylamine | 1.20          | 0.34               | mg/Kg wet | 1.67           |                  | 72.0         | 40-140         |     |              |       |
| -Nitrosodi-n-propylamine             | 1.33          | 0.34               | mg/Kg wet | 1.67           |                  | 79.6         | 40-140         |     |              | V-06  |
| entachloronitrobenzene               | 1.33          | 0.34               | mg/Kg wet | 1.67           |                  | 73.5         | 40-140         |     |              | ¥-00  |
| entachlorophenol                     | 1.03          | 0.34               | mg/Kg wet | 1.67           |                  | 61.8         | 30-130         |     |              |       |
| henanthrene                          | 1.03          | 0.17               | mg/Kg wet | 1.67           |                  | 74.0         | 40-140         |     |              |       |
| henol                                | 1.23          | 0.34               | mg/Kg wet | 1.67           |                  | 73.7         | 30-130         |     |              |       |
| yrene                                | 1.23          | 0.17               | mg/Kg wet | 1.67           |                  | 71.0         | 40-140         |     |              |       |
| vyridine                             |               | 0.17               | mg/Kg wet | 1.67           |                  | 37.7         | 30-140         |     |              |       |
| ,2,4,5-Tetrachlorobenzene            | 0.628<br>1.11 | 0.34               | mg/Kg wet | 1.67           |                  | 66.9         | 40-140         |     |              |       |
| ,2,4-Trichlorobenzene                | 1.11          | 0.34               | mg/Kg wet | 1.67           |                  | 71.1         | 40-140         |     |              |       |
| 2,4,5-Trichlorophenol                |               | 0.34               | mg/Kg wet | 1.67           |                  | 76.9         | 30-130         |     |              |       |
| 2,4,6-Trichlorophenol                | 1.28<br>1.17  | 0.34               | mg/Kg wet | 1.67           |                  | 70.2         | 30-130         |     |              |       |



# QUALITY CONTROL

| 0 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6 0.17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet | 6.67<br>6.67<br>3.33<br>3.33<br>6.67<br>3.33                                                                                                                                                                                                                                                                                                                                                                         | 2/03/21 Analy<br>2/03/21 Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.9<br>85.0<br>79.3<br>76.5<br>93.2<br>83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30-130<br>30-130<br>30-130<br>30-130<br>30-130<br>30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.35<br>0.133<br>7.52<br>2.42<br>1.42<br>4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>30<br>50<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 0.17<br>3 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>2 0.17<br>3 1.0<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                   | 6.67<br>6.67<br>3.33<br>3.33<br>6.67<br>3.33<br>Prepared: 12<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.9<br>85.0<br>79.3<br>76.5<br>93.2<br>83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130<br>30-130<br>30-130<br>30-130<br>30-130<br>30-130<br>21<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>3 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>2 0.17<br>3 1.0<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                   | 6.67 3.33 3.33 6.67 3.33 Prepared: 12 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67                                                                                                                                                                                                                                                                                                                                        | 2/03/21 Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.0<br>79.3<br>76.5<br>93.2<br>83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30-130<br>30-130<br>30-130<br>30-130<br>30-130<br>21<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>5 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>2 0.17<br>3 1.0<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                       | 3.33<br>3.33<br>6.67<br>3.33<br>Prepared: 12<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                 | 2/03/21 Anal <u>y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.3<br>76.5<br>93.2<br>83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130<br>30-130<br>30-130<br>30-130<br>21<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>5 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>3 1.0<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                 | 3.33<br>6.67<br>3.33<br>Prepared: 12<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                         | 2/03/21 Anal <u>y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.5<br>93.2<br>83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30-130<br>30-130<br>30-130<br>21<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>5 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>1 0.17<br>1 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                                     | 6.67<br>3.33<br>Prepared: 12<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                         | 2/03/21 Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.2<br>83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130<br>30-130<br>21<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>5 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>1 0.17<br>1 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                                                         | 3.33  Prepared: 12  1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.6                                                                                                                                                                                                                                                                                                                                                           | 2/03/21 Anal <u>y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.5<br>yzed: 12/06/2<br>73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30-130<br>21<br>40-140<br>40-140<br>40-140<br>10-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 0.17<br>5 0.17<br>4 0.34<br>8 0.34<br>1 0.17<br>0 0.66<br>1 0.17<br>4 0.17<br>1 0.17<br>1 0.17<br>1 0.17<br>1 0.17<br>1 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                                                                   | Prepared: 12  1.67  1.67  1.67  1.67  1.67  1.67  1.67  1.67  1.67                                                                                                                                                                                                                                                                                                                                                   | 2/03/21 Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40-140<br>40-140<br>40-140<br>10-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0.34<br>0.34<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>1.0<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0 | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                                                         | 1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                 | 2/03/21 Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.2<br>75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40-140<br>40-140<br>40-140<br>10-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0.34<br>0.34<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>1.0<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0 | mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet                                                                                                                                             | 1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.1<br>68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40-140<br>40-140<br>10-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.133<br>7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34<br>0.34<br>0.17<br>0.066<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                         | 1.67<br>1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68.6<br>67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40-140<br>10-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.52<br>2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34<br>0.17<br>0.66<br>1.017<br>4.017<br>0.17<br>4.017<br>0.17<br>1.00<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                      | 1.67<br>1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.8<br>72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10-140<br>40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.42<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0.66<br>0.17<br>4 0.17<br>0.17<br>0.17<br>4 0.17<br>0.17<br>1.0<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                   | 1.67<br>1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.8<br>132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40-140<br>40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.66<br>0.17<br>4 0.17<br>0.17<br>4 0.17<br>4 0.17<br>0.17<br>1 0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                | 1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132<br>72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>1.0<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                             | 1.67<br>1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0.17<br>4 0.17<br>0.17<br>0.17<br>1.0<br>0.34<br>1.0<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                          | 1.67<br>1.67                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V-05, V-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.17<br>4 0.17<br>0 0.17<br>3 1.0<br>0.34<br>1 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                                       | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>4 0.17<br>0 0.17<br>3 1.0<br>0.34<br>1 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg wet                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17<br>0 0.17<br>1 0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/Kg wet                                                                                                                                                                                                                                                 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/Kg wet                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34<br>0.34                                                                                              | 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet 9.34 mg/Kg wet | 4     0.34     mg/Kg wet     1.67       2     0.34     mg/Kg wet     1.67       5     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       6     0.17     mg/Kg wet     1.67       7     0.34     mg/Kg wet     1.67       8     0.34     mg/Kg wet     1.67       9     0.34     mg/Kg wet     1.67       1     0.34     mg/Kg wet     1.67       1     0.34     mg/Kg wet     1.67       2     0.34     mg/Kg wet     1.67       3     0.34     mg/Kg wet     1.67       4     0.34     mg/Kg wet     1.67       5     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       7     0.34     mg/Kg wet     1.67       8     0.34     mg/Kg wet     1.67 <td>4     0.34     mg/Kg wet     1.67       2     0.34     mg/Kg wet     1.67       3     0.34     mg/Kg wet     1.67       4     0.34     mg/Kg wet     1.67       5     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       7     0.34     mg/Kg wet     1.67       8     0.34     mg/Kg wet     1.67       9     0.34     mg/Kg wet     1.67       10     0.34     mg/Kg wet     1.67</td> <td>4     0.34     mg/Kg wet     1.67     74.5       2     0.34     mg/Kg wet     1.67     61.0       6     0.34     mg/Kg wet     1.67     59.2       6     0.34     mg/Kg wet     1.67     78.2       6     0.17     mg/Kg wet     1.67     68.1       7     0.34     mg/Kg wet     1.67     80.1       8     0.34     mg/Kg wet     1.67     69.9       9     0.34     mg/Kg wet     1.67     74.6       1     0.34     mg/Kg wet     1.67     68.2       1     0.34     mg/Kg wet     1.67     87.4       2     0.34     mg/Kg wet     1.67     87.4       3     0.34     mg/Kg wet     1.67     87.4       3     0.34     mg/Kg wet     1.67     67.7       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     79.7</td> <td>4     0.34     mg/Kg wet     1.67     74.5     40-140       2     0.34     mg/Kg wet     1.67     61.0     40-140       6     0.34     mg/Kg wet     1.67     59.2     40-140       6     0.34     mg/Kg wet     1.67     59.7     40-140       6     0.17     mg/Kg wet     1.67     78.2     20-140       6     0.34     mg/Kg wet     1.67     68.1     30-130       8     0.34     mg/Kg wet     1.67     69.9     30-130       9     0.34     mg/Kg wet     1.67     74.6     40-140       1     0.34     mg/Kg wet     1.67     68.2     30-130       1     0.66     mg/Kg wet     1.67     68.2     30-130       1     0.34     mg/Kg wet     1.67     87.4     40-140       1     0.34     mg/Kg wet     1.67     87.4     40-140       2     0.34     mg/Kg wet     1.67     81.1     40-140       3     0.34     mg/Kg wet     1.67     67.7     40-140       3     0.34     mg/Kg wet     1.67     76.5     40-140       3     0.34     mg/Kg wet     1.67     76.5     40-140       &lt;</td> <td>4     0.34     mg/Kg wet     1.67     74.5     40-140     0.0268       2     0.34     mg/Kg wet     1.67     61.0     40-140     3.00       5     0.34     mg/Kg wet     1.67     59.2     40-140     1.64       6     0.34     mg/Kg wet     1.67     59.7     40-140     2.77       0     0.17     mg/Kg wet     1.67     78.2     20-140     3.59       4     0.34     mg/Kg wet     1.67     68.1     30-130     5.82       3     0.34     mg/Kg wet     1.67     80.1     40-140     0.300       5     0.34     mg/Kg wet     1.67     74.6     40-140     3.04       4     0.34     mg/Kg wet     1.67     74.6     40-140     3.04       4     0.34     mg/Kg wet     1.67     68.2     30-130     3.62       4     0.66     mg/Kg wet     1.67     68.2     30-130     6.51       5     0.34     mg/Kg wet     1.67     87.4     40-140     3.56       5     0.34     mg/Kg wet     1.67     87.4     40-140     5.18       3     0.34     mg/Kg wet     1.67     67.7     40-140     5.28</td> <td>4     0.34     mg/Kg wet     1.67     74.5     40-140     0.0268     30       2     0.34     mg/Kg wet     1.67     61.0     40-140     3.00     30       5     0.34     mg/Kg wet     1.67     59.2     40-140     1.64     30       6     0.34     mg/Kg wet     1.67     59.7     40-140     2.77     30       0     0.17     mg/Kg wet     1.67     78.2     20-140     3.59     50       4     0.34     mg/Kg wet     1.67     68.1     30-130     5.82     30       3     0.34     mg/Kg wet     1.67     80.1     40-140     0.300     30       5     0.34     mg/Kg wet     1.67     69.9     30-130     4.53     30       4     0.34     mg/Kg wet     1.67     74.6     40-140     3.04     30       4     0.34     mg/Kg wet     1.67     66.7     30-130     3.62     30       4     0.66     mg/Kg wet     1.67     68.2     30-130     6.51     30       5     0.34     mg/Kg wet     1.67     87.4     40-140     3.56     30       6     0.34     mg/Kg wet     1.67     87.4     40</td> | 4     0.34     mg/Kg wet     1.67       2     0.34     mg/Kg wet     1.67       3     0.34     mg/Kg wet     1.67       4     0.34     mg/Kg wet     1.67       5     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       6     0.34     mg/Kg wet     1.67       7     0.34     mg/Kg wet     1.67       8     0.34     mg/Kg wet     1.67       9     0.34     mg/Kg wet     1.67       10     0.34     mg/Kg wet     1.67 | 4     0.34     mg/Kg wet     1.67     74.5       2     0.34     mg/Kg wet     1.67     61.0       6     0.34     mg/Kg wet     1.67     59.2       6     0.34     mg/Kg wet     1.67     78.2       6     0.17     mg/Kg wet     1.67     68.1       7     0.34     mg/Kg wet     1.67     80.1       8     0.34     mg/Kg wet     1.67     69.9       9     0.34     mg/Kg wet     1.67     74.6       1     0.34     mg/Kg wet     1.67     68.2       1     0.34     mg/Kg wet     1.67     87.4       2     0.34     mg/Kg wet     1.67     87.4       3     0.34     mg/Kg wet     1.67     87.4       3     0.34     mg/Kg wet     1.67     67.7       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     76.5       3     0.34     mg/Kg wet     1.67     79.7 | 4     0.34     mg/Kg wet     1.67     74.5     40-140       2     0.34     mg/Kg wet     1.67     61.0     40-140       6     0.34     mg/Kg wet     1.67     59.2     40-140       6     0.34     mg/Kg wet     1.67     59.7     40-140       6     0.17     mg/Kg wet     1.67     78.2     20-140       6     0.34     mg/Kg wet     1.67     68.1     30-130       8     0.34     mg/Kg wet     1.67     69.9     30-130       9     0.34     mg/Kg wet     1.67     74.6     40-140       1     0.34     mg/Kg wet     1.67     68.2     30-130       1     0.66     mg/Kg wet     1.67     68.2     30-130       1     0.34     mg/Kg wet     1.67     87.4     40-140       1     0.34     mg/Kg wet     1.67     87.4     40-140       2     0.34     mg/Kg wet     1.67     81.1     40-140       3     0.34     mg/Kg wet     1.67     67.7     40-140       3     0.34     mg/Kg wet     1.67     76.5     40-140       3     0.34     mg/Kg wet     1.67     76.5     40-140       < | 4     0.34     mg/Kg wet     1.67     74.5     40-140     0.0268       2     0.34     mg/Kg wet     1.67     61.0     40-140     3.00       5     0.34     mg/Kg wet     1.67     59.2     40-140     1.64       6     0.34     mg/Kg wet     1.67     59.7     40-140     2.77       0     0.17     mg/Kg wet     1.67     78.2     20-140     3.59       4     0.34     mg/Kg wet     1.67     68.1     30-130     5.82       3     0.34     mg/Kg wet     1.67     80.1     40-140     0.300       5     0.34     mg/Kg wet     1.67     74.6     40-140     3.04       4     0.34     mg/Kg wet     1.67     74.6     40-140     3.04       4     0.34     mg/Kg wet     1.67     68.2     30-130     3.62       4     0.66     mg/Kg wet     1.67     68.2     30-130     6.51       5     0.34     mg/Kg wet     1.67     87.4     40-140     3.56       5     0.34     mg/Kg wet     1.67     87.4     40-140     5.18       3     0.34     mg/Kg wet     1.67     67.7     40-140     5.28 | 4     0.34     mg/Kg wet     1.67     74.5     40-140     0.0268     30       2     0.34     mg/Kg wet     1.67     61.0     40-140     3.00     30       5     0.34     mg/Kg wet     1.67     59.2     40-140     1.64     30       6     0.34     mg/Kg wet     1.67     59.7     40-140     2.77     30       0     0.17     mg/Kg wet     1.67     78.2     20-140     3.59     50       4     0.34     mg/Kg wet     1.67     68.1     30-130     5.82     30       3     0.34     mg/Kg wet     1.67     80.1     40-140     0.300     30       5     0.34     mg/Kg wet     1.67     69.9     30-130     4.53     30       4     0.34     mg/Kg wet     1.67     74.6     40-140     3.04     30       4     0.34     mg/Kg wet     1.67     66.7     30-130     3.62     30       4     0.66     mg/Kg wet     1.67     68.2     30-130     6.51     30       5     0.34     mg/Kg wet     1.67     87.4     40-140     3.56     30       6     0.34     mg/Kg wet     1.67     87.4     40 |



# QUALITY CONTROL

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes        |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-------|--------------|--------------|
| Batch B296051 - SW-846 3546          |        |                    |           |                |                  |             |                |       |              |              |
| LCS Dup (B296051-BSD1)               |        |                    |           | Prepared: 12   | 2/03/21 Analy    | zed: 12/06/ | /21            |       |              |              |
| Hexachlorobenzene                    | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.6        | 40-140         | 1.07  | 30           |              |
| Hexachlorobutadiene                  | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 74.9        | 40-140         | 3.42  | 30           |              |
| Hexachlorocyclopentadiene            | 0.984  | 0.34               | mg/Kg wet | 1.67           |                  | 59.0        | 40-140         | 2.33  | 30           |              |
| Hexachloroethane                     | 1.06   | 0.34               | mg/Kg wet | 1.67           |                  | 63.8        | 40-140         | 5.43  | 30           |              |
| Indeno(1,2,3-cd)pyrene               | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.7        | 40-140         | 0.694 | 30           |              |
| Isophorone                           | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.8        | 40-140         | 5.57  | 30           | V-06         |
| 1-Methylnaphthalene                  | 1.14   | 0.17               | mg/Kg wet | 1.67           |                  | 68.2        | 40-140         | 6.55  | 30           |              |
| 2-Methylnaphthalene                  | 1.42   | 0.17               | mg/Kg wet | 1.67           |                  | 84.9        | 40-140         | 1.43  | 30           |              |
| 2-Methylphenol                       | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.4        | 30-130         | 7.21  | 30           |              |
| 3/4-Methylphenol                     | 1.24   | 0.34               | mg/Kg wet | 1.67           |                  | 74.4        | 30-130         | 5.34  | 30           |              |
| Naphthalene                          | 1.19   | 0.17               | mg/Kg wet | 1.67           |                  | 71.2        | 40-140         | 0.846 | 30           |              |
| 2-Nitroaniline                       | 1.78   | 0.34               | mg/Kg wet | 1.67           |                  | 107         | 40-140         | 0.318 | 30           |              |
| 3-Nitroaniline                       | 1.32   | 0.34               | mg/Kg wet | 1.67           |                  | 79.1        | 30-140         | 4.71  | 30           |              |
| 4-Nitroaniline                       | 1.54   | 0.34               | mg/Kg wet | 1.67           |                  | 92.6        | 40-140         | 6.23  | 30           |              |
| Nitrobenzene                         | 1.27   | 0.34               | mg/Kg wet | 1.67           |                  | 76.5        | 40-140         | 0.365 | 30           |              |
| 2-Nitrophenol                        | 1.07   | 0.34               | mg/Kg wet | 1.67           |                  | 64.1        | 30-130         | 1.46  | 30           |              |
| 4-Nitrophenol                        | 1.51   | 0.66               | mg/Kg wet | 1.67           |                  | 90.6        | 30-130         | 8.23  | 50           |              |
| N-Nitrosodimethylamine               | 1.09   | 0.34               | mg/Kg wet | 1.67           |                  | 65.7        | 40-140         | 10.5  | 30           |              |
| N-Nitrosodiphenylamine/Diphenylamine | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.7        | 40-140         | 1.82  | 30           |              |
| N-Nitrosodi-n-propylamine            | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 74.1        | 40-140         | 7.10  | 30           | V-06         |
| Pentachloronitrobenzene              |        | 0.34               | mg/Kg wet | 1.67           |                  | 74.5        | 40-140         | 1.35  | 30           | V-00         |
| Pentachlorophenol                    | 1.24   | 0.34               | mg/Kg wet |                |                  |             |                |       |              |              |
| Phenanthrene                         | 1.05   | 0.17               | mg/Kg wet | 1.67           |                  | 62.9        | 30-130         | 1.80  | 30           |              |
| Phenol                               | 1.22   | 0.17               | mg/Kg wet | 1.67           |                  | 73.4        | 40-140         | 0.896 | 30           |              |
|                                      | 1.15   |                    |           | 1.67           |                  | 69.0        | 30-130         | 6.50  | 30           |              |
| Pyrene                               | 1.18   | 0.17               | mg/Kg wet | 1.67           |                  | 71.0        | 40-140         | 0.00  | 30           |              |
| Pyridine                             | 0.698  | 0.34               | mg/Kg wet | 1.67           |                  | 41.9        | 30-140         | 10.6  | 30           |              |
| 1,2,4,5-Tetrachlorobenzene           | 1.12   | 0.34               | mg/Kg wet | 1.67           |                  | 67.2        | 40-140         | 0.478 | 30           |              |
| 1,2,4-Trichlorobenzene               | 1.15   | 0.34               | mg/Kg wet | 1.67           |                  | 69.0        | 40-140         | 3.00  | 30           |              |
| 2,4,5-Trichlorophenol                | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.6        | 30-130         | 1.81  | 30           |              |
| 2,4,6-Trichlorophenol                | 1.14   | 0.34               | mg/Kg wet | 1.67           |                  | 68.1        | 30-130         | 3.09  | 30           |              |
| Surrogate: 2-Fluorophenol            | 4.91   |                    | mg/Kg wet | 6.67           |                  | 73.7        | 30-130         |       |              |              |
| Surrogate: Phenol-d6                 | 5.26   |                    | mg/Kg wet | 6.67           |                  | 78.9        | 30-130         |       |              |              |
| Surrogate: Nitrobenzene-d5           | 2.43   |                    | mg/Kg wet | 3.33           |                  | 72.8        | 30-130         |       |              |              |
| Surrogate: 2-Fluorobiphenyl          | 2.47   |                    | mg/Kg wet | 3.33           |                  | 74.0        | 30-130         |       |              |              |
| Surrogate: 2,4,6-Tribromophenol      | 6.52   |                    | mg/Kg wet | 6.67           |                  | 97.8        | 30-130         |       |              |              |
| Surrogate: p-Terphenyl-d14           | 2.72   |                    | mg/Kg wet | 3.33           |                  | 81.7        | 30-130         |       |              |              |
| Matrix Spike (B296051-MS1)           | Sour   | rce: 21L0084       | -01       | Prepared: 12   | 2/03/21 Analy    | zed: 12/06/ | 21             |       |              |              |
| Acenaphthene                         | 1.16   | 0.20               | mg/Kg dry | 1.94           | ND               | 59.6        | 40-140         |       |              |              |
| Acenaphthylene                       | 1.22   | 0.20               | mg/Kg dry | 1.94           | ND               | 62.8        | 40-140         |       |              |              |
| Acetophenone                         | 1.13   | 0.40               | mg/Kg dry | 1.94           | ND               | 58.2        | 40-140         |       |              |              |
| Aniline                              | 0.907  | 0.40               | mg/Kg dry | 1.94           | ND               | 46.6        | 40-140         |       |              |              |
| Anthracene                           | 1.19   | 0.20               | mg/Kg dry | 1.94           | ND               | 61.3        | 40-140         |       |              |              |
| Benzidine                            | 0.209  | 0.77               | mg/Kg dry | 1.94           | ND               | 10.8        |                |       |              | MS-09, V-05, |
| Benzo(a)anthracene                   | 1.21   | 0.20               | mg/Kg dry | 1.94           | ND               | 62.3        | 40-140         |       |              | V-35, J      |
| Benzo(a)pyrene                       | 1.31   | 0.20               | mg/Kg dry | 1.94           | ND               | 67.2        | 40-140         |       |              |              |
| Benzo(b)fluoranthene                 | 1.33   | 0.20               | mg/Kg dry | 1.94           | ND               | 68.3        | 40-140         |       |              |              |
| Benzo(g,h,i)perylene                 | 1.16   | 0.20               | mg/Kg dry | 1.94           | ND<br>ND         | 59.5        | 40-140         |       |              |              |
| Benzo(k)fluoranthene                 |        | 0.20               | mg/Kg dry | 1.94           |                  | 72.5        | 40-140         |       |              |              |
| Benzoic Acid                         | 1.41   | 1.2                | mg/Kg dry |                | ND               |             |                |       |              | MS-09, J     |
|                                      | 0.208  |                    |           | 1.94           | ND               | 10.7 *      |                |       |              | 1V13-U9, J   |
| Bis(2-chloroethoxy)methane           | 1.15   | 0.40               | mg/Kg dry | 1.94           | ND               | 59.1        | 40-140         |       |              |              |
| Bis(2-chloroethyl)ether              | 1.04   | 0.40               | mg/Kg dry | 1.94           | ND               | 53.3        | 40-140         |       |              |              |
|                                      |        |                    |           |                |                  |             |                |       |              |              |



# QUALITY CONTROL

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

| Matrix Spike (B296051-MS1)                 | Sourc          | e: 21L0084   | -01                    | Prepared: 12/0 | 3/21 Analyz | ed: 12/0            | 5/21               |      |
|--------------------------------------------|----------------|--------------|------------------------|----------------|-------------|---------------------|--------------------|------|
| Bis(2-chloroisopropyl)ether                | 0.951          | 0.40         | mg/Kg dry              | 1.94           | ND          | 48.9                | 40-140             | V-05 |
| Bis(2-Ethylhexyl)phthalate                 | 1.12           | 0.40         | mg/Kg dry              | 1.94           | ND          | 57.8                | 40-140             |      |
| Bromophenylphenylether                     | 1.15           | 0.40         | mg/Kg dry              | 1.94           | ND          | 59.2                | 40-140             |      |
| utylbenzylphthalate                        | 1.11           | 0.40         | mg/Kg dry              | 1.94           | ND          | 57.3                | 40-140             |      |
| arbazole                                   | 1.23           | 0.20         | mg/Kg dry              | 1.94           | ND          | 63.4                | 40-140             |      |
| -Chloroaniline                             | 1.08           | 0.77         | mg/Kg dry              | 1.94           | ND          | 55.7                | 40-140             |      |
| Chloro-3-methylphenol                      | 1.27           | 0.77         | mg/Kg dry              | 1.94           | ND          | 65.4                | 30-130             |      |
| Chloronaphthalene                          | 1.03           | 0.40         | mg/Kg dry              | 1.94           | ND          | 53.0                | 40-140             |      |
| Chlorophenol                               | 1.03           | 0.40         | mg/Kg dry              | 1.94           | ND          | 53.0                | 30-130             |      |
| Chlorophenylphenylether                    | 1.18           | 0.40         | mg/Kg dry              | 1.94           | ND          | 60.9                | 40-140             |      |
| hrysene                                    | 1.23           | 0.20         | mg/Kg dry              | 1.94           | ND          | 63.4                | 40-140             |      |
| ibenz(a,h)anthracene                       | 1.25           | 0.20         | mg/Kg dry              | 1.94           | ND          | 64.2                | 40-140             | V-06 |
| ibenzofuran                                | 1.33           | 0.40         | mg/Kg dry              | 1.94           | ND          | 68.5                | 40-140             |      |
| i-n-butylphthalate                         | 1.18           | 0.40         | mg/Kg dry              | 1.94           | ND          | 60.6                | 40-140             |      |
| 2-Dichlorobenzene                          | 0.911          | 0.40         | mg/Kg dry              | 1.94           | ND          | 46.8                | 40-140             |      |
| 3-Dichlorobenzene                          | 0.858          | 0.40         | mg/Kg dry              | 1.94           | ND          | 44.1                | 40-140             |      |
| 4-Dichlorobenzene                          | 0.870          | 0.40         | mg/Kg dry              | 1.94           | ND          | 44.7                | 40-140             |      |
| 3-Dichlorobenzidine                        | 1.09           | 0.20         | mg/Kg dry              | 1.94           | ND          | 56.2                | 40-140             |      |
| 4-Dichlorophenol                           | 1.13           | 0.40         | mg/Kg dry              | 1.94           | ND          | 58.3                | 30-130             |      |
| iethylphthalate                            | 1.25           | 0.40         | mg/Kg dry              | 1.94           | ND          | 64.4                | 40-140             |      |
| 4-Dimethylphenol                           | 1.08           | 0.40         | mg/Kg dry              | 1.94           | ND          | 55.7                | 30-130             |      |
| imethylphthalate                           | 1.20           | 0.40         | mg/Kg dry              | 1.94           | ND          | 61.5                | 40-140             |      |
| 6-Dinitro-2-methylphenol                   | 0.937          | 0.40         | mg/Kg dry              | 1.94           | ND          | 48.2                | 30-130             |      |
| 4-Dinitrophenol                            | 0.801          | 0.77         | mg/Kg dry              | 1.94           | ND          | 41.2                | 30-130             |      |
| 4-Dinitrotoluene                           | 1.41           | 0.40         | mg/Kg dry              | 1.94           | ND          | 72.7                | 40-140             |      |
| 6-Dinitrotoluene                           | 1.33           | 0.40         | mg/Kg dry              | 1.94           | ND          | 68.5                | 40-140             |      |
| i-n-octylphthalate                         | 1.15           | 0.40         | mg/Kg dry              | 1.94           | ND          | 58.9                | 40-140             |      |
| 2-Diphenylhydrazine/Azobenzene             | 1.13           | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 66.3                | 40-140             |      |
| uoranthene                                 | 1.25           | 0.20         | mg/Kg dry              | 1.94           | ND<br>ND    | 64.5                | 40-140             |      |
| uorene                                     | 1.28           | 0.20         | mg/Kg dry              | 1.94           | ND          | 65.6                | 40-140             |      |
| exachlorobenzene                           | 1.24           | 0.40         | mg/Kg dry              | 1.94           | ND          | 63.7                | 40-140             |      |
| exachlorobutadiene                         | 1.24           | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 57.0                | 40-140             |      |
| exachlorocyclopentadiene                   |                | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 34.5                | 30-130             |      |
| exachloroethane                            | 0.671<br>0.931 | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 47.9                | 40-140             |      |
| deno(1,2,3-cd)pyrene                       | 1.21           | 0.20         | mg/Kg dry              | 1.94           | ND<br>ND    | 62.1                | 40-140             |      |
| ophorone                                   | 1.21           | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 69.4                | 40-140             | V-06 |
| Methylnaphthalene                          |                | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 61.5                | 40-140             | v-00 |
| Methylnaphthalene                          | 1.20           | 0.20         | mg/Kg dry              | 1.94           | ND<br>ND    | 72.3                | 40-140             |      |
| Methylphenol                               | 1.41           | 0.40         | mg/Kg dry              | 1.94           | ND<br>ND    | 61.6                | 30-130             |      |
| 4-Methylphenol                             | 1.20           | 0.40         | mg/Kg dry              | 1.94           |             | 65.2                | 30-130             |      |
| aphthalene                                 | 1.27           | 0.40         | mg/Kg dry              | 1.94           | ND          | 57.3                | 40-140             |      |
| Nitroaniline                               | 1.12           | 0.20         | mg/Kg dry              | 1.94           | ND          | 86.5                | 40-140             |      |
| Nitroaniline                               | 1.68           | 0.40         | mg/Kg dry              |                | ND          |                     | 40-140             |      |
| Nitroaniline                               | 1.20           | 0.40         |                        | 1.94           | ND          | 61.5                |                    |      |
| trobenzene                                 | 1.35           | 0.40         | mg/Kg dry<br>mg/Kg dry | 1.94           | ND          | 69.4                | 40-140             |      |
| Nitrophenol                                | 1.19           |              |                        | 1.94           | ND          | 61.3                | 40-140             |      |
| Nitrophenol                                | 1.01           | 0.40         | mg/Kg dry              | 1.94           | ND          | 51.8                | 30-130             |      |
| •                                          | 1.24           | 0.77         | mg/Kg dry              | 1.94           | ND          | 63.9                | 30-130             |      |
| Nitrosodimethylamine                       | 0.910          | 0.40         | mg/Kg dry              | 1.94           | ND          | 46.8                | 40-140             |      |
| -Nitrosodiphenylamine/Diphenylamine        | 1.23           | 0.40         | mg/Kg dry              | 1.94           | ND          | 63.2                | 40-140             | ***  |
| Nitrosodi-n-propylamine                    | 1.22           | 0.40         | mg/Kg dry              | 1.94           | ND          | 62.5                | 40-140             | V-06 |
| entachloronitrobenzene<br>entachlorophenol | 1.19<br>0.517  | 0.40<br>0.40 | mg/Kg dry<br>mg/Kg dry | 1.94<br>1.94   | ND<br>ND    | 61.2<br><b>26.6</b> | 40-140<br>* 30-130 | MS-2 |



#### QUALITY CONTROL

# Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                         | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD          | RPD<br>Limit | Notes       |
|---------------------------------|--------------|--------------------|-----------|----------------|------------------|-----------|----------------|--------------|--------------|-------------|
| Batch B296051 - SW-846 3546     |              | -                  |           |                |                  |           |                |              |              |             |
| Matrix Spike (B296051-MS1)      | Sou          | rce: 21L0084       | -01       | Prepared: 12   | 2/03/21 Analyz   | red: 12/0 | 06/21          |              |              |             |
| Phenanthrene                    | 1.24         | 0.20               | mg/Kg dry | 1.94           | ND               | 63.9      | 40-140         |              |              |             |
| Phenol                          | 1.16         | 0.40               | mg/Kg dry | 1.94           | ND               | 59.9      | 30-130         |              |              |             |
| Pyrene                          | 1.18         | 0.20               | mg/Kg dry | 1.94           | ND               | 60.9      | 40-140         |              |              |             |
| Pyridine                        | 0.547        | 0.40               | mg/Kg dry | 1.94           | ND               | 28.1      | * 40-140       |              |              | MS-09       |
| 1,2,4,5-Tetrachlorobenzene      | 1.05         | 0.40               | mg/Kg dry | 1.94           | ND               | 54.2      | 40-140         |              |              |             |
| 1,2,4-Trichlorobenzene          | 1.10         | 0.40               | mg/Kg dry | 1.94           | ND               | 56.5      | 40-140         |              |              |             |
| 2,4,5-Trichlorophenol           | 1.20         | 0.40               | mg/Kg dry | 1.94           | ND               | 61.6      | 30-130         |              |              |             |
| 2,4,6-Trichlorophenol           | 1.06         | 0.40               | mg/Kg dry | 1.94           | ND               | 54.4      | 30-130         |              |              |             |
| Surrogate: 2-Fluorophenol       | 4.57         |                    | mg/Kg dry | 7.78           |                  | 58.7      | 30-130         |              |              |             |
| Surrogate: Phenol-d6            | 5.25         |                    | mg/Kg dry | 7.78           |                  | 67.4      | 30-130         |              |              |             |
| Surrogate: Nitrobenzene-d5      | 2.39         |                    | mg/Kg dry | 3.89           |                  | 61.3      | 30-130         |              |              |             |
| Surrogate: 2-Fluorobiphenyl     | 2.32         |                    | mg/Kg dry | 3.89           |                  | 59.7      | 30-130         |              |              |             |
| Surrogate: 2,4,6-Tribromophenol | 5.79         |                    | mg/Kg dry | 7.78           |                  | 74.4      | 30-130         |              |              |             |
| Surrogate: p-Terphenyl-d14      | 2.60         |                    | mg/Kg dry | 3.89           |                  | 66.9      | 30-130         |              |              |             |
| Matrix Spike Dup (B296051-MSD1) | Sou          | rce: 21L0084       | -01       | Prepared: 12   | 2/03/21 Analyz   | ed: 12/0  | 06/21          |              |              |             |
| Acenaphthene                    | 1.26         | 0.20               | mg/Kg dry | 1.94           | ND               | 64.8      | 40-140         | 8.42         | 30           |             |
| Acenaphthylene                  | 1.32         | 0.20               | mg/Kg dry | 1.94           | ND               | 67.7      | 40-140         | 7.54         | 30           |             |
| Acetophenone                    | 1.26         | 0.40               | mg/Kg dry | 1.94           | ND               | 65.0      | 40-140         | 11.0         | 30           |             |
| Aniline                         | 0.944        | 0.40               | mg/Kg dry | 1.94           | ND               | 48.5      | 40-140         | 3.99         | 30           |             |
| Anthracene                      | 1.35         | 0.20               | mg/Kg dry | 1.94           | ND               | 69.2      | 40-140         | 12.1         | 30           |             |
| Benzidine                       | 0.213        | 0.77               | mg/Kg dry | 1.94           | ND               | 10.9      | * 40-140       | 1.66         | 30           | MS-09, V-05 |
| Benzo(a)anthracene              | 1.30         | 0.20               | mg/Kg dry | 1.94           | ND               | 66.7      | 40-140         | 6.73         | 30           | V-35, J     |
| Benzo(a)pyrene                  | 1.47         | 0.20               | mg/Kg dry | 1.94           | ND               | 75.7      | 40-140         | 12.0         | 30           |             |
| Benzo(b)fluoranthene            | 1.47         | 0.20               | mg/Kg dry | 1.94           | ND               | 75.4      | 40-140         | 9.86         | 30           |             |
| Benzo(g,h,i)perylene            | 1.22         | 0.20               | mg/Kg dry | 1.94           | ND               | 62.6      | 40-140         | 4.95         | 30           |             |
| Benzo(k)fluoranthene            | 1.59         | 0.20               | mg/Kg dry | 1.94           | ND               | 81.8      | 40-140         | 12.0         | 30           |             |
| Benzoic Acid                    | 0.225        | 1.2                | mg/Kg dry | 1.94           | ND               | 11.6      | * 40-140       |              | 30           | MS-09, J    |
| Bis(2-chloroethoxy)methane      | 1.27         | 0.40               | mg/Kg dry | 1.94           | ND               | 65.2      | 40-140         | 9.85         | 30           |             |
| Bis(2-chloroethyl)ether         | 1.12         | 0.40               | mg/Kg dry | 1.94           | ND               | 57.7      | 40-140         | 7.82         | 30           |             |
| Bis(2-chloroisopropyl)ether     | 1.06         | 0.40               | mg/Kg dry | 1.94           | ND               | 54.5      | 40-140         | 10.9         | 30           | V-05        |
| Bis(2-Ethylhexyl)phthalate      | 1.31         | 0.40               | mg/Kg dry | 1.94           | ND               | 67.3      | 40-140         | 15.2         | 30           |             |
| 4-Bromophenylphenylether        | 1.22         | 0.40               | mg/Kg dry | 1.94           | ND               | 62.5      | 40-140         | 5.39         | 30           |             |
| Butylbenzylphthalate            | 1.27         | 0.40               | mg/Kg dry | 1.94           | ND               | 65.3      | 40-140         | 13.1         | 30           |             |
| Carbazole                       | 1.35         | 0.20               | mg/Kg dry | 1.94           | ND               | 69.6      | 40-140         | 9.32         | 30           |             |
| 4-Chloroaniline                 | 1.10         | 0.77               | mg/Kg dry | 1.94           | ND               | 56.3      | 40-140         | 1.04         | 30           |             |
| 4-Chloro-3-methylphenol         | 1.45         | 0.77               | mg/Kg dry | 1.94           | ND               | 74.5      | 30-130         | 13.0         | 30           |             |
| 2-Chloronaphthalene             | 1.05         | 0.40               | mg/Kg dry | 1.94           | ND               | 53.8      | 40-140         | 1.53         | 30           |             |
| 2-Chlorophenol                  | 1.14         | 0.40               | mg/Kg dry | 1.94           | ND               | 58.6      | 30-130         | 10.0         | 30           |             |
| 4-Chlorophenylphenylether       | 1.14         | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 66.5      | 40-140         | 8.85         | 30           |             |
| Chrysene                        | 1.38         | 0.20               | mg/Kg dry | 1.94           | ND               | 71.0      | 40-140         | 11.3         | 30           |             |
| Dibenz(a,h)anthracene           | 1.33         | 0.20               | mg/Kg dry | 1.94           | ND               | 68.6      | 40-140         | 6.65         | 30           | V-06        |
| Dibenzofuran                    | 1.42         | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 73.0      | 40-140         | 6.25         | 30           | . 00        |
| Di-n-butylphthalate             | 1.35         | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 69.3      | 40-140         | 13.5         | 30           |             |
| 1,2-Dichlorobenzene             | 1.03         | 0.40               | mg/Kg dry | 1.94           | ND               | 53.0      | 40-140         | 12.3         | 30           |             |
| 1,3-Dichlorobenzene             | 0.932        | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 47.9      | 40-140         | 8.26         | 30           |             |
| 1,4-Dichlorobenzene             | 0.958        | 0.40               | mg/Kg dry | 1.94           | ND               | 49.3      | 40-140         | 9.62         | 30           |             |
| 3,3-Dichlorobenzidine           | 1.16         | 0.20               | mg/Kg dry | 1.94           | ND<br>ND         | 59.9      | 40-140         | 6.27         | 30           |             |
| 2,4-Dichlorophenol              | 1.16         | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 63.4      | 30-130         | 8.32         | 30           |             |
| Diethylphthalate                |              | 0.40               | mg/Kg dry | 1.94           |                  | 70.7      | 40-140         | 9.35         | 30           |             |
| 2,4-Dimethylphenol              | 1.38<br>1.21 | 0.40               | mg/Kg dry | 1.94           | ND<br>ND         | 62.1      | 30-130         | 9.33<br>10.8 | 30           |             |
|                                 |              |                    |           |                |                  |           |                |              |              |             |



Surrogate: p-Terphenyl-d14

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

#### Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result  | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Notes  |
|--------------------------------------|---------|--------------------|-----------|----------------|------------------|--------|----------------|------|--------------|--------|
| -                                    | ixesuit | Liiiit             | Onits     | LCVCI          | Result           | /UKEC  | Lillius        | МЪ   | Lillit       | 110105 |
| Batch B296051 - SW-846 3546          | -       |                    |           |                |                  |        |                |      |              |        |
| Matrix Spike Dup (B296051-MSD1)      |         | rce: 21L0084       |           |                | 2/03/21 Analyz   |        |                | 0.00 |              |        |
| 4,6-Dinitro-2-methylphenol           | 1.03    | 0.40               | mg/Kg dry | 1.94           | ND               | 52.9   | 30-130         | 9.38 | 30           |        |
| 2,4-Dinitrophenol                    | 0.921   | 0.77               | mg/Kg dry | 1.94           | ND               | 47.3   | 30-130         | 13.9 | 30           |        |
| 2,4-Dinitrotoluene                   | 1.44    | 0.40               | mg/Kg dry | 1.94           | ND               | 74.1   | 40-140         | 1.83 | 30           |        |
| 2,6-Dinitrotoluene                   | 1.43    | 0.40               | mg/Kg dry | 1.94           | ND               | 73.4   | 40-140         | 6.85 | 30           |        |
| Di-n-octylphthalate                  | 1.35    | 0.40               | mg/Kg dry | 1.94           | ND               | 69.2   | 40-140         | 16.2 | 30           |        |
| ,2-Diphenylhydrazine/Azobenzene      | 1.42    | 0.40               | mg/Kg dry | 1.94           | ND               | 72.9   | 40-140         | 9.57 | 30           |        |
| Fluoranthene                         | 1.47    | 0.20               | mg/Kg dry | 1.94           | ND               | 75.4   | 40-140         | 15.5 | 30           |        |
| luorene                              | 1.41    | 0.20               | mg/Kg dry | 1.94           | ND               | 72.6   | 40-140         | 10.1 | 30           |        |
| Hexachlorobenzene                    | 1.33    | 0.40               | mg/Kg dry | 1.94           | ND               | 68.6   | 40-140         | 7.38 | 30           |        |
| Hexachlorobutadiene                  | 1.23    | 0.40               | mg/Kg dry | 1.94           | ND               | 63.2   | 40-140         | 10.4 | 30           |        |
| Hexachlorocyclopentadiene            | 0.799   | 0.40               | mg/Kg dry | 1.94           | ND               | 41.1   | 30-130         | 17.5 | 30           |        |
| Hexachloroethane                     | 1.04    | 0.40               | mg/Kg dry | 1.94           | ND               | 53.5   | 40-140         | 11.1 | 30           |        |
| ndeno(1,2,3-cd)pyrene                | 1.32    | 0.20               | mg/Kg dry | 1.94           | ND               | 67.8   | 40-140         | 8.83 | 30           | ** 0 - |
| Sophorone Mathalana and the land     | 1.46    | 0.40               | mg/Kg dry | 1.94           | ND               | 75.3   | 40-140         | 8.15 | 30           | V-06   |
| -Methylnaphthalene                   | 1.31    | 0.20               | mg/Kg dry | 1.94           | ND               | 67.2   | 40-140         | 8.89 | 30           |        |
| -Methylnaphthalene                   | 1.54    | 0.20               | mg/Kg dry | 1.94           | ND               | 79.4   | 40-140         | 9.41 | 30           |        |
| -Methylphenol                        | 1.33    | 0.40               | mg/Kg dry | 1.94           | ND               | 68.6   | 30-130         | 10.6 | 30           |        |
| /4-Methylphenol                      | 1.38    | 0.40               | mg/Kg dry | 1.94           | ND               | 71.0   | 30-130         | 8.58 | 30           |        |
| Japhthalene                          | 1.22    | 0.20               | mg/Kg dry | 1.94           | ND               | 62.9   | 40-140         | 9.22 | 30           |        |
| -Nitroaniline                        | 1.86    | 0.40               | mg/Kg dry | 1.94           | ND               | 95.8   | 40-140         | 10.2 | 30           |        |
| -Nitroaniline                        | 1.28    | 0.40               | mg/Kg dry | 1.94           | ND               | 66.0   | 40-140         | 7.12 | 30           |        |
| -Nitroaniline                        | 1.46    | 0.40               | mg/Kg dry | 1.94           | ND               | 75.1   | 40-140         | 7.95 | 30           |        |
| litrobenzene                         | 1.29    | 0.40               | mg/Kg dry | 1.94           | ND               | 66.4   | 40-140         | 8.02 | 30           |        |
| -Nitrophenol                         | 1.12    | 0.40               | mg/Kg dry | 1.94           | ND               | 57.4   | 30-130         | 10.2 | 30           |        |
| -Nitrophenol                         | 1.48    | 0.77               | mg/Kg dry | 1.94           | ND               | 76.1   | 30-130         | 17.5 | 30           |        |
| N-Nitrosodimethylamine               | 1.01    | 0.40               | mg/Kg dry | 1.94           | ND               | 51.7   | 40-140         | 9.99 | 30           |        |
| I-Nitrosodiphenylamine/Diphenylamine | 1.28    | 0.40               | mg/Kg dry | 1.94           | ND               | 65.7   | 40-140         | 3.82 | 30           |        |
| N-Nitrosodi-n-propylamine            | 1.35    | 0.40               | mg/Kg dry | 1.94           | ND               | 69.6   | 40-140         | 10.7 | 30           | V-06   |
| Pentachloronitrobenzene              | 1.37    | 0.40               | mg/Kg dry | 1.94           | ND               | 70.6   | 40-140         | 14.2 | 30           |        |
| Pentachlorophenol                    | 0.593   | 0.40               | mg/Kg dry | 1.94           | ND               | 30.5   | 30-130         | 13.7 | 30           |        |
| henanthrene                          | 1.37    | 0.20               | mg/Kg dry | 1.94           | ND               | 70.5   | 40-140         | 9.76 | 30           |        |
| Phenol                               | 1.29    | 0.40               | mg/Kg dry | 1.94           | ND               | 66.2   | 30-130         | 10.1 | 30           |        |
| Pyrene                               | 1.33    | 0.20               | mg/Kg dry | 1.94           | ND               | 68.3   | 40-140         | 11.5 | 30           |        |
| yridine                              | 0.560   | 0.40               | mg/Kg dry | 1.94           | ND               | 28.8 * | 40-140         | 2.25 | 30           | MS-09  |
| ,2,4,5-Tetrachlorobenzene            | 1.16    | 0.40               | mg/Kg dry | 1.94           | ND               | 59.8   | 40-140         | 9.75 | 30           |        |
| ,2,4-Trichlorobenzene                | 1.20    | 0.40               | mg/Kg dry | 1.94           | ND               | 61.8   | 40-140         | 8.95 | 30           |        |
| 2,4,5-Trichlorophenol                | 1.37    | 0.40               | mg/Kg dry | 1.94           | ND               | 70.5   | 30-130         | 13.5 | 30           |        |
| 2,4,6-Trichlorophenol                | 1.22    | 0.40               | mg/Kg dry | 1.94           | ND               | 62.8   | 30-130         | 14.2 | 30           |        |
| urrogate: 2-Fluorophenol             | 5.08    |                    | mg/Kg dry | 7.78           |                  | 65.2   | 30-130         |      |              |        |
| Surrogate: Phenol-d6                 | 5.72    |                    | mg/Kg dry | 7.78           |                  | 73.5   | 30-130         |      |              |        |
| Surrogate: Nitrobenzene-d5           | 2.64    |                    | mg/Kg dry | 3.89           |                  | 68.0   | 30-130         |      |              |        |
| surrogate: 2-Fluorobiphenyl          | 2.60    |                    | mg/Kg dry | 3.89           |                  | 66.8   | 30-130         |      |              |        |
| surrogate: 2,4,6-Tribromophenol      | 6.54    |                    | mg/Kg dry | 7.78           |                  | 84.0   | 30-130         |      |              |        |
| 3 T                                  | 2.02    |                    | /17 1     | 2.00           |                  | 77.5   | 20.120         |      |              |        |

 $mg/Kg\ dry$ 

3.89

3.02

30-130

77.5



# FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                          |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                               |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                              |
| ND    | Not Detected                                                                                                                                                                                                                      |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                             |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                       |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                         |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                            |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                             |
| H-10  | Analysis was requested after the recommended holding time had passed.                                                                                                                                                             |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                               |
| MS-09 | Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated. |
| MS-22 | Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.                                                         |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                    |
| V-06  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                                                   |
| V-20  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.  Data validation is not affected since sample result was "not detected" for this compound.                          |
| V-35  | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.                                                                        |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Soil             |                   |
| Acenaphthene                     | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                   | CT,NY,NH,ME,NC,VA |
| Acetophenone                     | NY,NH,ME,NC,VA    |
| Aniline                          | NY,NH,ME,NC,VA    |
| Anthracene                       | CT,NY,NH,ME,NC,VA |
| Benzidine                        | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene               | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                   | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene             | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                     | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane       | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether          | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroisopropyl)ether      | CT,NY,NH,ME,NC,VA |
| Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                    | Certifications    |  |
|----------------------------|-------------------|--|
| SW-846 8270E in Soil       |                   |  |
| Hexachloroethane           | CT,NY,NH,ME,NC,VA |  |
| Indeno(1,2,3-cd)pyrene     | CT,NY,NH,ME,NC,VA |  |
| Isophorone                 | CT,NY,NH,ME,NC,VA |  |
| 1-Methylnaphthalene        | NC                |  |
| 2-Methylnaphthalene        | CT,NY,NH,ME,NC,VA |  |
| 2-Methylphenol             | CT,NY,NH,ME,NC,VA |  |
| 3/4-Methylphenol           | CT,NY,NH,ME,NC,VA |  |
| Naphthalene                | CT,NY,NH,ME,NC,VA |  |
| 2-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 3-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 4-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| Nitrobenzene               | CT,NY,NH,ME,NC,VA |  |
| 2-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| 4-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodimethylamine     | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodi-n-propylamine  | CT,NY,NH,ME,NC,VA |  |
| Pentachloronitrobenzene    | NY,NC             |  |
| Pentachlorophenol          | CT,NY,NH,ME,NC,VA |  |
| Phenanthrene               | CT,NY,NH,ME,NC,VA |  |
| Phenol                     | CT,NY,NH,ME,NC,VA |  |
| Pyrene                     | CT,NY,NH,ME,NC,VA |  |
| Pyridine                   | CT,NY,NH,ME,NC,VA |  |
| 1,2,4,5-Tetrachlorobenzene | NY,NC             |  |
| 1,2,4-Trichlorobenzene     | CT,NY,NH,ME,NC,VA |  |
| 2,4,5-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2,4,6-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2-Fluorophenol             | NC                |  |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |



December 9, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St, Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21L0140

Enclosed are results of analyses for samples as received by the laboratory on December 2, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

REPORT DATE: 12/9/2021

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

21L0140 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB215-0-2-211018   | 21L0140-01 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB215-5-7-211018   | 21L0140-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB215-16-18-211018 | 21L0140-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8270E

#### Qualifications:

H-10

Analysis was requested after the recommended holding time had passed.

Analyte & Samples(s) Qualified:

21L0140-01[HRP-SB215-0-2-211018], 21L0140-02[HRP-SB215-5-7-211018], 21L0140-03[HRP-SB215-16-18-211018]

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

3-Nitroaniline

B296234-BS1, B296234-BSD1

4-Chloroaniline

B296234-BS1, B296234-BSD1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

3-Nitroaniline

21L0140-01[HRP-SB215-0-2-211018], 21L0140-02[HRP-SB215-5-7-211018], 21L0140-03[HRP-SB215-16-18-211018], B296234-BLK1-18-211018], B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B296234-BLK1-18-211018, B29624-BLK1-18-211018, B29624-BLK1-18-211018, B29624-BLK1-18-211018, B29624-BLK1-18-211018, B29624-BLK1-18-211018,

4-Chloroaniline

21L0140-01[HRP-SB215-0-2-211018], 21L0140-02[HRP-SB215-5-7-211018], 21L0140-03[HRP-SB215-16-18-211018], B296234-BLK1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

4-Chloroaniline

21L0140-01[HRP-SB215-0-2-211018], 21L0140-02[HRP-SB215-5-7-211018], 21L0140-03[HRP-SB215-16-18-211018], B296234-BLK1, B296234-BS1, B296234-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B296

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is

estimated.
Analyte & Samples(s) Qualified:

Benzidine

21L0140-01[HRP-SB215-0-2-211018], 21L0140-02[HRP-SB215-5-7-211018], 21L0140-03[HRP-SB215-16-18-211018], B296234-BLK1, B296234-BS1, B296234-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B29624-BSD1, B296



The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watslengten



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-0-2-211018** Sampled: 10/18/2021 12:20

Sample ID: 21L0140-01
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.18 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Acenaphthylene                   | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Acetophenone                     | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Aniline                          | ND      | 0.36 | 0.074 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Anthracene                       | ND      | 0.18 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzidine                        | ND      | 0.69 | 0.16  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzo(a)anthracene               | 0.078   | 0.18 | 0.050 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzo(a)pyrene                   | 0.065   | 0.18 | 0.055 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzo(b)fluoranthene             | 0.11    | 0.18 | 0.054 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.18 | 0.075 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.18 | 0.048 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.43  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.36 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.36 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.36 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.36 | 0.046 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Butylbenzylphthalate             | ND      | 0.36 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Carbazole                        | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 4-Chloroaniline                  | ND      | 0.69 | 0.047 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.69 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.36 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2-Chlorophenol                   | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Chrysene                         | 0.12    | 0.18 | 0.052 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.18 | 0.072 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Dibenzofuran                     | 0.077   | 0.36 | 0.053 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Di-n-butylphthalate              | ND      | 0.36 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.36 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.36 | 0.039 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.36 | 0.037 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.18 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.36 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Diethylphthalate                 | ND      | 0.36 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.36 | 0.097 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Dimethylphthalate                | ND      | 0.36 | 0.052 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.36 | 0.24  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.69 | 0.31  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.36 | 0.070 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.36 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Di-n-octylphthalate              | ND      | 0.36 | 0.13  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Fluoranthene                     | 0.10    | 0.18 | 0.057 | mg/Kg dry | 1        | J          | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
| Fluorene                         | ND      | 0.18 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 17:52         | BGL     |
|                                  |         |      |       |           |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Work Order: 21L0140 Sample Description:

Date Received: 12/2/2021

Field Sample #: HRP-SB215-0-2-211018 Sampled: 10/18/2021 12:20

Sample ID: 21L0140-01 Sample Matrix: Soil

| Sample Flags: H-10                      |         |              | Semivo |                  |          |           |              |          |               |                            |
|-----------------------------------------|---------|--------------|--------|------------------|----------|-----------|--------------|----------|---------------|----------------------------|
|                                         |         |              |        |                  |          |           |              | Date     | Date/Time     |                            |
| Analyte                                 | Results | RL           | DL     | Units            | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst                    |
| Hexachlorobenzene                       | ND      | 0.36         | 0.048  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Hexachlorobutadiene                     | ND      | 0.36         | 0.046  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Hexachlorocyclopentadiene               | ND      | 0.36         | 0.15   | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Hexachloroethane                        | ND      | 0.36         | 0.042  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Indeno(1,2,3-cd)pyrene                  | ND      | 0.18         | 0.081  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Isophorone                              | ND      | 0.36         | 0.060  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 1-Methylnaphthalene                     | 0.23    | 0.18         | 0.049  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2-Methylnaphthalene                     | 0.28    | 0.18         | 0.056  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2-Methylphenol                          | ND      | 0.36         | 0.066  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 3/4-Methylphenol                        | ND      | 0.36         | 0.058  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Naphthalene                             | 0.098   | 0.18         | 0.049  | mg/Kg dry        | 1        | J         | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2-Nitroaniline                          | ND      | 0.36         | 0.076  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 3-Nitroaniline                          | ND      | 0.36         | 0.061  | mg/Kg dry        | 1        | V-20      | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 4-Nitroaniline                          | ND      | 0.36         | 0.077  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Nitrobenzene                            | ND      | 0.36         | 0.052  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2-Nitrophenol                           | ND      | 0.36         | 0.056  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 4-Nitrophenol                           | ND      | 0.69         | 0.14   | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| N-Nitrosodimethylamine                  | ND      | 0.36         | 0.053  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.36         | 0.054  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| N-Nitrosodi-n-propylamine               | ND      | 0.36         | 0.049  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Pentachloronitrobenzene                 | ND      | 0.36         | 0.060  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Pentachlorophenol                       | ND      | 0.36         | 0.16   | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Phenanthrene                            | 0.30    | 0.18         | 0.056  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Phenol                                  | ND      | 0.36         | 0.051  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Pyrene                                  | 0.11    | 0.18         | 0.057  | mg/Kg dry        | 1        | J         | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Pyridine                                | ND      | 0.36         | 0.036  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.36         | 0.047  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 1,2,4-Trichlorobenzene                  | ND      | 0.36         | 0.045  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2,4,5-Trichlorophenol                   | ND      | 0.36         | 0.056  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| 2,4,6-Trichlorophenol                   | ND      | 0.36         | 0.055  | mg/Kg dry        | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 17:52 | BGL                        |
| Surrogates                              |         | % Reco       | overy  | Recovery Limit   | s        | Flag/Qual |              |          |               |                            |
| 2-Fluorophenol                          |         | 57.5         |        | 30-130           |          |           |              |          | 12/8/21 17:52 |                            |
| Phenol-d6                               |         | 59.4         |        | 30-130           |          |           |              |          | 12/8/21 17:52 |                            |
| Nitrobenzene-d5                         |         | 56.7         |        | 30-130           |          |           |              |          | 12/8/21 17:52 |                            |
| 2-Fluorobiphenyl                        |         | 63.3         |        | 30-130           |          |           |              |          | 12/8/21 17:52 |                            |
| * *                                     |         | 57.1         |        |                  |          |           |              |          | 12/8/21 17:52 |                            |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 57.1<br>68.4 |        | 30-130<br>30-130 |          |           |              |          |               | /8/21 17:52<br>/8/21 17:52 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-0-2-211018** Sampled: 10/18/2021 12:20

Sample ID: 21L0140-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 92.4    |    | % Wt  | 1        |           | SM 2540G | 10/22/21 | 10/25/21 11:05 | MJH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-5-7-211018** Sampled: 10/18/2021 12:30

Sample ID: 21L0140-02
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|------------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Acenaphthylene                  | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Acetophenone                    | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Aniline                         | ND      | 0.39 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Anthracene                      | ND      | 0.19 | 0.063 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzidine                       | ND      | 0.75 | 0.18  | mg/Kg dry | 1        | V-35       | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzo(a)anthracene              | ND      | 0.19 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.19 | 0.060 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.19 | 0.081 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.19 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Benzoic Acid                    | ND      | 1.1  | 0.46  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.39 | 0.051 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.39 | 0.088 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4-Bromophenylphenylether        | ND      | 0.39 | 0.050 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Butylbenzylphthalate            | ND      | 0.39 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Carbazole                       | ND      | 0.19 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4-Chloroaniline                 | ND      | 0.75 | 0.052 | mg/Kg dry | 1        | V-20, V-34 | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4-Chloro-3-methylphenol         | ND      | 0.75 | 0.064 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.39 | 0.045 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Chlorophenol                  | ND      | 0.39 | 0.054 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1-Chlorophenylphenylether       | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Chrysene                        | ND      | 0.19 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.19 | 0.079 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Dibenzofuran                    | ND      | 0.39 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Di-n-butylphthalate             | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1,2-Dichlorobenzene             | ND      | 0.39 | 0.044 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1,3-Dichlorobenzene             | ND      | 0.39 | 0.043 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.39 | 0.041 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.19 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.39 | 0.058 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Diethylphthalate                | ND      | 0.39 | 0.059 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.39 | 0.11  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Dimethylphthalate               | ND      | 0.39 | 0.057 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4,6-Dinitro-2-methylphenol      | ND      | 0.39 | 0.26  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4-Dinitrophenol               | ND      | 0.75 | 0.34  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.39 | 0.076 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Di-n-octylphthalate             | ND      | 0.39 | 0.14  | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Fluoranthene                    | ND      | 0.19 | 0.062 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Fluorene                        | ND      | 0.19 | 0.065 | mg/Kg dry | 1        |            | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
|                                 |         |      |       |           |          |            |              |                  |                       |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-5-7-211018** Sampled: 10/18/2021 12:30

Sample ID: 21L0140-02
Sample Matrix: Soil

2,4,6-Tribromophenol

p-Terphenyl-d14

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    | , i                                     |

59.8

71.4

30-130

30-130

12/8/21 18:18

12/8/21 18:18

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.39   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.39   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.39   | 0.16  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Hexachloroethane                     | ND      | 0.39   | 0.046 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.088 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Isophorone                           | ND      | 0.39   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.19   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.19   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Methylphenol                       | ND      | 0.39   | 0.072 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.39   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Naphthalene                          | ND      | 0.19   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Nitroaniline                       | ND      | 0.39   | 0.083 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 3-Nitroaniline                       | ND      | 0.39   | 0.066 | mg/Kg dry      | 1        | V-20      | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4-Nitroaniline                       | ND      | 0.39   | 0.083 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Nitrobenzene                         | ND      | 0.39   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2-Nitrophenol                        | ND      | 0.39   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 4-Nitrophenol                        | ND      | 0.75   | 0.16  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.39   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.39   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.39   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.39   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Pentachlorophenol                    | ND      | 0.39   | 0.17  | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Phenanthrene                         | ND      | 0.19   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Phenol                               | ND      | 0.39   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Pyrene                               | ND      | 0.19   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Pyridine                             | ND      | 0.39   | 0.040 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.39   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.39   | 0.049 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.39   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.39   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/7/21          | 12/8/21 18:18         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 60.1   |       | 30-130         |          |           |              |                  | 12/8/21 18:18         |         |
| Phenol-d6                            |         | 62.2   |       | 30-130         |          |           |              |                  | 12/8/21 18:18         |         |
| Nitrobenzene-d5                      |         | 60.2   |       | 30-130         |          |           |              |                  | 12/8/21 18:18         |         |
| 2-Fluorobiphenyl                     |         | 63.6   |       | 30-130         |          |           |              |                  | 12/8/21 18:18         |         |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-5-7-211018** Sampled: 10/18/2021 12:30

Sample ID: 21L0140-02
Sample Matrix: Soil

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 86.4    |    | % Wt  | 1        |           | SM 2540G | 10/22/21 | 10/25/21 11:05 | MJH     |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-16-18-211018** Sampled: 10/18/2021 12:50

Sample ID: 21L0140-03
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10               |          |              | Semivola       | itile Organic C        | ompounds by | GC/MS      |                              |                    |                                |            |
|----------------------------------|----------|--------------|----------------|------------------------|-------------|------------|------------------------------|--------------------|--------------------------------|------------|
| Analyta                          | Results  | RL           | DL             | Units                  | Dilution    | Flag/Ougl  | Method                       | Date               | Date/Time                      | Analyst    |
| Analyte Acenaphthene             | ND       | 0.19         | 0.061          |                        | 1           | Flag/Qual  | SW-846 8270E                 | 12/7/21            | Analyzed                       |            |
| Acenaphthylene                   | ND       | 0.19         | 0.059          | mg/Kg dry<br>mg/Kg dry | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44<br>12/8/21 18:44 | BGL<br>BGL |
| Acetophenone                     | ND       | 0.19         | 0.053          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Aniline                          | ND       | 0.39         | 0.033          |                        | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Anthracene                       | ND<br>ND | 0.39         | 0.063          | mg/Kg dry              | 1           |            | SW-846 8270E<br>SW-846 8270E | 12/7/21            |                                | BGL        |
| Benzidine                        |          |              |                | mg/Kg dry              |             | W 25       |                              |                    | 12/8/21 18:44                  |            |
| Benzo(a)anthracene               | ND<br>ND | 0.75<br>0.19 | 0.18           | mg/Kg dry              | 1           | V-35       | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44<br>12/8/21 18:44 | BGL        |
| Benzo(a)pyrene                   | ND<br>ND | 0.19         | 0.054<br>0.059 | mg/Kg dry<br>mg/Kg dry | 1<br>1      |            | SW-846 8270E                 | 12/7/21<br>12/7/21 |                                | BGL        |
| Benzo(b)fluoranthene             |          |              |                |                        |             |            | SW-846 8270E                 |                    | 12/8/21 18:44                  | BGL        |
|                                  | ND       | 0.19         | 0.058          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Benzo(g,h,i)perylene             | ND       | 0.19         | 0.081          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Benzo(k)fluoranthene             | ND       | 0.19         | 0.052          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Benzoic Acid                     | ND       | 1.1          | 0.46           | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Bis(2-chloroethoxy)methane       | ND       | 0.39         | 0.050          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Bis(2-chloroethyl)ether          | ND       | 0.39         | 0.053          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Bis(2-chloroisopropyl)ether      | ND       | 0.39         | 0.088          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Bis(2-Ethylhexyl)phthalate       | ND       | 0.39         | 0.065          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 4-Bromophenylphenylether         | ND       | 0.39         | 0.049          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Butylbenzylphthalate             | ND       | 0.39         | 0.061          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Carbazole                        | ND       | 0.19         | 0.064          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 4-Chloroaniline                  | ND       | 0.75         | 0.051          | mg/Kg dry              | 1           | V-20, V-34 | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 4-Chloro-3-methylphenol          | ND       | 0.75         | 0.064          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2-Chloronaphthalene              | ND       | 0.39         | 0.045          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2-Chlorophenol                   | ND       | 0.39         | 0.053          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 4-Chlorophenylphenylether        | ND       | 0.39         | 0.055          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Chrysene                         | ND       | 0.19         | 0.056          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Dibenz(a,h)anthracene            | ND       | 0.19         | 0.078          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Dibenzofuran                     | ND       | 0.39         | 0.057          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Di-n-butylphthalate              | ND       | 0.39         | 0.055          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 1,2-Dichlorobenzene              | ND       | 0.39         | 0.044          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 1,3-Dichlorobenzene              | ND       | 0.39         | 0.042          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 1,4-Dichlorobenzene              | ND       | 0.39         | 0.040          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 3,3-Dichlorobenzidine            | ND       | 0.19         | 0.056          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2,4-Dichlorophenol               | ND       | 0.39         | 0.057          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Diethylphthalate                 | ND       | 0.39         | 0.059          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2,4-Dimethylphenol               | ND       | 0.39         | 0.11           | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Dimethylphthalate                | ND       | 0.39         | 0.056          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.39         | 0.26           | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2,4-Dinitrophenol                | ND       | 0.75         | 0.33           | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2,4-Dinitrotoluene               | ND       | 0.39         | 0.075          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 2,6-Dinitrotoluene               | ND       | 0.39         | 0.064          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Di-n-octylphthalate              | ND       | 0.39         | 0.14           | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 0.39         | 0.055          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Fluoranthene                     | ND       | 0.19         | 0.061          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
| Fluorene                         | ND       | 0.19         | 0.065          | mg/Kg dry              | 1           |            | SW-846 8270E                 | 12/7/21            | 12/8/21 18:44                  | BGL        |
|                                  |          |              |                |                        |             |            |                              |                    |                                |            |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-16-18-211018** Sampled: 10/18/2021 12:50

Sample ID: 21L0140-03
Sample Matrix: Soil

| Sample Flags: H-10 |         |    | Semivola | tile Organic ( | Compounds by | GC/MS     |        |          |           |         |
|--------------------|---------|----|----------|----------------|--------------|-----------|--------|----------|-----------|---------|
|                    |         |    |          |                |              |           |        | Date     | Date/Time |         |
| Analyte            | Results | RL | DL       | Units          | Dilution     | Flag/Qual | Method | Prepared | Analyzed  | Analyst |
|                    |         |    |          |                |              |           |        |          |           |         |

|                                      |         |      |       |           |          |           |              | Date     | Date/Time     |         |
|--------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|----------|---------------|---------|
| Analyte                              | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Hexachlorobenzene                    | ND      | 0.39 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Hexachlorobutadiene                  | ND      | 0.39 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.39 | 0.16  | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Hexachloroethane                     | ND      | 0.39 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19 | 0.087 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Isophorone                           | ND      | 0.39 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.19 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2-Methylphenol                       | ND      | 0.39 | 0.072 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 3/4-Methylphenol                     | ND      | 0.39 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Naphthalene                          | ND      | 0.19 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2-Nitroaniline                       | ND      | 0.39 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 3-Nitroaniline                       | ND      | 0.39 | 0.066 | mg/Kg dry | 1        | V-20      | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 4-Nitroaniline                       | ND      | 0.39 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Nitrobenzene                         | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2-Nitrophenol                        | ND      | 0.39 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 4-Nitrophenol                        | ND      | 0.75 | 0.16  | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.39 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.39 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Pentachloronitrobenzene              | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Pentachlorophenol                    | ND      | 0.39 | 0.17  | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Phenanthrene                         | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Phenol                               | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Pyrene                               | ND      | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| Pyridine                             | ND      | 0.39 | 0.039 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.39 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.39 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.39 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.39 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/7/21  | 12/8/21 18:44 | BGL     |

| % Recovery | Recovery Limits                      | Flag/Qual                                                               |                                                                         |
|------------|--------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 64.7       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
| 67.0       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
| 63.8       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
| 63.8       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
| 67.0       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
| 75.6       | 30-130                               |                                                                         | 12/8/21 18:44                                                           |
|            | 64.7<br>67.0<br>63.8<br>63.8<br>67.0 | 64.7 30-130<br>67.0 30-130<br>63.8 30-130<br>63.8 30-130<br>67.0 30-130 | 64.7 30-130<br>67.0 30-130<br>63.8 30-130<br>63.8 30-130<br>67.0 30-130 |



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0140

Date Received: 12/2/2021

**Field Sample #: HRP-SB215-16-18-211018** Sampled: 10/18/2021 12:50

Sample ID: 21L0140-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |  |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|--|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |  |
| % Solids |         | 85.7    |    | % Wt  | 1        |           | SM 2540G | 10/22/21 | 10/25/21 11:05 | MJH     |  |



#### **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21L0140-01 [HRP-SB215-0-2-211018]   | B292980 | 10/22/21 |
| 21L0140-02 [HRP-SB215-5-7-211018]   | B292980 | 10/22/21 |
| 21L0140-03 [HRP-SB215-16-18-211018] | B292980 | 10/22/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |  |
|-------------------------------------|---------|-------------|------------|----------|--|
| 21L0140-01 [HRP-SB215-0-2-211018]   | B296234 | 30.9        | 1.00       | 12/07/21 |  |
| 21L0140-02 [HRP-SB215-5-7-211018]   | B296234 | 30.4        | 1.00       | 12/07/21 |  |
| 21L0140-03 [HRP-SB215-16-18-211018] | B296234 | 30.8        | 1.00       | 12/07/21 |  |



# QUALITY CONTROL

| Analyte                         | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|---------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-----|--------------|------------|
| eatch B296234 - SW-846 3546     |        |                    |           |                |                  |               |                |     |              |            |
| Blank (B296234-BLK1)            |        |                    | 1         | Prepared: 12   | 2/07/21 Analy    | yzed: 12/08/2 | 1              |     |              |            |
| cenaphthene                     | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| cenaphthylene                   | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| cetophenone                     | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| niline                          | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| nthracene                       | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzidine                        | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-35       |
| enzo(a)anthracene               | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzo(a)pyrene                   | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzo(b)fluoranthene             | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzo(g,h,i)perylene             | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzo(k)fluoranthene             | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| enzoic Acid                     | ND     | 1.0                | mg/Kg wet |                |                  |               |                |     |              |            |
| is(2-chloroethoxy)methane       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| is(2-chloroethyl)ether          | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| is(2-chloroisopropyl)ether      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| is(2-Ethylhexyl)phthalate       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Bromophenylphenylether         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| utylbenzylphthalate             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| arbazole                        | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Chloroaniline                  | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-20, V-34 |
| -Chloro-3-methylphenol          | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Chloronaphthalene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Chlorophenol                   | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Chlorophenylphenylether        | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| hrysene                         | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| bibenz(a,h)anthracene           | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| Dibenzofuran                    | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| i-n-butylphthalate              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,2-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,4-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,3-Dichlorobenzidine            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,4-Dichlorophenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| Piethylphthalate                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,4-Dimethylphenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| Dimethylphthalate               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| 6-Dinitro-2-methylphenol        | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,4-Dinitrophenol                | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,4-Dinitrotoluene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,6-Dinitrotoluene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| i-n-octylphthalate              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ,2-Diphenylhydrazine/Azobenzene | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| luoranthene                     | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| luorene                         | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| [exachlorobenzene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| [exachlorobutadiene             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| [exachlorocyclopentadiene       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| (exachloroethane                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| ndeno(1,2,3-cd)pyrene           | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |
| sophorone                       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |            |
| -Methylnaphthalene              | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |            |



# QUALITY CONTROL

|                                      |               | Reporting |           | Spike        | Source       |               | %REC   |     | RPD   |            |
|--------------------------------------|---------------|-----------|-----------|--------------|--------------|---------------|--------|-----|-------|------------|
| Analyte                              | Result        | Limit     | Units     | Level        | Result       | %REC          | Limits | RPD | Limit | Notes      |
| Batch B296234 - SW-846 3546          |               |           |           |              |              |               |        |     |       |            |
| Blank (B296234-BLK1)                 |               |           |           | Prepared: 12 | /07/21 Anal  | yzed: 12/08/2 | 1      |     |       |            |
| -Methylphenol                        | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| /4-Methylphenol                      | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| Japhthalene                          | ND            | 0.17      | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitroaniline                        | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitroaniline                        | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       | V-20       |
| -Nitroaniline                        | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| itrobenzene                          | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| Nitrophenol                          | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| Nitrophenol                          | ND            | 0.66      | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodimethylamine                | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodiphenylamine/Diphenylamine  | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| -Nitrosodi-n-propylamine             | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| entachloronitrobenzene               | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| entachlorophenol                     | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| henanthrene                          | ND            | 0.17      | mg/Kg wet |              |              |               |        |     |       |            |
| nenol                                | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| yrene                                | ND            | 0.17      | mg/Kg wet |              |              |               |        |     |       |            |
| yridine                              | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| 2,4,5-Tetrachlorobenzene             | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| 2,4-Trichlorobenzene                 | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| 4,5-Trichlorophenol                  | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| 4,6-Trichlorophenol                  | ND            | 0.34      | mg/Kg wet |              |              |               |        |     |       |            |
| urrogate: 2-Fluorophenol             | 5.33          |           | mg/Kg wet | 6.67         |              | 80.0          | 30-130 |     |       |            |
| urrogate: Phenol-d6                  | 5.44          |           | mg/Kg wet | 6.67         |              | 81.5          | 30-130 |     |       |            |
| arrogate: Nitrobenzene-d5            | 2.59          |           | mg/Kg wet | 3.33         |              | 77.7          | 30-130 |     |       |            |
| urrogate: 2-Fluorobiphenyl           | 2.68          |           | mg/Kg wet | 3.33         |              | 80.5          | 30-130 |     |       |            |
| urrogate: 2,4,6-Tribromophenol       | 5.77          |           | mg/Kg wet | 6.67         |              | 86.6          | 30-130 |     |       |            |
| urrogate: p-Terphenyl-d14            | 3.23          |           | mg/Kg wet | 3.33         |              | 96.9          | 30-130 |     |       |            |
| CS (B296234-BS1)                     |               |           |           | Drangrad: 12 | /07/21 Anal  | wod: 12/09/2  | 1      |     |       |            |
| cenaphthene                          | 1.21          | 0.17      | mg/Kg wet | 1.67         | /07/21 Allai | 72.4          | 40-140 |     |       |            |
| cenaphthylene                        | 1.21          | 0.17      | mg/Kg wet | 1.67         |              | 77.4          | 40-140 |     |       |            |
| cetophenone                          |               | 0.34      | mg/Kg wet | 1.67         |              | 76.2          | 40-140 |     |       |            |
| niline                               | 1.27<br>0.988 | 0.34      | mg/Kg wet | 1.67         |              | 59.3          | 10-140 |     |       |            |
| nthracene                            |               | 0.17      | mg/Kg wet | 1.67         |              | 82.6          | 40-140 |     |       |            |
| enzidine                             | 1.38          | 0.17      | mg/Kg wet | 1.67         |              | 123           | 40-140 |     |       | V-35       |
| enzo(a)anthracene                    | 2.05          | 0.00      | mg/Kg wet | 1.67         |              | 77.4          | 40-140 |     |       | v-33       |
| enzo(a)antinacene<br>enzo(a)pyrene   | 1.29          | 0.17      | mg/Kg wet | 1.67         |              | 84.5          | 40-140 |     |       |            |
| enzo(a)pyrene<br>enzo(b)fluoranthene | 1.41          | 0.17      | mg/Kg wet | 1.67         |              | 64.3<br>79.7  | 40-140 |     |       |            |
| enzo(g,h,i)perylene                  | 1.33          | 0.17      | mg/Kg wet | 1.67         |              | 79.7<br>80.8  | 40-140 |     |       |            |
| enzo(k)fluoranthene                  | 1.35          | 0.17      | mg/Kg wet | 1.67         |              | 80.8<br>85.1  | 40-140 |     |       |            |
| enzoic Acid                          | 1.42          | 1.0       | mg/Kg wet |              |              |               |        |     |       | ī          |
|                                      | 0.709         |           |           | 1.67         |              | 42.5          | 30-130 |     |       | J          |
| is(2-chloroethoxy)methane            | 1.25          | 0.34      | mg/Kg wet | 1.67         |              | 75.2          | 40-140 |     |       |            |
| is(2-chloroethyl)ether               | 1.21          | 0.34      | mg/Kg wet | 1.67         |              | 72.7          | 40-140 |     |       |            |
| s(2-chloroisopropyl)ether            | 1.39          | 0.34      | mg/Kg wet | 1.67         |              | 83.5          | 40-140 |     |       |            |
| is(2-Ethylhexyl)phthalate            | 1.35          | 0.34      | mg/Kg wet | 1.67         |              | 81.2          | 40-140 |     |       |            |
| Bromophenylphenylether               | 1.26          | 0.34      | mg/Kg wet | 1.67         |              | 75.4          | 40-140 |     |       |            |
| utylbenzylphthalate                  | 1.31          | 0.34      | mg/Kg wet | 1.67         |              | 78.3          | 40-140 |     |       |            |
| arbazole                             | 1.35          | 0.17      | mg/Kg wet | 1.67         |              | 80.9          | 40-140 |     |       |            |
| Chloroaniline                        | 0.997         | 0.66      | mg/Kg wet | 1.67         |              | 59.8          | 10-140 |     |       | V-06, V-34 |
| -Chloro-3-methylphenol               | 1.24          | 0.66      | mg/Kg wet | 1.67         |              | 74.6          | 30-130 |     |       |            |
| -Chloronaphthalene                   | 1.08          | 0.34      | mg/Kg wet | 1.67         |              | 65.1          | 40-140 |     |       |            |



# QUALITY CONTROL

| Analyte                                  | Result       | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit | Notes |   |
|------------------------------------------|--------------|--------------------|------------------------|----------------|------------------|--------------|------------------|-----|--------------|-------|---|
| Batch B296234 - SW-846 3546              |              |                    |                        | <u> </u>       | <u> </u>         |              |                  |     | <u> </u>     |       |   |
| LCS (B296234-BS1)                        |              |                    |                        | Prepared: 12   | /07/21 Analyz    | zed: 12/08/2 | :1               |     |              |       | _ |
| 2-Chlorophenol                           | 1.18         | 0.34               | mg/Kg wet              | 1.67           |                  | 70.5         | 30-130           |     |              |       |   |
| 4-Chlorophenylphenylether                | 1.22         | 0.34               | mg/Kg wet              | 1.67           |                  | 73.1         | 40-140           |     |              |       |   |
| Chrysene                                 | 1.35         | 0.17               | mg/Kg wet              | 1.67           |                  | 81.1         | 40-140           |     |              |       |   |
| Dibenz(a,h)anthracene                    | 1.42         | 0.17               | mg/Kg wet              | 1.67           |                  | 85.1         | 40-140           |     |              |       |   |
| Dibenzofuran                             | 1.34         | 0.34               | mg/Kg wet              | 1.67           |                  | 80.6         | 40-140           |     |              |       |   |
| Di-n-butylphthalate                      | 1.32         | 0.34               | mg/Kg wet              | 1.67           |                  | 79.0         | 40-140           |     |              |       |   |
| 1,2-Dichlorobenzene                      | 1.18         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.0         | 40-140           |     |              |       |   |
| 1,3-Dichlorobenzene                      | 1.13         | 0.34               | mg/Kg wet              | 1.67           |                  | 67.9         | 40-140           |     |              |       |   |
| 1,4-Dichlorobenzene                      | 1.15         | 0.34               | mg/Kg wet              | 1.67           |                  | 69.0         | 40-140           |     |              |       |   |
| 3,3-Dichlorobenzidine                    | 1.00         | 0.17               | mg/Kg wet              | 1.67           |                  | 60.2         | 20-140           |     |              |       |   |
| 2,4-Dichlorophenol                       | 1.20         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.9         | 30-130           |     |              |       |   |
| Diethylphthalate                         | 1.24         | 0.34               | mg/Kg wet              | 1.67           |                  | 74.6         | 40-140           |     |              |       |   |
| 2,4-Dimethylphenol                       | 1.21         | 0.34               | mg/Kg wet              | 1.67           |                  | 72.8         | 30-130           |     |              |       |   |
| Dimethylphthalate                        | 1.24         | 0.34               | mg/Kg wet              | 1.67           |                  | 74.4         | 40-140           |     |              |       |   |
| 4,6-Dinitro-2-methylphenol               | 1.19         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.6         | 30-130           |     |              |       |   |
| 2,4-Dinitrophenol                        | 0.882        | 0.66               | mg/Kg wet              | 1.67           |                  | 52.9         | 30-130           |     |              |       |   |
| 2,4-Dinitrotoluene                       | 1.36         | 0.34               | mg/Kg wet              | 1.67           |                  | 81.6         | 40-140           |     |              |       |   |
| 2,6-Dinitrotoluene                       | 1.39         | 0.34               | mg/Kg wet              | 1.67           |                  | 83.2         | 40-140           |     |              |       |   |
| Di-n-octylphthalate                      | 1.29         | 0.34               | mg/Kg wet              | 1.67           |                  | 77.5         | 40-140           |     |              |       |   |
| 1,2-Diphenylhydrazine/Azobenzene         | 1.46         | 0.34               | mg/Kg wet              | 1.67           |                  | 87.4         | 40-140           |     |              |       |   |
| Fluoranthene                             | 1.33         | 0.17               | mg/Kg wet              | 1.67           |                  | 79.6         | 40-140           |     |              |       |   |
| Fluorene                                 | 1.31         | 0.17               | mg/Kg wet              | 1.67           |                  | 78.7         | 40-140           |     |              |       |   |
| Hexachlorobenzene<br>Hexachlorobutadiene | 1.38         | 0.34               | mg/Kg wet              | 1.67           |                  | 82.7         | 40-140           |     |              |       |   |
| Hexachlorocyclopentadiene                | 1.17         | 0.34<br>0.34       | mg/Kg wet<br>mg/Kg wet | 1.67           |                  | 70.4         | 40-140           |     |              |       |   |
| Hexachloroethane                         | 1.12         | 0.34               | mg/Kg wet              | 1.67<br>1.67   |                  | 67.5<br>70.7 | 40-140<br>40-140 |     |              |       |   |
| Indeno(1,2,3-cd)pyrene                   | 1.18<br>1.43 | 0.17               | mg/Kg wet              | 1.67           |                  | 85.5         | 40-140           |     |              |       |   |
| Isophorone                               | 1.43         | 0.34               | mg/Kg wet              | 1.67           |                  | 81.8         | 40-140           |     |              |       |   |
| 1-Methylnaphthalene                      | 1.17         | 0.17               | mg/Kg wet              | 1.67           |                  | 70.1         | 40-140           |     |              |       |   |
| 2-Methylnaphthalene                      | 1.17         | 0.17               | mg/Kg wet              | 1.67           |                  | 84.1         | 40-140           |     |              |       |   |
| 2-Methylphenol                           | 1.31         | 0.34               | mg/Kg wet              | 1.67           |                  | 78.3         | 30-130           |     |              |       |   |
| 3/4-Methylphenol                         | 1.32         | 0.34               | mg/Kg wet              | 1.67           |                  | 79.4         | 30-130           |     |              |       |   |
| Naphthalene                              | 1.23         | 0.17               | mg/Kg wet              | 1.67           |                  | 74.0         | 40-140           |     |              |       |   |
| 2-Nitroaniline                           | 1.69         | 0.34               | mg/Kg wet              | 1.67           |                  | 101          | 40-140           |     |              |       |   |
| 3-Nitroaniline                           | 1.29         | 0.34               | mg/Kg wet              | 1.67           |                  | 77.4         | 30-140           |     |              | V-06  |   |
| 4-Nitroaniline                           | 1.44         | 0.34               | mg/Kg wet              | 1.67           |                  | 86.1         | 40-140           |     |              |       |   |
| Nitrobenzene                             | 1.25         | 0.34               | mg/Kg wet              | 1.67           |                  | 74.9         | 40-140           |     |              |       |   |
| 2-Nitrophenol                            | 1.19         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.5         | 30-130           |     |              |       |   |
| 4-Nitrophenol                            | 1.22         | 0.66               | mg/Kg wet              | 1.67           |                  | 73.0         | 30-130           |     |              |       |   |
| N-Nitrosodimethylamine                   | 1.20         | 0.34               | mg/Kg wet              | 1.67           |                  | 72.1         | 40-140           |     |              |       |   |
| N-Nitrosodiphenylamine/Diphenylamine     | 1.39         | 0.34               | mg/Kg wet              | 1.67           |                  | 83.4         | 40-140           |     |              |       |   |
| N-Nitrosodi-n-propylamine                | 1.26         | 0.34               | mg/Kg wet              | 1.67           |                  | 75.4         | 40-140           |     |              |       |   |
| Pentachloronitrobenzene                  | 1.34         | 0.34               | mg/Kg wet              | 1.67           |                  | 80.1         | 40-140           |     |              |       |   |
| Pentachlorophenol                        | 1.12         | 0.34               | mg/Kg wet              | 1.67           |                  | 67.2         | 30-130           |     |              |       |   |
| Phenanthrene                             | 1.36         | 0.17               | mg/Kg wet              | 1.67           |                  | 81.6         | 40-140           |     |              |       |   |
| Phenol                                   | 1.18         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.0         | 30-130           |     |              |       |   |
| Pyrene                                   | 1.37         | 0.17               | mg/Kg wet              | 1.67           |                  | 82.4         | 40-140           |     |              |       |   |
| Pyridine                                 | 0.800        | 0.34               | mg/Kg wet              | 1.67           |                  | 48.0         | 30-140           |     |              |       |   |
| 1,2,4,5-Tetrachlorobenzene               | 1.17         | 0.34               | mg/Kg wet              | 1.67           |                  | 70.0         | 40-140           |     |              |       |   |
| 1,2,4-Trichlorobenzene                   | 1.19         | 0.34               | mg/Kg wet              | 1.67           |                  | 71.5         | 40-140           |     |              |       |   |
| 2,4,5-Trichlorophenol                    | 1.33         | 0.34               | mg/Kg wet              | 1.67           |                  | 79.6         | 30-130           |     |              |       |   |
| 2,4,6-Trichlorophenol                    | 1.23         | 0.34               | mg/Kg wet              | 1.67           |                  | 73.7         | 30-130           |     |              |       |   |



## QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                          | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes      |   |
|----------------------------------|--------------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|------------|---|
| Batch B296234 - SW-846 3546      |              |                    |           |                |                  |               |                |       |              |            | _ |
| LCS (B296234-BS1)                |              |                    |           | Prepared: 12   | 2/07/21 Anal     | yzed: 12/08/2 | 21             |       |              |            |   |
| Surrogate: 2-Fluorophenol        | 5.04         |                    | mg/Kg wet | 6.67           |                  | 75.5          | 30-130         |       |              |            | _ |
| Surrogate: Phenol-d6             | 5.05         |                    | mg/Kg wet | 6.67           |                  | 75.8          | 30-130         |       |              |            |   |
| Surrogate: Nitrobenzene-d5       | 2.54         |                    | mg/Kg wet | 3.33           |                  | 76.2          | 30-130         |       |              |            |   |
| Surrogate: 2-Fluorobiphenyl      | 2.54         |                    | mg/Kg wet | 3.33           |                  | 76.2          | 30-130         |       |              |            |   |
| Surrogate: 2,4,6-Tribromophenol  | 5.60         |                    | mg/Kg wet | 6.67           |                  | 84.0          | 30-130         |       |              |            |   |
| Surrogate: p-Terphenyl-d14       | 2.86         |                    | mg/Kg wet | 3.33           |                  | 85.9          | 30-130         |       |              |            |   |
| LCS Dup (B296234-BSD1)           |              |                    |           | Prepared: 12   | 2/07/21 Anal     | yzed: 12/08/2 | 21             |       |              |            |   |
| Acenaphthene                     | 1.23         | 0.17               | mg/Kg wet | 1.67           |                  | 73.8          | 40-140         | 1.89  | 30           |            | _ |
| Acenaphthylene                   | 1.32         | 0.17               | mg/Kg wet | 1.67           |                  | 79.5          | 40-140         | 2.57  | 30           |            |   |
| Acetophenone                     | 1.27         | 0.34               | mg/Kg wet | 1.67           |                  | 76.4          | 40-140         | 0.236 | 30           |            |   |
| Aniline                          | 1.03         | 0.34               | mg/Kg wet | 1.67           |                  | 61.7          | 10-140         | 4.07  | 50           |            | † |
| Anthracene                       | 1.39         | 0.17               | mg/Kg wet | 1.67           |                  | 83.7          | 40-140         | 1.32  | 30           |            |   |
| Benzidine                        | 2.14         | 0.66               | mg/Kg wet | 1.67           |                  | 128           | 40-140         | 4.23  | 30           | V-35       |   |
| Benzo(a)anthracene               | 1.32         | 0.17               | mg/Kg wet | 1.67           |                  | 79.4          | 40-140         | 2.55  | 30           |            |   |
| Benzo(a)pyrene                   | 1.44         | 0.17               | mg/Kg wet | 1.67           |                  | 86.1          | 40-140         | 1.83  | 30           |            |   |
| Benzo(b)fluoranthene             | 1.34         | 0.17               | mg/Kg wet | 1.67           |                  | 80.3          | 40-140         | 0.775 | 30           |            |   |
| Benzo(g,h,i)perylene             | 1.36         | 0.17               | mg/Kg wet | 1.67           |                  | 81.7          | 40-140         | 1.08  | 30           |            |   |
| Benzo(k)fluoranthene             | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 86.0          | 40-140         | 0.982 | 30           |            |   |
| Benzoic Acid                     | 0.794        | 1.0                | mg/Kg wet | 1.67           |                  | 47.6          | 30-130         | 11.4  | 50           | J          |   |
| Bis(2-chloroethoxy)methane       | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.9          | 40-140         | 0.873 | 30           |            |   |
| Bis(2-chloroethyl)ether          | 1.19         | 0.34               | mg/Kg wet | 1.67           |                  | 71.3          | 40-140         | 1.92  | 30           |            |   |
| Bis(2-chloroisopropyl)ether      | 1.37         | 0.34               | mg/Kg wet | 1.67           |                  | 82.5          | 40-140         | 1.23  | 30           |            |   |
| Bis(2-Ethylhexyl)phthalate       | 1.38         | 0.34               | mg/Kg wet | 1.67           |                  | 83.0          | 40-140         | 2.19  | 30           |            |   |
| 4-Bromophenylphenylether         | 1.28         | 0.34               | mg/Kg wet | 1.67           |                  | 77.1          | 40-140         | 2.18  | 30           |            |   |
| Butylbenzylphthalate             | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.9          | 40-140         | 1.95  | 30           |            |   |
| Carbazole                        | 1.37         | 0.17               | mg/Kg wet | 1.67           |                  | 82.0          | 40-140         | 1.40  | 30           |            |   |
| 4-Chloroaniline                  | 1.01         | 0.66               | mg/Kg wet | 1.67           |                  | 60.5          | 10-140         | 1.20  | 30           | V-06, V-34 | † |
| 4-Chloro-3-methylphenol          | 1.28         | 0.66               | mg/Kg wet | 1.67           |                  | 76.8          | 30-130         | 2.88  | 30           |            |   |
| 2-Chloronaphthalene              | 1.11         | 0.34               | mg/Kg wet | 1.67           |                  | 66.5          | 40-140         | 2.25  | 30           |            |   |
| 2-Chlorophenol                   | 1.17         | 0.34               | mg/Kg wet | 1.67           |                  | 70.2          | 30-130         | 0.455 | 30           |            |   |
| 4-Chlorophenylphenylether        | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.6          | 40-140         | 3.36  | 30           |            |   |
| Chrysene                         | 1.38         | 0.17               | mg/Kg wet | 1.67           |                  | 82.9          | 40-140         | 2.20  | 30           |            |   |
| Dibenz(a,h)anthracene            | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 85.8          | 40-140         | 0.749 | 30           |            |   |
| Dibenzofuran                     | 1.39         | 0.34               | mg/Kg wet | 1.67           |                  | 83.6          | 40-140         | 3.65  | 30           |            |   |
| Di-n-butylphthalate              | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.7          | 40-140         | 0.832 | 30           |            |   |
| 1,2-Dichlorobenzene              | 1.18         | 0.34               | mg/Kg wet | 1.67           |                  | 71.1          | 40-140         | 0.113 | 30           |            |   |
| 1,3-Dichlorobenzene              | 1.13         | 0.34               | mg/Kg wet | 1.67           |                  | 67.6          | 40-140         | 0.561 | 30           |            |   |
| 1,4-Dichlorobenzene              | 1.14         | 0.34               | mg/Kg wet | 1.67           |                  | 68.6          | 40-140         | 0.640 | 30           |            |   |
| 3,3-Dichlorobenzidine            | 1.04         | 0.17               | mg/Kg wet | 1.67           |                  | 62.7          | 20-140         | 4.04  | 50           |            | † |
| 2,4-Dichlorophenol               | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.3          | 30-130         | 2.04  | 30           |            | ' |
| Diethylphthalate                 | 1.29         | 0.34               | mg/Kg wet | 1.67           |                  | 77.7          | 40-140         | 4.02  | 30           |            |   |
| 2,4-Dimethylphenol               | 1.23         | 0.34               | mg/Kg wet | 1.67           |                  | 74.0          | 30-130         | 1.61  | 30           |            |   |
| Dimethylphthalate                | 1.30         | 0.34               | mg/Kg wet | 1.67           |                  | 77.8          | 40-140         | 4.44  | 30           |            |   |
| 4,6-Dinitro-2-methylphenol       | 1.30         | 0.34               | mg/Kg wet | 1.67           |                  | 74.1          | 30-130         | 3.40  | 30           |            |   |
| 2,4-Dinitrophenol                | 0.950        | 0.66               | mg/Kg wet | 1.67           |                  | 57.0          | 30-130         | 7.42  | 30           |            |   |
| 2,4-Dinitrotoluene               | 1.40         | 0.34               | mg/Kg wet | 1.67           |                  | 84.0          | 40-140         | 2.95  | 30           |            |   |
| 2,6-Dinitrotoluene               | 1.43         | 0.34               | mg/Kg wet | 1.67           |                  | 86.0          | 40-140         | 3.31  | 30           |            |   |
| Di-n-octylphthalate              | 1.43         | 0.34               | mg/Kg wet | 1.67           |                  | 78.0          | 40-140         | 0.566 | 30           |            |   |
| 1,2-Diphenylhydrazine/Azobenzene | 1.47         | 0.34               | mg/Kg wet | 1.67           |                  | 88.0          | 40-140         | 0.752 | 30           |            |   |
| Fluoranthene                     |              | 0.17               | mg/Kg wet | 1.67           |                  | 82.5          | 40-140         | 3.53  | 30           |            |   |
| Fluorantiene                     | 1.37<br>1.35 | 0.17               | mg/Kg wet | 1.67           |                  | 82.3          | 40-140         | 3.33  | 30           |            |   |



## QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |   |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-------|--------------|-------|---|
| Batch B296234 - SW-846 3546          |        |                    |           |                |                  |               |                |       |              |       | _ |
| LCS Dup (B296234-BSD1)               |        |                    |           | Prepared: 12   | /07/21 Analy     | yzed: 12/08/2 | 21             |       |              |       | _ |
| Hexachlorobenzene                    | 1.42   | 0.34               | mg/Kg wet | 1.67           |                  | 85.3          | 40-140         | 3.02  | 30           |       |   |
| Hexachlorobutadiene                  | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.8          | 40-140         | 0.567 | 30           |       |   |
| Hexachlorocyclopentadiene            | 1.14   | 0.34               | mg/Kg wet | 1.67           |                  | 68.6          | 40-140         | 1.70  | 30           |       |   |
| Hexachloroethane                     | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.6          | 40-140         | 0.142 | 30           |       |   |
| Indeno(1,2,3-cd)pyrene               | 1.43   | 0.17               | mg/Kg wet | 1.67           |                  | 85.9          | 40-140         | 0.373 | 30           |       |   |
| Isophorone                           | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.8          | 40-140         | 1.14  | 30           |       |   |
| 1-Methylnaphthalene                  | 1.19   | 0.17               | mg/Kg wet | 1.67           |                  | 71.4          | 40-140         | 1.84  | 30           |       |   |
| 2-Methylnaphthalene                  | 1.43   | 0.17               | mg/Kg wet | 1.67           |                  | 85.9          | 40-140         | 2.02  | 30           |       |   |
| 2-Methylphenol                       | 1.28   | 0.34               | mg/Kg wet | 1.67           |                  | 77.0          | 30-130         | 1.73  | 30           |       |   |
| 3/4-Methylphenol                     | 1.33   | 0.34               | mg/Kg wet | 1.67           |                  | 80.1          | 30-130         | 0.828 | 30           |       |   |
| Naphthalene                          | 1.25   | 0.17               | mg/Kg wet | 1.67           |                  | 75.0          | 40-140         | 1.37  | 30           |       |   |
| 2-Nitroaniline                       | 1.73   | 0.34               | mg/Kg wet | 1.67           |                  | 104           | 40-140         | 2.46  | 30           |       |   |
| 3-Nitroaniline                       | 1.32   | 0.34               | mg/Kg wet | 1.67           |                  | 79.2          | 30-140         | 2.27  | 30           | V-06  | † |
| 4-Nitroaniline                       | 1.49   | 0.34               | mg/Kg wet | 1.67           |                  | 89.1          | 40-140         | 3.42  | 30           |       |   |
| Nitrobenzene                         | 1.27   | 0.34               | mg/Kg wet | 1.67           |                  | 75.9          | 40-140         | 1.41  | 30           |       |   |
| 2-Nitrophenol                        | 1.22   | 0.34               | mg/Kg wet | 1.67           |                  | 73.1          | 30-130         | 2.16  | 30           |       |   |
| 4-Nitrophenol                        | 1.25   | 0.66               | mg/Kg wet | 1.67           |                  | 74.9          | 30-130         | 2.57  | 50           |       |   |
| N-Nitrosodimethylamine               | 1.17   | 0.34               | mg/Kg wet | 1.67           |                  | 70.3          | 40-140         | 2.42  | 30           |       |   |
| N-Nitrosodiphenylamine/Diphenylamine | 1.42   | 0.34               | mg/Kg wet | 1.67           |                  | 85.0          | 40-140         | 1.90  | 30           |       |   |
| N-Nitrosodi-n-propylamine            | 1.25   | 0.34               | mg/Kg wet | 1.67           |                  | 74.8          | 40-140         | 0.799 | 30           |       |   |
| Pentachloronitrobenzene              | 1.38   | 0.34               | mg/Kg wet | 1.67           |                  | 82.7          | 40-140         | 3.14  | 30           |       |   |
| Pentachlorophenol                    | 1.16   | 0.34               | mg/Kg wet | 1.67           |                  | 69.6          | 30-130         | 3.54  | 30           |       |   |
| Phenanthrene                         | 1.39   | 0.17               | mg/Kg wet | 1.67           |                  | 83.2          | 40-140         | 2.01  | 30           |       |   |
| Phenol                               | 1.18   | 0.34               | mg/Kg wet | 1.67           |                  | 70.8          | 30-130         | 0.367 | 30           |       |   |
| Pyrene                               | 1.38   | 0.17               | mg/Kg wet | 1.67           |                  | 83.0          | 40-140         | 0.798 | 30           |       |   |
| Pyridine                             | 0.781  | 0.34               | mg/Kg wet | 1.67           |                  | 46.8          | 30-140         | 2.40  | 30           |       | † |
| 1,2,4,5-Tetrachlorobenzene           | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 71.8          | 40-140         | 2.57  | 30           |       |   |
| 1,2,4-Trichlorobenzene               | 1.20   | 0.34               | mg/Kg wet | 1.67           |                  | 71.7          | 40-140         | 0.251 | 30           |       |   |
| 2,4,5-Trichlorophenol                | 1.36   | 0.34               | mg/Kg wet | 1.67           |                  | 81.7          | 30-130         | 2.50  | 30           |       |   |
| 2,4,6-Trichlorophenol                | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.4          | 30-130         | 2.23  | 30           |       |   |
| Surrogate: 2-Fluorophenol            | 4.99   |                    | mg/Kg wet | 6.67           |                  | 74.8          | 30-130         |       |              |       |   |
| Surrogate: Phenol-d6                 | 4.99   |                    | mg/Kg wet | 6.67           |                  | 74.8          | 30-130         |       |              |       |   |
| Surrogate: Nitrobenzene-d5           | 2.54   |                    | mg/Kg wet | 3.33           |                  | 76.3          | 30-130         |       |              |       |   |
| Surrogate: 2-Fluorobiphenyl          | 2.58   |                    | mg/Kg wet | 3.33           |                  | 77.5          | 30-130         |       |              |       |   |
| Surrogate: 2,4,6-Tribromophenol      | 5.91   |                    | mg/Kg wet | 6.67           |                  | 88.6          | 30-130         |       |              |       |   |
| Surrogate: p-Terphenyl-d14           | 2.90   |                    | mg/Kg wet | 3.33           |                  | 87.0          | 30-130         |       |              |       |   |



## FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                                                                                                                             |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                                                                                                                  |
| #    | Data exceeded client recommended or regulatory level                                                                                                                                                                                                 |
| ND   | Not Detected                                                                                                                                                                                                                                         |
| RL   | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                                                |
| DL   | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                                          |
| MCL  | Maximum Contaminant Level                                                                                                                                                                                                                            |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                                               |
|      | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                                                |
| H-10 | Analysis was requested after the recommended holding time had passed.                                                                                                                                                                                |
| J    | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                                                  |
| V-06 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.                                                                                                                      |
| V-20 | Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.                                                                                                                                        |
| V-34 | Data validation is not affected since sample result was "not detected" for this compound.  Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated. |
| V-35 | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.                                                                                           |



## CERTIFICATIONS

## Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Soil             |                   |
| Acenaphthene                     | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                   | CT,NY,NH,ME,NC,VA |
| Acetophenone                     | NY,NH,ME,NC,VA    |
| Aniline                          | NY,NH,ME,NC,VA    |
| Anthracene                       | CT,NY,NH,ME,NC,VA |
| Benzidine                        | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene               | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                   | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene             | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                     | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane       | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether          | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroisopropyl)ether      | CT,NY,NH,ME,NC,VA |
| Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |



## CERTIFICATIONS

## Certified Analyses included in this Report

| Analyte                    | Certifications    |  |
|----------------------------|-------------------|--|
| SW-846 8270E in Soil       |                   |  |
| Hexachloroethane           | CT,NY,NH,ME,NC,VA |  |
| Indeno(1,2,3-cd)pyrene     | CT,NY,NH,ME,NC,VA |  |
| Isophorone                 | CT,NY,NH,ME,NC,VA |  |
| 1-Methylnaphthalene        | NC                |  |
| 2-Methylnaphthalene        | CT,NY,NH,ME,NC,VA |  |
| 2-Methylphenol             | CT,NY,NH,ME,NC,VA |  |
| 3/4-Methylphenol           | CT,NY,NH,ME,NC,VA |  |
| Naphthalene                | CT,NY,NH,ME,NC,VA |  |
| 2-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 3-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| 4-Nitroaniline             | CT,NY,NH,ME,NC,VA |  |
| Nitrobenzene               | CT,NY,NH,ME,NC,VA |  |
| 2-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| 4-Nitrophenol              | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodimethylamine     | CT,NY,NH,ME,NC,VA |  |
| N-Nitrosodi-n-propylamine  | CT,NY,NH,ME,NC,VA |  |
| Pentachloronitrobenzene    | NY,NC             |  |
| Pentachlorophenol          | CT,NY,NH,ME,NC,VA |  |
| Phenanthrene               | CT,NY,NH,ME,NC,VA |  |
| Phenol                     | CT,NY,NH,ME,NC,VA |  |
| Pyrene                     | CT,NY,NH,ME,NC,VA |  |
| Pyridine                   | CT,NY,NH,ME,NC,VA |  |
| 1,2,4,5-Tetrachlorobenzene | NY,NC             |  |
| 1,2,4-Trichlorobenzene     | CT,NY,NH,ME,NC,VA |  |
| 2,4,5-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2,4,6-Trichlorophenol      | CT,NY,NH,ME,NC,VA |  |
| 2-Fluorophenol             | NC                |  |



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |



December 8, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St., Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21L0153

Enclosed are results of analyses for samples as received by the laboratory on December 2, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# **Table of Contents**

| Sample Summary                          | 4  |
|-----------------------------------------|----|
| Case Narrative                          | 5  |
| Sample Results                          | 8  |
| 21L0153-01                              | 8  |
| 21L0153-02                              | 11 |
| 21L0153-03                              | 14 |
| 21L0153-04                              | 17 |
| 21L0153-05                              | 20 |
| 21L0153-06                              | 23 |
| 21L0153-07                              | 26 |
| 21L0153-08                              | 29 |
| 21L0153-09                              | 32 |
| 21L0153-10                              | 35 |
| 21L0153-11                              | 38 |
| 21L0153-12                              | 41 |
| 21L0153-13                              | 44 |
| 21L0153-14                              | 47 |
| 21L0153-15                              | 50 |
| 21L0153-16                              | 53 |
| 21L0153-17                              | 56 |
| 21L0153-18                              | 59 |
| 21L0153-19                              | 62 |
| Sample Preparation Information          | 65 |
| QC Data                                 | 66 |
| Semivolatile Organic Compounds by GC/MS | 66 |

# Table of Contents (continued)

| B296003                                                              | 66 |
|----------------------------------------------------------------------|----|
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 74 |
| B296281                                                              | 74 |
| Flag/Qualifier Summary                                               | 75 |
| Certifications                                                       | 76 |
| Chain of Custody/Sample Receipt                                      | 80 |



Ramboll US Consulting, Inc. - Arlington, VA

4350 North Fairfax Drive Arlington, VA 22203

ATTN: Sarah Ostertag

PURCHASE ORDER NUMBER:

[none]

REPORT DATE: 12/8/2021

PROJECT NUMBER:

### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21L0153

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St., Alexandria, VA

| FIELD SAMPLE #         | LAB ID:    | MATRIX | SAMPLE DESCRIPTION | TEST         | SUB LAB |
|------------------------|------------|--------|--------------------|--------------|---------|
| HRP-SB213-0-1-211015   | 21L0153-01 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB213-5-7-211015   | 21L0153-02 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB213-16-18-211015 | 21L0153-03 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB212-0-2-211015   | 21L0153-04 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-DUP04-0-2-211015   | 21L0153-05 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB212-5-7-211015   | 21L0153-06 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB212-15-17-211015 | 21L0153-07 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB211-0-1-211015   | 21L0153-08 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB211-5-7-211015   | 21L0153-09 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB209-0-1-211013   | 21L0153-10 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB209-5-7-211013   | 21L0153-11 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB209-15-17-211013 | 21L0153-12 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB208-0-1-211014   | 21L0153-13 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-MW208-5-7-211014   | 21L0153-14 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB208-18-20-211014 | 21L0153-15 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB214-0-2-211014   | 21L0153-16 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB214-5-7-211014   | 21L0153-17 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB214-14-16-211014 | 21L0153-18 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |
| HRP-SB211-15-17-211015 | 21L0153-19 | Soil   |                    | SM 2540G     |         |
|                        |            |        |                    | SW-846 8270E |         |



## CASE NARRATIVE SUMMARY

| ll reported results are within defined laborat | rv qua | ity control objectives unles | s listed below or oth | herwise qualified in this report. |
|------------------------------------------------|--------|------------------------------|-----------------------|-----------------------------------|
|------------------------------------------------|--------|------------------------------|-----------------------|-----------------------------------|



#### SW-846 8270E

#### **Qualifications:**

H-10

Analysis was requested after the recommended holding time had passed.

#### Analyte & Samples(s) Qualified:

21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], 21L0153-04[HRP-SB213-0-1-211015], 2121L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], 2121L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015]

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

#### Analyte & Samples(s) Qualified:

Hexachlorocyclopentadiene

B296003-BSD1

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

#### Analyte & Samples(s) Qualified:

#### 3.3-Dichlorobenzidine

21L0153-01[HRP-SB213-0-1-211015], B296003-MS1, B296003-MSD1

21L0153-01[HRP-SB213-0-1-211015], B296003-MS1, B296003-MSD1

21L0153-01[HRP-SB213-0-1-211015], B296003-MS1, B296003-MSD1

21L0153-01[HRP-SB213-0-1-211015], B296003-MS1, B296003-MSD1

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

### Analyte & Samples(s) Qualified:

#### p-Terphenyl-d14

B296003-BS1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], 21L0153-04[HRP-SB213-0-1-211015], 2121L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], 2121L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], 21L0153-17-211013], -211013, 21L0153-17-211013-17-211013, 21L0153-17-211013, 21L0153-17-211013, 21L015 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], B296003-BLK1, B296003-BS1, B296003-BSD1, B296003-MS1, B296003-MSD1, S066096-CCV1



#### V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

#### Analyte & Samples(s) Qualified:

#### 4-Nitrophenol

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MSD1, S066096-CCV1$ 

#### Benzidine

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MSD1, S066096-CCV1$ 

#### Hexachlorobutadiene

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MS1, S066096-CCV1$ 

#### Hexachlorocyclopentadiene

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MSD1, S066096-CCV1$ 

#### Pentachlorophenol

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MSD1, S066096-CCV1$ 

### V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

## estimated. Analyte & Samples(s) Qualified:

#### 4-Chloroaniline

 $21L0153-01[HRP-SB213-0-1-211015], 21L0153-02[HRP-SB213-5-7-211015], 21L0153-03[HRP-SB213-16-18-211015], 21L0153-04[HRP-SB212-0-2-211015], \\ 21L0153-05[HRP-DUP04-0-2-211015], 21L0153-06[HRP-SB212-5-7-211015], 21L0153-07[HRP-SB212-15-17-211015], 21L0153-08[HRP-SB211-0-1-211015], \\ 21L0153-09[HRP-SB211-5-7-211015], 21L0153-10[HRP-SB209-0-1-211013], 21L0153-11[HRP-SB209-5-7-211013], 21L0153-12[HRP-SB209-15-17-211013], \\ 21L0153-13[HRP-SB208-0-1-211014], 21L0153-14[HRP-MW208-5-7-211014], 21L0153-15[HRP-SB208-18-20-211014], 21L0153-16[HRP-SB214-0-2-211014], \\ 21L0153-17[HRP-SB214-5-7-211014], 21L0153-18[HRP-SB214-14-16-211014], 21L0153-19[HRP-SB211-15-17-211015], \\ B296003-MS1, B296003-MSD1, S066096-CCV1$ 

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ Con-Test, \ a \ Pace \ Analytical \ Laboratory, \ for \ testing.$ 

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington

Technical Representative

Lua Warrengton



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-0-1-211015 Sampled: 10/15/2021 09:56

Sample ID: 21L0153-01
Sample Matrix: Soil

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    |                                         |

| Sample Plags. 11-10              |         |       | Sciiivoi | tine Organic C | ompounds by | GCIMB       |              | Date     | Date/Time     |         |
|----------------------------------|---------|-------|----------|----------------|-------------|-------------|--------------|----------|---------------|---------|
| Analyte                          | Results | RL    | DL       | Units          | Dilution    | Flag/Qual   | Method       | Prepared | Analyzed      | Analyst |
| Acenaphthene                     | ND      | 0.20  | 0.063    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Acenaphthylene                   | ND      | 0.20  | 0.061    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Acetophenone                     | ND      | 0.40  | 0.054    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Aniline                          | ND      | 0.40  | 0.083    | mg/Kg dry      | 1           | MS-09       | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Anthracene                       | ND      | 0.20  | 0.065    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzidine                        | ND      | 0.77  | 0.18     | mg/Kg dry      | 1           | MS-09, V-05 | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzo(a)anthracene               | ND      | 0.20  | 0.055    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20  | 0.061    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20  | 0.060    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20  | 0.084    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20  | 0.054    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Benzoic Acid                     | ND      | 1.2   | 0.48     | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40  | 0.052    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.40  | 0.055    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40  | 0.091    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40  | 0.067    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.40  | 0.051    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Butylbenzylphthalate             | ND      | 0.40  | 0.063    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Carbazole                        | ND      | 0.20  | 0.066    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 4-Chloroaniline                  | ND      | 0.77  | 0.053    | mg/Kg dry      | 1           | V-34        | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.77  | 0.066    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2-Chloronaphthalene              | ND      | 0.40  | 0.046    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2-Chlorophenol                   | ND      | 0.40  | 0.055    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.40  | 0.057    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Chrysene                         | ND      | 0.20  | 0.058    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20  | 0.081    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Dibenzofuran                     | ND      | 0.40  | 0.059    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Di-n-butylphthalate              | ND      | 0.40  | 0.056    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.40  | 0.046    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.40  | 0.044    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.40  | 0.042    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20  | 0.058    | mg/Kg dry      | 1           | MS-09       | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.40  | 0.059    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Diethylphthalate                 | ND      | 0.40  | 0.061    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.40  | 0.11     | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Dimethylphthalate                | ND      | 0.40  | 0.058    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40  | 0.27     | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.77  | 0.34     | mg/Kg dry      | 1           | V-04        | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.40  | 0.078    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.40  | 0.066    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Di-n-octylphthalate              | ND      | 0.40  | 0.14     | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40  | 0.057    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Fluoranthene                     | ND      | 0.20  | 0.063    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
| Fluorene                         | ND      | 0.20  | 0.067    | mg/Kg dry      | 1           |             | SW-846 8270E | 12/3/21  | 12/6/21 15:33 | BGL     |
|                                  |         | . = - |          | G -67          | •           |             |              |          |               |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB213-0-1-211015** Sampled: 10/15/2021 09:56

Sample ID: 21L0153-01

Sample Matrix: Soil

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS  |
|--------------------|------------------------------------------|
| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/Wis |

| Sample Flags: H-10                      |         |             | Semive | olatile Organic C | ompounds by | GC/MS     |              |                  |                                |         |
|-----------------------------------------|---------|-------------|--------|-------------------|-------------|-----------|--------------|------------------|--------------------------------|---------|
| Analyte                                 | Results | RL          | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed          | Analyst |
| Hexachlorobenzene                       | ND      | 0.40        | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Hexachlorobutadiene                     | ND      | 0.40        | 0.051  | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Hexachlorocyclopentadiene               | ND      | 0.40        | 0.17   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Hexachloroethane                        | ND      | 0.40        | 0.047  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Indeno(1,2,3-cd)pyrene                  | ND      | 0.20        | 0.090  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Isophorone                              | ND      | 0.40        | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 1-Methylnaphthalene                     | 0.083   | 0.20        | 0.055  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2-Methylnaphthalene                     | 0.13    | 0.20        | 0.063  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2-Methylphenol                          | ND      | 0.40        | 0.074  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 3/4-Methylphenol                        | ND      | 0.40        | 0.064  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Naphthalene                             | 0.076   | 0.20        | 0.055  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2-Nitroaniline                          | ND      | 0.40        | 0.085  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 3-Nitroaniline                          | ND      | 0.40        | 0.068  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 4-Nitroaniline                          | ND      | 0.40        | 0.086  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Nitrobenzene                            | ND      | 0.40        | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2-Nitrophenol                           | ND      | 0.40        | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 4-Nitrophenol                           | ND      | 0.77        | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| N-Nitrosodimethylamine                  | ND      | 0.40        | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.40        | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| N-Nitrosodi-n-propylamine               | ND      | 0.40        | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Pentachloronitrobenzene                 | ND      | 0.40        | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Pentachlorophenol                       | ND      | 0.40        | 0.17   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Phenanthrene                            | 0.067   | 0.20        | 0.063  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Phenol                                  | ND      | 0.40        | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Pyrene                                  | ND      | 0.20        | 0.063  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Pyridine                                | ND      | 0.40        | 0.041  | mg/Kg dry         | 1           | MS-09     | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.40        | 0.052  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 1,2,4-Trichlorobenzene                  | ND      | 0.40        | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2,4,5-Trichlorophenol                   | ND      | 0.40        | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| 2,4,6-Trichlorophenol                   | ND      | 0.40        | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 15:33                  | BGL     |
| Surrogates                              |         | % Reco      | overy  | Recovery Limit    | s           | Flag/Qual |              |                  |                                |         |
| 2-Fluorophenol                          |         | 61.7        |        | 30-130            |             |           |              |                  | 12/6/21 15:33                  |         |
| Phenol-d6                               |         | 60.9        |        | 30-130            |             |           |              |                  | 12/6/21 15:33                  |         |
| Nitrobenzene-d5                         |         | 59.4        |        | 30-130            |             |           |              |                  | 12/6/21 15:33                  |         |
| 2-Fluorobiphenyl                        |         | 70.0        |        | 30-130            |             |           |              |                  | 12/6/21 15:33                  |         |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 69.5<br>102 |        | 30-130<br>30-130  |             |           |              |                  | 12/6/21 15:33<br>12/6/21 15:33 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-0-1-211015 Sampled: 10/15/2021 09:56

Sample ID: 21L0153-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.2    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-5-7-211015 Sampled: 10/15/2021 10:05

Sample ID: 21L0153-02
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method        | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|---------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Acetophenone                     | ND      | 0.41 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Aniline                          | ND      | 0.41 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzidine                        | ND      | 0.80 | 0.19  | mg/Kg dry | 1        | V-05      | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.49  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.41 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.41 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.41 | 0.093 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.41 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.41 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Butylbenzylphthalate             | ND      | 0.41 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 4-Chloroaniline                  | ND      | 0.80 | 0.054 | mg/Kg dry | 1        | V-34      | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.80 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.41 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2-Chlorophenol                   | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Dibenzofuran                     | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Di-n-butylphthalate              | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.41 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.41 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.41 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.41 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Diethylphthalate                 | ND      | 0.41 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.41 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Dimethylphthalate                | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.41 | 0.27  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.80 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.41 | 0.080 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.41 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Di-n-octylphthalate              | ND      | 0.41 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.41 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.069 |           | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 15:59         | BGL     |
| 1 Indicate                       | ND      | 0.20 | 0.009 | mg/Kg dry | 1        |           | 3 W-040 02/UE | 14/3/41          | 12/0/21 13:39         | DGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-5-7-211015 Sampled: 10/15/2021 10:05

Sample ID: 21L0153-02
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| ND ND | RL                                       | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D2 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time     |        |
|-------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed      | Analys |
| N.ID  | 0.41                                     | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.20                                     | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.20                                     | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.20                                     | 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.20                                     | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.80                                     | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
| ND    | 0.41                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
| ND    | 0.20                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
| ND    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | BGL    |
| ND    | 0.41                                     | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/6/21 15:59 | BGL    |
|       | % Reco                                   | very                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recovery Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        |
|       | 63.1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/6/21 15:59 |        |
|       | 61.5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/6/21 15:59 |        |
|       | 60.1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/6/21 15:59 |        |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/6/21 15:59 |        |
|       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        |
|       | ND ND ND ND ND ND ND ND ND ND ND ND ND N | ND 0.20 ND 0.41 ND 0.20 ND 0.41 ND 0.20 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.20 ND 0.41 ND 0.20 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 ND 0.41 | ND 0.20 0.093 ND 0.41 0.068 ND 0.20 0.057 ND 0.20 0.065 ND 0.41 0.066 ND 0.20 0.056 ND 0.41 0.087 ND 0.41 0.087 ND 0.41 0.070 ND 0.41 0.059 ND 0.41 0.064 ND 0.80 0.17 ND 0.41 0.061 ND 0.41 0.061 ND 0.41 0.066 ND 0.41 0.066 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.065 ND 0.41 0.055 ND 0.41 0.055 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.058 ND 0.41 0.051 ND 0.41 0.053 ND 0.41 0.051 ND 0.41 0.064 ND 0.41 0.063 **Recovery**  63.1 61.5 60.1 68.7 71.5 | ND 0.20 0.093 mg/Kg dry ND 0.41 0.068 mg/Kg dry ND 0.20 0.057 mg/Kg dry ND 0.20 0.065 mg/Kg dry ND 0.41 0.076 mg/Kg dry ND 0.41 0.066 mg/Kg dry ND 0.41 0.066 mg/Kg dry ND 0.41 0.087 mg/Kg dry ND 0.41 0.087 mg/Kg dry ND 0.41 0.088 mg/Kg dry ND 0.41 0.089 mg/Kg dry ND 0.41 0.064 mg/Kg dry ND 0.41 0.064 mg/Kg dry ND 0.41 0.061 mg/Kg dry ND 0.41 0.061 mg/Kg dry ND 0.41 0.061 mg/Kg dry ND 0.41 0.066 mg/Kg dry ND 0.41 0.066 mg/Kg dry ND 0.41 0.066 mg/Kg dry ND 0.41 0.061 mg/Kg dry ND 0.41 0.061 mg/Kg dry ND 0.41 0.065 mg/Kg dry ND 0.41 0.069 mg/Kg dry ND 0.41 0.069 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.058 mg/Kg dry ND 0.41 0.051 mg/Kg dry ND 0.41 0.051 mg/Kg dry ND 0.41 0.051 mg/Kg dry ND 0.41 0.064 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry ND 0.41 0.063 mg/Kg dry | ND 0.20 0.093 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.20 0.057 mg/Kg dry 1 ND 0.20 0.065 mg/Kg dry 1 ND 0.20 0.065 mg/Kg dry 1 ND 0.41 0.076 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.087 mg/Kg dry 1 ND 0.41 0.087 mg/Kg dry 1 ND 0.41 0.070 mg/Kg dry 1 ND 0.41 0.088 mg/Kg dry 1 ND 0.41 0.059 mg/Kg dry 1 ND 0.41 0.059 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.051 mg/Kg dry 1 ND 0.41 0.053 mg/Kg dry 1 ND 0.41 0.051 mg/Kg dry 1 ND 0.41 0.051 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.053 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 | ND 0.20 0.093 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.20 0.057 mg/Kg dry 1 ND 0.20 0.065 mg/Kg dry 1 ND 0.20 0.065 mg/Kg dry 1 ND 0.41 0.076 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.087 mg/Kg dry 1 ND 0.41 0.087 mg/Kg dry 1 ND 0.41 0.088 mg/Kg dry 1 ND 0.41 0.070 mg/Kg dry 1 ND 0.41 0.089 mg/Kg dry 1 ND 0.41 0.059 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.061 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.069 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.058 mg/Kg dry 1 ND 0.41 0.053 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.065 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.063 mg/Kg dry 1 ND 0.41 0.064 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.066 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.068 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry 1 ND 0.41 0.61 mg/Kg dry | ND         0.20         0.093         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.068         mg/Kg dry         1         SW-846 8270E           ND         0.20         0.057         mg/Kg dry         1         SW-846 8270E           ND         0.20         0.065         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.076         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.066         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.066         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.087         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.087         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.070         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.088         mg/Kg dry         1         SW-846 8270E           ND         0.41         0.064         mg/Kg dry         1         V-05         SW-846 8270E           ND         0.41         0.061         mg/Kg dry | ND            | ND     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB213-5-7-211015** Sampled: 10/15/2021 10:05

Sample ID: 21L0153-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 83.0    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-16-18-211015 Sampled: 10/15/2021 10:10

Sample ID: 21L0153-03
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.18 | 0.057 | mg/Kg dry | 1        | <u> </u>  | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Acenaphthylene                   | ND      | 0.18 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Acetophenone                     | ND      | 0.37 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Aniline                          | ND      | 0.37 | 0.076 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Anthracene                       | ND      | 0.18 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzidine                        | ND      | 0.71 | 0.17  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzo(a)anthracene               | ND      | 0.18 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.18 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.18 | 0.077 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.18 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.43  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.37 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.37 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.37 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.37 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.37 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Butylbenzylphthalate             | ND      | 0.37 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Carbazole                        | ND      | 0.18 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Chloroaniline                  | ND      | 0.71 | 0.048 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.71 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.37 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Chlorophenol                   | ND      | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.37 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Chrysene                         | ND      | 0.18 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.18 | 0.074 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Dibenzofuran                     | ND      | 0.37 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Di-n-butylphthalate              | ND      | 0.37 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.37 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.37 | 0.040 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.37 | 0.038 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.18 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.37 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Diethylphthalate                 | ND      | 0.37 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.37 | 0.10  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Dimethylphthalate                | ND      | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.37 | 0.25  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.71 | 0.32  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.37 | 0.071 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.37 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Di-n-octylphthalate              | ND      | 0.37 | 0.13  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.37 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Fluoranthene                     | ND      | 0.18 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Fluorene                         | ND      | 0.18 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
|                                  |         |      |       | 2 2 7     |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-16-18-211015 Sampled: 10/15/2021 10:10

Sample ID: 21L0153-03

Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10                   |         |        | Semivo | latile Organic Co | ompounds by |           |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.37   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.37   | 0.047  | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.37   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Hexachloroethane                     | ND      | 0.37   | 0.043  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.18   | 0.083  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Isophorone                           | ND      | 0.37   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.18   | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.18   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Methylphenol                       | ND      | 0.37   | 0.068  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.37   | 0.059  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Naphthalene                          | ND      | 0.18   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Nitroaniline                       | ND      | 0.37   | 0.078  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 3-Nitroaniline                       | ND      | 0.37   | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Nitroaniline                       | ND      | 0.37   | 0.078  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Nitrobenzene                         | ND      | 0.37   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2-Nitrophenol                        | ND      | 0.37   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 4-Nitrophenol                        | ND      | 0.71   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.37   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.37   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.37   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.37   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Pentachlorophenol                    | ND      | 0.37   | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Phenanthrene                         | ND      | 0.18   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Phenol                               | ND      | 0.37   | 0.052  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Pyrene                               | ND      | 0.18   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Pyridine                             | ND      | 0.37   | 0.037  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.37   | 0.048  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.37   | 0.046  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.37   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.37   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 16:25         | BGL     |
| Surrogates                           |         | % Reco | very   | Recovery Limit    | s           | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 65.4   |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |
| Phenol-d6                            |         | 65.3   |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |
| Nitrobenzene-d5                      |         | 62.4   |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |
| 2-Fluorobiphenyl                     |         | 73.5   |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |
| 2,4,6-Tribromophenol                 |         | 74.0   |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |
| p-Terphenyl-d14                      |         | 108    |        | 30-130            |             |           |              |                  | 12/6/21 16:25         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB213-16-18-211015 Sampled: 10/15/2021 10:10

Sample ID: 21L0153-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 93.1    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21L0153-04
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units      | Dilution | Flag/Qual | Method         | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|------------|----------|-----------|----------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.19 | 0.060 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Acenaphthylene                   | ND      | 0.19 | 0.058 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Acetophenone                     | ND      | 0.38 | 0.052 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Aniline                          | ND      | 0.38 | 0.079 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Anthracene                       | ND      | 0.19 | 0.062 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzidine                        | ND      | 0.74 | 0.17  | mg/Kg dry  | 1        | V-05      | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzo(a)anthracene               | ND      | 0.19 | 0.053 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.19 | 0.058 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.19 | 0.057 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.19 | 0.080 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.19 | 0.051 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.45  | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.38 | 0.049 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.38 | 0.052 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.38 | 0.087 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.38 | 0.064 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.38 | 0.049 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Butylbenzylphthalate             | ND      | 0.38 | 0.061 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Carbazole                        | ND      | 0.19 | 0.063 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 4-Chloroaniline                  | ND      | 0.74 | 0.051 | mg/Kg dry  | 1        | V-34      | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.74 | 0.063 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.38 | 0.044 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2-Chlorophenol                   | ND      | 0.38 | 0.053 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.38 | 0.054 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Chrysene                         | ND      | 0.19 | 0.055 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.19 | 0.077 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Dibenzofuran                     | ND      | 0.38 | 0.056 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Di-n-butylphthalate              | ND      | 0.38 | 0.054 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.38 | 0.043 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.38 | 0.042 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.38 | 0.040 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.056 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.38 | 0.056 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Diethylphthalate                 | ND      | 0.38 | 0.058 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.38 | 0.10  | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Dimethylphthalate                | ND      | 0.38 | 0.055 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.38 | 0.26  | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.74 | 0.33  | mg/Kg dry  | 1        | V-04      | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.38 | 0.074 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.38 | 0.063 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Di-n-octylphthalate              | ND      | 0.38 | 0.13  | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.38 | 0.055 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Fluoranthene                     | ND      | 0.19 | 0.061 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| Fluorene                         | ND      | 0.19 | 0.064 | mg/Kg dry  | 1        |           | SW-846 8270E   | 12/3/21          | 12/6/21 16:51         | BGL     |
| <b></b>                          | מאו     | 0.17 | 0.004 | mg/rxg ury | 1        |           | 5 11-040 02/0E | 14/3/41          | 12/0/21 10.31         | DOL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21L0153-04
Sample Matrix: Soil

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10                      |         |             |       | Diatile Organic Co | 1        |           |              |                  |                                |         |
|-----------------------------------------|---------|-------------|-------|--------------------|----------|-----------|--------------|------------------|--------------------------------|---------|
| Analyte                                 | Results | RL          | DL    | Units              | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed          | Analyst |
| Hexachlorobenzene                       | ND      | 0.38        | 0.052 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Hexachlorobutadiene                     | ND      | 0.38        | 0.049 | mg/Kg dry          | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Hexachlorocyclopentadiene               | ND      | 0.38        | 0.16  | mg/Kg dry          | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Hexachloroethane                        | ND      | 0.38        | 0.045 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Indeno(1,2,3-cd)pyrene                  | ND      | 0.19        | 0.086 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Isophorone                              | ND      | 0.38        | 0.063 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 1-Methylnaphthalene                     | ND      | 0.19        | 0.053 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2-Methylnaphthalene                     | ND      | 0.19        | 0.060 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2-Methylphenol                          | ND      | 0.38        | 0.070 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 3/4-Methylphenol                        | ND      | 0.38        | 0.061 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Naphthalene                             | ND      | 0.19        | 0.052 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2-Nitroaniline                          | ND      | 0.38        | 0.081 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 3-Nitroaniline                          | ND      | 0.38        | 0.065 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 4-Nitroaniline                          | ND      | 0.38        | 0.082 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Nitrobenzene                            | ND      | 0.38        | 0.055 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2-Nitrophenol                           | ND      | 0.38        | 0.059 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 4-Nitrophenol                           | ND      | 0.74        | 0.15  | mg/Kg dry          | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| N-Nitrosodimethylamine                  | ND      | 0.38        | 0.057 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.38        | 0.057 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| N-Nitrosodi-n-propylamine               | ND      | 0.38        | 0.052 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Pentachloronitrobenzene                 | ND      | 0.38        | 0.064 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Pentachlorophenol                       | ND      | 0.38        | 0.17  | mg/Kg dry          | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Phenanthrene                            | ND      | 0.19        | 0.060 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Phenol                                  | ND      | 0.38        | 0.054 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Pyrene                                  | ND      | 0.19        | 0.060 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Pyridine                                | ND      | 0.38        | 0.039 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.38        | 0.050 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 1,2,4-Trichlorobenzene                  | ND      | 0.38        | 0.048 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2,4,5-Trichlorophenol                   | ND      | 0.38        | 0.059 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| 2,4,6-Trichlorophenol                   | ND      | 0.38        | 0.059 | mg/Kg dry          | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 16:51                  | BGL     |
| Surrogates                              |         | % Reco      | very  | Recovery Limits    | 3        | Flag/Qual |              |                  |                                |         |
| 2-Fluorophenol                          |         | 57.4        |       | 30-130             |          |           |              |                  | 12/6/21 16:51                  |         |
| Phenol-d6                               |         | 58.5        |       | 30-130             |          |           |              |                  | 12/6/21 16:51                  |         |
| Nitrobenzene-d5                         |         | 56.1        |       | 30-130             |          |           |              |                  | 12/6/21 16:51                  |         |
| 2-Fluorobiphenyl                        |         | 69.0        |       | 30-130             |          |           |              |                  | 12/6/21 16:51                  |         |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 65.8<br>103 |       | 30-130<br>30-130   |          |           |              |                  | 12/6/21 16:51<br>12/6/21 16:51 |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB212-0-2-211015** Sampled: 10/15/2021 11:25

Sample ID: 21L0153-04
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 89.4    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-DUP04-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21L0153-05 Sample Matrix: Soil

| Sample Flags: H-10               |         |      | Semivola | atile Organic C | ompounds by | GC/MS     |              |                  |                       |         |
|----------------------------------|---------|------|----------|-----------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                          | Results | RL   | DL       | Units           | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Acenaphthene                     | ND      | 0.20 | 0.061    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.060    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Acetophenone                     | ND      | 0.39 | 0.053    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Aniline                          | ND      | 0.39 | 0.081    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.064    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzidine                        | ND      | 0.76 | 0.18     | mg/Kg dry       | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.054    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.060    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.059    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.082    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.053    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.47     | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.39 | 0.051    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.39 | 0.054    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.39 | 0.089    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.39 | 0.066    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.39 | 0.050    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Butylbenzylphthalate             | ND      | 0.39 | 0.062    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.064    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Chloroaniline                  | ND      | 0.76 | 0.052    | mg/Kg dry       | 1           | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.76 | 0.065    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.39 | 0.045    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Chlorophenol                   | ND      | 0.39 | 0.054    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.39 | 0.056    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.056    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.079    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Dibenzofuran                     | ND      | 0.39 | 0.058    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Di-n-butylphthalate              | ND      | 0.39 | 0.055    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.39 | 0.045    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.39 | 0.043    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.39 | 0.041    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.057    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.39 | 0.058    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Diethylphthalate                 | ND      | 0.39 | 0.060    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.39 | 0.11     | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Dimethylphthalate                | ND      | 0.39 | 0.057    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.39 | 0.26     | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.76 | 0.34     | mg/Kg dry       | 1           | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.39 | 0.076    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.39 | 0.065    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Di-n-octylphthalate              | ND      | 0.39 | 0.14     | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.39 | 0.056    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.062    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.066    | mg/Kg dry       | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
|                                  |         |      |          | 2 0 ,           |             |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-DUP04-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21L0153-05
Sample Matrix: Soil

p-Terphenyl-d14

Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS

115

30-130

12/6/21 17:17

| Sumple Flags. 11 TV                  |         |        |       |                |          |           |              | D 4              | D 4 //T*              |         |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.39   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.39   | 0.050 | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.39   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Hexachloroethane                     | ND      | 0.39   | 0.046 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.088 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Isophorone                           | ND      | 0.39   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1-Methylnaphthalene                  | 0.056   | 0.20   | 0.054 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Methylnaphthalene                  | 0.084   | 0.20   | 0.062 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Methylphenol                       | ND      | 0.39   | 0.072 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.39   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Naphthalene                          | 0.056   | 0.20   | 0.053 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Nitroaniline                       | ND      | 0.39   | 0.083 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 3-Nitroaniline                       | ND      | 0.39   | 0.067 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Nitroaniline                       | ND      | 0.39   | 0.084 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Nitrobenzene                         | ND      | 0.39   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2-Nitrophenol                        | ND      | 0.39   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 4-Nitrophenol                        | ND      | 0.76   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.39   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.39   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.39   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.39   | 0.066 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Pentachlorophenol                    | ND      | 0.39   | 0.17  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Phenanthrene                         | 0.071   | 0.20   | 0.062 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Phenol                               | ND      | 0.39   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Pyrene                               | ND      | 0.20   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Pyridine                             | ND      | 0.39   | 0.040 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.39   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.39   | 0.049 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.39   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.39   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:17         | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 66.3   |       | 30-130         |          |           |              |                  | 12/6/21 17:17         |         |
| Phenol-d6                            |         | 66.1   |       | 30-130         |          |           |              |                  | 12/6/21 17:17         |         |
| Nitrobenzene-d5                      |         | 63.9   |       | 30-130         |          |           |              |                  | 12/6/21 17:17         |         |
| 2-Fluorobiphenyl                     |         | 78.0   |       | 30-130         |          |           |              |                  | 12/6/21 17:17         |         |
| 2,4,6-Tribromophenol                 |         | 77.0   |       | 30-130         |          |           |              |                  | 12/6/21 17:17         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-DUP04-0-2-211015 Sampled: 10/15/2021 11:25

Sample ID: 21L0153-05
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |  |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|--|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |  |
| % Solids |         | 87.0    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |  |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Sampled: 10/15/2021 11:35 Field Sample #: HRP-SB212-5-7-211015

Sample ID: 21L0153-06 Sample Matrix: Soil

| Sample Flags: H-10 Semivolatile Organic Compounds by GC/MS |         |      |       |           |          |           |              |                  |                       |         |
|------------------------------------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                                                    | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Acenaphthene                                               | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Acenaphthylene                                             | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Acetophenone                                               | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Aniline                                                    | ND      | 0.40 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Anthracene                                                 | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzidine                                                  | ND      | 0.79 | 0.19  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzo(a)anthracene                                         | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzo(a)pyrene                                             | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzo(b)fluoranthene                                       | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzo(g,h,i)perylene                                       | ND      | 0.20 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzo(k)fluoranthene                                       | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Benzoic Acid                                               | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Bis(2-chloroethoxy)methane                                 | ND      | 0.40 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Bis(2-chloroethyl)ether                                    | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Bis(2-chloroisopropyl)ether                                | ND      | 0.40 | 0.092 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Bis(2-Ethylhexyl)phthalate                                 | ND      | 0.40 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Bromophenylphenylether                                   | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Butylbenzylphthalate                                       | ND      | 0.40 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Carbazole                                                  | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Chloroaniline                                            | ND      | 0.79 | 0.054 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Chloro-3-methylphenol                                    | ND      | 0.79 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Chloronaphthalene                                        | ND      | 0.40 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Chlorophenol                                             | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Chlorophenylphenylether                                  | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Chrysene                                                   | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Dibenz(a,h)anthracene                                      | ND      | 0.20 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Dibenzofuran                                               | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Di-n-butylphthalate                                        | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,2-Dichlorobenzene                                        | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,3-Dichlorobenzene                                        | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,4-Dichlorobenzene                                        | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 3,3-Dichlorobenzidine                                      | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4-Dichlorophenol                                         | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Diethylphthalate                                           | ND      | 0.40 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4-Dimethylphenol                                         | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Dimethylphthalate                                          | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4,6-Dinitro-2-methylphenol                                 | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4-Dinitrophenol                                          | ND      | 0.79 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4-Dinitrotoluene                                         | ND      | 0.40 | 0.079 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,6-Dinitrotoluene                                         | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Di-n-octylphthalate                                        | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene                           | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Fluoranthene                                               | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Fluorene                                                   | ND      | 0.20 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-5-7-211015 Sampled: 10/15/2021 11:35

Sample ID: 21L0153-06

Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10                   |         |        | Semivo | latile Organic Co | ompounds by |           |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.40   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.40   | 0.052  | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.40   | 0.17   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Hexachloroethane                     | ND      | 0.40   | 0.048  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.20   | 0.092  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Isophorone                           | ND      | 0.40   | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.20   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.20   | 0.064  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Methylphenol                       | ND      | 0.40   | 0.075  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.40   | 0.065  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Naphthalene                          | ND      | 0.20   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Nitroaniline                       | ND      | 0.40   | 0.086  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 3-Nitroaniline                       | ND      | 0.40   | 0.069  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Nitroaniline                       | ND      | 0.40   | 0.087  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Nitrobenzene                         | ND      | 0.40   | 0.059  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2-Nitrophenol                        | ND      | 0.40   | 0.063  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 4-Nitrophenol                        | ND      | 0.79   | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.40   | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.40   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.40   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.40   | 0.068  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Pentachlorophenol                    | ND      | 0.40   | 0.18   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Phenanthrene                         | ND      | 0.20   | 0.064  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Phenol                               | ND      | 0.40   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Pyrene                               | ND      | 0.20   | 0.064  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Pyridine                             | ND      | 0.40   | 0.041  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.40   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.40   | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.40   | 0.063  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.40   | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 17:42         | BGL     |
| Surrogates                           |         | % Reco | very   | Recovery Limit    | s           | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 68.7   |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |
| Phenol-d6                            |         | 67.6   |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |
| Nitrobenzene-d5                      |         | 65.3   |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |
| 2-Fluorobiphenyl                     |         | 75.6   |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |
| 2,4,6-Tribromophenol                 |         | 81.0   |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |
| p-Terphenyl-d14                      |         | 114    |        | 30-130            |             |           |              |                  | 12/6/21 17:42         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB212-5-7-211015** Sampled: 10/15/2021 11:35

Sample ID: 21L0153-06
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.0    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-15-17-211015 Sampled: 10/15/2021 11:40

Sample ID: 21L0153-07
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.18 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Acenaphthylene                   | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Acetophenone                     | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Aniline                          | ND      | 0.36 | 0.075 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Anthracene                       | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzidine                        | ND      | 0.70 | 0.17  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzo(a)anthracene               | ND      | 0.18 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.18 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.18 | 0.076 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.18 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.43  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.36 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.36 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.36 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.36 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.36 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Butylbenzylphthalate             | ND      | 0.36 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Carbazole                        | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Chloroaniline                  | ND      | 0.70 | 0.048 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.70 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.36 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Chlorophenol                   | ND      | 0.36 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Chrysene                         | ND      | 0.18 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.18 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Dibenzofuran                     | ND      | 0.36 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Di-n-butylphthalate              | ND      | 0.36 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.36 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.36 | 0.040 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.36 | 0.038 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.18 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.36 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Diethylphthalate                 | ND      | 0.36 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.36 | 0.098 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Dimethylphthalate                | ND      | 0.36 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.36 | 0.24  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.70 | 0.31  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.36 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.36 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Di-n-octylphthalate              | ND      | 0.36 | 0.13  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.36 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Fluoranthene                     | ND      | 0.18 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Fluorene                         | ND      | 0.18 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
|                                  |         |      |       |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-15-17-211015 Sampled: 10/15/2021 11:40

Sample ID: 21L0153-07
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10                   |         |        | Semivo | latile Organic Co | ompounds by |           |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|-----------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.36   | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.36   | 0.046  | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.36   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Hexachloroethane                     | ND      | 0.36   | 0.043  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.18   | 0.082  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Isophorone                           | ND      | 0.36   | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.18   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.18   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Methylphenol                       | ND      | 0.36   | 0.067  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.36   | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Naphthalene                          | ND      | 0.18   | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Nitroaniline                       | ND      | 0.36   | 0.077  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 3-Nitroaniline                       | ND      | 0.36   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Nitroaniline                       | ND      | 0.36   | 0.077  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Nitrobenzene                         | ND      | 0.36   | 0.052  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2-Nitrophenol                        | ND      | 0.36   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 4-Nitrophenol                        | ND      | 0.70   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.36   | 0.054  | mg/Kg dry         | 1           | . 05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.36   | 0.054  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.36   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.36   | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Pentachlorophenol                    | ND      | 0.36   | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Phenanthrene                         | ND      | 0.18   | 0.057  | mg/Kg dry         | 1           | V-03      | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Phenol                               | ND      | 0.36   | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Pyrene                               | ND      | 0.18   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Pyridine                             | ND      | 0.36   | 0.037  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.36   | 0.037  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.36   | 0.047  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.36   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.36   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 18:08         | BGL     |
| Surrogates                           | ND      | % Reco |        | Recovery Limit    |             | Flag/Qual | 3W-040 0270E | 12/3/21          | 12/0/21 16:06         | DOL     |
| 2-Fluorophenol                       |         | 65.2   | .,,    | 30-130            | ~           | ı mê Anaı |              |                  | 12/6/21 18:08         |         |
| Phenol-d6                            |         | 64.2   |        | 30-130            |             |           |              |                  | 12/6/21 18:08         |         |
| Nitrobenzene-d5                      |         | 62.0   |        | 30-130            |             |           |              |                  | 12/6/21 18:08         |         |
| 2-Fluorobiphenyl                     |         | 72.5   |        | 30-130            |             |           |              |                  | 12/6/21 18:08         |         |
| 2,4,6-Tribromophenol                 |         | 74.5   |        | 30-130            |             |           |              |                  | 12/6/21 18:08         |         |
| p-Terphenyl-d14                      |         | 107    |        | 30-130            |             |           |              |                  | 12/6/21 18:08         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB212-15-17-211015 Sampled: 10/15/2021 11:40

Sample ID: 21L0153-07
Sample Matrix: Soil

## Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 94.3    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-0-1-211015 Sampled: 10/15/2021 12:40

Sample ID: 21L0153-08
Sample Matrix: Soil

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    |                                         |

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.19 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Acenaphthylene                  | ND      | 0.19 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Acetophenone                    | ND      | 0.38 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Aniline                         | ND      | 0.38 | 0.079 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Anthracene                      | ND      | 0.19 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzidine                       | ND      | 0.74 | 0.17  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzo(a)anthracene              | 0.070   | 0.19 | 0.053 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzo(a)pyrene                  | 0.065   | 0.19 | 0.058 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzo(b)fluoranthene            | 0.091   | 0.19 | 0.057 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.19 | 0.080 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.19 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Benzoic Acid                    | ND      | 1.1  | 0.45  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.38 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.38 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.38 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.38 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Bromophenylphenylether         | ND      | 0.38 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Butylbenzylphthalate            | ND      | 0.38 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| arbazole                        | ND      | 0.19 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Chloroaniline                  | ND      | 0.74 | 0.050 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Chloro-3-methylphenol          | ND      | 0.74 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Chloronaphthalene              | ND      | 0.38 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Chlorophenol                   | ND      | 0.38 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| -Chlorophenylphenylether        | ND      | 0.38 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Chrysene                        | 0.10    | 0.19 | 0.055 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.19 | 0.077 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Dibenzofuran                    | 0.10    | 0.38 | 0.056 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Pi-n-butylphthalate             | ND      | 0.38 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,2-Dichlorobenzene              | ND      | 0.38 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,3-Dichlorobenzene              | ND      | 0.38 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,4-Dichlorobenzene              | ND      | 0.38 | 0.040 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,3-Dichlorobenzidine            | ND      | 0.19 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,4-Dichlorophenol               | ND      | 0.38 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Piethylphthalate                | ND      | 0.38 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,4-Dimethylphenol               | ND      | 0.38 | 0.10  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Dimethylphthalate               | ND      | 0.38 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,6-Dinitro-2-methylphenol       | ND      | 0.38 | 0.25  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,4-Dinitrophenol                | ND      | 0.74 | 0.33  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,4-Dinitrotoluene               | ND      | 0.38 | 0.074 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,6-Dinitrotoluene               | ND      | 0.38 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Di-n-octylphthalate             | ND      | 0.38 | 0.13  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.38 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| luoranthene                     | 0.16    | 0.19 | 0.060 | mg/Kg dry | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Fluorene                        | ND      | 0.19 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-0-1-211015 Sampled: 10/15/2021 12:40

Sample ID: 21L0153-08
Sample Matrix: Soil

| Sample Flags: H-10  | Semivolatile Organic Compounds by GC/MS |
|---------------------|-----------------------------------------|
| Sumple Flags. II 10 |                                         |

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.38   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.38   | 0.048 | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.38   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Hexachloroethane                     | ND      | 0.38   | 0.045 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.086 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Isophorone                           | ND      | 0.38   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 1-Methylnaphthalene                  | 0.30    | 0.19   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2-Methylnaphthalene                  | 0.50    | 0.19   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2-Methylphenol                       | ND      | 0.38   | 0.070 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.38   | 0.061 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Naphthalene                          | 0.29    | 0.19   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2-Nitroaniline                       | ND      | 0.38   | 0.081 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 3-Nitroaniline                       | ND      | 0.38   | 0.065 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 4-Nitroaniline                       | ND      | 0.38   | 0.081 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Nitrobenzene                         | ND      | 0.38   | 0.055 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2-Nitrophenol                        | ND      | 0.38   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 4-Nitrophenol                        | ND      | 0.74   | 0.15  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.38   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.38   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.38   | 0.052 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.38   | 0.064 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Pentachlorophenol                    | ND      | 0.38   | 0.17  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Phenanthrene                         | 0.31    | 0.19   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Phenol                               | ND      | 0.38   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Pyrene                               | 0.16    | 0.19   | 0.060 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Pyridine                             | ND      | 0.38   | 0.039 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.38   | 0.049 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.38   | 0.048 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.38   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.38   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 18:34         | BGL     |
| Surrogates                           |         | % Reco | overy | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 56.3   |       | 30-130         |          |           |              |                  | 12/6/21 18:34         |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 56.3       | 30-130          |           | 12/6/21 18:34 |
| Phenol-d6            | 58.1       | 30-130          |           | 12/6/21 18:34 |
| Nitrobenzene-d5      | 58.1       | 30-130          |           | 12/6/21 18:34 |
| 2-Fluorobiphenyl     | 70.0       | 30-130          |           | 12/6/21 18:34 |
| 2,4,6-Tribromophenol | 63.5       | 30-130          |           | 12/6/21 18:34 |
| p-Terphenyl-d14      | 108        | 30-130          |           | 12/6/21 18:34 |
|                      |            |                 |           |               |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-0-1-211015 Sampled: 10/15/2021 12:40

Sample ID: 21L0153-08
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 89.7    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-5-7-211015 Sampled: 10/15/2021 12:45

Sample ID: 21L0153-09
Sample Matrix: Soil

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Acetophenone                     | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Aniline                          | ND      | 0.40 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzidine                        | ND      | 0.78 | 0.18  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.091 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Chloroaniline                  | ND      | 0.78 | 0.053 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.78 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Dibenzofuran                     | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Diethylphthalate                 | ND      | 0.40 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Dimethylphthalate                | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.78 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.078 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
|                                  |         |      |       |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB211-5-7-211015** Sampled: 10/15/2021 12:45

Sample ID: 21L0153-09

Sample Matrix: Soil

| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/MS |
|--------------------|-----------------------------------------|
|                    |                                         |

| Analyte                                 | Results | RL          | DL    | Units            | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------------------------|---------|-------------|-------|------------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                       | ND      | 0.40        | 0.054 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Hexachlorobutadiene                     | ND      | 0.40        | 0.051 | mg/Kg dry        | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Hexachlorocyclopentadiene               | ND      | 0.40        | 0.17  | mg/Kg dry        | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Hexachloroethane                        | ND      | 0.40        | 0.048 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Indeno(1,2,3-cd)pyrene                  | ND      | 0.20        | 0.091 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Isophorone                              | ND      | 0.40        | 0.067 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1-Methylnaphthalene                     | 0.11    | 0.20        | 0.055 | mg/Kg dry        | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Methylnaphthalene                     | 0.20    | 0.20        | 0.063 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Methylphenol                          | ND      | 0.40        | 0.074 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 3/4-Methylphenol                        | ND      | 0.40        | 0.065 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Naphthalene                             | 0.13    | 0.20        | 0.055 | mg/Kg dry        | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Nitroaniline                          | ND      | 0.40        | 0.085 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 3-Nitroaniline                          | ND      | 0.40        | 0.068 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Nitroaniline                          | ND      | 0.40        | 0.086 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Nitrobenzene                            | ND      | 0.40        | 0.058 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2-Nitrophenol                           | ND      | 0.40        | 0.063 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 4-Nitrophenol                           | ND      | 0.78        | 0.16  | mg/Kg dry        | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| N-Nitrosodimethylamine                  | ND      | 0.40        | 0.060 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.40        | 0.060 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| N-Nitrosodi-n-propylamine               | ND      | 0.40        | 0.055 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Pentachloronitrobenzene                 | ND      | 0.40        | 0.067 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Pentachlorophenol                       | ND      | 0.40        | 0.17  | mg/Kg dry        | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Phenanthrene                            | 0.077   | 0.20        | 0.063 | mg/Kg dry        | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Phenol                                  | ND      | 0.40        | 0.057 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Pyrene                                  | ND      | 0.20        | 0.064 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Pyridine                                | ND      | 0.40        | 0.041 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.40        | 0.052 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 1,2,4-Trichlorobenzene                  | ND      | 0.40        | 0.050 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4,5-Trichlorophenol                   | ND      | 0.40        | 0.062 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| 2,4,6-Trichlorophenol                   | ND      | 0.40        | 0.062 | mg/Kg dry        | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:00         | BGL     |
| Surrogates                              |         | % Reco      | very  | Recovery Limit   | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                          |         | 72.3        |       | 30-130           |          |           |              |                  | 12/6/21 19:00         |         |
| Phenol-d6                               |         | 70.8        |       | 30-130           |          |           |              |                  | 12/6/21 19:00         |         |
| Nitrobenzene-d5                         |         | 68.0        |       | 30-130           |          |           |              |                  | 12/6/21 19:00         |         |
| 2-Fluorobiphenyl                        |         | 79.9        |       | 30-130           |          |           |              |                  | 12/6/21 19:00         |         |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 82.2<br>107 |       | 30-130<br>30-130 |          |           |              |                  | 12/6/21 19:00         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-5-7-211015 Sampled: 10/15/2021 12:45

Sample ID: 21L0153-09
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.9    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB209-0-1-211013 Sampled: 10/13/2021 13:40

Sample ID: 21L0153-10
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.062 | mg/Kg dry | 1        | <u> </u>  | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Acetophenone                     | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Aniline                          | ND      | 0.40 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzidine                        | ND      | 0.77 | 0.18  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.47  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.090 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 4-Chloroaniline                  | ND      | 0.77 | 0.053 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.77 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.080 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Dibenzofuran                     | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Diethylphthalate                 | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Dimethylphthalate                | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.77 | 0.34  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.077 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:26         | BGL     |
|                                  |         |      |       | 2 2 7     |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Work Order: 21L0153 Sample Description:

Date Received: 12/2/2021

Field Sample #: HRP-SB209-0-1-211013 Sampled: 10/13/2021 13:40

Sample ID: 21L0153-10 Sample Matrix: Soil

|                 |                            |                                                |                                                | Date                                           | Date/Time                                      |                                                                                                                      |
|-----------------|----------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Units I         | Dilution                   | Flag/Qual                                      | Method                                         | Prepared                                       | Analyzed                                       | Analyst                                                                                                              |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | V-05                                           | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | V-05                                           | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | J                                              | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | J                                              | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | J                                              | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | V-05                                           | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | V-05                                           | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          | J                                              | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| mg/Kg dry       | 1                          |                                                | SW-846 8270E                                   | 12/3/21                                        | 12/6/21 19:26                                  | BGL                                                                                                                  |
| Recovery Limits |                            | Flag/Qual                                      |                                                |                                                |                                                |                                                                                                                      |
| 30-130          |                            |                                                |                                                |                                                | 12/6/21 19:26                                  |                                                                                                                      |
| 30-130          |                            |                                                |                                                |                                                | 12/6/21 19:26                                  |                                                                                                                      |
| 30-130          |                            |                                                |                                                |                                                |                                                |                                                                                                                      |
| 30-130          |                            |                                                |                                                |                                                | 12/6/21 19:26                                  |                                                                                                                      |
|                 |                            |                                                |                                                |                                                |                                                |                                                                                                                      |
|                 | 30-130<br>30-130<br>30-130 | 30-130<br>30-130<br>30-130<br>30-130<br>30-130 | 30-130<br>30-130<br>30-130<br>30-130<br>30-130 | 30-130<br>30-130<br>30-130<br>30-130<br>30-130 | 30-130<br>30-130<br>30-130<br>30-130<br>30-130 | 30-130 12/6/21 19:26<br>30-130 12/6/21 19:26<br>30-130 12/6/21 19:26<br>30-130 12/6/21 19:26<br>30-130 12/6/21 19:26 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB209-0-1-211013** Sampled: 10/13/2021 13:40

Sample ID: 21L0153-10
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 85.9    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB209-5-7-211013 Sampled: 10/13/2021 13:47

Sample ID: 21L0153-11
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Acenaphthylene                   | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Acetophenone                     | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Aniline                          | ND      | 0.41 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Anthracene                       | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzidine                        | ND      | 0.80 | 0.19  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzo(a)anthracene               | ND      | 0.21 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.21 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.21 | 0.087 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.21 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.49  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.41 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.41 | 0.094 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.41 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.41 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Butylbenzylphthalate             | ND      | 0.41 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Carbazole                        | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 4-Chloroaniline                  | ND      | 0.80 | 0.055 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.80 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.41 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2-Chlorophenol                   | ND      | 0.41 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.41 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Chrysene                         | ND      | 0.21 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.21 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Dibenzofuran                     | ND      | 0.41 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Di-n-butylphthalate              | ND      | 0.41 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.41 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.41 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.41 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.21 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.41 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Diethylphthalate                 | ND      | 0.41 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.41 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Dimethylphthalate                | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.41 | 0.28  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.80 | 0.36  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.41 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.41 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Di-n-octylphthalate              | ND      | 0.41 | 0.15  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.41 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Fluoranthene                     | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |
| Fluorene                         | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Work Order: 21L0153 Sample Description:

Date Received: 12/2/2021

Field Sample #: HRP-SB209-5-7-211013 Sampled: 10/13/2021 13:47

Sample ID: 21L0153-11 Sample Matrix: Soil

| Semivolatile Organic Comp | pounds by GC/MS |
|---------------------------|-----------------|
|---------------------------|-----------------|

| Sample Flags: H-10                   |          |              | Semivo | latile Organic Co |          |              |              |                  |                       |        |
|--------------------------------------|----------|--------------|--------|-------------------|----------|--------------|--------------|------------------|-----------------------|--------|
| Analyte                              | Results  | RL           | DL     | Units             | Dilution | Flag/Qual    | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analys |
| Hexachlorobenzene                    | ND       | 0.41         | 0.056  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Hexachlorobutadiene                  | ND       | 0.41         | 0.053  | mg/Kg dry         | 1        | V-05         | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Hexachlorocyclopentadiene            | ND       | 0.41         | 0.17   | mg/Kg dry         | 1        | V-05         | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Hexachloroethane                     | ND       | 0.41         | 0.049  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Indeno(1,2,3-cd)pyrene               | ND       | 0.21         | 0.094  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Isophorone                           | ND       | 0.41         | 0.069  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 1-Methylnaphthalene                  | ND       | 0.21         | 0.057  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 2-Methylnaphthalene                  | ND       | 0.21         | 0.066  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 2-Methylphenol                       | ND       | 0.41         | 0.077  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 3/4-Methylphenol                     | ND       | 0.41         | 0.067  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Naphthalene                          | ND       | 0.21         | 0.057  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 2-Nitroaniline                       | ND       | 0.41         | 0.088  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 3-Nitroaniline                       | ND       | 0.41         | 0.071  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 4-Nitroaniline                       | ND       | 0.41         | 0.089  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Nitrobenzene                         | ND       | 0.41         | 0.060  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 2-Nitrophenol                        | ND       | 0.41         | 0.065  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 4-Nitrophenol                        | ND       | 0.80         | 0.17   | mg/Kg dry         | 1        | V-05         | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| N-Nitrosodimethylamine               | ND       | 0.41         | 0.062  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| N-Nitrosodiphenylamine/Diphenylamine | ND       | 0.41         | 0.062  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| N-Nitrosodi-n-propylamine            | ND       | 0.41         | 0.057  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Pentachloronitrobenzene              | ND       | 0.41         | 0.070  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Pentachlorophenol                    | ND       | 0.41         | 0.18   | mg/Kg dry         | 1        | V-05         | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Phenanthrene                         | ND       | 0.21         | 0.065  | mg/Kg dry         | 1        | V-0 <i>3</i> | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Phenol                               | ND       | 0.41         | 0.059  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Pyrene                               | ND       | 0.21         | 0.066  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Pyridine                             | ND       | 0.41         | 0.042  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 1,2,4,5-Tetrachlorobenzene           | ND       | 0.41         | 0.054  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 1,2,4-Trichlorobenzene               | ND       | 0.41         | 0.052  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| 2,4,5-Trichlorophenol                |          |              |        |                   |          |              |              |                  |                       |        |
| 2,4,6-Trichlorophenol                | ND<br>ND | 0.41<br>0.41 | 0.064  | mg/Kg dry         | 1        |              | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
|                                      | ND       |              | 0.064  | mg/Kg dry         |          | Fl/01        | SW-846 8270E | 12/3/21          | 12/6/21 19:51         | BGL    |
| Surrogates 2-Fluorophenol            |          | % Reco       | overy  | Recovery Limit    | <u> </u> | Flag/Qual    |              |                  | 12/6/21 19:51         |        |
| Phenol-d6                            |          | 60.4         |        | 30-130            |          |              |              |                  | 12/6/21 19:51         |        |
| Nitrobenzene-d5                      |          | 58.3         |        | 30-130            |          |              |              |                  | 12/6/21 19:51         |        |
| 2-Fluorobiphenyl                     |          | 71.3         |        | 30-130            |          |              |              |                  | 12/6/21 19:51         |        |
| 2,4,6-Tribromophenol                 |          | 82.1         |        | 30-130            |          |              |              |                  | 12/6/21 19:51         |        |
| p-Terphenyl-d14                      |          | 121          |        | 30-130            |          |              |              |                  | 12/6/21 19:51         |        |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB209-5-7-211013** Sampled: 10/13/2021 13:47

Sample ID: 21L0153-11
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 82.0    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB209-15-17-211013** Sampled: 10/13/2021 13:55

Sample ID: 21L0153-12
Sample Matrix: Soil

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.20 | 0.063 | mg/Kg dry | 1        | I mg/ Qum | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Acenaphthylene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Acetophenone                     | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Aniline                          | ND      | 0.40 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Anthracene                       | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzidine                        | ND      | 0.78 | 0.18  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzo(a)anthracene               | ND      | 0.20 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.20 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.20 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.20 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.20 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.48  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.40 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.40 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.40 | 0.092 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.40 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.40 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Butylbenzylphthalate             | ND      | 0.40 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Carbazole                        | ND      | 0.20 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 4-Chloroaniline                  | ND      | 0.78 | 0.054 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.78 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.40 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2-Chlorophenol                   | ND      | 0.40 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 1-Chlorophenylphenylether        | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Chrysene                         | ND      | 0.20 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.20 | 0.082 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Dibenzofuran                     | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Di-n-butylphthalate              | ND      | 0.40 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.40 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.40 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.40 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.20 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.40 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Diethylphthalate                 | ND      | 0.40 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.40 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Dimethylphthalate                | ND      | 0.40 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.40 | 0.27  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.78 | 0.35  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.40 | 0.079 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.40 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Di-n-octylphthalate              | ND      | 0.40 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.40 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Fluoranthene                     | ND      | 0.20 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
| Fluorene                         | ND      | 0.20 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:18         | BGL     |
|                                  |         |      |       |           |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB209-15-17-211013** Sampled: 10/13/2021 13:55

Sample ID: 21L0153-12
Sample Matrix: Soil

| C1- El II 10       | Semivolatile Organic Compounds by GC/MS  |
|--------------------|------------------------------------------|
| Sample Flags: H-10 | Semivolatile Organic Compounds by GC/NIS |

| Analyte                              | Results  | RL           | DL    | Units            | Dilution | Flag/Qual  | Method                       | Date<br>Prepared   | Date/Time<br>Analyzed          | Analys |
|--------------------------------------|----------|--------------|-------|------------------|----------|------------|------------------------------|--------------------|--------------------------------|--------|
| Hexachlorobenzene                    | ND       | 0.40         | 0.055 | mg/Kg dry        | 1        | r rag/Quar | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Hexachlorobutadiene                  | ND       | 0.40         | 0.051 | mg/Kg dry        | 1        | V-05       | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Hexachlorocyclopentadiene            | ND       | 0.40         | 0.031 | mg/Kg dry        | 1        | V-05       | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Hexachloroethane                     | ND<br>ND | 0.40         | 0.048 | mg/Kg dry        | 1        | V-03       | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Indeno(1,2,3-cd)pyrene               | ND       | 0.20         | 0.091 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Isophorone                           | ND       | 0.40         | 0.067 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 1-Methylnaphthalene                  | ND       | 0.20         | 0.056 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2-Methylnaphthalene                  | ND<br>ND | 0.20         | 0.064 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2-Methylphenol                       | ND       | 0.40         | 0.075 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 3/4-Methylphenol                     | ND<br>ND | 0.40         | 0.065 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Naphthalene                          | ND<br>ND | 0.40         | 0.005 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2-Nitroaniline                       | ND<br>ND | 0.40         | 0.033 | mg/Kg dry        | 1        |            | SW-846 8270E<br>SW-846 8270E | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 3-Nitroaniline                       | ND<br>ND | 0.40         | 0.069 |                  | 1        |            |                              |                    | 12/6/21 20:18                  | BGL    |
| 4-Nitroaniline                       |          |              |       | mg/Kg dry        |          |            | SW-846 8270E                 | 12/3/21            |                                |        |
| Nitrobenzene                         | ND       | 0.40         | 0.087 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2-Nitrophenol                        | ND<br>ND | 0.40<br>0.40 | 0.059 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21<br>12/3/21 | 12/6/21 20:18                  | BGL    |
| 4-Nitrophenol                        | ND       |              | 0.063 | mg/Kg dry        | 1        | V 05       | SW-846 8270E                 |                    | 12/6/21 20:18                  | BGL    |
| N-Nitrosodimethylamine               | ND       | 0.78         | 0.16  | mg/Kg dry        | 1        | V-05       | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| •                                    | ND       | 0.40         | 0.060 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| N-Nitrosodiphenylamine/Diphenylamine | ND       | 0.40         | 0.060 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| N-Nitrosodi-n-propylamine            | ND       | 0.40         | 0.055 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Pentachloronitrobenzene              | ND       | 0.40         | 0.068 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Pentachlorophenol                    | ND       | 0.40         | 0.18  | mg/Kg dry        | 1        | V-05       | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Phenanthrene                         | ND       | 0.20         | 0.064 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Phenol                               | ND       | 0.40         | 0.057 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Pyrene                               | ND       | 0.20         | 0.064 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Pyridine                             | ND       | 0.40         | 0.041 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 1,2,4,5-Tetrachlorobenzene           | ND       | 0.40         | 0.053 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 1,2,4-Trichlorobenzene               | ND       | 0.40         | 0.051 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2,4,5-Trichlorophenol                | ND       | 0.40         | 0.063 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| 2,4,6-Trichlorophenol                | ND       | 0.40         | 0.062 | mg/Kg dry        | 1        |            | SW-846 8270E                 | 12/3/21            | 12/6/21 20:18                  | BGL    |
| Surrogates                           |          | % Reco       | very  | Recovery Limit   | s        | Flag/Qual  |                              |                    |                                |        |
| 2-Fluorophenol                       |          | 69.0         |       | 30-130           |          |            |                              |                    | 12/6/21 20:18                  |        |
| Phenol-d6                            |          | 68.4         |       | 30-130           |          |            |                              |                    | 12/6/21 20:18                  |        |
| Nitrobenzene-d5                      |          | 63.6         |       | 30-130           |          |            |                              |                    | 12/6/21 20:18                  |        |
| 2-Fluorobiphenyl                     |          | 75.3         |       | 30-130           |          |            |                              |                    | 12/6/21 20:18                  |        |
| 2,4,6-Tribromophenol                 |          | 78.6<br>121  |       | 30-130<br>30-130 |          |            |                              |                    | 12/6/21 20:18<br>12/6/21 20:18 |        |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB209-15-17-211013 Sampled: 10/13/2021 13:55

Sample ID: 21L0153-12
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 84.3    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB208-0-1-211014 Sampled: 10/14/2021 09:12

Sample ID: 21L0153-13
Sample Matrix: Soil

| Sample Plags. 11-10              |          |      | Sciiivoii | tuic Organic C | ompounds by | GC/MS     |                              | Date     | Date/Time     |         |
|----------------------------------|----------|------|-----------|----------------|-------------|-----------|------------------------------|----------|---------------|---------|
| Analyte                          | Results  | RL   | DL        | Units          | Dilution    | Flag/Qual | Method                       | Prepared | Analyzed      | Analyst |
| Acenaphthene                     | ND       | 0.22 | 0.069     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Acenaphthylene                   | ND       | 0.22 | 0.067     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Acetophenone                     | ND       | 0.44 | 0.060     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Aniline                          | ND       | 0.44 | 0.091     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Anthracene                       | ND       | 0.22 | 0.071     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzidine                        | ND       | 0.85 | 0.20      | mg/Kg dry      | 1           | V-05      | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzo(a)anthracene               | ND       | 0.22 | 0.061     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzo(a)pyrene                   | ND       | 0.22 | 0.067     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzo(b)fluoranthene             | ND       | 0.22 | 0.066     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzo(g,h,i)perylene             | ND       | 0.22 | 0.092     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzo(k)fluoranthene             | ND       | 0.22 | 0.059     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Benzoic Acid                     | ND       | 1.3  | 0.52      | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 0.44 | 0.057     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 0.44 | 0.060     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 0.44 | 0.10      | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 0.44 | 0.074     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 4-Bromophenylphenylether         | ND       | 0.44 | 0.056     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Butylbenzylphthalate             | ND       | 0.44 | 0.070     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Carbazole                        | ND       | 0.22 | 0.072     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| -Chloroaniline                   | ND       | 0.85 | 0.058     | mg/Kg dry      | 1           | V-34      | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| l-Chloro-3-methylphenol          | ND       | 0.85 | 0.073     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2-Chloronaphthalene              | ND       | 0.44 | 0.051     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2-Chlorophenol                   | ND       | 0.44 | 0.061     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 4-Chlorophenylphenylether        | ND       | 0.44 | 0.062     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Chrysene                         | ND       | 0.22 | 0.063     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Dibenz(a,h)anthracene            | ND       | 0.22 | 0.089     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Dibenzofuran                     | ND       | 0.44 | 0.065     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Di-n-butylphthalate              | ND       | 0.44 | 0.062     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 1,2-Dichlorobenzene              | ND       | 0.44 | 0.050     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 1,3-Dichlorobenzene              | ND       | 0.44 | 0.048     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 1,4-Dichlorobenzene              | ND       | 0.44 | 0.046     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 0.22 | 0.064     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2,4-Dichlorophenol               | ND       | 0.44 | 0.065     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Diethylphthalate                 | ND       | 0.44 | 0.067     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2,4-Dimethylphenol               | ND       | 0.44 | 0.12      | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Dimethylphthalate                | ND       | 0.44 | 0.064     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.44 | 0.29      | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2,4-Dinitrophenol                | ND       | 0.85 | 0.38      | mg/Kg dry      | 1           | V-04      | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2,4-Dinitrotoluene               | ND       | 0.44 | 0.085     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 2,6-Dinitrotoluene               | ND       | 0.44 | 0.073     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Di-n-octylphthalate              | ND       | 0.44 | 0.073     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 0.44 | 0.063     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |
| Fluoranthene                     | ND<br>ND | 0.44 | 0.003     | mg/Kg dry      |             |           | SW-846 8270E<br>SW-846 8270E | 12/3/21  | 12/6/21 20:43 | BGL     |
| Fluorene                         |          |      |           |                | 1           |           |                              |          |               |         |
| 1 IUOTEIIC                       | ND       | 0.22 | 0.074     | mg/Kg dry      | 1           |           | SW-846 8270E                 | 12/3/21  | 12/6/21 20:43 | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB208-0-1-211014 Sampled: 10/14/2021 09:12

Sample ID: 21L0153-13
Sample Matrix: Soil

Sample Flags: H-10

2,4,6-Tribromophenol

p-Terphenyl-d14

| Semivolatile Organic | Com | pounds b | y GC/MS |
|----------------------|-----|----------|---------|
|                      |     |          |         |

85.2

123

30-130

30-130

12/6/21 20:43

12/6/21 20:43

| Analyte                              | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|-----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.44   | 0.059 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.44   | 0.056 | mg/Kg dry       | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.44   | 0.18  | mg/Kg dry       | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Hexachloroethane                     | ND      | 0.44   | 0.052 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.22   | 0.099 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Isophorone                           | ND      | 0.44   | 0.073 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.22   | 0.061 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.22   | 0.069 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2-Methylphenol                       | ND      | 0.44   | 0.081 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.44   | 0.071 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Naphthalene                          | ND      | 0.22   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2-Nitroaniline                       | ND      | 0.44   | 0.093 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 3-Nitroaniline                       | ND      | 0.44   | 0.074 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 4-Nitroaniline                       | ND      | 0.44   | 0.094 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Nitrobenzene                         | ND      | 0.44   | 0.063 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2-Nitrophenol                        | ND      | 0.44   | 0.068 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 4-Nitrophenol                        | ND      | 0.85   | 0.18  | mg/Kg dry       | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.44   | 0.065 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.44   | 0.066 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.44   | 0.060 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.44   | 0.074 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Pentachlorophenol                    | ND      | 0.44   | 0.19  | mg/Kg dry       | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Phenanthrene                         | ND      | 0.22   | 0.069 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Phenol                               | ND      | 0.44   | 0.062 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Pyrene                               | ND      | 0.22   | 0.070 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Pyridine                             | ND      | 0.44   | 0.045 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.44   | 0.057 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.44   | 0.055 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.44   | 0.068 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.44   | 0.067 | mg/Kg dry       | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 20:43         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limits | i        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 73.4   |       | 30-130          |          |           |              |                  | 12/6/21 20:43         |         |
| Phenol-d6                            |         | 72.6   |       | 30-130          |          |           |              |                  | 12/6/21 20:43         |         |
| Nitrobenzene-d5                      |         | 70.4   |       | 30-130          |          |           |              |                  | 12/6/21 20:43         |         |
| 2-Fluorobiphenyl                     |         | 81.5   |       | 30-130          |          |           |              |                  | 12/6/21 20:43         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB208-0-1-211014** Sampled: 10/14/2021 09:12

Sample ID: 21L0153-13
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 77.7    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-MW208-5-7-211014 Sampled: 10/14/2021 09:20

Sample ID: 21L0153-14
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.22 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Acenaphthylene                   | ND      | 0.22 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Acetophenone                     | ND      | 0.44 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Aniline                          | ND      | 0.44 | 0.092 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Anthracene                       | ND      | 0.22 | 0.072 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzidine                        | ND      | 0.86 | 0.20  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzo(a)anthracene               | ND      | 0.22 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.22 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.22 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.22 | 0.093 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.22 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Benzoic Acid                     | ND      | 1.3  | 0.53  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.44 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.44 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.44 | 0.10  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.44 | 0.074 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.44 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Butylbenzylphthalate             | ND      | 0.44 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Carbazole                        | ND      | 0.22 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 4-Chloroaniline                  | ND      | 0.86 | 0.059 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.86 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.44 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2-Chlorophenol                   | ND      | 0.44 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.44 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Chrysene                         | ND      | 0.22 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.22 | 0.090 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Dibenzofuran                     | ND      | 0.44 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Di-n-butylphthalate              | ND      | 0.44 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.44 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.44 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.44 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.22 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.44 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Diethylphthalate                 | ND      | 0.44 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.44 | 0.12  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Dimethylphthalate                | ND      | 0.44 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.44 | 0.30  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.86 | 0.38  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.44 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.44 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Di-n-octylphthalate              | ND      | 0.44 | 0.16  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.44 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Fluoranthene                     | ND      | 0.22 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
| Fluorene                         | ND      | 0.22 | 0.074 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:10         | BGL     |
|                                  |         |      |       | •         |          |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-MW208-5-7-211014 Sampled: 10/14/2021 09:20

Sample ID: 21L0153-14 Sample Matrix: Soil

| Results<br>ND | RL                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date     | Date/Time     |         |
|---------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|---------|
| ND            |                                          | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prepared | Analyzed      | Analyst |
|               | 0.44                                     | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  |               | BGL     |
| ND            | 0.86                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               | BGL     |
| ND            | 0.44                                     | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               | BGL     |
| ND            | 0.44                                     | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  |               | BGL     |
| ND            | 0.44                                     | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
| ND            | 0.22                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               | BGL     |
| ND            | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |               | BGL     |
| ND            | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 12/6/21 21:10 | BGL     |
| ND            | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 12/6/21 21:10 | BGL     |
|               | 0.44                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |               | BGL     |
| ND            | 0.44                                     | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW-846 8270E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/3/21  | 12/6/21 21:10 | BGL     |
|               | % Reco                                   | very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |         |
|               | 67.2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 12/6/21 21:10 |         |
|               | 67.4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 12/6/21 21:10 |         |
|               | 65.9                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |         |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |         |
|               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |         |
|               | ND ND ND ND ND ND ND ND ND ND ND ND ND N | ND 0.44 ND 0.22 ND 0.44 ND 0.22 ND 0.44 ND 0.22 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 ND 0.44 | ND 0.44 0.053 ND 0.22 0.10 ND 0.44 0.074 ND 0.22 0.061 ND 0.44 0.082 ND 0.44 0.071 ND 0.44 0.071 ND 0.22 0.060 ND 0.44 0.094 ND 0.44 0.095 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.063 ND 0.44 0.063 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.065 ND 0.44 0.066 ND 0.44 0.065 ND 0.44 0.066 ND 0.44 0.065 ND 0.44 0.066 ND 0.44 0.065 ND 0.44 0.066 ND 0.44 0.066 ND 0.44 0.068 ND 0.44 0.068 ND 0.44 0.068 ND 0.44 0.068 ND 0.44 0.068 ND 0.44 0.068 ND 0.44 0.068 | ND 0.44 0.053 mg/Kg dry ND 0.22 0.10 mg/Kg dry ND 0.44 0.074 mg/Kg dry ND 0.22 0.061 mg/Kg dry ND 0.22 0.070 mg/Kg dry ND 0.22 0.070 mg/Kg dry ND 0.44 0.082 mg/Kg dry ND 0.44 0.071 mg/Kg dry ND 0.44 0.071 mg/Kg dry ND 0.44 0.094 mg/Kg dry ND 0.44 0.095 mg/Kg dry ND 0.44 0.095 mg/Kg dry ND 0.44 0.066 mg/Kg dry ND 0.44 0.066 mg/Kg dry ND 0.44 0.066 mg/Kg dry ND 0.44 0.066 mg/Kg dry ND 0.44 0.066 mg/Kg dry ND 0.44 0.061 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.074 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.063 mg/Kg dry ND 0.44 0.065 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.069 mg/Kg dry ND 0.44 0.069 mg/Kg dry ND 0.44 0.069 mg/Kg dry ND 0.44 0.069 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry ND 0.44 0.068 mg/Kg dry | ND 0.44 0.053 mg/Kg dry 1 ND 0.22 0.10 mg/Kg dry 1 ND 0.44 0.074 mg/Kg dry 1 ND 0.22 0.061 mg/Kg dry 1 ND 0.22 0.070 mg/Kg dry 1 ND 0.22 0.070 mg/Kg dry 1 ND 0.44 0.082 mg/Kg dry 1 ND 0.44 0.071 mg/Kg dry 1 ND 0.44 0.094 mg/Kg dry 1 ND 0.44 0.095 mg/Kg dry 1 ND 0.44 0.095 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.061 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.074 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.065 mg/Kg dry 1 ND 0.44 0.065 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.065 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 ND 0.44 0.068 mg/Kg dry 1 | ND 0.44 0.053 mg/Kg dry 1 ND 0.22 0.10 mg/Kg dry 1 ND 0.44 0.074 mg/Kg dry 1 ND 0.22 0.061 mg/Kg dry 1 ND 0.22 0.061 mg/Kg dry 1 ND 0.22 0.070 mg/Kg dry 1 ND 0.44 0.082 mg/Kg dry 1 ND 0.44 0.071 mg/Kg dry 1 ND 0.44 0.071 mg/Kg dry 1 ND 0.44 0.094 mg/Kg dry 1 ND 0.44 0.095 mg/Kg dry 1 ND 0.44 0.095 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.066 mg/Kg dry 1 ND 0.44 0.061 mg/Kg dry 1 ND 0.44 0.071 mg/Kg dry 1 ND 0.44 0.072 mg/Kg dry 1 ND 0.44 0.073 mg/Kg dry 1 ND 0.44 0.074 mg/Kg dry 1 ND 0.44 0.075 mg/Kg dry 1 ND 0.44 0.079 mg/Kg dry 1 ND 0.44 0.079 mg/Kg dry 1 ND 0.44 0.079 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.063 mg/Kg dry 1 ND 0.44 0.065 mg/Kg dry 1 ND 0.44 0.055 mg/Kg dry 1 ND 0.44 0.058 mg/Kg dry 1 ND 0.44 0.059 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 ND 0.44 0.069 mg/Kg dry 1 | ND       | ND            | ND      |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-MW208-5-7-211014 Sampled: 10/14/2021 09:20

Sample ID: 21L0153-14
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 76.9    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB208-18-20-211014 Sampled: 10/14/2021 09:30

Sample ID: 21L0153-15
Sample Matrix: Soil

Sample Flags: H-10

Semivolatile Organic Compounds by GC/MS

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Acenaphthylene                   | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Acetophenone                     | ND      | 0.42 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Aniline                          | ND      | 0.42 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Anthracene                       | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzidine                        | ND      | 0.81 | 0.19  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzo(a)anthracene               | ND      | 0.21 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.21 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.21 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.21 | 0.087 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.21 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Benzoic Acid                     | ND      | 1.2  | 0.49  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.42 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.42 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.42 | 0.095 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.42 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.42 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Butylbenzylphthalate             | ND      | 0.42 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Carbazole                        | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Chloroaniline                  | ND      | 0.81 | 0.055 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.81 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.42 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Chlorophenol                   | ND      | 0.42 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.42 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Chrysene                         | ND      | 0.21 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.21 | 0.084 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Dibenzofuran                     | ND      | 0.42 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Di-n-butylphthalate              | ND      | 0.42 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.42 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.42 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.42 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.21 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.42 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Diethylphthalate                 | ND      | 0.42 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.42 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Dimethylphthalate                | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.42 | 0.28  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.81 | 0.36  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.42 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.42 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Di-n-octylphthalate              | ND      | 0.42 | 0.15  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.42 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Fluoranthene                     | ND      | 0.21 | 0.066 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Fluorene                         | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB208-18-20-211014 Sampled: 10/14/2021 09:30

Sample ID: 21L0153-15

Sample Matrix: Soil

| Sample Flags: H-10                   |         |        | Semivo | olatile Organic C | ompounds by | GC/MS      |              |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|------------|--------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual  | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.42   | 0.056  | mg/Kg dry         | 1           | 1 mg/ 2 mm | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.42   | 0.053  | mg/Kg dry         | 1           | V-05       | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.42   | 0.17   | mg/Kg dry         | 1           | V-05       | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Hexachloroethane                     | ND      | 0.42   | 0.049  | mg/Kg dry         | 1           | . 03       | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.21   | 0.094  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Isophorone                           | ND      | 0.42   | 0.069  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.21   | 0.057  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.21   | 0.066  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Methylphenol                       | ND      | 0.42   | 0.077  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.42   | 0.067  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Naphthalene                          | ND      | 0.21   | 0.057  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Nitroaniline                       | ND      | 0.42   | 0.088  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 3-Nitroaniline                       | ND      | 0.42   | 0.071  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Nitroaniline                       | ND      | 0.42   | 0.089  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Nitrobenzene                         | ND      | 0.42   | 0.060  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2-Nitrophenol                        | ND      | 0.42   | 0.065  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 4-Nitrophenol                        | ND      | 0.81   | 0.17   | mg/Kg dry         | 1           | V-05       | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.42   | 0.062  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.42   | 0.062  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.42   | 0.057  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.42   | 0.070  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Pentachlorophenol                    | ND      | 0.42   | 0.18   | mg/Kg dry         | 1           | V-05       | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Phenanthrene                         | ND      | 0.21   | 0.065  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Phenol                               | ND      | 0.42   | 0.059  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Pyrene                               | ND      | 0.21   | 0.066  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Pyridine                             | ND      | 0.42   | 0.042  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.42   | 0.054  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.42   | 0.052  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.42   | 0.065  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.42   | 0.064  | mg/Kg dry         | 1           |            | SW-846 8270E | 12/3/21          | 12/6/21 21:35         | BGL     |
| Surrogates                           |         | % Reco | overy  | Recovery Limit    | ts          | Flag/Qual  |              |                  |                       |         |
| 2-Fluorophenol                       |         | 69.6   | -      | 30-130            |             | -          |              |                  | 12/6/21 21:35         |         |
| Phenol-d6                            |         | 68.8   |        | 30-130            |             |            |              |                  | 12/6/21 21:35         |         |
| Nitrobenzene-d5                      |         | 66.6   |        | 30-130            |             |            |              |                  | 12/6/21 21:35         |         |
| 2-Fluorobiphenyl                     |         | 77.4   |        | 30-130            |             |            |              |                  | 12/6/21 21:35         |         |
| 2,4,6-Tribromophenol                 |         | 80.9   |        | 30-130            |             |            |              |                  | 12/6/21 21:35         |         |
| p-Terphenyl-d14                      |         | 117    |        | 30-130            |             |            |              |                  | 12/6/21 21:35         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB208-18-20-211014** Sampled: 10/14/2021 09:30

Sample ID: 21L0153-15
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 81.9    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-0-2-211014 Sampled: 10/14/2021 13:58

Sample ID: 21L0153-16
Sample Matrix: Soil

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | 0.065   | 0.19 | 0.061 | mg/Kg dry | 1        | J         | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Acenaphthylene                   | 0.067   | 0.19 | 0.059 | mg/Kg dry | 1        | J         | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Acetophenone                     | ND      | 0.39 | 0.053 | mg/Kg dry | 1        | J         | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Aniline                          | ND      | 0.39 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Anthracene                       | 0.37    | 0.19 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzidine                        | ND      | 0.75 | 0.18  | mg/Kg dry | 1        | V-05      | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzo(a)anthracene               | 1.8     | 0.19 | 0.054 | mg/Kg dry | 1        | * 05      | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzo(a)pyrene                   | 1.5     | 0.19 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzo(b)fluoranthene             | 1.9     | 0.19 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzo(g,h,i)perylene             | 0.64    | 0.19 | 0.081 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzo(k)fluoranthene             | 0.84    | 0.19 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Benzoic Acid                     | ND      | 1.1  | 0.46  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.39 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.39 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.39 | 0.033 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.39 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.39 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/3/21          | 12/6/21 22:01         | BGL     |
| Butylbenzylphthalate             | ND      | 0.39 | 0.049 |           | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Carbazole                        |         | 0.39 |       | mg/Kg dry |          |           |                              |                  | 12/6/21 22:01         |         |
| 4-Chloroaniline                  | 0.23    |      | 0.064 | mg/Kg dry | 1        | V 24      | SW-846 8270E                 | 12/3/21          |                       | BGL     |
|                                  | ND      | 0.75 | 0.051 | mg/Kg dry | 1        | V-34      | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.75 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.39 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2-Chlorophenol                   | ND      | 0.39 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Chrysene                         | 1.6     | 0.19 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Dibenz(a,h)anthracene            | 0.21    | 0.19 | 0.079 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Dibenzofuran                     | 0.099   | 0.39 | 0.057 | mg/Kg dry | 1        | J         | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Di-n-butylphthalate              | ND      | 0.39 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.39 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.39 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.39 | 0.040 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.19 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.39 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Diethylphthalate                 | ND      | 0.39 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.39 | 0.11  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Dimethylphthalate                | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.39 | 0.26  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.75 | 0.33  | mg/Kg dry | 1        | V-04      | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.39 | 0.076 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.39 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Di-n-octylphthalate              | ND      | 0.39 | 0.14  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.39 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Fluoranthene                     | 3.0     | 0.19 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
| Fluorene                         | 0.11    | 0.19 | 0.065 | mg/Kg dry | 1        | J         | SW-846 8270E                 | 12/3/21          | 12/6/21 22:01         | BGL     |
|                                  |         |      |       | 2 2 7     |          |           |                              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-0-2-211014 Sampled: 10/14/2021 13:58

Sample ID: 21L0153-16 Sample Matrix: Soil

| Sample Flags: H-10                      |         |             | Semivo | latile Organic Co | ompounds by | GC/MS     |              |                  |                                |        |
|-----------------------------------------|---------|-------------|--------|-------------------|-------------|-----------|--------------|------------------|--------------------------------|--------|
| Analyte                                 | Results | RL          | DL     | Units             | Dilution    | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed          | Analys |
| Hexachlorobenzene                       | ND      | 0.39        | 0.052  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Hexachlorobutadiene                     | ND      | 0.39        | 0.049  | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Hexachlorocyclopentadiene               | ND      | 0.39        | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Hexachloroethane                        | ND      | 0.39        | 0.046  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Indeno(1,2,3-cd)pyrene                  | 0.73    | 0.19        | 0.088  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Isophorone                              | ND      | 0.39        | 0.065  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 1-Methylnaphthalene                     | 0.058   | 0.19        | 0.054  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2-Methylnaphthalene                     | 0.10    | 0.19        | 0.061  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2-Methylphenol                          | ND      | 0.39        | 0.072  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 3/4-Methylphenol                        | ND      | 0.39        | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Naphthalene                             | 0.15    | 0.19        | 0.053  | mg/Kg dry         | 1           | J         | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2-Nitroaniline                          | ND      | 0.39        | 0.082  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 3-Nitroaniline                          | ND      | 0.39        | 0.066  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 4-Nitroaniline                          | ND      | 0.39        | 0.083  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Nitrobenzene                            | ND      | 0.39        | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2-Nitrophenol                           | ND      | 0.39        | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 4-Nitrophenol                           | ND      | 0.75        | 0.16   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| N-Nitrosodimethylamine                  | ND      | 0.39        | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| N-Nitrosodiphenylamine/Diphenylamine    | ND      | 0.39        | 0.058  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| N-Nitrosodi-n-propylamine               | ND      | 0.39        | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Pentachloronitrobenzene                 | ND      | 0.39        | 0.065  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Pentachlorophenol                       | ND      | 0.39        | 0.17   | mg/Kg dry         | 1           | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Phenanthrene                            | 1.6     | 0.19        | 0.061  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Phenol                                  | ND      | 0.39        | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Pyrene                                  | 2.9     | 0.19        | 0.062  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Pyridine                                | ND      | 0.39        | 0.040  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 1,2,4,5-Tetrachlorobenzene              | ND      | 0.39        | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 1,2,4-Trichlorobenzene                  | ND      | 0.39        | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2,4,5-Trichlorophenol                   | ND      | 0.39        | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| 2,4,6-Trichlorophenol                   | ND      | 0.39        | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E | 12/3/21          | 12/6/21 22:01                  | BGL    |
| Surrogates                              |         | % Reco      | very   | Recovery Limit    | s           | Flag/Qual |              |                  |                                |        |
| 2-Fluorophenol                          |         | 65.9        |        | 30-130            |             |           |              |                  | 12/6/21 22:01                  |        |
| Phenol-d6                               |         | 68.3        |        | 30-130            |             |           |              |                  | 12/6/21 22:01                  |        |
| Nitrobenzene-d5                         |         | 67.4        |        | 30-130            |             |           |              |                  | 12/6/21 22:01                  |        |
| 2-Fluorobiphenyl                        |         | 82.6        |        | 30-130            |             |           |              |                  | 12/6/21 22:01                  |        |
| 2,4,6-Tribromophenol<br>p-Terphenyl-d14 |         | 74.0<br>123 |        | 30-130<br>30-130  |             |           |              |                  | 12/6/21 22:01<br>12/6/21 22:01 |        |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB214-0-2-211014** Sampled: 10/14/2021 13:58

Sample ID: 21L0153-16
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 87.8    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/22/21 15:12 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21L0153-17
Sample Matrix: Soil

| Analyte                         | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|---------------------------------|---------|------|-------|-----------|----------|-----------|--------------|------------------|-----------------------|---------|
| Acenaphthene                    | ND      | 0.21 | 0.067 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Acenaphthylene                  | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Acetophenone                    | ND      | 0.43 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Aniline                         | ND      | 0.43 | 0.089 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Anthracene                      | ND      | 0.21 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzidine                       | ND      | 0.83 | 0.19  | mg/Kg dry | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzo(a)anthracene              | ND      | 0.21 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzo(a)pyrene                  | ND      | 0.21 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzo(b)fluoranthene            | ND      | 0.21 | 0.064 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzo(g,h,i)perylene            | ND      | 0.21 | 0.089 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzo(k)fluoranthene            | ND      | 0.21 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Benzoic Acid                    | ND      | 1.3  | 0.51  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Bis(2-chloroethoxy)methane      | ND      | 0.43 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Bis(2-chloroethyl)ether         | ND      | 0.43 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Bis(2-chloroisopropyl)ether     | ND      | 0.43 | 0.097 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Bis(2-Ethylhexyl)phthalate      | ND      | 0.43 | 0.072 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 4-Bromophenylphenylether        | ND      | 0.43 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Butylbenzylphthalate            | ND      | 0.43 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Carbazole                       | ND      | 0.21 | 0.070 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 4-Chloroaniline                 | ND      | 0.83 | 0.057 | mg/Kg dry | 1        | V-34      | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 1-Chloro-3-methylphenol         | ND      | 0.83 | 0.071 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2-Chloronaphthalene             | ND      | 0.43 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2-Chlorophenol                  | ND      | 0.43 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 4-Chlorophenylphenylether       | ND      | 0.43 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Chrysene                        | ND      | 0.21 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Dibenz(a,h)anthracene           | ND      | 0.21 | 0.086 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Dibenzofuran                    | ND      | 0.43 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Di-n-butylphthalate             | ND      | 0.43 | 0.060 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 1,2-Dichlorobenzene             | ND      | 0.43 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| ,3-Dichlorobenzene              | ND      | 0.43 | 0.047 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 1,4-Dichlorobenzene             | ND      | 0.43 | 0.044 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 3,3-Dichlorobenzidine           | ND      | 0.21 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2,4-Dichlorophenol              | ND      | 0.43 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Diethylphthalate                | ND      | 0.43 | 0.065 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2,4-Dimethylphenol              | ND      | 0.43 | 0.12  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Dimethylphthalate               | ND      | 0.43 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 4,6-Dinitro-2-methylphenol      | ND      | 0.43 | 0.29  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2,4-Dinitrophenol               | ND      | 0.83 | 0.37  | mg/Kg dry | 1        | V-04      | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2,4-Dinitrotoluene              | ND      | 0.43 | 0.083 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| 2,6-Dinitrotoluene              | ND      | 0.43 | 0.071 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Di-n-octylphthalate             | ND      | 0.43 | 0.15  | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| ,2-Diphenylhydrazine/Azobenzene | ND      | 0.43 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Fluoranthene                    | ND      | 0.21 | 0.068 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
| Fluorene                        | ND      | 0.21 | 0.072 | mg/Kg dry | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 22:28         | BGL     |
|                                 |         |      | –     | G G J     | •        |           |              |                  |                       |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-5-7-211014 Sampled: 10/14/2021 14:10

Sample ID: 21L0153-17
Sample Matrix: Soil

|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                       | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method       | Date<br>Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.43                                     | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.21                                     | 0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.21                                     | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.21                                     | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.21                                     | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/Kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.83                                     | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND      | 0.43                                     | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW-846 8270E | 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | % Reco                                   | very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flag/Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 67.9                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 66.6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 64.6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 77.6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 80.9                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/6/21 22:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | ND ND ND ND ND ND ND ND ND ND ND ND ND N | ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.21 ND 0.21 ND 0.21 ND 0.43 ND 0.21 ND 0.43 ND 0.21 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 ND 0.43 | Results         RL         DL           ND         0.43         0.054           ND         0.43         0.054           ND         0.43         0.051           ND         0.43         0.051           ND         0.21         0.096           ND         0.21         0.059           ND         0.21         0.067           ND         0.43         0.079           ND         0.43         0.069           ND         0.43         0.091           ND         0.43         0.091           ND         0.43         0.062           ND         0.43         0.067           ND         0.43         0.062           ND         0.43         0.067           ND         0.43         0.067           ND         0.43         0.064           ND         0.43         0.064           ND         0.43         0.064           ND         0.43         0.072           ND         0.43         0.064           ND         0.43         0.064           ND         0.43         0.064           ND | Results         RL         DL         Units           ND         0.43         0.058         mg/Kg dry           ND         0.43         0.054         mg/Kg dry           ND         0.43         0.18         mg/Kg dry           ND         0.43         0.051         mg/Kg dry           ND         0.21         0.096         mg/Kg dry           ND         0.43         0.071         mg/Kg dry           ND         0.21         0.059         mg/Kg dry           ND         0.21         0.059         mg/Kg dry           ND         0.21         0.067         mg/Kg dry           ND         0.43         0.079         mg/Kg dry           ND         0.43         0.069         mg/Kg dry           ND         0.43         0.091         mg/Kg dry           ND         0.43         0.091         mg/Kg dry           ND         0.43         0.091         mg/Kg dry           ND         0.43         0.062         mg/Kg dry           ND         0.43         0.067         mg/Kg dry           ND         0.43         0.064         mg/Kg dry           ND         0.43 | Results         RL         DL         Units         Dilution           ND         0.43         0.058         mg/Kg dry         1           ND         0.43         0.054         mg/Kg dry         1           ND         0.43         0.18         mg/Kg dry         1           ND         0.43         0.051         mg/Kg dry         1           ND         0.21         0.096         mg/Kg dry         1           ND         0.21         0.096         mg/Kg dry         1           ND         0.21         0.059         mg/Kg dry         1           ND         0.21         0.059         mg/Kg dry         1           ND         0.43         0.079         mg/Kg dry         1           ND         0.43         0.069         mg/Kg dry         1           ND         0.43         0.069         mg/Kg dry         1           ND         0.43         0.091         mg/Kg dry         1           ND         0.43         0.091         mg/Kg dry         1           ND         0.43         0.062         mg/Kg dry         1           ND         0.43         0.067         mg/Kg | ND           | Results         RL         DL         Units         Dilution         Flag/Qual         Method           ND         0.43         0.058         mg/Kg dry         1         V-05         SW-846 8270E           ND         0.43         0.054         mg/Kg dry         1         V-05         SW-846 8270E           ND         0.43         0.051         mg/Kg dry         1         V-05         SW-846 8270E           ND         0.43         0.051         mg/Kg dry         1         SW-846 8270E           ND         0.21         0.096         mg/Kg dry         1         SW-846 8270E           ND         0.21         0.099         mg/Kg dry         1         SW-846 8270E           ND         0.21         0.059         mg/Kg dry         1         SW-846 8270E           ND         0.21         0.067         mg/Kg dry         1         SW-846 8270E           ND         0.43         0.079         mg/Kg dry         1         SW-846 8270E           ND         0.43         0.069         mg/Kg dry         1         SW-846 8270E           ND         0.43         0.091         mg/Kg dry         1         SW-846 8270E           ND | Results         RL         DL         Units         Dilution         Flag/Qual         Method         Prepared           ND         0.43         0.058         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.43         0.054         mg/Kg dry         1         V-05         SW-846 8270E         12/3/21           ND         0.43         0.051         mg/Kg dry         1         V-05         SW-846 8270E         12/3/21           ND         0.43         0.051         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.21         0.069         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.43         0.071         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.43         0.079         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.21         0.069         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.43         0.079         mg/Kg dry         1         SW-846 8270E         12/3/21           ND         0.43         0.069         mg/Kg dry         1 | Results         RL         DL         Units         Dilution         Flag/Qual         Method         Prepared Prepared Analyzed Ana |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB214-5-7-211014** Sampled: 10/14/2021 14:10

Sample ID: 21L0153-17
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 79.9    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-14-16-211014 Sampled: 10/14/2021 14:35

Sample ID: 21L0153-18
Sample Matrix: Soil

| Analyte                          | Results | RL   | DL    | Units     | Dilution | Flag/Qual | Method        | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|---------|------|-------|-----------|----------|-----------|---------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND      | 0.18 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Acenaphthylene                   | ND      | 0.18 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Acetophenone                     | ND      | 0.35 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Aniline                          | ND      | 0.35 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Anthracene                       | ND      | 0.18 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzidine                        | ND      | 0.68 | 0.16  | mg/Kg dry | 1        | V-05      | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzo(a)anthracene               | ND      | 0.18 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzo(a)pyrene                   | ND      | 0.18 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzo(b)fluoranthene             | ND      | 0.18 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzo(g,h,i)perylene             | ND      | 0.18 | 0.074 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzo(k)fluoranthene             | ND      | 0.18 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Benzoic Acid                     | ND      | 1.0  | 0.42  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Bis(2-chloroethoxy)methane       | ND      | 0.35 | 0.046 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Bis(2-chloroethyl)ether          | ND      | 0.35 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND      | 0.35 | 0.080 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND      | 0.35 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Bromophenylphenylether         | ND      | 0.35 | 0.045 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Butylbenzylphthalate             | ND      | 0.35 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Carbazole                        | ND      | 0.18 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Chloroaniline                  | ND      | 0.68 | 0.047 | mg/Kg dry | 1        | V-34      | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Chloro-3-methylphenol          | ND      | 0.68 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Chloronaphthalene              | ND      | 0.35 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Chlorophenol                   | ND      | 0.35 | 0.049 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Chlorophenylphenylether        | ND      | 0.35 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Chrysene                         | ND      | 0.18 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Dibenz(a,h)anthracene            | ND      | 0.18 | 0.071 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Dibenzofuran                     | ND      | 0.35 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Di-n-butylphthalate              | ND      | 0.35 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,2-Dichlorobenzene              | ND      | 0.35 | 0.040 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,3-Dichlorobenzene              | ND      | 0.35 | 0.039 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,4-Dichlorobenzene              | ND      | 0.35 | 0.037 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 3,3-Dichlorobenzidine            | ND      | 0.18 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4-Dichlorophenol               | ND      | 0.35 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Diethylphthalate                 | ND      | 0.35 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4-Dimethylphenol               | ND      | 0.35 | 0.096 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Dimethylphthalate                | ND      | 0.35 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4,6-Dinitro-2-methylphenol       | ND      | 0.35 | 0.24  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4-Dinitrophenol                | ND      | 0.68 | 0.30  | mg/Kg dry | 1        | V-04      | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4-Dinitrotoluene               | ND      | 0.35 | 0.069 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,6-Dinitrotoluene               | ND      | 0.35 | 0.058 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Di-n-octylphthalate              | ND      | 0.35 | 0.12  | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND      | 0.35 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Fluoranthene                     | ND      | 0.18 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
| Fluorene                         | ND      | 0.18 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E  | 12/3/21          | 12/6/21 22:54         | BGL     |
|                                  | 1112    | 0.10 | 0.00) | mg ng my  |          |           | 511 010 02/0L | 1 سا ال است      | .2.0.21 22.37         | DOL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB214-14-16-211014 Sampled: 10/14/2021 14:35

Sample ID: 21L0153-18
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

| Sample Flags: H-10                   |         |        | Semivo | latile Organic Co | ompounds by | GC/MS     |                |                  |                       |         |
|--------------------------------------|---------|--------|--------|-------------------|-------------|-----------|----------------|------------------|-----------------------|---------|
| Analyte                              | Results | RL     | DL     | Units             | Dilution    | Flag/Qual | Method         | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
| Hexachlorobenzene                    | ND      | 0.35   | 0.048  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.35   | 0.045  | mg/Kg dry         | 1           | V-05      | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.35   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Hexachloroethane                     | ND      | 0.35   | 0.042  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.18   | 0.080  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Isophorone                           | ND      | 0.35   | 0.059  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1-Methylnaphthalene                  | ND      | 0.18   | 0.049  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Methylnaphthalene                  | ND      | 0.18   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Methylphenol                       | ND      | 0.35   | 0.065  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.35   | 0.057  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Naphthalene                          | ND      | 0.18   | 0.048  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Nitroaniline                       | ND      | 0.35   | 0.075  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 3-Nitroaniline                       | ND      | 0.35   | 0.060  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Nitroaniline                       | ND      | 0.35   | 0.076  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Nitrobenzene                         | ND      | 0.35   | 0.051  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2-Nitrophenol                        | ND      | 0.35   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 4-Nitrophenol                        | ND      | 0.68   | 0.14   | mg/Kg dry         | 1           | V-05      | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.35   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.35   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.35   | 0.048  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.35   | 0.059  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Pentachlorophenol                    | ND      | 0.35   | 0.15   | mg/Kg dry         | 1           | V-05      | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Phenanthrene                         | ND      | 0.18   | 0.056  | mg/Kg dry         | 1           | . 03      | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Phenol                               | ND      | 0.35   | 0.050  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Pyrene                               | ND      | 0.18   | 0.056  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Pyridine                             | ND      | 0.35   | 0.036  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.35   | 0.046  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.35   | 0.044  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.35   | 0.055  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.35   | 0.053  | mg/Kg dry         | 1           |           | SW-846 8270E   | 12/3/21          | 12/6/21 22:54         | BGL     |
| Surrogates                           | 110     | % Reco |        | Recovery Limit    |             | Flag/Qual | 5.1 0 10 0270E | 12/3/21          | 12/0/21 22.51         | DGE     |
| 2-Fluorophenol                       |         | 68.6   | ,      | 30-130            | -           | B. K.m.   |                |                  | 12/6/21 22:54         |         |
| Phenol-d6                            |         | 67.5   |        | 30-130            |             |           |                |                  | 12/6/21 22:54         |         |
| Nitrobenzene-d5                      |         | 64.5   |        | 30-130            |             |           |                |                  | 12/6/21 22:54         |         |
| 2-Fluorobiphenyl                     |         | 76.0   |        | 30-130            |             |           |                |                  | 12/6/21 22:54         |         |
| 2,4,6-Tribromophenol                 |         | 80.7   |        | 30-130            |             |           |                |                  | 12/6/21 22:54         |         |
| p-Terphenyl-d14                      |         | 118    |        | 30-130            |             |           |                |                  | 12/6/21 22:54         |         |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

**Field Sample #: HRP-SB214-14-16-211014** Sampled: 10/14/2021 14:35

Sample ID: 21L0153-18
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 96.6    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/21/21 11:24 | TDK     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-15-17-211015 Sampled: 10/15/2021 12:50

Sample ID: 21L0153-19
Sample Matrix: Soil

| Analyte                          | Results  | RL   | DL    | Units     | Dilution | Flag/Qual | Method                       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|----------------------------------|----------|------|-------|-----------|----------|-----------|------------------------------|------------------|-----------------------|---------|
| Acenaphthene                     | ND       | 0.19 | 0.058 | mg/Kg dry | 1        | 8.0       | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Acenaphthylene                   | ND       | 0.19 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Acetophenone                     | ND       | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Aniline                          | ND       | 0.37 | 0.078 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Anthracene                       | ND       | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzidine                        | ND       | 0.72 | 0.17  | mg/Kg dry | 1        | V-05      | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzo(a)anthracene               | ND       | 0.19 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzo(a)pyrene                   | ND       | 0.19 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzo(b)fluoranthene             | ND       | 0.19 | 0.056 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzo(g,h,i)perylene             | ND       | 0.19 | 0.078 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzo(k)fluoranthene             | ND       | 0.19 | 0.050 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Benzoic Acid                     | ND       | 1.1  | 0.44  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Bis(2-chloroethoxy)methane       | ND       | 0.37 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Bis(2-chloroethyl)ether          | ND       | 0.37 | 0.051 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Bis(2-chloroisopropyl)ether      | ND       | 0.37 | 0.085 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Bis(2-Ethylhexyl)phthalate       | ND       | 0.37 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 4-Bromophenylphenylether         | ND       | 0.37 | 0.048 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Butylbenzylphthalate             | ND       | 0.37 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Carbazole                        | ND       | 0.19 | 0.061 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1-Chloroaniline                  | ND       | 0.72 | 0.049 | mg/Kg dry | 1        | V-34      | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 4-Chloro-3-methylphenol          | ND       | 0.72 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Chloronaphthalene              | ND       | 0.37 | 0.043 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Chlorophenol                   | ND       | 0.37 | 0.052 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1-Chlorophenylphenylether        | ND       | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Chrysene                         | ND       | 0.19 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Dibenz(a,h)anthracene            | ND       | 0.19 | 0.076 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Dibenzofuran                     | ND       | 0.37 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Di-n-butylphthalate              | ND       | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,2-Dichlorobenzene              | ND       | 0.37 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,3-Dichlorobenzene              | ND       | 0.37 | 0.042 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,4-Dichlorobenzene              | ND<br>ND | 0.37 | 0.041 | mg/Kg dry | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 3,3-Dichlorobenzidine            | ND       | 0.37 | 0.054 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4-Dichlorophenol               | ND<br>ND | 0.19 | 0.055 | mg/Kg dry | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Diethylphthalate                 | ND<br>ND | 0.37 | 0.057 | mg/Kg dry | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/3/21          |                       | BGL     |
| 2,4-Dimethylphenol               | ND       | 0.37 |       |           |          |           | SW-846 8270E                 |                  | 12/6/21 23:20         | BGL     |
| Dimethylphthalate                |          |      | 0.10  | mg/Kg dry | 1        |           | SW-846 8270E<br>SW-846 8270E | 12/3/21          | 12/6/21 23:20         |         |
| 4,6-Dinitro-2-methylphenol       | ND       | 0.37 | 0.054 | mg/Kg dry | 1        |           |                              | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4-Dinitrophenol                | ND<br>ND | 0.37 | 0.25  | mg/Kg dry | 1        | V 04      | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4-Dinitrophenor                | ND       | 0.72 | 0.32  | mg/Kg dry | 1        | V-04      | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4-Dinitrotoluene               | ND<br>ND | 0.37 | 0.073 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
|                                  | ND<br>ND | 0.37 | 0.062 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Di-n-octylphthalate              | ND       | 0.37 | 0.13  | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,2-Diphenylhydrazine/Azobenzene | ND       | 0.37 | 0.053 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Fluoranthene                     | ND       | 0.19 | 0.059 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |
| Fluorene                         | ND       | 0.19 | 0.063 | mg/Kg dry | 1        |           | SW-846 8270E                 | 12/3/21          | 12/6/21 23:20         | BGL     |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-15-17-211015 Sampled: 10/15/2021 12:50

Sample ID: 21L0153-19
Sample Matrix: Soil

| by GC/MS |
|----------|
| by GC/   |

| Analyte                              | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method       | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------------|---------|--------|-------|----------------|----------|-----------|--------------|------------------|-----------------------|---------|
| Hexachlorobenzene                    | ND      | 0.37   | 0.050 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Hexachlorobutadiene                  | ND      | 0.37   | 0.048 | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Hexachlorocyclopentadiene            | ND      | 0.37   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Hexachloroethane                     | ND      | 0.37   | 0.044 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Indeno(1,2,3-cd)pyrene               | ND      | 0.19   | 0.084 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Isophorone                           | ND      | 0.37   | 0.062 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1-Methylnaphthalene                  | 0.12    | 0.19   | 0.051 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Methylnaphthalene                  | 0.20    | 0.19   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Methylphenol                       | ND      | 0.37   | 0.069 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 3/4-Methylphenol                     | ND      | 0.37   | 0.060 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Naphthalene                          | 0.13    | 0.19   | 0.051 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Nitroaniline                       | ND      | 0.37   | 0.079 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 3-Nitroaniline                       | ND      | 0.37   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 4-Nitroaniline                       | ND      | 0.37   | 0.080 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Nitrobenzene                         | ND      | 0.37   | 0.054 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2-Nitrophenol                        | ND      | 0.37   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 4-Nitrophenol                        | ND      | 0.72   | 0.15  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| N-Nitrosodimethylamine               | ND      | 0.37   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| N-Nitrosodiphenylamine/Diphenylamine | ND      | 0.37   | 0.056 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| N-Nitrosodi-n-propylamine            | ND      | 0.37   | 0.051 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Pentachloronitrobenzene              | ND      | 0.37   | 0.063 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Pentachlorophenol                    | ND      | 0.37   | 0.16  | mg/Kg dry      | 1        | V-05      | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Phenanthrene                         | 0.074   | 0.19   | 0.059 | mg/Kg dry      | 1        | J         | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Phenol                               | ND      | 0.37   | 0.053 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Pyrene                               | ND      | 0.19   | 0.059 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Pyridine                             | ND      | 0.37   | 0.038 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,2,4,5-Tetrachlorobenzene           | ND      | 0.37   | 0.048 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 1,2,4-Trichlorobenzene               | ND      | 0.37   | 0.047 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4,5-Trichlorophenol                | ND      | 0.37   | 0.058 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| 2,4,6-Trichlorophenol                | ND      | 0.37   | 0.057 | mg/Kg dry      | 1        |           | SW-846 8270E | 12/3/21          | 12/6/21 23:20         | BGL     |
| Surrogates                           |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |              |                  |                       |         |
| 2-Fluorophenol                       |         | 70.9   |       | 30-130         |          |           |              |                  | 12/6/21 23:20         |         |

| Surrogates           | % Recovery | Recovery Limits | Flag/Qual |               |
|----------------------|------------|-----------------|-----------|---------------|
| 2-Fluorophenol       | 70.9       | 30-130          |           | 12/6/21 23:20 |
| Phenol-d6            | 71.0       | 30-130          |           | 12/6/21 23:20 |
| Nitrobenzene-d5      | 68.0       | 30-130          |           | 12/6/21 23:20 |
| 2-Fluorobiphenyl     | 80.0       | 30-130          |           | 12/6/21 23:20 |
| 2,4,6-Tribromophenol | 82.7       | 30-130          |           | 12/6/21 23:20 |
| p-Terphenyl-d14      | 107        | 30-130          |           | 12/6/21 23:20 |



Project Location: 1400 N. Royal St., Alexandria, VA Sample Description: Work Order: 21L0153

Date Received: 12/2/2021

Field Sample #: HRP-SB211-15-17-211015 Sampled: 10/15/2021 12:50

Sample ID: 21L0153-19
Sample Matrix: Soil

|          |         |         |    |       |          |           |          | Date     | Date/Time      |         |
|----------|---------|---------|----|-------|----------|-----------|----------|----------|----------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag/Qual | Method   | Prepared | Analyzed       | Analyst |
| % Solids |         | 91.3    |    | % Wt  | 1        |           | SM 2540G | 10/20/21 | 10/22/21 15:12 | TDK     |



## **Sample Extraction Data**

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21L0153-01 [HRP-SB213-0-1-211015]   | B292869 | 10/20/21 |
| 21L0153-02 [HRP-SB213-5-7-211015]   | B292869 | 10/20/21 |
| 21L0153-03 [HRP-SB213-16-18-211015] | B292869 | 10/20/21 |
| 21L0153-04 [HRP-SB212-0-2-211015]   | B292869 | 10/20/21 |
| 21L0153-05 [HRP-DUP04-0-2-211015]   | B292869 | 10/20/21 |
| 21L0153-06 [HRP-SB212-5-7-211015]   | B292869 | 10/20/21 |
| 21L0153-07 [HRP-SB212-15-17-211015] | B292869 | 10/20/21 |
| 21L0153-08 [HRP-SB211-0-1-211015]   | B292869 | 10/20/21 |
| 21L0153-09 [HRP-SB211-5-7-211015]   | B292869 | 10/20/21 |
| 21L0153-10 [HRP-SB209-0-1-211013]   | B292869 | 10/20/21 |
| 21L0153-11 [HRP-SB209-5-7-211013]   | B292869 | 10/20/21 |
| 21L0153-12 [HRP-SB209-15-17-211013] | B292869 | 10/20/21 |
| 21L0153-13 [HRP-SB208-0-1-211014]   | B292869 | 10/20/21 |
| 21L0153-14 [HRP-MW208-5-7-211014]   | B292869 | 10/20/21 |
| 21L0153-15 [HRP-SB208-18-20-211014] | B292869 | 10/20/21 |
| 21L0153-17 [HRP-SB214-5-7-211014]   | B292869 | 10/20/21 |
| 21L0153-18 [HRP-SB214-14-16-211014] | B292869 | 10/20/21 |

Prep Method: % Solids Analytical Method: SM 2540G

| Lab Number [Field ID]               | Batch   | Date     |
|-------------------------------------|---------|----------|
| 21L0153-16 [HRP-SB214-0-2-211014]   | B292891 | 10/20/21 |
| 21L0153-19 [HRP-SB211-15-17-211015] | B292891 | 10/20/21 |

Prep Method: SW-846 3546 Analytical Method: SW-846 8270E

| Lab Number [Field ID]               | Batch   | Initial [g] | Final [mL] | Date     |   |
|-------------------------------------|---------|-------------|------------|----------|---|
| 21L0153-01 [HRP-SB213-0-1-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 | _ |
| 21L0153-02 [HRP-SB213-5-7-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-03 [HRP-SB213-16-18-211015] | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-04 [HRP-SB212-0-2-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-05 [HRP-DUP04-0-2-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-06 [HRP-SB212-5-7-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-07 [HRP-SB212-15-17-211015] | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-08 [HRP-SB211-0-1-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-09 [HRP-SB211-5-7-211015]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-10 [HRP-SB209-0-1-211013]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-11 [HRP-SB209-5-7-211013]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-12 [HRP-SB209-15-17-211013] | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-13 [HRP-SB208-0-1-211014]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-14 [HRP-MW208-5-7-211014]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-15 [HRP-SB208-18-20-211014] | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-16 [HRP-SB214-0-2-211014]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-17 [HRP-SB214-5-7-211014]   | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-18 [HRP-SB214-14-16-211014] | B296003 | 30.0        | 1.00       | 12/03/21 |   |
| 21L0153-19 [HRP-SB211-15-17-211015] | B296003 | 30.0        | 1.00       | 12/03/21 |   |



# QUALITY CONTROL

# Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|-----|--------------|-------|
| Batch B296003 - SW-846 3546     |        |                    |           |                |                  |               |                |     |              |       |
| Blank (B296003-BLK1)            |        |                    | 1         | Prepared: 12   | 2/03/21 Anal     | yzed: 12/06/2 | 21             |     |              |       |
| Acenaphthene                    | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Acenaphthylene                  | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Acetophenone                    | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Aniline                         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Anthracene                      | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Benzidine                       | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-05  |
| Benzo(a)anthracene              | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Benzo(a)pyrene                  | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Benzo(b)fluoranthene            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Benzo(g,h,i)perylene            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| enzo(k)fluoranthene             | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Benzoic Acid                    | ND     | 1.0                | mg/Kg wet |                |                  |               |                |     |              |       |
| Bis(2-chloroethoxy)methane      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Bis(2-chloroethyl)ether         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Bis(2-chloroisopropyl)ether     | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| sis(2-Ethylhexyl)phthalate      | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Bromophenylphenylether         | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Butylbenzylphthalate            | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| arbazole                        | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chloroaniline                  | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-34  |
| -Chloro-3-methylphenol          | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chloronaphthalene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chlorophenol                   | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Chlorophenylphenylether        | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| hrysene                         | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| bibenz(a,h)anthracene           | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Dibenzofuran                    | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Pi-n-butylphthalate             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,2-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,3-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,4-Dichlorobenzene              | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,3-Dichlorobenzidine            | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,4-Dichlorophenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Piethylphthalate                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,4-Dimethylphenol               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| imethylphthalate                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,6-Dinitro-2-methylphenol       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,4-Dinitrophenol                | ND     | 0.66               | mg/Kg wet |                |                  |               |                |     |              | V-04  |
| ,4-Dinitrotoluene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,6-Dinitrotoluene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ri-n-octylphthalate             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ,2-Diphenylhydrazine/Azobenzene | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| luoranthene                     | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| luorene                         | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| Iexachlorobenzene               | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| Iexachlorobutadiene             | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              | V-05  |
| Iexachlorocyclopentadiene       | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              | V-05  |
| Iexachloroethane                | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| ndeno(1,2,3-cd)pyrene           | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| ophorone                        | ND     | 0.34               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Methylnaphthalene              | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |
| -Methylnaphthalene              | ND     | 0.17               | mg/Kg wet |                |                  |               |                |     |              |       |



# QUALITY CONTROL

| Analyte                                    | Result | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits   | RPD | RPD<br>Limit | Notes |
|--------------------------------------------|--------|--------------------|------------------------|----------------|------------------|---------------|------------------|-----|--------------|-------|
| Batch B296003 - SW-846 3546                |        |                    |                        |                |                  |               |                  |     |              |       |
| Blank (B296003-BLK1)                       |        |                    |                        | Prepared: 12   | 2/03/21 Analy    | yzed: 12/06/2 | 1                |     |              |       |
| -Methylphenol                              | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| /4-Methylphenol                            | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Naphthalene                                | ND     | 0.17               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| -Nitroaniline                              | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| -Nitroaniline                              | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| -Nitroaniline                              | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| Vitrobenzene                               | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| -Nitrophenol                               | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| -Nitrophenol                               | ND     | 0.66               | mg/Kg wet              |                |                  |               |                  |     |              | V-05  |
| I-Nitrosodimethylamine                     | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| I-Nitrosodiphenylamine/Diphenylamine       | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| I-Nitrosodi-n-propylamine                  | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| entachloronitrobenzene                     | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| entachlorophenol                           | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              | V-05  |
| Phenanthrene                               | ND     | 0.17               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| henol                                      | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| yrene                                      | ND     | 0.17               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| yridine                                    | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| ,2,4,5-Tetrachlorobenzene                  | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| ,2,4-Trichlorobenzene                      | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| ,4,5-Trichlorophenol                       | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| ,4,6-Trichlorophenol                       | ND     | 0.34               | mg/Kg wet              |                |                  |               |                  |     |              |       |
| urrogate: 2-Fluorophenol                   | 4.34   |                    | mg/Kg wet              | 6.67           |                  | 65.1          | 30-130           |     |              |       |
| urrogate: Phenol-d6                        | 4.18   |                    | mg/Kg wet              | 6.67           |                  | 62.7          | 30-130           |     |              |       |
| urrogate: Nitrobenzene-d5                  | 2.04   |                    | mg/Kg wet              | 3.33           |                  | 61.2          | 30-130           |     |              |       |
| urrogate: 2-Fluorobiphenyl                 | 2.48   |                    | mg/Kg wet              | 3.33           |                  | 74.5          | 30-130           |     |              |       |
| urrogate: 2,4,6-Tribromophenol             | 5.89   |                    | mg/Kg wet              | 6.67           |                  | 88.4          | 30-130           |     |              |       |
| urrogate: p-Terphenyl-d14                  | 4.29   |                    | mg/Kg wet              | 3.33           |                  | 129           | 30-130           |     |              |       |
|                                            |        |                    |                        | D 1. 12        | N/02/21 A1-      | 1. 12/06/2    | 1                |     |              |       |
| CS (B296003-BS1) cenaphthene               | 1 21   | 0.17               | mg/Kg wet              | 1.67           | 2/03/21 Analy    | 78.4          | 40-140           |     |              |       |
| cenaphthylene                              | 1.31   | 0.17               | mg/Kg wet              | 1.67           |                  | 90.7          | 40-140           |     |              |       |
| cetophenone                                | 1.51   | 0.17               | mg/Kg wet              | 1.67           |                  | 73.4          | 40-140           |     |              |       |
| niline                                     | 1.22   | 0.34               | mg/Kg wet              | 1.67           |                  | 59.6          | 10-140           |     |              |       |
| Anthracene                                 | 0.993  | 0.17               |                        |                |                  |               |                  |     |              |       |
| Benzidine                                  | 1.45   | 0.66               | mg/Kg wet<br>mg/Kg wet | 1.67           |                  | 86.9<br>97.8  | 40-140<br>40-140 |     |              | V-05  |
| Benzo(a)anthracene                         | 1.63   | 0.00               | mg/Kg wet              | 1.67           |                  |               |                  |     |              | v-05  |
| Benzo(a)pyrene                             | 1.39   | 0.17               | mg/Kg wet              | 1.67           |                  | 83.6<br>93.9  | 40-140<br>40-140 |     |              |       |
| Benzo(a)pyrene Benzo(b)fluoranthene        | 1.56   | 0.17               | mg/Kg wet<br>mg/Kg wet | 1.67           |                  |               |                  |     |              |       |
| Benzo(g,h,i)perylene                       | 1.48   | 0.17               | mg/Kg wet              | 1.67           |                  | 89.0          | 40-140           |     |              |       |
| enzo(g,n,1)peryiene<br>enzo(k)fluoranthene | 1.56   |                    |                        | 1.67           |                  | 93.5          | 40-140           |     |              |       |
| * *                                        | 1.68   | 0.17               | mg/Kg wet              | 1.67           |                  | 101           | 40-140           |     |              |       |
| Benzoic Acid                               | 1.06   | 1.0                | mg/Kg wet              | 1.67           |                  | 63.5          | 30-130           |     |              |       |
| is(2-chloroethoxy)methane                  | 1.32   | 0.34               | mg/Kg wet              | 1.67           |                  | 79.0          | 40-140           |     |              |       |
| Bis(2-chloroethyl)ether                    | 1.35   | 0.34               | mg/Kg wet              | 1.67           |                  | 81.1          | 40-140           |     |              |       |
| is(2-chloroisopropyl)ether                 | 1.81   | 0.34               | mg/Kg wet              | 1.67           |                  | 109           | 40-140           |     |              |       |
| is(2-Ethylhexyl)phthalate                  | 1.50   | 0.34               | mg/Kg wet              | 1.67           |                  | 90.3          | 40-140           |     |              |       |
| -Bromophenylphenylether                    | 1.31   | 0.34               | mg/Kg wet              | 1.67           |                  | 78.7          | 40-140           |     |              |       |
| tutylbenzylphthalate                       | 1.48   | 0.34               | mg/Kg wet              | 1.67           |                  | 88.6          | 40-140           |     |              |       |
| Carbazole                                  | 1.51   | 0.17               | mg/Kg wet              | 1.67           |                  | 90.5          | 40-140           |     |              |       |
| -Chloroaniline                             | 0.863  | 0.66               | mg/Kg wet              | 1.67           |                  | 51.8          | 10-140           |     |              | V-34  |
| -Chloro-3-methylphenol                     | 1.35   | 0.66               | mg/Kg wet              | 1.67           |                  | 81.0          | 30-130           |     |              |       |
| -Chloronaphthalene                         | 1.35   | 0.34               | mg/Kg wet              | 1.67           |                  | 81.1          | 40-140           |     |              |       |



# QUALITY CONTROL

| Analyte                              | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD | RPD<br>Limit | Notes        |
|--------------------------------------|--------------|--------------------|-----------|----------------|------------------|-------------|------------------|-----|--------------|--------------|
| Batch B296003 - SW-846 3546          |              |                    |           |                |                  |             |                  |     |              |              |
| LCS (B296003-BS1)                    |              |                    |           | Prepared: 12   | 2/03/21 Analyze  | ed: 12/06/2 | <u>!</u> 1       |     |              |              |
| 2-Chlorophenol                       | 1.37         | 0.34               | mg/Kg wet | 1.67           |                  | 82.0        | 30-130           |     |              |              |
| 4-Chlorophenylphenylether            | 1.28         | 0.34               | mg/Kg wet | 1.67           |                  | 76.8        | 40-140           |     |              |              |
| Chrysene                             | 1.47         | 0.17               | mg/Kg wet | 1.67           |                  | 88.4        | 40-140           |     |              |              |
| Dibenz(a,h)anthracene                | 1.56         | 0.17               | mg/Kg wet | 1.67           |                  | 93.4        | 40-140           |     |              |              |
| Dibenzofuran                         | 1.47         | 0.34               | mg/Kg wet | 1.67           |                  | 88.0        | 40-140           |     |              |              |
| Di-n-butylphthalate                  | 1.49         | 0.34               | mg/Kg wet | 1.67           |                  | 89.4        | 40-140           |     |              |              |
| 1,2-Dichlorobenzene                  | 1.21         | 0.34               | mg/Kg wet | 1.67           |                  | 72.6        | 40-140           |     |              |              |
| 1,3-Dichlorobenzene                  | 1.16         | 0.34               | mg/Kg wet | 1.67           |                  | 69.8        | 40-140           |     |              |              |
| 1,4-Dichlorobenzene                  | 1.20         | 0.34               | mg/Kg wet | 1.67           |                  | 71.7        | 40-140           |     |              |              |
| 3,3-Dichlorobenzidine                | 0.963        | 0.17               | mg/Kg wet | 1.67           |                  | 57.8        | 20-140           |     |              |              |
| 2,4-Dichlorophenol                   | 1.28         | 0.34               | mg/Kg wet | 1.67           |                  | 76.8        | 30-130           |     |              |              |
| Diethylphthalate                     | 1.35         | 0.34               | mg/Kg wet | 1.67           |                  | 80.7        | 40-140           |     |              |              |
| 2,4-Dimethylphenol                   | 1.38         | 0.34               | mg/Kg wet | 1.67           |                  | 82.8        | 30-130           |     |              |              |
| Dimethylphthalate                    | 1.39         | 0.34               | mg/Kg wet | 1.67           |                  | 83.3        | 40-140           |     |              |              |
| 4,6-Dinitro-2-methylphenol           | 1.45         | 0.34               | mg/Kg wet | 1.67           |                  | 87.0        | 30-130           |     |              |              |
| 2,4-Dinitrophenol                    | 1.43         | 0.66               | mg/Kg wet | 1.67           |                  | 91.8        | 30-130           |     |              | V-04         |
| 2,4-Dinitrotoluene                   | 1.61         | 0.34               | mg/Kg wet | 1.67           |                  | 96.8        | 40-140           |     |              | 7.07         |
| 2,6-Dinitrotoluene                   | 1.65         | 0.34               | mg/Kg wet | 1.67           |                  | 99.2        | 40-140           |     |              |              |
| Di-n-octylphthalate                  | 1.34         | 0.34               | mg/Kg wet | 1.67           |                  | 80.7        | 40-140           |     |              |              |
| ,2-Diphenylhydrazine/Azobenzene      | 1.31         | 0.34               | mg/Kg wet | 1.67           |                  | 78.7        | 40-140           |     |              |              |
| luoranthene                          | 1.45         | 0.17               | mg/Kg wet | 1.67           |                  | 87.0        | 40-140           |     |              |              |
| luorene                              | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 83.5        | 40-140           |     |              |              |
| Hexachlorobenzene                    | 1.40         | 0.34               | mg/Kg wet | 1.67           |                  | 84.3        | 40-140           |     |              |              |
| Hexachlorobutadiene                  |              | 0.34               | mg/Kg wet | 1.67           |                  | 63.2        | 40-140           |     |              | V-05         |
| Hexachlorocyclopentadiene            | 1.05         | 0.34               | mg/Kg wet | 1.67           |                  | 40.0        | 40-140           |     |              | V-05<br>V-05 |
| Hexachloroethane                     | 0.667        | 0.34               | mg/Kg wet | 1.67           |                  | 67.6        | 40-140           |     |              | V-03         |
| ndeno(1,2,3-cd)pyrene                | 1.13<br>1.47 | 0.17               | mg/Kg wet | 1.67           |                  | 88.2        | 40-140           |     |              |              |
| sophorone                            | 1.47         | 0.34               | mg/Kg wet | 1.67           |                  | 78.6        | 40-140           |     |              |              |
| -Methylnaphthalene                   | 1.24         | 0.17               | mg/Kg wet | 1.67           |                  | 74.5        | 40-140           |     |              |              |
| 2-Methylnaphthalene                  | 1.54         | 0.17               | mg/Kg wet | 1.67           |                  | 92.7        | 40-140           |     |              |              |
| 2-Methylphenol                       |              | 0.34               | mg/Kg wet | 1.67           |                  | 81.2        | 30-130           |     |              |              |
| 3/4-Methylphenol                     | 1.35         | 0.34               | mg/Kg wet | 1.67           |                  | 81.8        | 30-130           |     |              |              |
| Naphthalene                          | 1.36         | 0.17               | mg/Kg wet | 1.67           |                  | 79.4        | 40-140           |     |              |              |
| Naphthalene<br>2-Nitroaniline        | 1.32         | 0.17               | mg/Kg wet | 1.67           |                  | 93.9        | 40-140           |     |              |              |
| 3-Nitroaniline                       | 1.56         | 0.34               | mg/Kg wet | 1.67           |                  | 74.3        | 30-140           |     |              |              |
| 4-Nitroaniline                       | 1.24         | 0.34               | mg/Kg wet | 1.67           |                  | 97.2        | 40-140           |     |              |              |
| Nitrobenzene                         | 1.62         | 0.34               | mg/Kg wet | 1.67           |                  | 71.1        | 40-140           |     |              |              |
| 2-Nitrophenol                        | 1.18         | 0.34               | mg/Kg wet | 1.67           |                  | 85.8        | 30-130           |     |              |              |
| 4-Nitrophenol                        | 1.43         | 0.66               | mg/Kg wet | 1.67           |                  | 72.1        | 30-130           |     |              | V-05         |
| N-Nitrosodimethylamine               | 1.20         | 0.34               | mg/Kg wet | 1.67           |                  | 81.3        | 40-140           |     |              | v-03         |
| N-Nitrosodimethylamine/Diphenylamine | 1.35         | 0.34               | mg/Kg wet | 1.67           |                  | 95.6        | 40-140<br>40-140 |     |              |              |
| N-Nitrosodi-n-propylamine            | 1.59         | 0.34               | mg/Kg wet |                |                  | 77.2        | 40-140           |     |              |              |
| Pentachloronitrobenzene              | 1.29         | 0.34               | mg/Kg wet | 1.67           |                  |             | 40-140<br>40-140 |     |              |              |
| Pentachlorophenol                    | 1.40         | 0.34               | mg/Kg wet | 1.67           |                  | 83.7        |                  |     |              | V-05         |
| Phenanthrene                         | 1.03         | 0.34               | mg/Kg wet | 1.67           |                  | 61.7        | 30-130           |     |              | v-05         |
| Phenol                               | 1.46         | 0.17               | mg/Kg wet | 1.67           |                  | 87.3        | 40-140           |     |              |              |
|                                      | 1.33         |                    |           | 1.67           |                  | 79.5        | 30-130           |     |              |              |
| Pyrene<br>Dyni din o                 | 1.54         | 0.17               | mg/Kg wet | 1.67           |                  | 92.5        | 40-140           |     |              |              |
| Pyridine 2.4.5 Tetrachlorohonzona    | 0.744        | 0.34               | mg/Kg wet | 1.67           |                  | 44.6        | 30-140           |     |              |              |
| 1,2,4,5-Tetrachlorobenzene           | 1.25         | 0.34               | mg/Kg wet | 1.67           |                  | 75.3        | 40-140           |     |              |              |
| 1,2,4-Trichlorobenzene               | 1.17         | 0.34               | mg/Kg wet | 1.67           |                  | 70.0        | 40-140           |     |              |              |
| 2,4,5-Trichlorophenol                | 1.45         | 0.34               | mg/Kg wet | 1.67           |                  | 86.9        | 30-130           |     |              |              |
| 2,4,6-Trichlorophenol                | 1.37         | 0.34               | mg/Kg wet | 1.67           |                  | 82.3        | 30-130           |     |              |              |



# QUALITY CONTROL

| Analyte                                          | Result       | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |   |
|--------------------------------------------------|--------------|--------------------|-----------|----------------|------------------|---------------|----------------|--------|--------------|-------|---|
| Batch B296003 - SW-846 3546                      |              |                    |           |                |                  |               |                |        |              |       | _ |
| LCS (B296003-BS1)                                |              |                    |           | Prepared: 12   | 2/03/21 Anal     | yzed: 12/06/2 | 21             |        |              |       |   |
| Surrogate: 2-Fluorophenol                        | 5.49         |                    | mg/Kg wet | 6.67           |                  | 82.3          | 30-130         |        |              |       |   |
| Surrogate: Phenol-d6                             | 5.35         |                    | mg/Kg wet | 6.67           |                  | 80.3          | 30-130         |        |              |       |   |
| Surrogate: Nitrobenzene-d5                       | 2.57         |                    | mg/Kg wet | 3.33           |                  | 77.2          | 30-130         |        |              |       |   |
| Surrogate: 2-Fluorobiphenyl                      | 2.96         |                    | mg/Kg wet | 3.33           |                  | 88.8          | 30-130         |        |              |       |   |
| Surrogate: 2,4,6-Tribromophenol                  | 6.10         |                    | mg/Kg wet | 6.67           |                  | 91.5          | 30-130         |        |              |       |   |
| Surrogate: p-Terphenyl-d14                       | 4.34         |                    | mg/Kg wet | 3.33           |                  | 130           | 30-130         |        |              | S-07  |   |
| LCS Dup (B296003-BSD1)                           |              |                    |           | Prepared: 12   | 2/03/21 Anal     | yzed: 12/06/2 | 21             |        |              |       |   |
| Acenaphthene                                     | 1.28         | 0.17               | mg/Kg wet | 1.67           |                  | 76.8          | 40-140         | 2.14   | 30           |       |   |
| Acenaphthylene                                   | 1.46         | 0.17               | mg/Kg wet | 1.67           |                  | 87.5          | 40-140         | 3.57   | 30           |       |   |
| Acetophenone                                     | 1.14         | 0.34               | mg/Kg wet | 1.67           |                  | 68.4          | 40-140         | 6.97   | 30           |       |   |
| Aniline                                          | 0.971        | 0.34               | mg/Kg wet | 1.67           |                  | 58.3          | 10-140         | 2.17   | 50           |       | † |
| Anthracene                                       | 1.40         | 0.17               | mg/Kg wet | 1.67           |                  | 84.0          | 40-140         | 3.37   | 30           |       |   |
| Benzidine                                        | 1.58         | 0.66               | mg/Kg wet | 1.67           |                  | 94.6          | 40-140         | 3.33   | 30           | V-05  |   |
| Benzo(a)anthracene                               | 1.35         | 0.17               | mg/Kg wet | 1.67           |                  | 80.8          | 40-140         | 3.43   | 30           |       |   |
| Benzo(a)pyrene                                   | 1.53         | 0.17               | mg/Kg wet | 1.67           |                  | 91.8          | 40-140         | 2.20   | 30           |       |   |
| Benzo(b)fluoranthene                             | 1.48         | 0.17               | mg/Kg wet | 1.67           |                  | 88.6          | 40-140         | 0.496  | 30           |       |   |
| Benzo(g,h,i)perylene                             | 1.56         | 0.17               | mg/Kg wet | 1.67           |                  | 93.5          | 40-140         | 0.0214 | 30           |       |   |
| Benzo(k)fluoranthene                             | 1.58         | 0.17               | mg/Kg wet | 1.67           |                  | 94.7          | 40-140         | 6.08   | 30           |       |   |
| Benzoic Acid                                     | 1.12         | 1.0                | mg/Kg wet | 1.67           |                  | 67.3          | 30-130         | 5.87   | 50           |       |   |
| Bis(2-chloroethoxy)methane                       | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.4          | 40-140         | 4.64   | 30           |       |   |
| Bis(2-chloroethyl)ether                          | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.4          | 40-140         | 9.96   | 30           |       |   |
| Bis(2-chloroisopropyl)ether                      | 1.71         | 0.34               | mg/Kg wet | 1.67           |                  | 103           | 40-140         | 5.77   | 30           |       |   |
| Bis(2-Ethylhexyl)phthalate                       | 1.52         | 0.34               | mg/Kg wet | 1.67           |                  | 91.0          | 40-140         | 0.839  | 30           |       |   |
| 4-Bromophenylphenylether                         | 1.30         | 0.34               | mg/Kg wet | 1.67           |                  | 77.7          | 40-140         | 1.28   | 30           |       |   |
| Butylbenzylphthalate                             | 1.46         | 0.34               | mg/Kg wet | 1.67           |                  | 87.6          | 40-140         | 1.09   | 30           |       |   |
| Carbazole                                        | 1.43         | 0.17               | mg/Kg wet | 1.67           |                  | 85.7          | 40-140         | 5.38   | 30           |       |   |
| 4-Chloroaniline                                  | 0.817        | 0.66               | mg/Kg wet | 1.67           |                  | 49.0          | 10-140         | 5.40   | 30           | V-34  | † |
| 4-Chloro-3-methylphenol                          | 1.28         | 0.66               | mg/Kg wet | 1.67           |                  | 76.7          | 30-130         | 5.35   | 30           |       |   |
| 2-Chloronaphthalene                              | 1.33         | 0.34               | mg/Kg wet | 1.67           |                  | 79.6          | 40-140         | 1.89   | 30           |       |   |
| 2-Chlorophenol                                   | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.0          | 30-130         | 11.6   | 30           |       |   |
| 4-Chlorophenylphenylether                        | 1.26         | 0.34               | mg/Kg wet | 1.67           |                  | 75.7          | 40-140         | 1.39   | 30           |       |   |
| Chrysene                                         | 1.42         | 0.17               | mg/Kg wet | 1.67           |                  | 85.2          | 40-140         | 3.78   | 30           |       |   |
| Dibenz(a,h)anthracene                            | 1.56         | 0.17               | mg/Kg wet | 1.67           |                  | 93.8          | 40-140         | 0.427  | 30           |       |   |
| Dibenzofuran                                     | 1.42         | 0.34               | mg/Kg wet | 1.67           |                  | 85.1          | 40-140         | 3.35   | 30           |       |   |
| Di-n-butylphthalate                              | 1.47         | 0.34               | mg/Kg wet | 1.67           |                  | 88.3          | 40-140         | 1.22   | 30           |       |   |
| 1,2-Dichlorobenzene                              | 1.10         | 0.34               | mg/Kg wet | 1.67           |                  | 66.0          | 40-140         | 9.53   | 30           |       |   |
| 1,3-Dichlorobenzene                              | 1.07         | 0.34               | mg/Kg wet | 1.67           |                  | 64.4          | 40-140         | 8.01   | 30           |       |   |
| 1,4-Dichlorobenzene                              | 1.07         | 0.34               | mg/Kg wet | 1.67           |                  | 65.0          | 40-140         | 9.86   | 30           |       |   |
| 3,3-Dichlorobenzidine                            | 0.936        | 0.17               | mg/Kg wet | 1.67           |                  | 56.2          | 20-140         | 2.84   | 50           |       | † |
| 2,4-Dichlorophenol                               | 1.22         | 0.34               | mg/Kg wet | 1.67           |                  | 73.1          | 30-130         | 4.99   | 30           |       | ' |
| Diethylphthalate                                 |              | 0.34               | mg/Kg wet | 1.67           |                  | 79.8          | 40-140         | 1.15   | 30           |       |   |
| 2,4-Dimethylphenol                               | 1.33<br>1.30 | 0.34               | mg/Kg wet | 1.67           |                  | 79.8<br>77.9  | 30-130         | 6.12   | 30           |       |   |
| Dimethylphthalate                                |              | 0.34               | mg/Kg wet | 1.67           |                  | 80.8          | 40-140         | 3.00   | 30           |       |   |
| 4,6-Dinitro-2-methylphenol                       | 1.35         | 0.34               | mg/Kg wet | 1.67           |                  | 80.8<br>84.0  | 30-130         | 3.49   | 30           |       |   |
| 2,4-Dinitrophenol                                | 1.40         | 0.66               | mg/Kg wet | 1.67           |                  | 84.0<br>84.8  | 30-130         | 7.93   | 30           | V-04  |   |
| 2,4-Dinitrophenor                                | 1.41         | 0.34               | mg/Kg wet | 1.67           |                  |               | 40-140         | 3.62   |              | V-U+  |   |
| 2,6-Dinitrotoluene                               | 1.56         | 0.34               | mg/Kg wet |                |                  | 93.4<br>98.8  | 40-140         | 0.384  | 30<br>30     |       |   |
| Di-n-octylphthalate                              | 1.65         | 0.34               | mg/Kg wet | 1.67           |                  |               |                |        | 30           |       |   |
| * *                                              | 1.37         |                    |           | 1.67           |                  | 82.2          | 40-140         | 1.94   | 30           |       |   |
| 1,2-Diphenylhydrazine/Azobenzene<br>Fluoranthene | 1.27         | 0.34               | mg/Kg wet | 1.67           |                  | 76.0          | 40-140         | 3.52   | 30           |       |   |
|                                                  | 1.38         | 0.17               | mg/Kg wet | 1.67           |                  | 82.6          | 40-140         | 5.17   | 30           |       |   |
| Fluorene                                         | 1.36         | 0.17               | mg/Kg wet | 1.67           |                  | 81.5          | 40-140         | 2.38   | 30           |       |   |



# QUALITY CONTROL

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes       |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|-------|--------------|-------------|
| Batch B296003 - SW-846 3546         |        |                    |           |                |                  |              |                |       |              |             |
| .CS Dup (B296003-BSD1)              |        |                    |           | Prepared: 12   | 2/03/21 Analy    | zed: 12/06/2 | 1              |       |              |             |
| Hexachlorobenzene                   | 1.40   | 0.34               | mg/Kg wet | 1.67           |                  | 83.7         | 40-140         | 0.666 | 30           |             |
| Hexachlorobutadiene                 | 1.01   | 0.34               | mg/Kg wet | 1.67           |                  | 60.8         | 40-140         | 3.90  | 30           | V-05        |
| Hexachlorocyclopentadiene           | 0.646  | 0.34               | mg/Kg wet | 1.67           |                  | 38.8 *       | 40-140         | 3.15  | 30           | L-07, V-05  |
| Hexachloroethane                    | 0.998  | 0.34               | mg/Kg wet | 1.67           |                  | 59.9         | 40-140         | 12.1  | 30           |             |
| ndeno(1,2,3-cd)pyrene               | 1.56   | 0.17               | mg/Kg wet | 1.67           |                  | 93.8         | 40-140         | 6.22  | 30           |             |
| sophorone                           | 1.24   | 0.34               | mg/Kg wet | 1.67           |                  | 74.5         | 40-140         | 5.33  | 30           |             |
| -Methylnaphthalene                  | 1.18   | 0.17               | mg/Kg wet | 1.67           |                  | 70.5         | 40-140         | 5.49  | 30           |             |
| -Methylnaphthalene                  | 1.46   | 0.17               | mg/Kg wet | 1.67           |                  | 87.3         | 40-140         | 5.93  | 30           |             |
| -Methylphenol                       | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 73.9         | 30-130         | 9.39  | 30           |             |
| /4-Methylphenol                     | 1.26   | 0.34               | mg/Kg wet | 1.67           |                  | 75.4         | 30-130         | 8.07  | 30           |             |
| Japhthalene                         | 1.24   | 0.17               | mg/Kg wet | 1.67           |                  | 74.7         | 40-140         | 6.13  | 30           |             |
| -Nitroaniline                       | 1.49   | 0.34               | mg/Kg wet | 1.67           |                  | 89.6         | 40-140         | 4.62  | 30           |             |
| -Nitroaniline                       | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 73.9         | 30-140         | 0.513 | 30           |             |
| -Nitroaniline                       | 1.52   | 0.34               | mg/Kg wet | 1.67           |                  | 91.4         | 40-140         | 6.15  | 30           |             |
| litrobenzene                        | 1.10   | 0.34               | mg/Kg wet | 1.67           |                  | 66.1         | 40-140         | 7.26  | 30           |             |
| Nitrophenol                         | 1.37   | 0.34               | mg/Kg wet | 1.67           |                  | 82.1         | 30-130         | 4.38  | 30           |             |
| -Nitrophenol                        | 1.17   | 0.66               | mg/Kg wet | 1.67           |                  | 70.0         | 30-130         | 2.90  | 50           | V-05        |
| -Nitrosodimethylamine               | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 73.7         | 40-140         | 9.81  | 30           |             |
| -Nitrosodiphenylamine/Diphenylamine | 1.55   | 0.34               | mg/Kg wet | 1.67           |                  | 92.9         | 40-140         | 2.87  | 30           |             |
| -Nitrosodi-n-propylamine            | 1.19   | 0.34               | mg/Kg wet | 1.67           |                  | 71.6         | 40-140         | 7.50  | 30           |             |
| entachloronitrobenzene              | 1.43   | 0.34               | mg/Kg wet | 1.67           |                  | 85.5         | 40-140         | 2.15  | 30           |             |
| entachlorophenol                    | 1.01   | 0.34               | mg/Kg wet | 1.67           |                  | 60.5         | 30-130         | 1.90  | 30           | V-05        |
| nenanthrene                         | 1.40   | 0.17               | mg/Kg wet | 1.67           |                  | 84.2         | 40-140         | 3.66  | 30           | , 05        |
| henol                               | 1.40   | 0.34               | mg/Kg wet | 1.67           |                  | 70.9         | 30-130         | 11.5  | 30           |             |
| yrene                               | 1.18   | 0.17               | mg/Kg wet | 1.67           |                  | 89.9         | 40-140         | 2.85  | 30           |             |
| yridine                             | 0.676  | 0.34               | mg/Kg wet | 1.67           |                  | 40.6         | 30-140         | 9.48  | 30           |             |
| 2,4,5-Tetrachlorobenzene            | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 73.9         | 40-140         | 1.80  | 30           |             |
| 2,4-Trichlorobenzene                | 1.23   | 0.34               | mg/Kg wet | 1.67           |                  | 67.1         | 40-140         | 4.26  | 30           |             |
| 4,5-Trichlorophenol                 | 1.12   | 0.34               | mg/Kg wet | 1.67           |                  | 84.7         | 30-130         | 2.54  | 30           |             |
| 4,6-Trichlorophenol                 | 1.41   | 0.34               | mg/Kg wet | 1.67           |                  | 80.3         | 30-130         | 2.44  | 30           |             |
| urrogate: 2-Fluorophenol            | 4.96   |                    | mg/Kg wet | 6.67           |                  | 74.5         | 30-130         |       |              |             |
| urrogate: Phenol-d6                 | 4.89   |                    | mg/Kg wet | 6.67           |                  | 73.3         | 30-130         |       |              |             |
| urrogate: Nitrobenzene-d5           | 2.35   |                    | mg/Kg wet | 3.33           |                  | 70.6         | 30-130         |       |              |             |
| urrogate: 2-Fluorobiphenyl          | 2.85   |                    | mg/Kg wet | 3.33           |                  | 85.5         | 30-130         |       |              |             |
| urrogate: 2,4,6-Tribromophenol      | 5.91   |                    | mg/Kg wet | 6.67           |                  | 88.7         | 30-130         |       |              |             |
| urrogate: p-Terphenyl-d14           | 4.22   |                    | mg/Kg wet | 3.33           |                  | 127          | 30-130         |       |              |             |
| latrix Spike (B296003-MS1)          | Sou    | rce: 21L0153       | -01       | Prepared: 12   | 2/03/21 Analy    | zed: 12/06/2 | 1              |       |              |             |
| cenaphthene                         | 1.34   | 0.20               | mg/Kg dry | 1.96           | ND               | 68.4         | 40-140         |       |              |             |
| cenaphthylene                       | 1.52   | 0.20               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              |             |
| cetophenone                         | 1.22   | 0.40               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              |             |
| niline                              | 0.672  | 0.40               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              | MS-09       |
| nthracene                           | 1.45   | 0.20               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              | 0,          |
| enzidine                            | ND     | 0.77               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              | MS-09, V-05 |
| enzo(a)anthracene                   | 1.42   | 0.20               | mg/Kg dry | 1.96           | ND<br>ND         |              | 40-140         |       |              | 07, 1-03    |
| enzo(a)pyrene                       | 1.42   | 0.20               | mg/Kg dry | 1.96           | ND<br>ND         |              | 40-140         |       |              |             |
| enzo(b)fluoranthene                 | 1.34   | 0.20               | mg/Kg dry | 1.96           | ND<br>ND         |              | 40-140         |       |              |             |
| enzo(g,h,i)perylene                 |        | 0.20               | mg/Kg dry | 1.96           |                  |              | 40-140         |       |              |             |
| enzo(k)fluoranthene                 | 1.48   | 0.20               |           |                | ND<br>ND         |              |                |       |              |             |
|                                     | 1.60   |                    | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              |             |
| denzoic Acid                        | 1.37   | 1.2                | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              |             |
| is(2-chloroethoxy)methane           | 1.31   | 0.40               | mg/Kg dry | 1.96           | ND               |              | 40-140         |       |              |             |
| Bis(2-chloroethyl)ether             | 1.35   | 0.40               | mg/Kg dry | 1.96           | ND               | 69.1         | 40-140         |       |              |             |



## QUALITY CONTROL

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

| Matrix Spike (B296003-MS1)           | Sourc | e: 21L0153   | -01       | Prepared: 12/0 | 03/21 Analyz | zed: 12/06 | /21      |         |
|--------------------------------------|-------|--------------|-----------|----------------|--------------|------------|----------|---------|
| Bis(2-chloroisopropyl)ether          | 1.81  | 0.40         | mg/Kg dry | 1.96           | ND           | 92.7       | 40-140   |         |
| Bis(2-Ethylhexyl)phthalate           | 1.51  | 0.40         | mg/Kg dry | 1.96           | ND           | 77.0       | 40-140   |         |
| -Bromophenylphenylether              | 1.34  | 0.40         | mg/Kg dry | 1.96           | ND           | 68.6       | 40-140   |         |
| Butylbenzylphthalate                 | 1.49  | 0.40         | mg/Kg dry | 1.96           | ND           | 76.3       | 40-140   |         |
| arbazole                             | 1.48  | 0.20         | mg/Kg dry | 1.96           | ND           | 75.9       | 40-140   |         |
| -Chloroaniline                       | 0.843 | 0.77         | mg/Kg dry | 1.96           | ND           | 43.1       | 40-140   | V-34    |
| -Chloro-3-methylphenol               | 1.34  | 0.77         | mg/Kg dry | 1.96           | ND           | 68.4       | 30-130   | , , , , |
| -Chloronaphthalene                   | 1.42  | 0.40         | mg/Kg dry | 1.96           | ND           | 72.7       | 40-140   |         |
| -Chlorophenol                        | 1.33  | 0.40         | mg/Kg dry | 1.96           | ND           | 68.0       | 30-130   |         |
| -Chlorophenylphenylether             | 1.27  | 0.40         | mg/Kg dry | 1.96           | ND           | 64.8       | 40-140   |         |
| hrysene                              | 1.49  | 0.20         | mg/Kg dry | 1.96           | ND<br>ND     | 76.0       | 40-140   |         |
| Dibenz(a,h)anthracene                |       | 0.20         | mg/Kg dry | 1.96           |              | 76.1       | 40-140   |         |
| bibenzo furan                        | 1.49  | 0.40         | mg/Kg dry | 1.96           | ND           | 76.9       | 40-140   |         |
| i-n-butylphthalate                   | 1.51  | 0.40         | mg/Kg dry | 1.96           | ND           | 76.5       | 40-140   |         |
| ,2-Dichlorobenzene                   | 1.50  | 0.40         | mg/Kg dry |                | ND           |            |          |         |
| ,3-Dichlorobenzene                   | 1.24  | 0.40         | mg/Kg dry | 1.96           | ND           | 63.5       | 40-140   |         |
| ,4-Dichlorobenzene                   | 1.19  | 0.40         | mg/Kg dry | 1.96           | ND           | 61.1       | 40-140   |         |
| ,3-Dichlorobenzidine                 | 1.22  |              |           | 1.96           | ND           | 62.3       | 40-140   | MC 0    |
| ,4-Dichlorophenol                    | 0.619 | 0.20<br>0.40 | mg/Kg dry | 1.96           | ND           |            | * 40-140 | MS-09   |
| *                                    | 1.27  |              | mg/Kg dry | 1.96           | ND           | 64.8       | 30-130   |         |
| iethylphthalate<br>,4-Dimethylphenol | 1.34  | 0.40         | mg/Kg dry | 1.96           | ND           | 68.3       | 40-140   |         |
| * *                                  | 1.22  | 0.40         | mg/Kg dry | 1.96           | ND           | 62.2       | 30-130   |         |
| imethylphthalate                     | 1.41  | 0.40         | mg/Kg dry | 1.96           | ND           | 72.2       | 40-140   |         |
| 6-Dinitro-2-methylphenol             | 1.46  | 0.40         | mg/Kg dry | 1.96           | ND           | 74.9       | 30-130   | ****    |
| 4-Dinitrophenol                      | 1.46  | 0.77         | mg/Kg dry | 1.96           | ND           | 74.6       | 30-130   | V-04    |
| 4-Dinitrotoluene                     | 1.63  | 0.40         | mg/Kg dry | 1.96           | ND           | 83.3       | 40-140   |         |
| 6-Dinitrotoluene                     | 1.70  | 0.40         | mg/Kg dry | 1.96           | ND           | 86.9       | 40-140   |         |
| i-n-octylphthalate                   | 1.36  | 0.40         | mg/Kg dry | 1.96           | ND           | 69.4       | 40-140   |         |
| ,2-Diphenylhydrazine/Azobenzene      | 1.33  | 0.40         | mg/Kg dry | 1.96           | ND           | 67.9       | 40-140   |         |
| luoranthene                          | 1.42  | 0.20         | mg/Kg dry | 1.96           | ND           | 72.6       | 40-140   |         |
| luorene                              | 1.42  | 0.20         | mg/Kg dry | 1.96           | ND           | 72.7       | 40-140   |         |
| exachlorobenzene                     | 1.43  | 0.40         | mg/Kg dry | 1.96           | ND           | 73.3       | 40-140   |         |
| exachlorobutadiene                   | 1.06  | 0.40         | mg/Kg dry | 1.96           | ND           | 54.2       | 40-140   | V-05    |
| exachlorocyclopentadiene             | 0.607 | 0.40         | mg/Kg dry | 1.96           | ND           | 31.0       | 30-130   | V-05    |
| exachloroethane                      | 1.15  | 0.40         | mg/Kg dry | 1.96           | ND           | 58.8       | 40-140   |         |
| ndeno(1,2,3-cd)pyrene                | 1.38  | 0.20         | mg/Kg dry | 1.96           | ND           | 70.6       | 40-140   |         |
| ophorone                             | 1.31  | 0.40         | mg/Kg dry | 1.96           | ND           | 66.9       | 40-140   |         |
| -Methylnaphthalene                   | 1.30  | 0.20         | mg/Kg dry | 1.96           | 0.0833       | 62.4       | 40-140   |         |
| -Methylnaphthalene                   | 1.64  | 0.20         | mg/Kg dry | 1.96           | 0.126        | 77.4       | 40-140   |         |
| -Methylphenol                        | 1.29  | 0.40         | mg/Kg dry | 1.96           | ND           | 66.1       | 30-130   |         |
| /4-Methylphenol                      | 1.33  | 0.40         | mg/Kg dry | 1.96           | ND           | 67.9       | 30-130   |         |
| aphthalene                           | 1.38  | 0.20         | mg/Kg dry | 1.96           | 0.0759       | 66.8       | 40-140   |         |
| -Nitroaniline                        | 1.56  | 0.40         | mg/Kg dry | 1.96           | ND           | 79.6       | 40-140   |         |
| Nitroaniline                         | 1.33  | 0.40         | mg/Kg dry | 1.96           | ND           | 68.2       | 40-140   |         |
| Nitroaniline                         | 1.45  | 0.40         | mg/Kg dry | 1.96           | ND           | 74.2       | 40-140   |         |
| itrobenzene                          | 1.20  | 0.40         | mg/Kg dry | 1.96           | ND           | 61.3       | 40-140   |         |
| Nitrophenol                          | 1.45  | 0.40         | mg/Kg dry | 1.96           | ND           | 74.1       | 30-130   |         |
| Nitrophenol                          | 1.21  | 0.77         | mg/Kg dry | 1.96           | ND           | 62.1       | 30-130   | V-05    |
| -Nitrosodimethylamine                | 1.34  | 0.40         | mg/Kg dry | 1.96           | ND           | 68.7       | 40-140   |         |
| -Nitrosodiphenylamine/Diphenylamine  | 1.58  | 0.40         | mg/Kg dry | 1.96           | ND           | 80.9       | 40-140   |         |
| -Nitrosodi-n-propylamine             | 1.30  | 0.40         | mg/Kg dry | 1.96           | ND           | 66.5       | 40-140   |         |
| entachloronitrobenzene               | 1.40  | 0.40         | mg/Kg dry | 1.96           | ND           | 71.6       | 40-140   |         |
| entachlorophenol                     | 1.01  | 0.40         | mg/Kg dry | 1.96           | ND           | 51.5       | 30-130   | V-05    |



# QUALITY CONTROL

|                                       |        | Reporting    |                        | Spike        | Source         |                       | %REC             |                | RPD      |             |
|---------------------------------------|--------|--------------|------------------------|--------------|----------------|-----------------------|------------------|----------------|----------|-------------|
| Analyte                               | Result | Limit        | Units                  | Level        | Result         | %REC                  | Limits           | RPD            | Limit    | Notes       |
| Batch B296003 - SW-846 3546           |        |              |                        |              |                |                       |                  |                |          |             |
| Matrix Spike (B296003-MS1)            | Sour   | rce: 21L0153 | i-01                   | Prepared: 12 | 2/03/21 Analy  | zed: 12/06/           | 21               |                |          |             |
| Phenanthrene                          | 1.51   | 0.20         | mg/Kg dry              | 1.96         | 0.0669         | 73.5                  | 40-140           |                |          |             |
| Phenol                                | 1.28   | 0.40         | mg/Kg dry              | 1.96         | ND             | 65.5                  | 30-130           |                |          |             |
| Pyrene                                | 1.55   | 0.20         | mg/Kg dry              | 1.96         | ND             | 79.3                  | 40-140           |                |          |             |
| Pyridine                              | 0.371  | 0.40         | mg/Kg dry              | 1.96         | ND             | 18.9 *                |                  |                |          | MS-09, J    |
| 1,2,4,5-Tetrachlorobenzene            | 1.32   | 0.40         | mg/Kg dry              | 1.96         | ND             | 67.3                  | 40-140           |                |          |             |
| 1,2,4-Trichlorobenzene                | 1.19   | 0.40         | mg/Kg dry              | 1.96         | ND             | 60.7                  | 40-140           |                |          |             |
| 2,4,5-Trichlorophenol                 | 1.48   | 0.40         | mg/Kg dry              | 1.96         | ND             | 75.8                  | 30-130           |                |          |             |
| 2,4,6-Trichlorophenol                 | 1.37   | 0.40         | mg/Kg dry              | 1.96         | ND             | 70.2                  | 30-130           |                |          |             |
| Surrogate: 2-Fluorophenol             | 5.32   |              | mg/Kg dry              | 7.82         |                | 68.0                  | 30-130           |                |          |             |
| Surrogate: Phenol-d6                  | 5.17   |              | mg/Kg dry              | 7.82         |                | 66.1                  | 30-130           |                |          |             |
| Surrogate: Nitrobenzene-d5            | 2.50   |              | mg/Kg dry              | 3.91         |                | 64.0                  | 30-130           |                |          |             |
| Surrogate: 2-Fluorobiphenyl           | 2.95   |              | mg/Kg dry              | 3.91         |                | 75.5                  | 30-130           |                |          |             |
| Surrogate: 2,4,6-Tribromophenol       | 5.88   |              | mg/Kg dry              | 7.82         |                | 75.2                  | 30-130           |                |          |             |
| Surrogate: p-Terphenyl-d14            | 4.24   |              | mg/Kg dry              | 3.91         |                | 108                   | 30-130           |                |          |             |
| Matrix Spike Dup (B296003-MSD1)       | Sour   | rce: 21L0153 | i-01                   | Prepared: 12 | 2/03/21 Analyz | zed: 12/06/           | 21               |                |          |             |
| Acenaphthene                          | 1.34   | 0.20         | mg/Kg dry              | 1.96         | ND             | 68.6                  | 40-140           | 0.292          | 30       |             |
| Acenaphthylene                        | 1.53   | 0.20         | mg/Kg dry              | 1.96         | ND             | 78.4                  | 40-140           | 0.563          | 30       |             |
| Acetophenone                          | 1.24   | 0.40         | mg/Kg dry              | 1.96         | ND             | 63.5                  | 40-140           | 1.46           | 30       |             |
| Aniline                               | 0.614  | 0.40         | mg/Kg dry              | 1.96         | ND             | 31.4 *                | 40-140           | 9.00           | 30       | MS-09       |
| Anthracene                            | 1.48   | 0.20         | mg/Kg dry              | 1.96         | ND             | 75.5                  | 40-140           | 1.74           | 30       |             |
| Benzidine                             | ND     | 0.77         | mg/Kg dry              | 1.96         | ND             | *                     | 40-140           | NC             | 30       | MS-09, V-05 |
| Benzo(a)anthracene                    | 1.40   | 0.20         | mg/Kg dry              | 1.96         | ND             | 71.7                  | 40-140           | 1.16           | 30       |             |
| Benzo(a)pyrene                        | 1.57   | 0.20         | mg/Kg dry              | 1.96         | ND             | 80.4                  | 40-140           | 2.04           | 30       |             |
| Benzo(b)fluoranthene                  | 1.45   | 0.20         | mg/Kg dry              | 1.96         | ND             | 74.2                  | 40-140           | 0.541          | 30       |             |
| Benzo(g,h,i)perylene                  | 1.50   | 0.20         | mg/Kg dry              | 1.96         | ND             | 76.8                  | 40-140           | 1.44           | 30       |             |
| Benzo(k)fluoranthene                  | 1.64   | 0.20         | mg/Kg dry              | 1.96         | ND             | 83.7                  | 40-140           | 2.03           | 30       |             |
| Benzoic Acid                          | 1.40   | 1.2          | mg/Kg dry              | 1.96         | ND             | 71.7                  | 40-140           | 2.74           | 30       |             |
| Bis(2-chloroethoxy)methane            | 1.33   | 0.40         | mg/Kg dry              | 1.96         | ND             | 68.2                  | 40-140           | 1.87           | 30       |             |
| Bis(2-chloroethyl)ether               | 1.40   | 0.40         | mg/Kg dry              | 1.96         | ND             | 71.7                  | 40-140           | 3.61           | 30       |             |
| Bis(2-chloroisopropyl)ether           | 1.86   | 0.40         | mg/Kg dry              | 1.96         | ND             | 95.1                  | 40-140           | 2.53           | 30       |             |
| Bis(2-Ethylhexyl)phthalate            | 1.57   | 0.40         | mg/Kg dry              | 1.96         | ND             | 80.2                  | 40-140           | 4.04           | 30       |             |
| 4-Bromophenylphenylether              | 1.33   | 0.40         | mg/Kg dry              | 1.96         | ND             | 68.0                  | 40-140           | 0.966          | 30       |             |
| Butylbenzylphthalate                  | 1.50   | 0.40         | mg/Kg dry              | 1.96         | ND             | 76.8                  | 40-140           | 0.731          | 30       |             |
| Carbazole  4 Chloroppiling            | 1.49   | 0.20         | mg/Kg dry              | 1.96         | ND             | 76.1                  | 40-140           | 0.263          | 30       | 77.24       |
| 4-Chloro 3 methylphonol               | 0.830  | 0.77         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 42.4                  | 40-140           | 1.50           | 30       | V-34        |
| 4-Chloro-3-methylphenol               | 1.34   | 0.77         |                        | 1.96         | ND             | 68.7                  | 30-130           | 0.438          | 30       |             |
| 2-Chloronaphthalene<br>2-Chlorophenol | 1.40   | 0.40<br>0.40 | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 71.6                  | 40-140           | 1.53           | 30       |             |
| 4-Chlorophenylphenylether             | 1.33   | 0.40         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 67.8                  | 30-130           | 0.324          | 30       |             |
| 4-Chrysene Chrysene                   | 1.30   | 0.40         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 66.5                  | 40-140           | 2.68           | 30       |             |
| Dibenz(a,h)anthracene                 | 1.46   | 0.20         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND<br>ND       | 74.5                  | 40-140           | 1.94           | 30       |             |
| Dibenz(a,n)anthracene Dibenzofuran    | 1.48   | 0.20         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 75.9<br>76.0          | 40-140           | 0.316          | 30       |             |
| Di-n-butylphthalate                   | 1.50   | 0.40         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 76.9                  | 40-140           | 0.104          | 30       |             |
| 1,2-Dichlorobenzene                   | 1.51   | 0.40         | mg/Kg dry<br>mg/Kg dry | 1.96         | ND             | 76.9                  | 40-140           | 0.573          | 30       |             |
| 1,3-Dichlorobenzene                   | 1.24   | 0.40         | mg/Kg dry              | 1.96<br>1.96 | ND             | 63.2<br>61.0          | 40-140<br>40-140 | 0.505<br>0.131 | 30<br>30 |             |
| 1,4-Dichlorobenzene                   | 1.19   | 0.40         | mg/Kg dry<br>mg/Kg dry |              | ND             |                       |                  |                |          |             |
| 3,3-Dichlorobenzidine                 | 1.21   | 0.40         | mg/Kg dry              | 1.96         | ND             | 61.9<br><b>33.1</b> * | 40-140<br>40-140 | 0.676<br>4.63  | 30<br>30 | MS-09       |
| 2,4-Dichlorophenol                    | 0.648  | 0.20         | mg/Kg dry              | 1.96<br>1.96 | ND             | <b>33.1</b> * 65.5    | 30-130           | 1.07           | 30       | M2-03       |
| Diethylphthalate                      | 1.28   | 0.40         | mg/Kg dry              | 1.96         | ND<br>ND       | 70.4                  | 40-140           | 3.06           | 30       |             |
| 2,4-Dimethylphenol                    | 1.38   | 0.40         | mg/Kg dry              | 1.96         | ND<br>ND       | 61.1                  | 30-130           | 1.88           | 30       |             |
| Dimethylphthalate                     | 1.19   | 0.40         | mg/Kg dry              | 1.96         |                | 71.4                  | 40-140           |                | 30       |             |
| Dimensiphinatac                       | 1.40   | 0.40         | mg/Kg ury              | 1.90         | ND             | /1.4                  | 40-140           | 1.17           | 30       |             |



Surrogate: 2,4,6-Tribromophenol

Surrogate: p-Terphenyl-d14

# 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

## QUALITY CONTROL

## Semivolatile Organic Compounds by GC/MS - Quality Control

|                                      | - ·    | Reporting   | ***       | Spike        | Source         | 0/8==        | %REC   | **-    | RPD   | 3.7      |
|--------------------------------------|--------|-------------|-----------|--------------|----------------|--------------|--------|--------|-------|----------|
| Analyte                              | Result | Limit       | Units     | Level        | Result         | %REC         | Limits | RPD    | Limit | Notes    |
| Batch B296003 - SW-846 3546          |        |             |           |              |                |              |        |        |       |          |
| Matrix Spike Dup (B296003-MSD1)      | Source | ce: 21L0153 | -01       | Prepared: 12 | 2/03/21 Analyz | zed: 12/06/2 | 21     |        |       |          |
| 4,6-Dinitro-2-methylphenol           | 1.46   | 0.40        | mg/Kg dry | 1.96         | ND             | 74.8         | 30-130 | 0.134  | 30    |          |
| 2,4-Dinitrophenol                    | 1.44   | 0.77        | mg/Kg dry | 1.96         | ND             | 73.4         | 30-130 | 1.70   | 30    | V-04     |
| 2,4-Dinitrotoluene                   | 1.64   | 0.40        | mg/Kg dry | 1.96         | ND             | 83.7         | 40-140 | 0.479  | 30    |          |
| 2,6-Dinitrotoluene                   | 1.70   | 0.40        | mg/Kg dry | 1.96         | ND             | 86.8         | 40-140 | 0.0691 | 30    |          |
| Di-n-octylphthalate                  | 1.44   | 0.40        | mg/Kg dry | 1.96         | ND             | 73.7         | 40-140 | 5.96   | 30    |          |
| 1,2-Diphenylhydrazine/Azobenzene     | 1.36   | 0.40        | mg/Kg dry | 1.96         | ND             | 69.5         | 40-140 | 2.33   | 30    |          |
| Fluoranthene                         | 1.44   | 0.20        | mg/Kg dry | 1.96         | ND             | 73.5         | 40-140 | 1.29   | 30    |          |
| Fluorene                             | 1.44   | 0.20        | mg/Kg dry | 1.96         | ND             | 73.4         | 40-140 | 1.01   | 30    |          |
| Hexachlorobenzene                    | 1.42   | 0.40        | mg/Kg dry | 1.96         | ND             | 72.7         | 40-140 | 0.767  | 30    |          |
| Hexachlorobutadiene                  | 1.09   | 0.40        | mg/Kg dry | 1.96         | ND             | 55.7         | 40-140 | 2.66   | 30    | V-05     |
| Hexachlorocyclopentadiene            | 0.647  | 0.40        | mg/Kg dry | 1.96         | ND             | 33.1         | 30-130 | 6.30   | 30    | V-05     |
| Hexachloroethane                     | 1.16   | 0.40        | mg/Kg dry | 1.96         | ND             | 59.1         | 40-140 | 0.509  | 30    |          |
| Indeno(1,2,3-cd)pyrene               | 1.40   | 0.20        | mg/Kg dry | 1.96         | ND             | 71.8         | 40-140 | 1.71   | 30    |          |
| Isophorone                           | 1.33   | 0.40        | mg/Kg dry | 1.96         | ND             | 67.9         | 40-140 | 1.48   | 30    |          |
| 1-Methylnaphthalene                  | 1.32   | 0.20        | mg/Kg dry | 1.96         | 0.0833         | 63.4         | 40-140 | 1.55   | 30    |          |
| 2-Methylnaphthalene                  | 1.62   | 0.20        | mg/Kg dry | 1.96         | 0.126          | 76.4         | 40-140 | 1.27   | 30    |          |
| 2-Methylphenol                       | 1.30   | 0.40        | mg/Kg dry | 1.96         | ND             | 66.2         | 30-130 | 0.272  | 30    |          |
| 3/4-Methylphenol                     | 1.35   | 0.40        | mg/Kg dry | 1.96         | ND             | 68.9         | 30-130 | 1.35   | 30    |          |
| Naphthalene                          | 1.39   | 0.20        | mg/Kg dry | 1.96         | 0.0759         | 67.0         | 40-140 | 0.339  | 30    |          |
| 2-Nitroaniline                       | 1.54   | 0.40        | mg/Kg dry | 1.96         | ND             | 78.9         | 40-140 | 0.934  | 30    |          |
| 3-Nitroaniline                       | 1.32   | 0.40        | mg/Kg dry | 1.96         | ND             | 67.4         | 40-140 | 1.09   | 30    |          |
| 4-Nitroaniline                       | 1.36   | 0.40        | mg/Kg dry | 1.96         | ND             | 69.4         | 40-140 | 6.63   | 30    |          |
| Nitrobenzene                         | 1.18   | 0.40        | mg/Kg dry | 1.96         | ND             | 60.3         | 40-140 | 1.64   | 30    |          |
| 2-Nitrophenol                        | 1.46   | 0.40        | mg/Kg dry | 1.96         | ND             | 74.9         | 30-130 | 0.993  | 30    |          |
| 4-Nitrophenol                        | 1.24   | 0.77        | mg/Kg dry | 1.96         | ND             | 63.2         | 30-130 | 1.72   | 30    | V-05     |
| N-Nitrosodimethylamine               | 1.35   | 0.40        | mg/Kg dry | 1.96         | ND             | 69.1         | 40-140 | 0.551  | 30    |          |
| N-Nitrosodiphenylamine/Diphenylamine | 1.58   | 0.40        | mg/Kg dry | 1.96         | ND             | 80.9         | 40-140 | 0.0248 | 30    |          |
| N-Nitrosodi-n-propylamine            | 1.32   | 0.40        | mg/Kg dry | 1.96         | ND             | 67.7         | 40-140 | 1.76   | 30    |          |
| Pentachloronitrobenzene              | 1.43   | 0.40        | mg/Kg dry | 1.96         | ND             | 73.3         | 40-140 | 2.35   | 30    |          |
| Pentachlorophenol                    | 1.04   | 0.40        | mg/Kg dry | 1.96         | ND             | 53.4         | 30-130 | 3.59   | 30    | V-05     |
| Phenanthrene                         | 1.52   | 0.20        | mg/Kg dry | 1.96         | 0.0669         | 74.0         | 40-140 | 0.648  | 30    |          |
| Phenol                               | 1.31   | 0.40        | mg/Kg dry | 1.96         | ND             | 67.2         | 30-130 | 2.50   | 30    |          |
| Pyrene                               | 1.55   | 0.20        | mg/Kg dry | 1.96         | ND             | 79.4         | 40-140 | 0.0504 | 30    |          |
| Pyridine                             | 0.366  | 0.40        | mg/Kg dry | 1.96         | ND             | 18.7 *       | 40-140 | 1.28   | 30    | MS-09, J |
| 1,2,4,5-Tetrachlorobenzene           | 1.30   | 0.40        | mg/Kg dry | 1.96         | ND             | 66.4         | 40-140 | 1.35   | 30    |          |
| 1,2,4-Trichlorobenzene               | 1.19   | 0.40        | mg/Kg dry | 1.96         | ND             | 60.8         | 40-140 | 0.263  | 30    |          |
| 2,4,5-Trichlorophenol                | 1.43   | 0.40        | mg/Kg dry | 1.96         | ND             | 72.9         | 30-130 | 3.87   | 30    |          |
| 2,4,6-Trichlorophenol                | 1.36   | 0.40        | mg/Kg dry | 1.96         | ND             | 69.8         | 30-130 | 0.686  | 30    |          |
| Surrogate: 2-Fluorophenol            | 5.33   |             | mg/Kg dry | 7.82         |                | 68.1         | 30-130 |        |       |          |
| Surrogate: Phenol-d6                 | 5.25   |             | mg/Kg dry | 7.82         |                | 67.1         | 30-130 |        |       |          |
| Surrogate: Nitrobenzene-d5           | 2.52   |             | mg/Kg dry | 3.91         |                | 64.5         | 30-130 |        |       |          |
| Surrogate: 2-Fluorobiphenyl          | 2.97   |             | mg/Kg dry | 3.91         |                | 76.0         | 30-130 |        |       |          |
| 0 4 0 4 6 75 71 1 1                  | 5.06   |             | /17 1     | 7.00         |                |              |        |        |       |          |

mg/Kg dry

mg/Kg dry

7.82

3.91

76.2

109

30-130

30-130

5.96

4.27



## QUALITY CONTROL

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

Batch B296281 - % Solids

| Duplicate (B296281-DUP1) | Source: 21L0153-1 |      | Prepared: 12/07/21 Analyzed: 10/12/21 |       |   |
|--------------------------|-------------------|------|---------------------------------------|-------|---|
| % Solids                 | 0.00              | % Wt | 91.3                                  | 200 * | 5 |



# FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                                                                                          |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                                                                                               |
| #     | Data exceeded client recommended or regulatory level                                                                                                                                                                              |
| ND    | Not Detected                                                                                                                                                                                                                      |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                                                                                             |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                                                                                       |
| MCL   | Maximum Contaminant Level                                                                                                                                                                                                         |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                            |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                                                                                             |
| H-10  | Analysis was requested after the recommended holding time had passed.                                                                                                                                                             |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                                                                                               |
| L-07  | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.          |
| MS-09 | Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated. |
| S-07  | One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.                                                                                          |
| V-04  | Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.                                         |
| V-05  | Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.                                                                                                    |
| V-34  | Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.                                                                         |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| W-846 8270E in Soil              |                   |
| Acenaphthene                     | CT,NY,NH,ME,NC,VA |
| Acenaphthylene                   | CT,NY,NH,ME,NC,VA |
| Acetophenone                     | NY,NH,ME,NC,VA    |
| Aniline                          | NY,NH,ME,NC,VA    |
| Anthracene                       | CT,NY,NH,ME,NC,VA |
| Benzidine                        | CT,NY,NH,ME,NC,VA |
| Benzo(a)anthracene               | CT,NY,NH,ME,NC,VA |
| Benzo(a)pyrene                   | CT,NY,NH,ME,NC,VA |
| Benzo(b)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzo(g,h,i)perylene             | CT,NY,NH,ME,NC,VA |
| Benzo(k)fluoranthene             | CT,NY,NH,ME,NC,VA |
| Benzoic Acid                     | NY,NH,ME,NC,VA    |
| Bis(2-chloroethoxy)methane       | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroethyl)ether          | CT,NY,NH,ME,NC,VA |
| Bis(2-chloroisopropyl)ether      | CT,NY,NH,ME,NC,VA |
| Bis(2-Ethylhexyl)phthalate       | CT,NY,NH,ME,NC,VA |
| 4-Bromophenylphenylether         | CT,NY,NH,ME,NC,VA |
| Butylbenzylphthalate             | CT,NY,NH,ME,NC,VA |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NH,ME,NC,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NH,ME,NC,VA |
| 2-Chloronaphthalene              | CT,NY,NH,NC,VA    |
| 2-Chlorophenol                   | CT,NY,NH,ME,NC,VA |
| 4-Chlorophenylphenylether        | CT,NY,NH,ME,NC,VA |
| Chrysene                         | CT,NY,NH,ME,NC,VA |
| Dibenz(a,h)anthracene            | CT,NY,NH,ME,NC,VA |
| Dibenzofuran                     | CT,NY,NH,ME,NC,VA |
| Di-n-butylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,3-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 1,4-Dichlorobenzene              | NY,NH,ME,NC,VA    |
| 3,3-Dichlorobenzidine            | CT,NY,NH,ME,NC,VA |
| 2,4-Dichlorophenol               | CT,NY,NH,ME,NC,VA |
| Diethylphthalate                 | CT,NY,NH,ME,NC,VA |
| 2,4-Dimethylphenol               | CT,NY,NH,ME,NC,VA |
| Dimethylphthalate                | CT,NY,NH,ME,NC,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrophenol                | CT,NY,NH,ME,NC,VA |
| 2,4-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| 2,6-Dinitrotoluene               | CT,NY,NH,ME,NC,VA |
| Di-n-octylphthalate              | CT,NY,NH,ME,NC,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NH,ME,NC,VA    |
| Fluoranthene                     | CT,NY,NH,ME,NC,VA |
| Fluorene                         | NY,NH,ME,NC,VA    |
| Hexachlorobenzene                | CT,NY,NH,ME,NC,VA |
| Hexachlorobutadiene              | CT,NY,NH,ME,NC,VA |
| Hexachlorocyclopentadiene        | CT,NY,NH,ME,NC,VA |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                     | Certifications    |
|-----------------------------|-------------------|
| SW-846 8270E in Soil        |                   |
| Hexachloroethane            | CT,NY,NH,ME,NC,VA |
| Indeno(1,2,3-cd)pyrene      | CT,NY,NH,ME,NC,VA |
| Isophorone                  | CT,NY,NH,ME,NC,VA |
| 1-Methylnaphthalene         | NC                |
| 2-Methylnaphthalene         | CT,NY,NH,ME,NC,VA |
| 2-Methylphenol              | CT,NY,NH,ME,NC,VA |
| 3/4-Methylphenol            | CT,NY,NH,ME,NC,VA |
| Naphthalene                 | CT,NY,NH,ME,NC,VA |
| 2-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| 3-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| 4-Nitroaniline              | CT,NY,NH,ME,NC,VA |
| Nitrobenzene                | CT,NY,NH,ME,NC,VA |
| 2-Nitrophenol               | CT,NY,NH,ME,NC,VA |
| 4-Nitrophenol               | CT,NY,NH,ME,NC,VA |
| N-Nitrosodimethylamine      | CT,NY,NH,ME,NC,VA |
| N-Nitrosodi-n-propylamine   | CT,NY,NH,ME,NC,VA |
| Pentachloronitrobenzene     | NY,NC             |
| Pentachlorophenol           | CT,NY,NH,ME,NC,VA |
| Phenanthrene                | CT,NY,NH,ME,NC,VA |
| Phenol                      | CT,NY,NH,ME,NC,VA |
| Pyrene                      | CT,NY,NH,ME,NC,VA |
| Pyridine                    | CT,NY,NH,ME,NC,VA |
| 1,2,4,5-Tetrachlorobenzene  | NY,NC             |
| 1,2,4-Trichlorobenzene      | CT,NY,NH,ME,NC,VA |
| 2,4,5-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2,4,6-Trichlorophenol       | CT,NY,NH,ME,NC,VA |
| 2-Fluorophenol              | NC                |
| SW-846 8270E in Water       |                   |
| Acenaphthene                | CT,NY,NC,ME,NH,VA |
| Acenaphthylene              | CT,NY,NC,ME,NH,VA |
| Acetophenone                | NY,NC             |
| Aniline                     | CT,NY,NC,ME,VA    |
| Anthracene                  | CT,NY,NC,ME,NH,VA |
| Benzidine                   | CT,NY,NC,ME,NH,VA |
| Benzo(a)anthracene          | CT,NY,NC,ME,NH,VA |
| Benzo(a)pyrene              | CT,NY,NC,ME,NH,VA |
| Benzo(b)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzo(g,h,i)perylene        | CT,NY,NC,ME,NH,VA |
| Benzo(k)fluoranthene        | CT,NY,NC,ME,NH,VA |
| Benzoic Acid                | NY,NC,ME,NH,VA    |
| Bis(2-chloroethoxy)methane  | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroethyl)ether     | CT,NY,NC,ME,NH,VA |
| Bis(2-chloroisopropyl)ether | CT,NY,NC,ME,NH,VA |
| Bis(2-Ethylhexyl)phthalate  | CT,NY,NC,ME,NH,VA |
| 4-Bromophenylphenylether    | CT,NY,NC,ME,NH,VA |
| Butylbenzylphthalate        | CT,NY,NC,ME,NH,VA |



# CERTIFICATIONS

# Certified Analyses included in this Report

| Analyte                          | Certifications    |
|----------------------------------|-------------------|
| SW-846 8270E in Water            |                   |
| Carbazole                        | NC                |
| 4-Chloroaniline                  | CT,NY,NC,ME,NH,VA |
| 4-Chloro-3-methylphenol          | CT,NY,NC,ME,NH,VA |
| 2-Chloronaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Chlorophenol                   | CT,NY,NC,ME,NH,VA |
| 4-Chlorophenylphenylether        | CT,NY,NC,ME,NH,VA |
| Chrysene                         | CT,NY,NC,ME,NH,VA |
| Dibenz(a,h)anthracene            | CT,NY,NC,ME,NH,VA |
| Dibenzofuran                     | CT,NY,NC,ME,NH,VA |
| Di-n-butylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,3-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 1,4-Dichlorobenzene              | CT,NY,NC,ME,NH,VA |
| 3,3-Dichlorobenzidine            | CT,NY,NC,ME,NH,VA |
| 2,4-Dichlorophenol               | CT,NY,NC,ME,NH,VA |
| Diethylphthalate                 | CT,NY,NC,ME,NH,VA |
| 2,4-Dimethylphenol               | CT,NY,NC,ME,NH,VA |
| Dimethylphthalate                | CT,NY,NC,ME,NH,VA |
| 4,6-Dinitro-2-methylphenol       | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrophenol                | CT,NY,NC,ME,NH,VA |
| 2,4-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| 2,6-Dinitrotoluene               | CT,NY,NC,ME,NH,VA |
| Di-n-octylphthalate              | CT,NY,NC,ME,NH,VA |
| 1,2-Diphenylhydrazine/Azobenzene | NY,NC             |
| Fluoranthene                     | CT,NY,NC,ME,NH,VA |
| Fluorene                         | NY,NC,ME,NH,VA    |
| Hexachlorobenzene                | CT,NY,NC,ME,NH,VA |
| Hexachlorobutadiene              | CT,NY,NC,ME,NH,VA |
| Hexachlorocyclopentadiene        | CT,NY,NC,ME,NH,VA |
| Hexachloroethane                 | CT,NY,NC,ME,NH,VA |
| Indeno(1,2,3-cd)pyrene           | CT,NY,NC,ME,NH,VA |
| Isophorone                       | CT,NY,NC,ME,NH,VA |
| 1-Methylnaphthalene              | NC                |
| 2-Methylnaphthalene              | CT,NY,NC,ME,NH,VA |
| 2-Methylphenol                   | CT,NY,NC,NH,VA    |
| 3/4-Methylphenol                 | CT,NY,NC,NH,VA    |
| Naphthalene                      | CT,NY,NC,ME,NH,VA |
| 2-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 3-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| 4-Nitroaniline                   | CT,NY,NC,ME,NH,VA |
| Nitrobenzene                     | CT,NY,NC,ME,NH,VA |
| 2-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| 4-Nitrophenol                    | CT,NY,NC,ME,NH,VA |
| N-Nitrosodimethylamine           | CT,NY,NC,ME,NH,VA |
| N-Nitrosodi-n-propylamine        | CT,NY,NC,ME,NH,VA |
| Pentachloronitrobenzene          | NC                |
| Pentachlorophenol                | CT,NY,NC,ME,NH,VA |
|                                  |                   |



## CERTIFICATIONS

## Certified Analyses included in this Report

**Analyte** Certifications

| SW-846 | 8270E | in Wate | r |
|--------|-------|---------|---|
|--------|-------|---------|---|

2,4,6-Trichlorophenol

PhenanthreneCT,NY,NC,ME,NH,VAPhenolCT,NY,NC,ME,NH,VAPyreneCT,NY,NC,ME,NH,VAPyridineCT,NY,NC,ME,NH,VA1,2,4,5-TetrachlorobenzeneNY,NC1,2,4-TrichlorobenzeneCT,NY,NC,ME,NH,VA2,4,5-TrichlorophenolCT,NY,NC,ME,NH,VA

2-Fluorophenol NC

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |

CT,NY,NC,ME,NH,VA

217100

21L0153

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | http://www.pacelabs.com Doc # 381 Rev 5_0                                         | 7/13/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pace Analytical*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phone: 413-525-2332                     | 39 Spruce Street                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fax: 413-525-6405                       | Edst Longineadow, NA 01028                                                        | Page 1 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Access COC's and Support Reques         |                                                                                   | NALYSIS REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Company Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | DEAS 10 Douglash                                                                  | Preservation Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Address: 4350 N Faic Cax 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sc. Arlington, VA 22                    |                                                                                   | Courier Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phone: 703,516,238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                       |                                                                                   | <u> [utal Number Of:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Name: 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSCR-PRGS S                             | 2 2 Days                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Location: UDD N. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loyal St. Alexander                     | Lab to Filter  Data Delivery                                                      | VIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Format: PDF V EXCEL S DCP ONLY                                                    | GLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Project Manager: Gies Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 F-6                                   | Other: Rambell EDD SOVERED OF SOVERED                                             | PLASTIC.,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pace Quote Name/Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Other: Kanhol EDD SOXHLET                                                         | BACTERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Invoice Recipient: Soster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tag (orambil co                         |                                                                                   | ENCORE  Glassware in the fridge?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sampled By: Aune Kolly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | Email To: Sostertag a ramboll and N SOXHLET                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client Sample ID / Description Bi       | ning Ending County Matrix                                                         | Glassware in the fill-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Work Order#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | Time Date/Time COMP/GRAB Matrix Conc. Code VIALS GLASS PLASTIC BACTERIA ENCORE    | Glassware in the fridge?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L CON HAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P-TB03-211015 10                        | 5/21 - Grab W C 2 Y K                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1900 011010                             |                                                                                   | Glassware in freezer? Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | (21 - Girab S L 2 X X                                                             | Prepackaged Cooler? Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOTAL STORE AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JOHID DEC GIRDE                         | 5   (9170.5)                                                                      | *Pace Analytical is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SU HRP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SB213-16-18-211015 10                   | 5/3) - Grab S L 2                                                                 | responsible for missing samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58212-0-2211015 "i                      | 5/2) — (6.1) 6.1                                                                  | from prepacked coolers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| of Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change and Change a | \$ DUPO4-6-2-211015 "                   | 5/2 - Greab S \ 2                                                                 | 1 Matrix Codes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                   | GW = Ground Water WW = Waste Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 317919 2- 1-911013                      | 6 - Gab S L 2 Y                                                                   | / V DW = Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L OG HRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5B212-15-17-211015 10                  | (2) - Great 5 L 2 X                                                               | A = Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                         |                                                                                   | S = Soil<br>SL = Studge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00011 0 1-011013                        |                                                                                   | SOL = Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Polinguistral by (six )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 121 - Grab S L 2                                                                  | 0 = Other (please define)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time: Clie                         | Comments:                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | TB: Trip Blank                                                                    | <sup>2</sup> Preservation Codes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 11 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date/Time: 121                          | EB: Equip blank                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Belinguished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time: 4/20                         |                                                                                   | H = HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lushae Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | etection Limit Requirements Special Regulrements                                  | M ≈ Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Recorded by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 4 17:                                 | MA MCP Required Pieas                                                             | e use the following codes to indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kanlal BURLIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-15-21 1600                           |                                                                                   | sample concentration within the Conc Code column above:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . Date/Time:                            | CT RCP Required RCP Certification Form Required                                   | r; M - Medium; L - Low; C - Clean; U - S = Sulfuric Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Kachel BUTTUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | NCF Ceronication Form Required                                                    | Unknown B = Sodium Bisulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kecewed by: (signature) 1.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:                              | MA State DW Required                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | WADEQ PWSID#                                                                      | X = Sodium Hydroxide AC and AIHA-LAP, LLC Accredited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time: Proj                         | Linuty                                                                            | Other I = Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date/Time:                              | Government Municipality MWRA WRTA                                                 | Chromatogram Thiosulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pace rime.                              | Federal 21 J School City Brownfield DATA                                          | AIHA-LAP_LLC 0 = Other (please                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lab Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | City Brownfield MBTA                                                              | define)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Per client re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | activate samples -02                    | prough -13 and -15 through -21 for 8270 Disclaimer: Pace Analytical is not respon | sible for any omitted information on the Chain of Custody. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st hold 12/2/21 KF                      | Chain of Custody is a legal document that                                         | t must be complete and accurate and is used to determine what                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ok to runpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80 000 12/2/21 Kr                       | anatyses the taboratory witt perform. Any                                         | / MISSING Information is not the laborated to proceed the laborated to the laborated the laborated to the laborated the laborated to the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the laborated the labor |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Analytical values your partnership on each                                        | n project and will try to assist with missing information, but will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                   | ot be held accountable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

0101010

Phone: 413-525-2332

Pace Analytical

Fax: 413-525-6405

http://www.pacelabs.com

CHAIN OF CUSTODY RECORD

39 Spruce Street East Longmeadow, MA 01028

ANALYSIS REQUESTED

Doc # 381 Rev 5\_07/13/2021

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? Y / N 'Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers \*Pace Analytical is not Total Number Of Preservation Codes: X = Sodium Hydroxide Courier Use Only B = Sodium Bisulfate 0 = Other (please 0 = Other (please define) S = Sulfuric Acid Preservation Code A = Air S = Soil SL = Sludge SOL = Solid N = Nitric Acid BACTERIA ENCORE PLASTIC M = Methanol GLASS VAALS T = Sodium Thiosulfate define) HH possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and Alka-LAP, LLC Accredited Chromatogram

AIHA-LAP, LLC not be held accountable. Code column above: 080 χ Other X メメメ Cyanide VOCs TPH GRO ત્રાહ્ય જ X HQ HQ CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required Refals ENCORE BACTERIA Field Filtered Field Filtered PCB ONL) Lab to Filter Lab to Filter PLASTIC d School MBTA Sosterteg (Oxylle NON SOXHLET VIALS GLASS e S 0 3 3 3 SOXHLET I 0 0 0 0 コ 10-pay Due Dares Matrix Conc Code Code Ramboll EDD Municipality Brownfield # QISMd 3-Day EB: Equipment Blank 4-Day S 3 S 21 3 LP Like Data Pkg Required; COMP/GRAB Srab gread 6 Srab Parab ر الا Grab Grab <u>م</u> 2 عصح See b PFAS 10-Day (std) Officer | VA DE D Government Ending Date/Time Email To: ax To# ormat: Federal 2-Day Other; 7-Day -Day City | TRP-MW214-6-2-311014 | 1953 | TRP-MW214-6-2-311014 | 1953 | TRP-MW214-5-9-211014 | 19/14/21 | Project Entity 4350 N. Fairfux Dr., Arhington, VA 23202 Beginning Date/Time HRP-MW209-15-17-21M3 19654 16/13/01 HAP-MW308-5-4-211014 6920 N payal St Alleandin VA invoice Recipient: Sostertaga rampal. com Access COC's and Support Requests HRP-MW208-18-20-216A Date/Time: 160 HRP-mw209-57-211013 10-18-71 1700 2 HRP-MW809-0-1-211013 10/15 /410 HAP-MU308-6-1-311014 HRP- EB03-211013 Chent Sample ID / Description Date/Time: 4 10/157 Date/Time: Jate/Time: Date/Time: PAGE NAME HRP PILES SC Grose Laurand. Junuary A Company Name: Rambot Project Location: 1400 <u>o</u> Project Manager: 610 Sampled By: AMM 9 by: (signature) Pace Quote Name/Number 3 yed by: (signature) Received by: (signature) Pace Work Order# guished by: (signa Relinguished by (sign 3 Project Number: Lab Comments: Refindutshed Address:

010100

Phone: 413-525-2332

Pace Analytical "

Fax: 413-525-6405

http://www.pacelabs.com

39 Spruce Street

CHAIN OF CUSTODY RECORD

Page 2 of 3 Doc # 381 Rev 5\_07/13/2021 East Longmeadow, MA 01028

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Glassware in the fridge? Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what from prepacked coolers \*Pace Analytical is not total Number Of: 1 Matrix Codes: GW = Ground Water WW = Waste Water Preservation Codes: DW = Drinking Water X = Sodium Hydroxide Courier Use Only A = Air S = Soil SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate O = Other (please Preservation Code S = Sulfuric Acid BACTERIA PLASTIC N ≅ Nitric Acid ENCORE GLASS\_ M = Methanol VIALS T = Sodium Thiosulfate H= HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate MELAC and AHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above; ANALYSIS REQUESTED I MR TAL MA OH Cyanid 2005 メメメ CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required MA State DW Required Retals BACTERIA Field Filtered Field Filtered PCB ONLY Lab to Fitter Lab to Filter COMP/GRAB Matrix Conc. Code VIALS GLASS PLASTIC 4 School MBTA Email To: Sostertes & Rumbill wollow SOXHLET þ SOXHLET 0 0 0 0 10-Day K one Date: C Ramboll & DO Blank Municipality Brownfield 3 # QISMd 3-Day 4-Day 3 CLP Like Data Pkg Required: guap Grayer) Date/Time: , adj mEB: Equipment رسره م Client Comments: TB: Trip Blank PFAS 10-Day (std) OFF BED Ending Date/Time Government ormat: 2-Day Other: Federal -Ďay Ċţ Project Entity 12/5/01 12/5/01 12/5/01 12/5/01 Access COC's and Support Requests Project Location: 1400 N Royal St Alexandria, VA Invoice Recipient: Sostertage Rambollicom D-15-21 1400 Date/Time 5 Date/Time: MD 10-18-21 Mag 21015-F1-21-11685-PM Client Sample 1D / Description HRP-1804-911015 HRP-TB04-21105 10/15/21 Date/Time: 10/15/21 0 Date/Time: Project Manager: Ours Gross BUDTULA phone Morris Company Name: 1-4m to 1 Sampled By: Anne Kells 18 Pace Quote Name/Number:✓ d by: (signature) Relinquished by: (signature) Pace Work Order# Received by (signature) Project Number: Lab Comments: 3

# Fed -x

#### TRACK ANOTHER SHIPMENT

285036984893

ADD NICKNAME



Delivered

THIS IS 1 OF 3 PIECES



#### **DELIVERED**

Signed for by: R.PIETRIAS

GET STATUS UPDATES

**OBTAIN PROOF OF DELIVERY** 

FROM

Mechanicsville, VA US

то

EAST LONGMEADOW, MA US

# 3 Piece Shipment

| TRACKING ID           | STATUS    | SHIP<br>Date | DELIVERY<br>Date | HANDLING PIECE<br>Units | SHIPPER CITY,<br>STATE | RECIPIENT CITY,<br>STATE |
|-----------------------|-----------|--------------|------------------|-------------------------|------------------------|--------------------------|
| 285036984893 (master) | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 285036986793          | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |
| 285036988752          | Delivered | 10/18/21     | 10/19/21         | 0                       | Mechanicsville VA      | EAST LONGMEADOW MA       |

# Travel History

TIME ZONE

Local Scan Time

Tuesday, October 19, 2021

9:54 AM

EAST LONGMEADOW, MA

Delivered

8:26 AM

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client                    | Ram          | 2011                                    |              |                |                |               |                         |              |       |
|---------------------------|--------------|-----------------------------------------|--------------|----------------|----------------|---------------|-------------------------|--------------|-------|
| Receiv                    | red By       | RU                                      |              | Date           | 10/10          | 9121          | Time                    | 950          | À     |
| How were th               | ne samples   | In Cooler                               | $\neg$       | No Cooler      |                | On Ice        |                         | No Ice       | •     |
| recei                     | ved?         | Direct from Sam                         | olina        | •              | -              | -<br>Ambient  |                         | Melted Ice   |       |
|                           | 1 111        |                                         | By Gun #     | 5              | •              | Actual Ten    | nn l ( sa-              |              |       |
| Were sam                  |              |                                         | •            |                |                |               |                         | 101          | -     |
| Temperatu                 |              | \                                       | By Blank #   |                |                | Actual Tem    |                         |              | -     |
|                           | Custody S    |                                         | <u> </u>     | -              |                | s Tampered    |                         |              | -     |
|                           |              | iquisried <i>:</i><br>eaking/loose caps | 1 00 0011000 |                | s Chain Ag<br> | ree With Sa   | mples?                  |              |       |
| Is COC in in              |              |                                         | on any sam   | •              | nnles recei    | Suad within h | alding time?            | - PH         | act - |
| Did COC in                | •            | Client                                  | -            | Analysis       | ripies recei   |               | olding time?<br>er Name | <u>+ h</u>   | igici |
| pertinent In              |              | Project                                 |              | . Allalysis .  | <u> </u>       | •             | Dates/Times             |              | •     |
| •                         |              | d out and legible?                      |              | . 153          |                | Concellor     | Dates/Times             |              | ,     |
| Are there La              |              | •                                       | <del></del>  | •              | Who wa         | s notified?   |                         |              |       |
| Are there Ru              |              |                                         | <u> </u>     | •              |                | s notified?   | *****                   | ·····        | •     |
| Are there Sh              | ort Holds?   |                                         | <del></del>  | •              |                | s notified?   | The all                 |              | •     |
| Is there enou             | igh Volume   | ?                                       |              | •              |                |               | 1 12101                 |              | •     |
|                           | _            | ere applicable?                         | <del></del>  |                | MS/MSD?        | E             |                         |              |       |
| Proper Medi               | a/Container  | s Used?                                 | て            | •              |                | samples red   | uired?                  | <del>-</del> |       |
| Were trip bla             | inks receive | ed?                                     | 7            |                | On COC?        | •             |                         | •            |       |
| Do all sampl              | es have the  | proper pH?                              |              | Acid           | T              |               | Base -                  | T            |       |
| Vials                     | #            | Containers:                             | #            |                |                | #             |                         |              | #     |
| Unp-                      |              | 1 Liter Amb.                            |              | 1 Liter        | Plastic        |               | 16 oz                   | Amb.         |       |
| HCL-                      | Ч            | 500 mL Amb.                             |              | 500 mL         | Plastic        |               | 8oz Am                  | b,Clear      | 33    |
| Meoh-                     | 6            | 250 mL Amb.                             |              | 250 mL         |                | a<br>a        | 4oz Æm                  |              | 2     |
| Bisulfate-                | <u> </u>     | Flashpoint                              |              | Col./Ba        |                |               | 2oz Am                  |              |       |
| DI-                       |              | Other Glass                             |              | Other I        | ~~~~           | <u> </u>      | Enc                     | ore          |       |
| Thiosulfate-<br>Sulfuric- |              | SOC Kit                                 |              | Plastic        |                |               | Frozen:                 |              | -     |
| Sullulic-                 |              | Perchlorate                             |              | Ziplo          |                |               |                         |              |       |
|                           |              |                                         |              | Unused N       | Nedia          |               |                         |              |       |
| Vials                     | #            | Containers:                             | #            |                |                | #             |                         |              | #     |
| Unp-                      |              | 1 Liter Amb.                            |              | 1 Liter I      |                |               | 16 oz                   |              |       |
| HCL-<br>Meoh-             |              | 500 mL Amb.                             |              | 500 mL         |                | <del></del>   | 8oz Am                  |              |       |
| Bisulfate-                |              | 250 mL Amb.<br>Col./Bacteria            |              | 250 mL         |                |               | 4oz Am                  |              |       |
| Disdilate-                |              | Other Plastic                           |              | Flash<br>Other |                |               | 2oz Am<br>Enc           | We then      |       |
| Thiosulfate-              |              | SOC Kit                                 |              | Plastic        |                | -             | Frozen:                 | ore j        |       |
| Sulfuric-                 |              | Perchlorate                             |              | Ziplo          |                |               | TOZOTI.                 |              |       |
| Comments:                 |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |
|                           |              |                                         |              |                |                |               |                         |              |       |



December 6, 2021

Sarah Ostertag Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

Project Location: 1400 N. Royal St, Alexandria, VA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 21L0159

Enclosed are results of analyses for samples as received by the laboratory on December 2, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager



ATTN: Sarah Ostertag

39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Ramboll US Consulting, Inc. - Arlington, VA 4350 North Fairfax Drive Arlington, VA 22203

PURCHASE ORDER NUMBER:

REPORT DATE: 12/6/2021

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21L0159

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1400 N. Royal St, Alexandria, VA

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

HRP-MW205-211026 21L0159-01 Ground Water SW-846 8015C



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8015C

#### Qualifications:

H-10

Analysis was requested after the recommended holding time had passed.

Analyte & Samples(s) Qualified:

21L0159-01[HRP-MW205-211026]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director



Project Location: 1400 N. Royal St, Alexandria, VA Sample Description: Work Order: 21L0159

Date Received: 12/2/2021

**Field Sample #: HRP-MW205-211026** Sampled: 10/26/2021 12:30

Sample ID: 21L0159-01
Sample Matrix: Ground Water

Sample Flags: H-10 Semivolatile Organic Compounds by GC

|                  |         |    |     |       |          |           |              | Date     | Date/Time     |         |
|------------------|---------|----|-----|-------|----------|-----------|--------------|----------|---------------|---------|
| Analyte          | Results | RL | DL  | Units | Dilution | Flag/Qual | Method       | Prepared | Analyzed      | Analyst |
| Methanol         | ND      | 10 | 2.3 | mg/L  | 1        |           | SW-846 8015C | 12/3/21  | 12/3/21 17:34 | SFM     |
| Isopropanol      | ND      | 10 | 1.8 | mg/L  | 1        |           | SW-846 8015C | 12/3/21  | 12/3/21 17:34 | SFM     |
| Ethanol          | ND      | 10 | 2.5 | mg/L  | 1        |           | SW-846 8015C | 12/3/21  | 12/3/21 17:34 | SFM     |
| Propylene glycol | ND      | 10 | 2.9 | mg/L  | 1        |           | SW-846 8015C | 12/3/21  | 12/3/21 17:34 | SFM     |
| Ethylene glycol  | ND      | 10 | 4.0 | mg/L  | 1        |           | SW-846 8015C | 12/3/21  | 12/3/21 17:34 | SFM     |



# Sample Extraction Data

Prep Method: Alcohol Prep Analytical Method: SW-846 8015C

| Lab Number [Field ID]         | Batch   | Initial [mL] | Final [mL] | Date     |
|-------------------------------|---------|--------------|------------|----------|
| 21L0159-01 [HRP-MW205-211026] | B296024 | 1.00         | 1.00       | 12/03/21 |



# QUALITY CONTROL

|                              |        | Reporting    |       | Spike      | Source       | WREE   | %REC   | 222  | RPD   |       |
|------------------------------|--------|--------------|-------|------------|--------------|--------|--------|------|-------|-------|
| Analyte                      | Result | Limit        | Units | Level      | Result       | %REC   | Limits | RPD  | Limit | Notes |
| Batch B296024 - Alcohol Prep |        |              |       |            |              |        |        |      |       |       |
| Blank (B296024-BLK1)         |        |              |       | Prepared & | Analyzed: 12 | /03/21 |        |      |       |       |
| Methanol                     | ND     | 10           | mg/L  |            |              |        |        |      |       |       |
| Isopropanol                  | ND     | 10           | mg/L  |            |              |        |        |      |       |       |
| Ethanol                      | ND     | 10           | mg/L  |            |              |        |        |      |       |       |
| Propylene glycol             | ND     | 10           | mg/L  |            |              |        |        |      |       |       |
| Ethylene glycol              | ND     | 10           | mg/L  |            |              |        |        |      |       |       |
| .CS (B296024-BS1)            |        |              |       | Prepared & | Analyzed: 12 | /03/21 |        |      |       |       |
| Methanol                     | 95.6   | 10           | mg/L  | 100        |              | 95.6   | 40-140 |      |       |       |
| Isopropanol                  | 87.5   | 10           | mg/L  | 100        |              | 87.5   | 40-140 |      |       |       |
| Ethanol                      | 105    | 10           | mg/L  | 100        |              | 105    | 40-140 |      |       |       |
| Propylene glycol             | 102    | 10           | mg/L  | 100        |              | 102    | 40-140 |      |       |       |
| Ethylene glycol              | 90.5   | 10           | mg/L  | 100        |              | 90.5   | 40-140 |      |       |       |
| LCS Dup (B296024-BSD1)       |        |              |       | Prepared & | Analyzed: 12 | /03/21 |        |      |       |       |
| Methanol                     | 98.6   | 10           | mg/L  | 100        |              | 98.6   | 40-140 | 3.10 | 50    |       |
| sopropanol                   | 90.5   | 10           | mg/L  | 100        |              | 90.5   | 40-140 | 3.35 | 50    |       |
| Ethanol                      | 106    | 10           | mg/L  | 100        |              | 106    | 40-140 | 1.31 | 50    |       |
| Propylene glycol             | 107    | 10           | mg/L  | 100        |              | 107    | 40-140 | 4.25 | 50    |       |
| Ethylene glycol              | 95.0   | 10           | mg/L  | 100        |              | 95.0   | 40-140 | 4.89 | 50    |       |
| Ouplicate (B296024-DUP1)     | Sour   | ce: 21L0159- | 01    | Prepared & | Analyzed: 12 | /03/21 |        |      |       |       |
| Methanol                     | ND     | 10           | mg/L  |            | ND           | 1      |        | NC   | 50    |       |
| sopropanol                   | ND     | 10           | mg/L  |            | ND           | )      |        | NC   | 50    |       |
| Ethanol                      | ND     | 10           | mg/L  |            | ND           | )      |        | NC   | 50    |       |
| Propylene glycol             | ND     | 10           | mg/L  |            | ND           | )      |        | NC   | 50    |       |
| Ethylene glycol              | ND     | 10           | mg/L  |            | ND           | •      |        | NC   | 50    |       |
| Matrix Spike (B296024-MS1)   | Sour   | ce: 21L0159- | 01    | Prepared & | Analyzed: 12 | /03/21 |        |      |       |       |
| Methanol                     | 111    | 10           | mg/L  | 100        | ND           | 111    | 40-140 | -    |       |       |
| sopropanol                   | 111    | 10           | mg/L  | 100        | ND           | 111    | 40-140 |      |       |       |
| Ethanol                      | 115    | 10           | mg/L  | 100        | ND           | 115    | 40-140 |      |       |       |
| Propylene glycol             | 114    | 10           | mg/L  | 100        | ND           | 114    | 40-140 |      |       |       |
| Ethylene glycol              | 83.0   | 10           | mg/L  | 100        | ND           | 83.0   | 40-140 |      |       |       |



# FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                               |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                    |
| #    | Data exceeded client recommended or regulatory level                                                                                                   |
| ND   | Not Detected                                                                                                                                           |
| RL   | Reporting Limit is at the level of quantitation (LOQ)                                                                                                  |
| DL   | Detection Limit is the lower limit of detection determined by the MDL study                                                                            |
| MCL  | Maximum Contaminant Level                                                                                                                              |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded. |
|      | No results have been blank subtracted unless specified in the case narrative section.                                                                  |
| H-10 | Analysis was requested after the recommended holding time had passed.                                                                                  |



# CERTIFICATIONS

# Certified Analyses included in this Report

**Analyte** Certifications

#### SW-846 8015C in Water

Ethanol NY
Ethylene glycol NY

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2022  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2022 |
| CT    | Connecticut Department of Publilc Health     | PH-0165       | 12/31/2022 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2022  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2022  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2021 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2021 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2022 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2022 |
| VT    | Vermont Department of Health Lead Laboratory | LL720741      | 07/30/2022 |
| ME    | State of Maine                               | MA00100       | 06/9/2023  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2021 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2022  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2022 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2022 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2022 |
| MI    | Dept. of Env, Great Lakes, and Energy        | 9100          | 09/6/2022  |



(704)875-9092



December 16, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP Alexandria CAPA

Pace Project No.: 92570908

#### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on November 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace National Mt. Juliet
- Pace Analytical Services Charlotte

A revised report is being submitted on 12/16/21 to report MDLs and applicable J vlags.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP Alexandria CAPA

Pace Project No.: 92570908

**Pace Analytical Services National** 

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: B-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958
Minnesota Certification #: 047-999-395
Mississippi Certification #: TN00003
Missouri Certification #: 340
Montana Certification #: CERT0086
Nebraska Certification #: NE-OS-15-05

Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975

New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233
Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

#### **Pace Analytical Services Charlotte**

South Carolina Laboratory ID: 99006 9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Laboratory ID: 99006 South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221





## **SAMPLE SUMMARY**

Project: HRP Alexandria CAPA

Pace Project No.: 92570908

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92570908001 | HRP-MW05-211102   | Water  | 11/02/21 16:00 | 11/05/21 11:45 |
| 92570908002 | HRP-RW05S-211102  | Water  | 11/02/21 17:10 | 11/05/21 11:45 |
| 92570908003 | HRP-RW116S-211102 | Water  | 11/02/21 17:00 | 11/05/21 11:45 |
| 92570908004 | HRP-TW04-211102   | Water  | 11/02/21 15:00 | 11/05/21 11:45 |
| 92570908005 | HRP-TW05-211102   | Water  | 11/02/21 12:45 | 11/05/21 11:45 |
| 92570908006 | HRP-MW107-211102  | Water  | 11/02/21 10:40 | 11/05/21 11:45 |
| 92570908007 | HRP-RW117S-211103 | Water  | 11/03/21 10:20 | 11/05/21 11:45 |
| 92570908008 | HRP-MW104-211103  | Water  | 11/03/21 11:05 | 11/05/21 11:45 |
| 92570908009 | HRP-TW14-211104   | Water  | 11/04/21 14:00 | 11/05/21 11:45 |
| 92570908010 | HRP-EB11-211103   | Water  | 11/03/21 13:55 | 11/05/21 11:45 |
| 92570908011 | HRP-EB12-211103   | Water  | 11/03/21 14:00 | 11/05/21 11:45 |
| 92570908012 | HRP-TB03-211103   | Water  | 11/03/21 10:00 | 11/05/21 11:45 |



## **SAMPLE ANALYTE COUNT**

Project: HRP Alexandria CAPA

Pace Project No.: 92570908

| Lab ID      | Sample ID         | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|-----------|----------|----------------------|------------|
| 92570908001 | HRP-MW05-211102   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908002 | HRP-RW05S-211102  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908003 | HRP-RW116S-211102 | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908004 | HRP-TW04-211102   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908005 | HRP-TW05-211102   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908006 | HRP-MW107-211102  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 2570908007  | HRP-RW117S-211103 | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908008 | HRP-MW104-211103  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570908009 | HRP-TW14-211104   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570908010 | HRP-EB11-211103   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570908011 | HRP-EB12-211103   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570908012 | HRP-TB03-211103   | EPA 8260D | NSCQ     | 4                    | PASI-C     |

PAN = Pace National - Mt. Juliet

PASI-C = Pace Analytical Services - Charlotte



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-MW05-211102       | Lab ID:    | 925709080     | 01 Collected   | d: 11/02/21 | 16:00   | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|-------------------------------|------------|---------------|----------------|-------------|---------|----------------|----------------|--------------|------|
|                               |            |               | Report         |             |         |                |                |              |      |
| Parameters                    | Results    | Units         | Limit          | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015           | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 35 | 511/8015       |                |              |      |
|                               | Pace Natio | onal - Mt. Ju | lliet          |             |         |                |                |              |      |
| Diesel Fuel Range             | 6640       | ug/L          | 100            | 24.7        | 1       | 11/14/21 16:57 | 11/16/21 14:03 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S) | 118        | %             | 31.0-160       |             | 1       | 11/14/21 16:57 | 11/16/21 14:03 | 9/ 15 1      |      |
| o-respirently (3)             | 110        | /0            | 31.0-100       |             | '       | 11/14/21 10.57 | 11/10/21 14.03 | 04-15-1      |      |
| 8260D MSV Low Level           | Analytical | Method: EP    | A 8260D        |             |         |                |                |              |      |
|                               | Pace Anal  | ytical Servic | es - Charlotte |             |         |                |                |              |      |
| Naphthalene                   | 1.1        | ug/L          | 1.0            | 0.64        | 1       |                | 11/11/21 07:54 | 91-20-3      |      |
| Surrogates                    |            |               |                |             |         |                |                |              |      |
| 4-Bromofluorobenzene (S)      | 102        | %             | 70-130         |             | 1       |                | 11/11/21 07:54 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)     | 114        | %             | 70-130         |             | 1       |                | 11/11/21 07:54 | 17060-07-0   |      |
| Toluene-d8 (S)                | 108        | %             | 70-130         |             | 1       |                | 11/11/21 07:54 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-RW05S-211102         | Lab ID:     | 9257090800    | O2 Collected   | d: 11/02/21 | 17:10  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|----------------------------------|-------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                                  |             |               | Report         |             |        |                |                |              |      |
| Parameters                       | Results     | Units         | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015              | Analytical  | Method: EP/   | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                                  | Pace Nation | onal - Mt. Ju | liet           |             |        |                |                |              |      |
| Diesel Fuel Range                | 20800       | ug/L          | 1000           | 247         | 10     | 11/14/21 16:57 | 11/16/21 17:01 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S)    | 110         | %             | 31.0-160       |             | 10     | 11/14/21 16:57 | 11/16/21 17:01 | 84-15-1      |      |
| 8260D MSV Low Level              | Analytical  | Method: EP/   | A 8260D        |             |        |                |                |              |      |
|                                  | Pace Anal   | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br><b>Surrogates</b> | 0.91J       | ug/L          | 1.0            | 0.64        | 1      |                | 11/11/21 07:36 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)         | 101         | %             | 70-130         |             | 1      |                | 11/11/21 07:36 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)        | 108         | %             | 70-130         |             | 1      |                | 11/11/21 07:36 | 17060-07-0   |      |
| Toluene-d8 (S)                   | 109         | %             | 70-130         |             | 1      |                | 11/11/21 07:36 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-RW116S-211102     | Lab ID:    | 925709080     | O3 Collected   | d: 11/02/21 | 17:00  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|-------------------------------|------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                               |            |               | Report         |             |        |                |                |              |      |
| Parameters                    | Results    | Units         | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015           | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                               | Pace Natio | onal - Mt. Ju | liet           |             |        |                |                |              |      |
| Diesel Fuel Range             | 13800      | ug/L          | 1000           | 247         | 10     | 11/14/21 16:57 | 11/16/21 16:17 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S) | 104        | %             | 31.0-160       |             | 10     | 11/14/21 16:57 | 11/16/21 16:17 | 84-15-1      |      |
| 8260D MSV Low Level           | Analytical | Method: EP    | A 8260D        |             |        |                |                |              |      |
|                               | Pace Analy | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br>Surrogates     | ND         | ug/L          | 1.0            | 0.64        | 1      |                | 11/11/21 07:18 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)      | 99         | %             | 70-130         |             | 1      |                | 11/11/21 07:18 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)     | 109        | %             | 70-130         |             | 1      |                | 11/11/21 07:18 | 17060-07-0   |      |
| Toluene-d8 (S)                | 110        | %             | 70-130         |             | 1      |                | 11/11/21 07:18 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-TW04-211102      | Lab ID:     | 925709080     | 04 Collected   | d: 11/02/21 | 15:00  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|------------------------------|-------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                              |             |               | Report         |             |        |                |                |              |      |
| Parameters                   | Results     | Units         | Limit          | MDL .       | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical  | Method: EP    | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                              | Pace Nation | onal - Mt. Ju | liet           |             |        |                |                |              |      |
| Diesel Fuel Range Surrogates | 993         | ug/L          | 100            | 24.7        | 1      | 11/14/21 16:57 | 11/16/21 12:35 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 112         | %             | 31.0-160       |             | 1      | 11/14/21 16:57 | 11/16/21 12:35 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical  | Method: EP    | A 8260D        |             |        |                |                |              |      |
|                              | Pace Analy  | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br>Surrogates    | ND          | ug/L          | 1.0            | 0.64        | 1      |                | 11/09/21 06:49 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 102         | %             | 70-130         |             | 1      |                | 11/09/21 06:49 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 100         | %             | 70-130         |             | 1      |                | 11/09/21 06:49 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106         | %             | 70-130         |             | 1      |                | 11/09/21 06:49 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-TW05-211102      | Lab ID:    | 925709080     | 05 Collected   | d: 11/02/21 | 12:45  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|------------------------------|------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                              |            |               | Report         |             |        |                |                |              |      |
| Parameters                   | Results    | Units         | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                              | Pace Natio | onal - Mt. Ju | liet           |             |        |                |                |              |      |
| Diesel Fuel Range Surrogates | 2940       | ug/L          | 100            | 24.7        | 1      | 11/14/21 16:57 | 11/16/21 12:56 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 111        | %             | 31.0-160       |             | 1      | 11/14/21 16:57 | 11/16/21 12:56 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EP    | 4 8260D        |             |        |                |                |              |      |
|                              | Pace Anal  | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br>Surrogates    | 0.89J      | ug/L          | 1.0            | 0.64        | 1      |                | 11/11/21 06:23 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 103        | %             | 70-130         |             | 1      |                | 11/11/21 06:23 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 115        | %             | 70-130         |             | 1      |                | 11/11/21 06:23 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106        | %             | 70-130         |             | 1      |                | 11/11/21 06:23 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-MW107-211102     | Lab ID:    | 925709080     | 06 Collected   | d: 11/02/21 | 10:40  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|------------------------------|------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                              |            |               | Report         |             |        |                |                |              |      |
| Parameters                   | Results    | Units         | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                              | Pace Natio | onal - Mt. Ju | lliet          |             |        |                |                |              |      |
| Diesel Fuel Range Surrogates | 419        | ug/L          | 100            | 24.7        | 1      | 11/14/21 16:57 | 11/16/21 13:19 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 103        | %             | 31.0-160       |             | 1      | 11/14/21 16:57 | 11/16/21 13:19 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EP    | A 8260D        |             |        |                |                |              |      |
|                              | Pace Anal  | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene Surrogates       | ND         | ug/L          | 1.0            | 0.64        | 1      |                | 11/09/21 06:30 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 100        | %             | 70-130         |             | 1      |                | 11/09/21 06:30 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 101        | %             | 70-130         |             | 1      |                | 11/09/21 06:30 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106        | %             | 70-130         |             | 1      |                | 11/09/21 06:30 | 2037-26-5    |      |





Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-RW117S-211103     | Lab ID:    | 9257090800     | 7 Collected    | d: 11/03/21 | 10:20  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|-------------------------------|------------|----------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                               |            |                | Report         |             |        |                |                |              |      |
| Parameters                    | Results    | Units          | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015           | Analytical | Method: EPA    | 8015D Prep     | aration Met | hod: 3 | 511/8015       |                |              |      |
|                               | Pace Natio | onal - Mt. Jul | iet            |             |        |                |                |              |      |
| Diesel Fuel Range             | 13400      | ug/L           | 2000           | 494         | 20     | 11/14/21 16:57 | 11/16/21 16:39 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S) | 105        | %              | 31.0-160       |             | 20     | 11/14/21 16:57 | 11/16/21 16:39 | 84-15-1      | S4   |
| 8260D MSV Low Level           | Analytical | Method: EPA    | A 8260D        |             |        |                |                |              |      |
|                               | Pace Analy | ytical Service | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br>Surrogates     | ND         | ug/L           | 1.0            | 0.64        | 1      |                | 11/11/21 06:42 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)      | 100        | %              | 70-130         |             | 1      |                | 11/11/21 06:42 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)     | 115        | %              | 70-130         |             | 1      |                | 11/11/21 06:42 | 17060-07-0   |      |
| Toluene-d8 (S)                | 109        | %              | 70-130         |             | 1      |                | 11/11/21 06:42 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-MW104-211103  | Lab ID:    | 925709080     | 008 Collected   | l: 11/03/21 | 11:05   | Received: 11/  | 05/21 11:45 M  | atrix: Water |      |
|---------------------------|------------|---------------|-----------------|-------------|---------|----------------|----------------|--------------|------|
|                           |            |               | Report          |             |         |                |                |              |      |
| Parameters                | Results    | Units         | Limit           | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EF    | PA 8015D Prepa  | aration Met | hod: 35 | 511/8015       |                |              |      |
|                           | Pace Natio | onal - Mt. Ju | uliet           |             |         |                |                |              |      |
| Diesel Fuel Range         | ND         | ug/L          | 100             | 24.7        | 1       | 11/14/21 16:57 | 11/16/21 13:41 | 68334-30-5   | рН   |
| Surrogates                |            |               |                 |             |         |                |                |              |      |
| o-Terphenyl (S)           | 90.0       | %             | 31.0-160        |             | 1       | 11/14/21 16:57 | 11/16/21 13:41 | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EF    | PA 8260D        |             |         |                |                |              |      |
|                           | Pace Analy | ytical Servi  | ces - Charlotte |             |         |                |                |              |      |
| Naphthalene               | ND         | ug/L          | 1.0             | 0.64        | 1       |                | 11/09/21 07:01 | 91-20-3      |      |
| Surrogates                |            | _             |                 |             |         |                |                |              |      |
| 4-Bromofluorobenzene (S)  | 102        | %             | 70-130          |             | 1       |                | 11/09/21 07:01 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 97         | %             | 70-130          |             | 1       |                | 11/09/21 07:01 | 17060-07-0   |      |
| Toluene-d8 (S)            | 106        | %             | 70-130          |             | 1       |                | 11/09/21 07:01 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-TW14-211104      | Lab ID:     | 925709080     | 09 Collected   | d: 11/04/21 | 14:00   | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|------------------------------|-------------|---------------|----------------|-------------|---------|----------------|----------------|--------------|------|
|                              |             |               | Report         |             |         |                |                |              |      |
| Parameters                   | Results     | Units         | Limit          | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical  | Method: EP    | A 8015D Prep   | aration Met | hod: 38 | 511/8015       |                |              |      |
|                              | Pace Nation | onal - Mt. Ju | liet           |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 3040        | ug/L          | 400            | 98.8        | 4       | 11/18/21 15:53 | 11/19/21 06:40 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 116         | %             | 31.0-160       |             | 4       | 11/18/21 15:53 | 11/19/21 06:40 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical  | Method: EP    | A 8260D        |             |         |                |                |              |      |
|                              | Pace Anal   | ytical Servic | es - Charlotte |             |         |                |                |              |      |
| Naphthalene<br>Surrogates    | ND          | ug/L          | 1.0            | 0.64        | 1       |                | 11/11/21 07:00 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 101         | %             | 70-130         |             | 1       |                | 11/11/21 07:00 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 113         | %             | 70-130         |             | 1       |                | 11/11/21 07:00 | 17060-07-0   |      |
| Toluene-d8 (S)               | 108         | %             | 70-130         |             | 1       |                | 11/11/21 07:00 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-EB11-211103      | Lab ID:     | 925709080    | 10 Collected   | d: 11/03/21 | 13:55  | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|------------------------------|-------------|--------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                              |             |              | Report         |             |        |                |                |              |      |
| Parameters                   | Results     | Units        | Limit          | MDL .       | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical  | Method: EP   | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                              | Pace Nation | nal - Mt. Ju | liet           |             |        |                |                |              |      |
| Diesel Fuel Range Surrogates | 256         | ug/L         | 100            | 24.7        | 1      | 11/14/21 16:57 | 11/16/21 18:29 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 107         | %            | 31.0-160       |             | 1      | 11/14/21 16:57 | 11/16/21 18:29 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical  | Method: EP   | A 8260D        |             |        |                |                |              |      |
|                              | Pace Anal   | tical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene<br>Surrogates    | ND          | ug/L         | 1.0            | 0.64        | 1      |                | 11/08/21 17:15 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 101         | %            | 70-130         |             | 1      |                | 11/08/21 17:15 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 94          | %            | 70-130         |             | 1      |                | 11/08/21 17:15 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106         | %            | 70-130         |             | 1      |                | 11/08/21 17:15 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-EB12-211103   | Lab ID:     | 925709080 <sup>-</sup> | 11 Collected   | d: 11/03/21 | 14:00   | Received: 11/  | 05/21 11:45 Ma | atrix: Water |      |
|---------------------------|-------------|------------------------|----------------|-------------|---------|----------------|----------------|--------------|------|
|                           |             |                        | Report         |             |         |                |                |              |      |
| Parameters                | Results     | Units                  | Limit          | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical  | Method: EP/            | A 8015D Prep   | aration Met | hod: 35 | 511/8015       |                |              |      |
|                           | Pace Nation | onal - Mt. Ju          | liet           |             |         |                |                |              |      |
| Diesel Fuel Range         | ND          | ug/L                   | 100            | 24.7        | 1       | 11/14/21 16:57 | 11/16/21 14:48 | 68334-30-5   | рН   |
| Surrogates                |             |                        |                |             |         |                |                |              |      |
| o-Terphenyl (S)           | 92.5        | %                      | 31.0-160       |             | 1       | 11/14/21 16:57 | 11/16/21 14:48 | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical  | Method: EP/            | A 8260D        |             |         |                |                |              |      |
|                           | Pace Anal   | ytical Servic          | es - Charlotte |             |         |                |                |              |      |
| Naphthalene               | ND          | ug/L                   | 1.0            | 0.64        | 1       |                | 11/08/21 16:57 | 91-20-3      |      |
| Surrogates                |             |                        |                |             |         |                |                |              |      |
| 4-Bromofluorobenzene (S)  | 100         | %                      | 70-130         |             | 1       |                | 11/08/21 16:57 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 94          | %                      | 70-130         |             | 1       |                | 11/08/21 16:57 | 17060-07-0   |      |
| Toluene-d8 (S)            | 107         | %                      | 70-130         |             | 1       |                | 11/08/21 16:57 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Sample: HRP-TB03-211103   | Lab ID: | 92570908012                      | Collecte | d: 11/03/21 | 10:00    | Received: 11 | /05/21 11:45 Ma | atrix: Water |      |
|---------------------------|---------|----------------------------------|----------|-------------|----------|--------------|-----------------|--------------|------|
| _                         | _       |                                  | Report   |             |          |              |                 |              |      |
| Parameters                | Results | Units                            | Limit    | MDL         | DF<br>—— | Prepared     | Analyzed        | CAS No.      | Qual |
| 8260D MSV Low Level       | •       | Method: EPA 8<br>ytical Services |          |             |          |              |                 |              |      |
| Naphthalene Surrogates    | ND      | ug/L                             | 1.0      | 0.64        | 1        |              | 11/08/21 15:47  | 91-20-3      |      |
| 4-Bromofluorobenzene (S)  | 101     | %                                | 70-130   |             | 1        |              | 11/08/21 15:47  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 94      | %                                | 70-130   |             | 1        |              | 11/08/21 15:47  | 17060-07-0   |      |
| Toluene-d8 (S)            | 107     | %                                | 70-130   |             | 1        |              | 11/08/21 15:47  | 2037-26-5    |      |





Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

QC Batch: 1774007 Analysis Method: EPA 8015D

QC Batch Method: 3511/8015 Analysis Description: SVOA (GC) 3511/8015

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 92570908001, 92570908002, 92570908003, 92570908004, 92570908005, 92570908006, 92570908007,

92570908008, 92570908010, 92570908011

METHOD BLANK: R3729355-1 Matrix: Water

Associated Lab Samples: 92570908001, 92570908002, 92570908003, 92570908004, 92570908005, 92570908006, 92570908007,

92570908008, 92570908010, 92570908011

Blank Reporting Parameter Units Result MDL Qualifiers Limit Analyzed 11/15/21 01:47 Diesel Fuel Range ug/L ND 100 24.7 o-Terphenyl (S) 90.5 11/15/21 01:47 % 31.0-160

| LABORATORY CONTROL SAMPLE & I | CSD: R37293 | 55-2  | R      | 3729355-3 |       |       |          |       |     |            |
|-------------------------------|-------------|-------|--------|-----------|-------|-------|----------|-------|-----|------------|
|                               |             | Spike | LCS    | LCSD      | LCS   | LCSD  | % Rec    |       | Max |            |
| Parameter                     | Units       | Conc. | Result | Result    | % Rec | % Rec | Limits   | RPD   | RPD | Qualifiers |
| Diesel Fuel Range             | ug/L        | 1500  | 1460   | 1450      | 97.3  | 96.7  | 50.0-150 | 0.687 | 20  |            |
| o-Terphenyl (S)               | %           |       |        |           | 94.0  | 94.5  | 31.0-160 |       |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP Alexandria CAPA

Pace Project No.:

92570908

QC Batch:

.====

QC Batch Method: 3

1775926

3511/8015

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 3511/8015

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92570908009

METHOD BLANK: R3731572-1

Matrix: Water

Associated Lab Samples:

Date: 12/16/2021 12:15 PM

92570908009

|                   |       | Blank  | Reporting |      |                |            |
|-------------------|-------|--------|-----------|------|----------------|------------|
| Parameter         | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Diesel Fuel Range | ug/L  | ND     | 100       | 24.7 | 11/19/21 02:40 |            |
| o-Terphenyl (S)   | %     | 75     | 31.0-160  |      | 11/19/21 02:40 |            |

| LABORATORY CONTROL SAMPLE &          | LCSD: R3731: | 572-2          | R             | 3731572-3      |              |               |                      |       |            |            |
|--------------------------------------|--------------|----------------|---------------|----------------|--------------|---------------|----------------------|-------|------------|------------|
| Parameter                            | Units        | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits      | RPD   | Max<br>RPD | Qualifiers |
| Diesel Fuel Range<br>o-Terphenyl (S) | ug/L<br>%    | 1500           | 1510          | 1520           | 101<br>115   | _             | 50.0-150<br>31.0-160 | 0.660 | 20         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

QC Batch: 658243 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570908010, 92570908011, 92570908012

METHOD BLANK: 3450097 Matrix: Water

Associated Lab Samples: 92570908010, 92570908011, 92570908012

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND              | 1.0                | 0.64 | 11/08/21 14:54 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 94              | 70-130             |      | 11/08/21 14:54 |            |
| 4-Bromofluorobenzene (S)  | %     | 102             | 70-130             |      | 11/08/21 14:54 |            |
| Toluene-d8 (S)            | %     | 107             | 70-130             |      | 11/08/21 14:54 |            |

| LABORATORY CONTROL SAMPLE: | 3450098 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 55.7   | 111   | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 90    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 97    | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 99    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | PIKE DUPLIC | CATE: 3450 | 099   |       | 3450100 |        |       |       |        |     |     |      |
|---------------------------|-------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |             |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           | 9           | 2571045012 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units       | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene               | ug/L        | ND         | 20    | 20    | 22.7    | 21.5   | 113   | 107   | 57-150 | 5   | 30  |      |
| 1,2-Dichloroethane-d4 (S) | %           |            |       |       |         |        | 92    | 93    | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)  | %           |            |       |       |         |        | 97    | 97    | 70-130 |     |     |      |
| Toluene-d8 (S)            | %           |            |       |       |         |        | 98    | 97    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

QC Batch: 658248 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570908008

METHOD BLANK: 3450121 Matrix: Water

Associated Lab Samples: 92570908008

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND              | 1.0                | 0.64 | 11/09/21 02:19 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 95              | 70-130             |      | 11/09/21 02:19 |            |
| 4-Bromofluorobenzene (S)  | %     | 104             | 70-130             |      | 11/09/21 02:19 |            |
| Toluene-d8 (S)            | %     | 108             | 70-130             |      | 11/09/21 02:19 |            |

| LABORATORY CONTROL SAMPLE: | 3450122 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 51.2   | 102   | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 97    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 100   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 99    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | PIKE DUPLIC | CATE: 3450 | 123   |       | 3450124 |        |       |       |        |     |     |      |
|---------------------------|-------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |             |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           | 9           | 2571063009 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units       | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene               | ug/L        | ND         | 20    | 20    | 24.0    | 22.2   | 120   | 111   | 57-150 | 8   | 30  |      |
| 1,2-Dichloroethane-d4 (S) | %           |            |       |       |         |        | 93    | 96    | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)  | %           |            |       |       |         |        | 98    | 97    | 70-130 |     |     |      |
| Toluene-d8 (S)            | %           |            |       |       |         |        | 96    | 97    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: HRP Alexandria CAPA

Pace Project No.: 92570908

QC Batch: 658251 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570908001, 92570908002, 92570908003, 92570908005, 92570908007, 92570908009

METHOD BLANK: 3450128 Matrix: Water

Associated Lab Samples: 92570908001, 92570908002, 92570908003, 92570908005, 92570908007, 92570908009

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analvzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND -            | 1.0                | 0.64 | 11/10/21 22:48 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 99              | 70-130             | 0.04 | 11/10/21 22:48 |            |
| 4-Bromofluorobenzene (S)  | %     | 99              | 70-130             |      | 11/10/21 22:48 |            |
| Toluene-d8 (S)            | %     | 107             | 70-130             |      | 11/10/21 22:48 |            |

| LABORATORY CONTROL SAMPLE: | 3450129 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 51.1   | 102   | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 97    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 100   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 97    | 70-130 |            |

| MATRIX SPIKE SAMPLE:      | 3450130 |                       |                |              |             |                 |            |
|---------------------------|---------|-----------------------|----------------|--------------|-------------|-----------------|------------|
| Parameter                 | Units   | 92570908001<br>Result | Spike<br>Conc. | MS<br>Result | MS<br>% Rec | % Rec<br>Limits | Qualifiers |
|                           |         |                       |                |              |             |                 | Qualificis |
| Naphthalene               | ug/L    | 1.1                   | 20             | 23.8         | 114         | 57-150          |            |
| 1,2-Dichloroethane-d4 (S) | %       |                       |                |              | 119         | 70-130          |            |
| 4-Bromofluorobenzene (S)  | %       |                       |                |              | 102         | 70-130          |            |
| Toluene-d8 (S)            | %       |                       |                |              | 100         | 70-130          |            |

SAMPLE DUPLICATE: 3454226

Date: 12/16/2021 12:15 PM

| Parameter                 | Units | 92570908002<br>Result | Dup<br>Result | RPD | Max<br>RPD | Qualifiers |
|---------------------------|-------|-----------------------|---------------|-----|------------|------------|
| Naphthalene               | ug/L  | 0.91J                 | 0.95J         |     | 30         |            |
| 1,2-Dichloroethane-d4 (S) | %     | 108                   | 115           |     |            |            |
| 4-Bromofluorobenzene (S)  | %     | 101                   | 102           |     |            |            |
| Toluene-d8 (S)            | %     | 109                   | 110           |     |            |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

QC Batch: 658254 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570908004, 92570908006

METHOD BLANK: 3450138 Matrix: Water

Associated Lab Samples: 92570908004, 92570908006

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND ND           | 1.0                | 0.64 | 11/09/21 00:11 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 99              | 70-130             |      | 11/09/21 00:11 |            |
| 4-Bromofluorobenzene (S)  | %     | 101             | 70-130             |      | 11/09/21 00:11 |            |
| Toluene-d8 (S)            | %     | 105             | 70-130             |      | 11/09/21 00:11 |            |

| LABORATORY CONTROL SAMPLE: | 3450139 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| _                          |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 49.6   | 99    | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 104   | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 102   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 97    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLIC | CATE: 3450 | 140   |       | 3450141 |        |       |       |        |     |     |      |
|---------------------------|------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |            |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           | 9          | 2570908004 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units      | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene               | ug/L       | ND         | 20    | 20    | 22.8    | 22.1   | 114   | 110   | 57-150 | 3   | 30  |      |
| 1,2-Dichloroethane-d4 (S) | %          |            |       |       |         |        | 99    | 97    | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)  | %          |            |       |       |         |        | 101   | 101   | 70-130 |     |     |      |
| Toluene-d8 (S)            | %          |            |       |       |         |        | 99    | 98    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



**QUALIFIERS** 

Project: HRP Alexandria CAPA

Pace Project No.: 92570908

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 12/16/2021 12:15 PM

Surrogate recovery not evaluated against control limits due to sample dilution.

pH Post-analysis pH measurement indicates insufficient VOA sample preservation.





### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP Alexandria CAPA

Pace Project No.: 92570908

Date: 12/16/2021 12:15 PM

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|---------------------|
| 92570908001 | HRP-MW05-211102   | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908002 | HRP-RW05S-211102  | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908003 | HRP-RW116S-211102 | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908004 | HRP-TW04-211102   | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908005 | HRP-TW05-211102   | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908006 | HRP-MW107-211102  | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908007 | HRP-RW117S-211103 | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908008 | HRP-MW104-211103  | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908009 | HRP-TW14-211104   | 3511/8015       | 1775926  | EPA 8015D         | 1775926             |
| 92570908010 | HRP-EB11-211103   | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908011 | HRP-EB12-211103   | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 92570908001 | HRP-MW05-211102   | EPA 8260D       | 658251   |                   |                     |
| 92570908002 | HRP-RW05S-211102  | EPA 8260D       | 658251   |                   |                     |
| 92570908003 | HRP-RW116S-211102 | EPA 8260D       | 658251   |                   |                     |
| 92570908004 | HRP-TW04-211102   | EPA 8260D       | 658254   |                   |                     |
| 92570908005 | HRP-TW05-211102   | EPA 8260D       | 658251   |                   |                     |
| 92570908006 | HRP-MW107-211102  | EPA 8260D       | 658254   |                   |                     |
| 92570908007 | HRP-RW117S-211103 | EPA 8260D       | 658251   |                   |                     |
| 92570908008 | HRP-MW104-211103  | EPA 8260D       | 658248   |                   |                     |
| 92570908009 | HRP-TW14-211104   | EPA 8260D       | 658251   |                   |                     |
| 92570908010 | HRP-EB11-211103   | EPA 8260D       | 658243   |                   |                     |
| 92570908011 | HRP-EB12-211103   | EPA 8260D       | 658243   |                   |                     |
| 92570908012 | HRP-TB03-211103   | EPA 8260D       | 658243   |                   |                     |



# Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020
Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

|                  |                                                                                                                                               |                                                                                                                                                                                |              | IAIC                     | #:92570908                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|---------------------------------------------------------|
|                  |                                                                                                                                               |                                                                                                                                                                                | Prolec       | + #                      |                                                         |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          |                                                         |
|                  |                                                                                                                                               | . Цс                                                                                                                                                                           | lient        | 9257                     | 0908                                                    |
| ls Intact?       | □Yes                                                                                                                                          | □No                                                                                                                                                                            | •            | Date/I                   | nitials Person Examining Contents:                      |
| ubble Bags       | Non                                                                                                                                           | ne 🔲 (                                                                                                                                                                         | Other        |                          | Biological Tissue Frozen?                               |
| 1                | <b>S</b>                                                                                                                                      | Wet 🗆                                                                                                                                                                          | Blue         | None                     | □Yes □No ☑N/A                                           |
|                  |                                                                                                                                               | 7 250 200                                                                                                                                                                      |              |                          |                                                         |
| (°C)             |                                                                                                                                               | _                                                                                                                                                                              | 9            |                          | be above freezing to 6°C                                |
| .4               |                                                                                                                                               |                                                                                                                                                                                |              |                          | s out of temp criteria. Samples on ice, cooling process |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          |                                                         |
| nited States: CA | , NY, or S                                                                                                                                    | SC (check m                                                                                                                                                                    | aps)?        |                          | riginate from a foreign source (internationally,        |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          | Comments/Discrepancy:                                   |
| Yes              | □No                                                                                                                                           | □N/A                                                                                                                                                                           | 1.           | -                        |                                                         |
|                  |                                                                                                                                               | ΠN/A                                                                                                                                                                           | 2.           |                          |                                                         |
|                  | The same of                                                                                                                                   |                                                                                                                                                                                | 3.           |                          |                                                         |
|                  | 24                                                                                                                                            | □N/A                                                                                                                                                                           | 4.           |                          |                                                         |
|                  |                                                                                                                                               | □N/A                                                                                                                                                                           | 5.11         | WA C                     | a TPH-DRO                                               |
|                  | □No                                                                                                                                           |                                                                                                                                                                                | 6.           | 70                       |                                                         |
| Ves              | □No                                                                                                                                           | □N/A                                                                                                                                                                           |              |                          |                                                         |
| Wes              | □No                                                                                                                                           | □N/A                                                                                                                                                                           | 7.           |                          |                                                         |
| □Yes             | BNo                                                                                                                                           | □N/A                                                                                                                                                                           | 8.           |                          |                                                         |
| □Yes             | □No                                                                                                                                           | □N/A                                                                                                                                                                           | 9.           |                          | -                                                       |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          |                                                         |
|                  |                                                                                                                                               | -                                                                                                                                                                              |              | ^                        | 1 1                                                     |
| Yes              | □No                                                                                                                                           | □N/A                                                                                                                                                                           | 10. 2        | LOUMEN                   | ted on Chain                                            |
| es res           | lands of                                                                                                                                      |                                                                                                                                                                                | 12.          |                          |                                                         |
| Yes              | ∐No                                                                                                                                           | LJN/A                                                                                                                                                                          | 1            | _                        |                                                         |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          | Field Data Required? ☐Yes ☐No                           |
| 7                |                                                                                                                                               |                                                                                                                                                                                |              |                          | Us the specific                                         |
|                  |                                                                                                                                               |                                                                                                                                                                                | Lot          | D of split co            | ntainers:                                               |
|                  |                                                                                                                                               |                                                                                                                                                                                |              |                          | 1                                                       |
|                  |                                                                                                                                               |                                                                                                                                                                                |              | _                        |                                                         |
|                  |                                                                                                                                               | Date/Ti                                                                                                                                                                        | me:          | ŧ                        |                                                         |
|                  |                                                                                                                                               |                                                                                                                                                                                |              | . · Date:                |                                                         |
|                  | □ Other list intact?  ubble Bags  Type of listor:  (°C) □ O  A H  inted States: CA  Ves □ Yes | Type of Ice:  tor:  (°C)  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No  Yes   No | Other:   Yes | USPS   Client     Other: | Other:                                                  |



### Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: ...

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

\*\*Bottom half of box is to list number of bottles

Project LIOH . C

92570908

PM: AMB

Due Date: 11/16/21

CLIENT: 92-RambollEn

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1-liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG15-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A[DG3A]-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S203 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – lab) | SPZT-250 mL Sterile Plastic (N/A – lab) |   | BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|---|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     | 1                                           |                                       |                                       |                                        | 1                                        | /                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                |                                          | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 2     | /                                           | V                                     |                                       |                                        | 1                                        | /                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 3     | /                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 4     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 5     | /                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 6     | /                                           |                                       |                                       |                                        | 1                                        | 1                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 7     | /                                           |                                       |                                       |                                        | /                                        | /                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          | Ťý                                      |                                         | 1 |                                         |                                           |                                      |                                          |
| 8     | /                                           |                                       |                                       |                                        | /                                        | /                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | 1 |                                         |                                           |                                      |                                          |
| 9     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | /                                | 1                                        | a                        |                              | 1                        |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      |                                          |
| 10    | 1                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | /                                        | 3                        | e-                           | 3                        |                            |                                       |                                          |                                         |                                         | / |                                         |                                           |                                      |                                          |
| 11    | 1                                           |                                       | I                                     |                                        | /                                        | /                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | /                                | /                                        | 3                        |                              | 3                        |                            |                                       |                                          |                                         |                                         | / | 1                                       | 6                                         |                                      |                                          |
| 12    | /                                           |                                       |                                       |                                        | /                                        |                                   | /                                          | 1                                        | 4 ()                                    |                                            |                                 |                                           |                                   | /                                |                                          | 2                        |                              |                          |                            |                                       |                                          |                                         |                                         |   |                                         |                                           |                                      |                                          |

|           | pH Adjustment Log for Preserved Samples |                 |                            |                            |                              |      |  |  |  |  |  |  |  |
|-----------|-----------------------------------------|-----------------|----------------------------|----------------------------|------------------------------|------|--|--|--|--|--|--|--|
| Sample ID | Type of Preservative                    | pH upon recelpt | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added | Lot# |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                            |                              |      |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                            |                              |      |  |  |  |  |  |  |  |
|           |                                         |                 |                            |                            |                              |      |  |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf.

000 010 Seg water effectively, bubbles unavoidable. 100 | where effereedly, bubbles unansidable. Equipment Blank Earignant Blank 엉 92570908 sec comments Samples 8 ŏ 003 388 TripBlack Custody (N/Y) enhold Chlodies (Y/V) Page: TEMP In C 1145 -5-21 DATE Keelee Burney 芝 Trip BLANK angela.baioni@pacelabs.com Y Naphthalene by 8260 × × メバ × × × × 2 X × × × X × **DRO by 8015** JeeT sesylanA -N/A Other lonsitieM Nezszoa Samh Ostertan HOBN Pace Project Manager. X 8918 нсі X Invoice Information: EONH Company Name: 0420 HISON ace Quote: N N 말 X × X Address: X Unpreserved X SAMPLER NAME AND SIGNATURE 9 0 3 9 9 OF CONTAINERS PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION 1775/11 TIME END 308-765-Recs/Rm2011 DATE Laulaber / Ramboll COLLECTED 1600 1245 1040 NT 6 11.321 1020 WI 6 1/4.21 1400 NA 11-3-21 1355 1710 1300 Lun 6 11-3-21 1105 OT 11-3-21 1400 1500 TIME OR 11 11-524 1000 arah & Stertag START Greey Grose HRP Alexandria 11.24 11.2.11 6 11.221 6 11.2.4 JT6 11.24 6 11.2.21 19 0 SAMPLE TYPE (G=GRAB C=COMP) Purchase Order #: Project Name: 5 5 F 4 MATRIX CODE (see valid codes to left) Copy To: Section B Project #: THE WAY OF THE ST HRP-TWI4-241104: De to low recovery MATRIX
Dirnking Water
Water
Waste Water
Waste Welser
Soil/Soid
Oil
Whee
Air
Chhee ScTOH-DOLD 5-bmithed. Run TPH-0PD IC 2 VOAS for Maphtha. and / VOA Sostantay Granted HRP- RW055-211102 HRP-RW1178-211103 4RP-MW05-211102 HRP- RWII65-211102 HRP- MWIDT-211102 One Character per box. (A-Z, 0-91, -) Sample Ids must be unique HRP-TWOH-211102 148-TIMOS-211102 HRP - MWIOH - 21/103 HRP-TWIM-211104 Ramboll US Consulting, Inc. HRP-EB12-211103 SAMPLE ID HRP-EB11-211103 4350 North Fairfax Drive HPP-T803-211103 akelly@ramboll.com NONE Required Client Information: YELL CAN Ulington, VA 22203 Sugar 8 TEM #

(NV)

(N/A) Sealed

(N/A)

11/2/262

DATE Signed:

SIGNATURE of SAMPLER:



(704)875-9092



December 16, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP Alexandria CAPA

Pace Project No.: 92570812

#### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on November 03, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace National Mt. Juliet
- Pace Analytical Services Charlotte

A revised report is being submitted on 12/16/21 to include MDLs and applicable J values.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP Alexandria CAPA

Pace Project No.: 92570812

**Pace Analytical Services National** 

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: B-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958
Minnesota Certification #: 047-999-395
Mississippi Certification #: TN00003
Missouri Certification #: 340
Montana Certification #: CERT0086
Nebraska Certification #: NE-OS-15-05

South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003 Florida/NELAP Certification #: E87627

Kentucky UST Certification #: 84 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221

#### **Pace Analytical Services Charlotte**

South Carolina Laboratory ID: 99006

South Carolina Laboratory ID: 99006 9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233

Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789





### **SAMPLE SUMMARY**

Project: HRP Alexandria CAPA

Pace Project No.: 92570812

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92570812001 | HRP-TW02-211101   | Water  | 11/01/21 12:43 | 11/03/21 14:55 |
| 92570812002 | HRP-TW03-211101   | Water  | 11/01/21 14:25 | 11/03/21 14:55 |
| 92570812003 | HRP-TW07-211101   | Water  | 11/01/21 15:50 | 11/03/21 14:55 |
| 92570812004 | HRP-TW06-211101   | Water  | 11/01/21 17:08 | 11/03/21 14:55 |
| 92570812005 | HRP-MW106-211101  | Water  | 11/01/21 10:35 | 11/03/21 14:55 |
| 92570812006 | HRP-MW33-211101   | Water  | 11/01/21 15:25 | 11/03/21 14:55 |
| 92570812007 | HRP-MW123S-211101 | Water  | 11/01/21 17:05 | 11/03/21 14:55 |
| 92570812008 | HRP-DUP06-211101  | Water  | 11/01/21 17:05 | 11/03/21 14:55 |
| 92570812009 | HRP-MW01S-211102  | Water  | 10/31/21 11:35 | 11/03/21 14:55 |
| 92570812010 | HRP-MW122-211102  | Water  | 11/02/21 14:20 | 11/03/21 14:55 |
| 92570812011 | HRP-DUP07-211102  | Water  | 11/02/21 14:20 | 11/03/21 14:55 |
| 92570812012 | HRP-TB02-21101    | Water  | 11/01/21 18:00 | 11/03/21 14:55 |



### **SAMPLE ANALYTE COUNT**

Project: HRP Alexandria CAPA

Pace Project No.: 92570812

| Lab ID      | Sample ID         | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|-----------|----------|----------------------|------------|
| 92570812001 | HRP-TW02-211101   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570812002 | HRP-TW03-211101   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570812003 | HRP-TW07-211101   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570812004 | HRP-TW06-211101   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812005 | HRP-MW106-211101  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812006 | HRP-MW33-211101   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812007 | HRP-MW123S-211101 | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812008 | HRP-DUP06-211101  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812009 | HRP-MW01S-211102  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | NSCQ     | 4                    | PASI-C     |
| 92570812010 | HRP-MW122-211102  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812011 | HRP-DUP07-211102  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | SAS      | 4                    | PASI-C     |
| 92570812012 | HRP-TB02-21101    | EPA 8260D | SAS      | 4                    | PASI-C     |

PAN = Pace National - Mt. Juliet

PASI-C = Pace Analytical Services - Charlotte



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-TW02-211101      | Lab ID:      | 92570812001      | Collected     | d: 11/01/21 | 12:43   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|------------------------------|--------------|------------------|---------------|-------------|---------|----------------|----------------|--------------|------|
|                              |              |                  | Report        |             |         |                |                |              |      |
| Parameters                   | Results      | Units            | Limit         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical I | Method: EPA      | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio   | onal - Mt. Julie | et            |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | ND           | ug/L             | 100           | 24.7        | 1       | 11/13/21 16:08 | 11/16/21 10:44 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 97.4         | %                | 31.0-160      |             | 1       | 11/13/21 16:08 | 11/16/21 10:44 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical I | Method: EPA      | 8260D         |             |         |                |                |              |      |
|                              | Pace Analy   | ytical Services  | s - Charlotte |             |         |                |                |              |      |
| Naphthalene<br>Surrogates    | ND           | ug/L             | 1.0           | 0.64        | 1       |                | 11/06/21 09:23 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 98           | %                | 70-130        |             | 1       |                | 11/06/21 09:23 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 104          | %                | 70-130        |             | 1       |                | 11/06/21 09:23 | 17060-07-0   |      |
| Toluene-d8 (S)               | 101          | %                | 70-130        |             | 1       |                | 11/06/21 09:23 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-TW03-211101      | Lab ID:    | 92570812002      | 2 Collected   | d: 11/01/21 | 14:25   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|------------------------------|------------|------------------|---------------|-------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report        |             |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EPA      | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio | onal - Mt. Julie | et            |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 296        | ug/L             | 100           | 24.7        | 1       | 11/13/21 16:08 | 11/15/21 08:00 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 101        | %                | 31.0-160      |             | 1       | 11/13/21 16:08 | 11/15/21 08:00 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EPA      | 8260D         |             |         |                |                |              |      |
|                              | Pace Anal  | tical Services   | s - Charlotte |             |         |                |                |              |      |
| Naphthalene Surrogates       | ND         | ug/L             | 1.0           | 0.64        | 1       |                | 11/06/21 09:40 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 98         | %                | 70-130        |             | 1       |                | 11/06/21 09:40 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 106        | %                | 70-130        |             | 1       |                | 11/06/21 09:40 | 17060-07-0   |      |
| Toluene-d8 (S)               | 101        | %                | 70-130        |             | 1       |                | 11/06/21 09:40 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-TW07-211101       | Lab ID:     | 925708120    | 003 Collected   | d: 11/01/21 | 15:50   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|-------------------------------|-------------|--------------|-----------------|-------------|---------|----------------|----------------|--------------|------|
|                               |             |              | Report          |             |         |                |                |              |      |
| Parameters                    | Results     | Units        | Limit           | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015           | Analytical  | Method: EF   | PA 8015D Prep   | aration Met | hod: 35 | 511/8015       |                |              |      |
|                               | Pace Nation | nal - Mt. Ju | uliet           |             |         |                |                |              |      |
| Diesel Fuel Range             | 349         | ug/L         | 100             | 24.7        | 1       | 11/13/21 16:08 | 11/15/21 08:22 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S) | 104         | %            | 31.0-160        |             | 1       | 11/13/21 16:08 | 11/15/21 08:22 | 84-15-1      |      |
| 8260D MSV Low Level           | Analytical  | Method: EF   | PA 8260D        |             |         |                |                |              |      |
|                               | Pace Analy  | ytical Servi | ces - Charlotte |             |         |                |                |              |      |
| Naphthalene<br>Surrogates     | ND          | ug/L         | 1.0             | 0.64        | 1       |                | 11/06/21 09:57 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)      | 97          | %            | 70-130          |             | 1       |                | 11/06/21 09:57 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)     | 104         | %            | 70-130          |             | 1       |                | 11/06/21 09:57 | 17060-07-0   |      |
| Toluene-d8 (S)                | 101         | %            | 70-130          |             | 1       |                | 11/06/21 09:57 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-TW06-211101       | Lab ID:     | 925708120    | 004 Collected   | d: 11/01/21 | 17:08   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|-------------------------------|-------------|--------------|-----------------|-------------|---------|----------------|----------------|--------------|------|
|                               |             |              | Report          |             |         |                |                |              |      |
| Parameters                    | Results     | Units        | Limit           | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015           | Analytical  | Method: EF   | PA 8015D Prep   | aration Met | hod: 35 | 511/8015       |                |              |      |
|                               | Pace Nation | nal - Mt. Ju | uliet           |             |         |                |                |              |      |
| Diesel Fuel Range             | 931         | ug/L         | 100             | 24.7        | 1       | 11/13/21 16:08 | 11/15/21 08:44 | 68334-30-5   | рН   |
| Surrogates<br>o-Terphenyl (S) | 114         | %            | 31.0-160        |             | 1       | 11/13/21 16:08 | 11/15/21 08:44 | 84-15-1      |      |
| 8260D MSV Low Level           | Analytical  | Method: EF   | PA 8260D        |             |         |                |                |              |      |
|                               | Pace Analy  | ytical Servi | ces - Charlotte |             |         |                |                |              |      |
| Naphthalene<br>Surrogates     | ND          | ug/L         | 1.0             | 0.64        | 1       |                | 11/06/21 22:20 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)      | 95          | %            | 70-130          |             | 1       |                | 11/06/21 22:20 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)     | 96          | %            | 70-130          |             | 1       |                | 11/06/21 22:20 | 17060-07-0   |      |
| Toluene-d8 (S)                | 106         | %            | 70-130          |             | 1       |                | 11/06/21 22:20 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-MW106-211101     | Lab ID:      | 92570812005      | Collecte    | d: 11/01/21 | 10:35   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|------------------------------|--------------|------------------|-------------|-------------|---------|----------------|----------------|--------------|------|
|                              |              |                  | Report      |             |         |                |                |              |      |
| Parameters                   | Results      | Units            | Limit       | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical I | Method: EPA      | 8015D Prep  | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio   | onal - Mt. Julie | ŧ           |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 1440         | ug/L             | 100         | 24.7        | 1       | 11/13/21 16:08 | 11/15/21 09:05 | 68334-30-5   | pН   |
| o-Terphenyl (S)              | 102          | %                | 31.0-160    |             | 1       | 11/13/21 16:08 | 11/15/21 09:05 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical I | Method: EPA      | 8260D       |             |         |                |                |              |      |
|                              | Pace Analy   | tical Services   | - Charlotte |             |         |                |                |              |      |
| Naphthalene Surrogates       | ND           | ug/L             | 1.0         | 0.64        | 1       |                | 11/06/21 19:37 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 96           | %                | 70-130      |             | 1       |                | 11/06/21 19:37 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 98           | %                | 70-130      |             | 1       |                | 11/06/21 19:37 | 17060-07-0   |      |
| Toluene-d8 (S)               | 102          | %                | 70-130      |             | 1       |                | 11/06/21 19:37 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-MW33-211101   | Lab ID:    | 925708120     | 06 Collected   | d: 11/01/21 | 15:25  | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|---------------------------|------------|---------------|----------------|-------------|--------|----------------|----------------|--------------|------|
|                           |            |               | Report         |             |        |                |                |              |      |
| Parameters                | Results    | Units         | Limit          | MDL         | DF     | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 3 | 511/8015       |                |              |      |
|                           | Pace Natio | onal - Mt. Ju | lliet          |             |        |                |                |              |      |
| Diesel Fuel Range         | ND         | ug/L          | 100            | 24.7        | 1      | 11/13/21 16:08 | 11/15/21 09:27 | 68334-30-5   |      |
| Surrogates                |            |               |                |             |        |                |                |              |      |
| o-Terphenyl (S)           | 91.6       | %             | 31.0-160       |             | 1      | 11/13/21 16:08 | 11/15/21 09:27 | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EP    | A 8260D        |             |        |                |                |              |      |
|                           | Pace Analy | ytical Servic | es - Charlotte |             |        |                |                |              |      |
| Naphthalene               | ND         | ug/L          | 1.0            | 0.64        | 1      |                | 11/06/21 19:55 | 91-20-3      |      |
| Surrogates                |            |               |                |             |        |                |                |              |      |
| 4-Bromofluorobenzene (S)  | 91         | %             | 70-130         |             | 1      |                | 11/06/21 19:55 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 95         | %             | 70-130         |             | 1      |                | 11/06/21 19:55 | 17060-07-0   |      |
| Toluene-d8 (S)            | 107        | %             | 70-130         |             | 1      |                | 11/06/21 19:55 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-MW123S-211101 | Lab ID:    | 9257081200     | 7 Collected    | d: 11/01/21 | 17:05   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|---------------------------|------------|----------------|----------------|-------------|---------|----------------|----------------|--------------|------|
|                           |            |                | Report         |             |         |                |                |              |      |
| Parameters                | Results    | Units          | Limit          | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EPA    | 8015D Prep     | aration Met | hod: 38 | 511/8015       |                |              |      |
|                           | Pace Natio | onal - Mt. Jul | iet            |             |         |                |                |              |      |
| Diesel Fuel Range         | 3030       | ug/L           | 100            | 24.7        | 1       | 11/13/21 16:08 | 11/15/21 09:49 | 68334-30-5   |      |
| Surrogates                |            |                |                |             |         |                |                |              |      |
| o-Terphenyl (S)           | 67.4       | %              | 31.0-160       |             | 1       | 11/13/21 16:08 | 11/15/21 09:49 | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EPA    | A 8260D        |             |         |                |                |              |      |
|                           | Pace Analy | ytical Service | es - Charlotte |             |         |                |                |              |      |
| Naphthalene               | ND         | ug/L           | 1.0            | 0.64        | 1       |                | 11/06/21 20:13 | 91-20-3      |      |
| Surrogates                |            |                |                |             |         |                |                |              |      |
| 4-Bromofluorobenzene (S)  | 95         | %              | 70-130         |             | 1       |                | 11/06/21 20:13 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 101        | %              | 70-130         |             | 1       |                | 11/06/21 20:13 | 17060-07-0   |      |
| Toluene-d8 (S)            | 111        | %              | 70-130         |             | 1       |                | 11/06/21 20:13 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-DUP06-211101               | Lab ID:      | 92570812008     | 3 Collected   | d: 11/01/21 | 17:05   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|----------------------------------------|--------------|-----------------|---------------|-------------|---------|----------------|----------------|--------------|------|
|                                        |              |                 | Report        |             |         |                |                |              |      |
| Parameters                             | Results      | Units           | Limit         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015                    | Analytical I | Method: EPA     | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                |              |      |
|                                        | Pace Natio   | nal - Mt. Julie | et            |             |         |                |                |              |      |
| Diesel Fuel Range<br><b>Surrogates</b> | 4530         | ug/L            | 200           | 49.4        | 2       | 11/13/21 16:08 | 11/15/21 10:11 | 68334-30-5   |      |
| o-Terphenyl (S)                        | 115          | %               | 31.0-160      |             | 2       | 11/13/21 16:08 | 11/15/21 10:11 | 84-15-1      |      |
| 8260D MSV Low Level                    | Analytical I | Method: EPA     | 8260D         |             |         |                |                |              |      |
|                                        | Pace Analy   | tical Services  | s - Charlotte |             |         |                |                |              |      |
| Naphthalene<br><b>Surrogates</b>       | ND           | ug/L            | 1.0           | 0.64        | 1       |                | 11/06/21 20:31 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)               | 98           | %               | 70-130        |             | 1       |                | 11/06/21 20:31 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)              | 99           | %               | 70-130        |             | 1       |                | 11/06/21 20:31 | 17060-07-0   |      |
| Toluene-d8 (S)                         | 104          | %               | 70-130        |             | 1       |                | 11/06/21 20:31 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-MW01S-211102     | Lab ID:      | 92570812009      | <b>9</b> Collected | d: 10/31/21 | 11:35   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |  |  |
|------------------------------|--------------|------------------|--------------------|-------------|---------|----------------|----------------|--------------|------|--|--|
| Report                       |              |                  |                    |             |         |                |                |              |      |  |  |
| Parameters                   | Results      | Units            | Limit              | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| SVOA (GC) 3511/8015          | Analytical I | Method: EPA      | 8015D Prep         | aration Met | hod: 38 | 511/8015       |                |              |      |  |  |
|                              | Pace Natio   | onal - Mt. Julie | et                 |             |         |                |                |              |      |  |  |
| Diesel Fuel Range Surrogates | 3630         | ug/L             | 100                | 24.7        | 1       | 11/10/21 16:54 | 11/11/21 09:38 | 68334-30-5   | рН   |  |  |
| o-Terphenyl (S)              | 116          | %                | 31.0-160           |             | 1       | 11/10/21 16:54 | 11/11/21 09:38 | 84-15-1      |      |  |  |
| 8260D MSV Low Level          | Analytical I | Method: EPA      | 8260D              |             |         |                |                |              |      |  |  |
|                              | Pace Analy   | ytical Service   | s - Charlotte      |             |         |                |                |              |      |  |  |
| Naphthalene Surrogates       | ND           | ug/L             | 1.0                | 0.64        | 1       |                | 11/06/21 09:05 | 91-20-3      |      |  |  |
| 4-Bromofluorobenzene (S)     | 100          | %                | 70-130             |             | 1       |                | 11/06/21 09:05 | 460-00-4     |      |  |  |
| 1,2-Dichloroethane-d4 (S)    | 103          | %                | 70-130             |             | 1       |                | 11/06/21 09:05 | 17060-07-0   |      |  |  |
| Toluene-d8 (S)               | 99           | %                | 70-130             |             | 1       |                | 11/06/21 09:05 | 2037-26-5    |      |  |  |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-MW122-211102     | Lab ID:      | 9257081201     | Collected     | d: 11/02/21 | 14:20   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|------------------------------|--------------|----------------|---------------|-------------|---------|----------------|----------------|--------------|------|
|                              |              |                | Report        |             |         |                |                |              |      |
| Parameters                   | Results      | Units          | Limit         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical I | Method: EPA    | .8015D Prep   | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio   | nal - Mt. Juli | et            |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 2710         | ug/L           | 100           | 24.7        | 1       | 11/14/21 16:57 | 11/16/21 15:10 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 111          | %              | 31.0-160      |             | 1       | 11/14/21 16:57 | 11/16/21 15:10 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical I | Method: EPA    | 8260D         |             |         |                |                |              |      |
|                              | Pace Analy   | tical Service  | s - Charlotte |             |         |                |                |              |      |
| Naphthalene Surrogates       | ND           | ug/L           | 1.0           | 0.64        | 1       |                | 11/06/21 20:49 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 96           | %              | 70-130        |             | 1       |                | 11/06/21 20:49 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 102          | %              | 70-130        |             | 1       |                | 11/06/21 20:49 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106          | %              | 70-130        |             | 1       |                | 11/06/21 20:49 | 2037-26-5    |      |



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-DUP07-211102     | Lab ID:    | 92570812011      | Collected     | d: 11/02/21 | 14:20   | Received: 11/  | 03/21 14:55 Ma | atrix: Water |      |
|------------------------------|------------|------------------|---------------|-------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report        |             |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit         | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EPA      | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio | onal - Mt. Julie | et            |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 2570       | ug/L             | 100           | 24.7        | 1       | 11/14/21 16:57 | 11/16/21 15:32 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 110        | %                | 31.0-160      |             | 1       | 11/14/21 16:57 | 11/16/21 15:32 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EPA      | 8260D         |             |         |                |                |              |      |
|                              | Pace Anal  | ytical Services  | s - Charlotte |             |         |                |                |              |      |
| Naphthalene Surrogates       | ND         | ug/L             | 1.0           | 0.64        | 1       |                | 11/06/21 21:07 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 100        | %                | 70-130        |             | 1       |                | 11/06/21 21:07 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 98         | %                | 70-130        |             | 1       |                | 11/06/21 21:07 | 17060-07-0   |      |
| Toluene-d8 (S)               | 106        | %                | 70-130        |             | 1       |                | 11/06/21 21:07 | 2037-26-5    |      |





Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| Sample: HRP-TB02-21101    | Lab ID: | Lab ID: 92570812012              |                 |      | 18:00 | Received: 11/03/21 14:55 Matrix: Water |                |            |      |  |
|---------------------------|---------|----------------------------------|-----------------|------|-------|----------------------------------------|----------------|------------|------|--|
| Parameters                | Results | Units                            | Report<br>Limit | MDL  | DF    | Prepared                               | Analyzed       | CAS No.    | Qual |  |
| 8260D MSV Low Level       | •       | Method: EPA 8<br>ytical Services |                 |      |       |                                        |                |            |      |  |
| Naphthalene Surrogates    | ND      | ug/L                             | 1.0             | 0.64 | 1     |                                        | 11/06/21 12:52 | 91-20-3    |      |  |
| 4-Bromofluorobenzene (S)  | 95      | %                                | 70-130          |      | 1     |                                        | 11/06/21 12:52 | 460-00-4   |      |  |
| 1,2-Dichloroethane-d4 (S) | 104     | %                                | 70-130          |      | 1     |                                        | 11/06/21 12:52 | 17060-07-0 |      |  |
| Toluene-d8 (S)            | 100     | %                                | 70-130          |      | 1     |                                        | 11/06/21 12:52 | 2037-26-5  |      |  |

Qualifiers





#### **QUALITY CONTROL DATA**

Project:

HRP Alexandria CAPA

Pace Project No.:

92570812

QC Batch:

QC Batch Method:

1771975

3511/8015

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 3511/8015

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples: 92570812009

METHOD BLANK: R3728357-1

Matrix: Water

Associated Lab Samples:

Date: 12/16/2021 12:25 PM

92570812009

|                   |       | Blank  | Reporting |      |                |
|-------------------|-------|--------|-----------|------|----------------|
| Parameter         | Units | Result | Limit     | MDL  | Analyzed       |
| Diesel Fuel Range | ug/L  | ND     | 100       | 24.7 | 11/10/21 23:47 |
| o-Terphenyl (S)   | %     | 100    | 31.0-160  |      | 11/10/21 23:47 |

| LABORATORY CONTROL SAMPLE & | 357-2 | R     | 3728357-3 | 1      |       |       |          |      |     |            |
|-----------------------------|-------|-------|-----------|--------|-------|-------|----------|------|-----|------------|
|                             |       | Spike | LCS       | LCSD   | LCS   | LCSD  | % Rec    |      | Max |            |
| Parameter                   | Units | Conc. | Result    | Result | % Rec | % Rec | Limits   | RPD  | RPD | Qualifiers |
| Diesel Fuel Range           | ug/L  | 1500  | 1610      | 1580   | 107   | 105   | 50.0-150 | 1.88 | 20  |            |
| o-Terphenyl (S)             | %     |       |           |        | 112   | 112   | 31.0-160 |      |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

QC Batch: 1772892 Analysis Method: EPA 8015D

QC Batch Method: 3511/8015 Analysis Description: SVOA (GC) 3511/8015

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 92570812001, 92570812002, 92570812003, 92570812004, 92570812005, 92570812006, 92570812007,

92570812008

METHOD BLANK: R3729502-1 Matrix: Water

Associated Lab Samples: 92570812001, 92570812002, 92570812003, 92570812004, 92570812005, 92570812006, 92570812007,

92570812008

|                   |       | Blank  | Reporting |      |                |            |
|-------------------|-------|--------|-----------|------|----------------|------------|
| Parameter         | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Diesel Fuel Range | ug/L  | ND     | 100       | 24.7 | 11/15/21 01:05 |            |
| o-Terphenyl (S)   | %     | 94     | 31.0-160  |      | 11/15/21 01:05 |            |

| LABORATORY CONTROL SAMPLE & L | R3729502-3 |       |        |        |       |       |          |       |     |            |
|-------------------------------|------------|-------|--------|--------|-------|-------|----------|-------|-----|------------|
|                               |            | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec    |       | Max |            |
| Parameter                     | Units      | Conc. | Result | Result | % Rec | % Rec | Limits   | RPD   | RPD | Qualifiers |
| Diesel Fuel Range             | ug/L       | 1500  | 1560   | 1570   | 104   | 105   | 50.0-150 | 0.639 | 20  |            |
| o-Terphenyl (S)               | %          |       |        |        | 117   | 117   | 31.0-160 |       |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: HRP Alexandria CAPA

Pace Project No.:

92570812

QC Batch: QC Batch Method: 1774007

3511/8015

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 3511/8015

Laboratory:

Result

Pace National - Mt. Juliet

92570812010, 92570812011 Associated Lab Samples:

METHOD BLANK:

R3729355-1

Matrix: Water

Associated Lab Samples: 92570812010, 92570812011

Parameter

Parameter

Blank

Reporting Limit

MDL Analyzed 24.7 11/15/21 01:47 Qualifiers

Diesel Fuel Range o-Terphenyl (S)

ug/L %

Units

Units

ND 100 90.5 31.0-160

11/15/21 01:47

LABORATORY CONTROL SAMPLE & LCSD: R3729355-2 R3729355-3 Spike LCS

Conc. Result LCSD Result

LCS LCSD % Rec % Rec % Rec Limits

Max **RPD RPD** 

Qualifiers

ug/L 1500 %

1450 97.3

50.0-150 96.7

0.687

20

Diesel Fuel Range o-Terphenyl (S)

Date: 12/16/2021 12:25 PM

1460 94.0 94.5 31.0-160

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

QC Batch: 657968 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570812004, 92570812005, 92570812006, 92570812007, 92570812008, 92570812010, 92570812011

METHOD BLANK: 3448956 Matrix: Water

Associated Lab Samples: 92570812004, 92570812005, 92570812006, 92570812007, 92570812008, 92570812010, 92570812011

|                           |       | Blank  | Reporting |      |                |            |
|---------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                 | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Naphthalene               | ug/L  | ND     | 1.0       | 0.64 | 11/06/21 12:58 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 96     | 70-130    |      | 11/06/21 12:58 |            |
| 4-Bromofluorobenzene (S)  | %     | 102    | 70-130    |      | 11/06/21 12:58 |            |
| Toluene-d8 (S)            | %     | 104    | 70-130    |      | 11/06/21 12:58 |            |

| LABORATORY CONTROL SAMPLE: | 3448957 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 48.3   | 97    | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 101   | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 102   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 96    | 70-130 |            |

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3448958 3448959 |       |            |             |              |        |        |       |       |        |     |     |      |
|--------------------------------------------------------|-------|------------|-------------|--------------|--------|--------|-------|-------|--------|-----|-----|------|
|                                                        | ۵     | 2570812005 | MS<br>Spike | MSD<br>Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                                              | Units | Result     | Conc.       | Conc.        | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene                                            | ug/L  | ND         | 20          | 20           | 21.0   | 20.2   | 105   | 101   | 57-150 | 4   | 30  |      |
| 1,2-Dichloroethane-d4 (S)                              | %     |            |             |              |        |        | 111   | 108   | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)                               | %     |            |             |              |        |        | 103   | 101   | 70-130 |     |     |      |
| Toluene-d8 (S)                                         | %     |            |             |              |        |        | 97    | 99    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

QC Batch: 657969 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570812001, 92570812002, 92570812003, 92570812009

METHOD BLANK: 3448966 Matrix: Water

Associated Lab Samples: 92570812001, 92570812002, 92570812003, 92570812009

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND              | 1.0                | 0.64 | 11/06/21 01:32 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 102             | 70-130             |      | 11/06/21 01:32 |            |
| 4-Bromofluorobenzene (S)  | %     | 102             | 70-130             |      | 11/06/21 01:32 |            |
| Toluene-d8 (S)            | %     | 100             | 70-130             |      | 11/06/21 01:32 |            |

| LABORATORY CONTROL SAMPL  |       | Spike | LCS    | LCS   | % Rec  |            |
|---------------------------|-------|-------|--------|-------|--------|------------|
| Parameter                 | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene               | ug/L  | 50    | 56.6   | 113   | 70-133 |            |
| 1,2-Dichloroethane-d4 (S) | %     |       |        | 104   | 70-130 |            |
| 4-Bromofluorobenzene (S)  | %     |       |        | 102   | 70-130 |            |
| Toluene-d8 (S)            | %     |       |        | 98    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLIC | CATE: 3448 | 968   |       | 3448969 |        |       |       |        |     |     |      |
|---------------------------|------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |            |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           | 9          | 2570812003 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units      | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene               | ug/L       | ND         | 20    | 20    | 22.5    | 23.6   | 112   | 118   | 57-150 | 5   | 30  |      |
| 1,2-Dichloroethane-d4 (S) | %          |            |       |       |         |        | 92    | 91    | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)  | %          |            |       |       |         |        | 96    | 95    | 70-130 |     |     |      |
| Toluene-d8 (S)            | %          |            |       |       |         |        | 99    | 97    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP Alexandria CAPA

Pace Project No.:

92570812

QC Batch:

QC Batch Method:

657972

EPA 8260D

Analysis Method:

EPA 8260D

Analysis Description:

8260D MSV Low Level

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92570812012

METHOD BLANK: 3448976

Date: 12/16/2021 12:25 PM

Matrix: Water

Associated Lab Samples: 92570812012

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|------|----------------|------------|
| Naphthalene               | ug/L  | ND .            | 1.0                | 0.64 | 11/06/21 11:58 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 98              | 70-130             |      | 11/06/21 11:58 |            |
| 4-Bromofluorobenzene (S)  | %     | 94              | 70-130             |      | 11/06/21 11:58 |            |
| Toluene-d8 (S)            | %     | 101             | 70-130             |      | 11/06/21 11:58 |            |

| LABORATORY CONTROL SAMPLE: | 3448977 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 49.3   | 99    | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 92    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 100   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 96    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | IKE DUPLIC | CATE: 3448 | 978   |       | 3448979 | )      |       |       |        |     |     |      |
|---------------------------|------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |            |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           | 9          | 2570893015 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units      | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Naphthalene               | ug/L       | ND         | 20    | 20    | 18.7    | 17.2   | 93    | 86    | 57-150 | 8   | 30  |      |
| 1,2-Dichloroethane-d4 (S) | %          |            |       |       |         |        | 92    | 92    | 70-130 |     |     |      |
| 4-Bromofluorobenzene (S)  | %          |            |       |       |         |        | 96    | 96    | 70-130 |     |     |      |
| Toluene-d8 (S)            | %          |            |       |       |         |        | 97    | 98    | 70-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



#### **QUALIFIERS**

Project: HRP Alexandria CAPA

Pace Project No.: 92570812

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 12/16/2021 12:25 PM

pH Post-analysis pH measurement indicates insufficient VOA sample preservation.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP Alexandria CAPA

Pace Project No.: 92570812

Date: 12/16/2021 12:25 PM

| ab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|------------|-------------------|-----------------|----------|-------------------|---------------------|
| 2570812001 | HRP-TW02-211101   | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812002 | HRP-TW03-211101   | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812003 | HRP-TW07-211101   | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812004 | HRP-TW06-211101   | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812005 | HRP-MW106-211101  | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812006 | HRP-MW33-211101   | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812007 | HRP-MW123S-211101 | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812008 | HRP-DUP06-211101  | 3511/8015       | 1772892  | EPA 8015D         | 1772892             |
| 2570812009 | HRP-MW01S-211102  | 3511/8015       | 1771975  | EPA 8015D         | 1771975             |
| 2570812010 | HRP-MW122-211102  | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 2570812011 | HRP-DUP07-211102  | 3511/8015       | 1774007  | EPA 8015D         | 1774007             |
| 2570812001 | HRP-TW02-211101   | EPA 8260D       | 657969   |                   |                     |
| 2570812002 | HRP-TW03-211101   | EPA 8260D       | 657969   |                   |                     |
| 2570812003 | HRP-TW07-211101   | EPA 8260D       | 657969   |                   |                     |
| 2570812004 | HRP-TW06-211101   | EPA 8260D       | 657968   |                   |                     |
| 2570812005 | HRP-MW106-211101  | EPA 8260D       | 657968   |                   |                     |
| 2570812006 | HRP-MW33-211101   | EPA 8260D       | 657968   |                   |                     |
| 2570812007 | HRP-MW123S-211101 | EPA 8260D       | 657968   |                   |                     |
| 2570812008 | HRP-DUP06-211101  | EPA 8260D       | 657968   |                   |                     |
| 2570812009 | HRP-MW01S-211102  | EPA 8260D       | 657969   |                   |                     |
| 2570812010 | HRP-MW122-211102  | EPA 8260D       | 657968   |                   |                     |
| 2570812011 | HRP-DUP07-211102  | EPA 8260D       | 657968   |                   |                     |
| 2570812012 | HRP-TB02-21101    | EPA 8260D       | 657972   |                   |                     |

# Pace Analytical\*

# Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

| Upon Receipt  Urler:  SFed Ex UPS                                                                  | >   _           |            |              |              | ж. #: WO# : 92570812                                                                                          |
|----------------------------------------------------------------------------------------------------|-----------------|------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------|
| urier: Seed Ex Sups<br>Commercial Pace                                                             | ☐USP:           |            |              | ient         |                                                                                                               |
| tody Seal Present? Yes No Sea                                                                      | ls Intact?      | □Yes       | DNo          | )p           | 92570812  Date/Initials Person Examining Contents: KH 1//4                                                    |
| rmometer:                                                                                          | ubble Bags      | □Non       |              | ther<br>Blue | Biological Tissue Frozen?  ☐Yes ☐No ☒N/A ☐None                                                                |
| er Temp: 59 Correction Fact Add/Subtract (  er Temp Corrected (°C):                                |                 | )<br>)     | -            |              | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun |
| A Regulated Soil (  N/A, water sample) amples originate in a quarantine zone within the Un Yes  No | ited States: CA |            |              | aps)?        | Did samples orlginate from a foreign source (Internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No   |
|                                                                                                    |                 | MHII       | 14/21        |              | Comments/Discrepancy:                                                                                         |
| Chain of Custody Present?                                                                          | ₽Vès            | - No       | □N/A         | 1.           |                                                                                                               |
| Samples Arrived within Hold Time?                                                                  | □Yes            | □No        | □N/A         | 2.           |                                                                                                               |
| Short Hold Time Analysis (<72 hr.)?                                                                | □Yes            | No         | □N/A         | 3.           |                                                                                                               |
| Rush Turn Around Time Requested?                                                                   | □Yes            | □No        | □N/A         | 4.           |                                                                                                               |
| Sufficient Volume?                                                                                 | ⊠Yes            | □No        | □N/A         | 5.           |                                                                                                               |
| Correct Containers Used? -Pace Containers Used?                                                    | ⊠ÿes<br>⊠Yes    | □No<br>□No | □n/a<br>□n/a | 6.           |                                                                                                               |
| Containers Intact?                                                                                 | Yes             | □No        | □N/A         | 7.           |                                                                                                               |
| Dissolved analysis: Samples Field Filtered?                                                        | □Yes            | □No        | ⊠n/a         | 8.           |                                                                                                               |
| Sample Labels Match COC?                                                                           | □Yes            | □No        | □N/A         | 9.           |                                                                                                               |
| -Includes Date/Time/ID/Analysis Matrix:                                                            |                 |            |              |              |                                                                                                               |
| Headspace in VOA Vials (>5-6mm)? Trip Blank Present?                                               | □Yes            | □No        | ⊠N/A         | 10.          |                                                                                                               |
|                                                                                                    | □Yes            | ⊠No        | □N/A         | 11.          |                                                                                                               |
| Trip Blank Custody Seals Present?  MMENTS/SAMPLE DISCREPANCY                                       | Yes             | ∐No        | □h/a         |              | Field Data Required? Yes No                                                                                   |
| NT NOTIFICATION/RESOLUTION                                                                         |                 |            |              | Lo           | t ID of split containers:                                                                                     |
|                                                                                                    |                 |            |              |              |                                                                                                               |
| rson-contacted:                                                                                    |                 |            | - Date/Tir   | ne:          |                                                                                                               |



# Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

\*\*Bottom half of box is to list number of bottles

Project WO#: 92570812

PM: AMB

Due Date: 11/12/21

CLIENT: 92-RambollEn

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastid Unpreserved (N/A) | BP4S-125 mL Plastic H25O4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Plast c ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass Jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG15-1 liter Amber H2SO4 (pH < 2) | AG35-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterie Plastic (N/A – lab) | SP2T-250 mL Ster(le Plastic (N/A - lab) |   | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintiliation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|---|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     | 1                                           |                                       |                                       | ~                                      | 7                                        | 7                                 | 1                                          |                                          |                                         |                                            |                                 |                                           | 1                                 | 7                                | 1                                        | 3                        |                              |                          |                            | Ŧ                                     |                                          |                                        |                                         |   |                                         |                                           |                                      | 3                                        |
| 2     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 7                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         |   |                                         |                                           |                                      | 3                                        |
| 3     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         |   | 1                                       |                                           |                                      | 3                                        |
| 4     | 1                                           |                                       |                                       |                                        | 1                                        |                                   | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 5     | 1                                           |                                       |                                       |                                        | 1                                        |                                   | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | /                                        | 3                        |                              | Ī                        |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | .3                                       |
| 6     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 |                                            | /                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | B                                        |
| 7     | 1                                           |                                       |                                       |                                        | 1                                        | /                                 | 1                                          | 1                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 8     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                        |                                         |                                            | /                               |                                           | 1                                 | /                                | /                                        | 3                        |                              |                          | 1                          |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 9     | /                                           |                                       |                                       |                                        | 1                                        | /                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | 1                                 | /                                | /                                        | 3                        |                              | T                        |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 10    | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | 1                                 | /                                | /                                        | 3                        |                              |                          |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 11    | /                                           |                                       |                                       |                                        | /                                        | /                                 | 1                                          | /                                        |                                         |                                            | 1                               |                                           | /                                 | /                                | /                                        | 3                        |                              |                          |                            | •                                     |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 12    | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          |                                          |                                         |                                            |                                 |                                           | /                                 | 1                                | 1                                        | 2                        |                              |                          |                            |                                       |                                          |                                        |                                         | 1 | 1                                       |                                           |                                      |                                          |

| pH Adjustment Log for Preserved Samples |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |
|-----------------------------------------|----------------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Type of Preservative                    | pH upon receipt      | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added                                                      | Lot #                                                                                                    |  |  |  |  |  |  |
|                                         |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |
|                                         |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |
| ×                                       |                      |                            |                            |                                                                                   | -                                                                                                        |  |  |  |  |  |  |
|                                         | Type of Preservative |                            |                            | Type of Preservative pH upon receipt Date preservation adjusted Time preservation | Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North-Carolina-compliance samples, a copy of this form will be sait to the North Carolina DEHNR-Cartification Office (I.e., Out of hold, Incorrect preservative, out of temp, incorrect containers.

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Required Client Information: Section A Arlington, VA 22203 Address: Requested Due Date: company: ITEM# 1 6 12 9 œ 6 O w akelly@ramboll.com HRP-TW06-211101 HRP-TW02-21110 HRP-TWO7-211601 HRP-TB02-211101 HRP-MINIOG-211101 HRP-TW03-211101 HRP-DUP07-211102 HRP- MW122-211102 HRP-MWDIS-211102 HRP-MW 33-211101 HRP-DUP06-211101 HRP-MW 1235 -21110 Ramboll US Consulting, Inc. NONE 4350 North Fairfax Drive Sample Ids must be unique One Character per box. (A-Z, 0-9 / , -) SAMPLE ID ADDITIONAL COMMENTS Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf Fax Project Name: MATRIX
Drinking Water
Waste Water
Waste Water
Product
Soil/Solid
Oil
Wipe
Air
Other
Tissue copy To: Sarah Ostertag Required Project Information: Report To: oject Name: 7 9 7 8 8 P P W Y DW CO RELINQUISHED BY I AFFILIATION A 6 ₹ G OT N/M11-1-21 1800 M 6 11.2.21 1420 MT G MG DIE C 0 0 0 WT 6 11.2.21 1420 MATRIX CODE (see valid codes to left) 9 9 SAMPLE TYPE (G=GRAB C=COMP) HRP Alexandria 11.1.21 112-21 1135 11.1.21 11-1-11 11.1.21 11-1-4 1[-1.2] 11.1.21 DATE START 1525 136 SZHI SAMPLER NAME AND SIGNATURE 36 1035 1550 1243 308 COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: DATE END 11:34 ISDN 1 DATE SAMPLE TEMP AT COLLECTION Sarah Oste 1530 0 0 # OF CONTAINERS 6 Pace Quote: Address: Attention: Invoice Information: 6 Pace Profile #: Pace Project Manager: Company Name: 1250′ TIME × × X × × X X Unpreserved H2SO4 ниоз Preservatives 8918 X × X HCI X X X NaOH ACCEPTED BY / AFFILIATION Na2S2O3 angela.baioni@pacelabs.com Home! Methano Other **Analyses Test** Y/N Z DRO by 8015 DATE Signed: 5 X X X X Naphthalene by 8260 2 ₹ Trip BLANK 12021 1830 1455 Page: U TEMP in C Regulatory Agency 2 Residual Chlorine (Y/N) Trip Blank Received on SAMPLE CONDITIONS P 0 9 6 23 Pr (Y/N) 6 Custody Sealed 3 ç Cooler (Y/N) Samples Intact (Y/N) 6



(704)875-9092



December 16, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

#### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace National Mt. Juliet
- Pace Analytical Services Charlotte

A revised report is being submitted on 12/16/21 to include MDLs and applicable J values.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

**Pace Analytical Services National** 

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660
Alaska Certification 17-026
Arizona Certification #: AZ0612
Arkansas Certification #: 88-0469
California Certification #: 2932
Canada Certification #: 1461.01
Colorado Certification #: TN00003

Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: 364
Kansas Certification #: E-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958
Minnesota Certification #: 047-999-395
Mississippi Certification #: TN00003
Missouri Certification #: 340
Montana Certification #: CERT0086

Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05

Pace Analytical Services Charlotte

South Carolina Laboratory ID: 99006

South Carolina Laboratory ID: 99006 9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002

New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233

Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

South Carolina Certification #: 99006001

South Carolina Drinking Water Cert. #: 99006003

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Louisiana DoH Drinking Water #: LA029 Virginia/VELAP Certification #: 460221



# **SAMPLE SUMMARY**

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92569702001 | HRP-MW27-211027   | Water  | 10/27/21 17:35 | 10/29/21 16:22 |
| 92569702002 | HRP-RW28S-211027  | Water  | 10/27/21 17:50 | 10/29/21 16:22 |
| 92569702003 | HRP-MW25S-211028  | Water  | 10/28/21 15:00 | 10/29/21 16:22 |
| 92569702004 | HRP-MW14-211028   | Water  | 10/28/21 14:35 | 10/29/21 16:22 |
| 92569702005 | HRP-RW118S-211028 | Water  | 10/28/21 16:30 | 10/29/21 16:22 |
| 92569702006 | HRP-MW25-211028   | Water  | 10/28/21 16:35 | 10/29/21 16:22 |
| 92569702007 | HRP-EB09-211028   | Water  | 10/28/21 17:15 | 10/29/21 16:22 |
| 92569702008 | HRP-EB10-211028   | Water  | 10/28/21 17:20 | 10/29/21 16:22 |
| 92569702009 | HRP-TB01-211028   | Water  | 10/28/21 17:25 | 10/29/21 16:22 |





# **SAMPLE ANALYTE COUNT**

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

| Lab ID      | Sample ID         | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|-----------|----------|----------------------|------------|
| 92569702001 | HRP-MW27-211027   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702002 | HRP-RW28S-211027  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702003 | HRP-MW25S-211028  | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702004 | HRP-MW14-211028   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702005 | HRP-RW118S-211028 | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702006 | HRP-MW25-211028   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702007 | HRP-EB09-211028   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702008 | HRP-EB10-211028   | EPA 8015D | CAG      | 2                    | PAN        |
|             |                   | EPA 8260D | CL       | 4                    | PASI-C     |
| 92569702009 | HRP-TB01-211028   | EPA 8260D | CL       | 4                    | PASI-C     |

PAN = Pace National - Mt. Juliet

PASI-C = Pace Analytical Services - Charlotte



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-MW27-211027      | Lab ID:    | 92569702001      | Collected   | d: 10/27/21 | 17:35   | Received: 10/  | 29/21 16:22 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|-------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report      |             |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EPA      | 8015D Prep  | aration Met | hod: 35 | 511/8015       |                |              |      |
|                              | Pace Natio | onal - Mt. Julie | t           |             |         |                |                |              |      |
| Diesel Fuel Range Surrogates | 1720       | ug/L             | 100         | 24.7        | 1       | 11/09/21 10:08 | 11/09/21 19:39 | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 95.8       | %                | 31.0-160    |             | 1       | 11/09/21 10:08 | 11/09/21 19:39 | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EPA      | 8260D       |             |         |                |                |              |      |
|                              | Pace Analy | tical Services   | - Charlotte |             |         |                |                |              |      |
| Naphthalene Surrogates       | ND         | ug/L             | 1.0         | 0.64        | 1       |                | 11/04/21 04:42 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 99         | %                | 70-130      |             | 1       |                | 11/04/21 04:42 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 97         | %                | 70-130      |             | 1       |                | 11/04/21 04:42 | 17060-07-0   |      |
| Toluene-d8 (S)               | 98         | %                | 70-130      |             | 1       |                | 11/04/21 04:42 | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-RW28S-211027         | Lab ID:      | 92569702002      | Collected   | d: 10/27/21 | 17:50   | Received: 10/  | 29/21 16:22 Ma | atrix: Water |      |
|----------------------------------|--------------|------------------|-------------|-------------|---------|----------------|----------------|--------------|------|
|                                  |              |                  | Report      |             |         |                |                |              |      |
| Parameters                       | Results      | Units            | Limit       | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015              | Analytical I | Method: EPA      | 8015D Prep  | aration Met | hod: 35 | 511/8015       |                |              |      |
|                                  | Pace Natio   | onal - Mt. Julie | t           |             |         |                |                |              |      |
| Diesel Fuel Range<br>Surrogates  | 1330         | ug/L             | 100         | 24.7        | 1       | 11/09/21 10:08 | 11/09/21 19:59 | 68334-30-5   | pН   |
| o-Terphenyl (S)                  | 102          | %                | 31.0-160    |             | 1       | 11/09/21 10:08 | 11/09/21 19:59 | 84-15-1      |      |
| 8260D MSV Low Level              | Analytical I | Method: EPA      | 8260D       |             |         |                |                |              |      |
|                                  | Pace Analy   | ytical Services  | - Charlotte |             |         |                |                |              |      |
| Naphthalene<br><b>Surrogates</b> | ND           | ug/L             | 1.0         | 0.64        | 1       |                | 11/04/21 05:00 | 91-20-3      |      |
| 4-Bromofluorobenzene (S)         | 100          | %                | 70-130      |             | 1       |                | 11/04/21 05:00 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)        | 97           | %                | 70-130      |             | 1       |                | 11/04/21 05:00 | 17060-07-0   |      |
| Toluene-d8 (S)                   | 100          | %                | 70-130      |             | 1       |                | 11/04/21 05:00 | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-MW25S-211028     | Lab ID:      | 92569702003      | Collected     | d: 10/28/21 | 15:00   | Received: 10/  | /29/21 16:22 Ma | atrix: Water |      |
|------------------------------|--------------|------------------|---------------|-------------|---------|----------------|-----------------|--------------|------|
|                              |              |                  | Report        |             |         |                |                 |              |      |
| Parameters                   | Results      | Units            | Limit         | MDL .       | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical I | Method: EPA      | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                 |              |      |
|                              | Pace Natio   | onal - Mt. Julie | et            |             |         |                |                 |              |      |
| Diesel Fuel Range Surrogates | 2110         | ug/L             | 100           | 24.7        | 1       | 11/10/21 13:28 | 11/11/21 13:21  | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 42.5         | %                | 31.0-160      |             | 1       | 11/10/21 13:28 | 11/11/21 13:21  | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical I | Method: EPA      | 8260D         |             |         |                |                 |              |      |
|                              | Pace Analy   | tical Services   | s - Charlotte |             |         |                |                 |              |      |
| Naphthalene Surrogates       | ND           | ug/L             | 1.0           | 0.64        | 1       |                | 11/04/21 05:17  | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 99           | %                | 70-130        |             | 1       |                | 11/04/21 05:17  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 96           | %                | 70-130        |             | 1       |                | 11/04/21 05:17  | 17060-07-0   |      |
| Toluene-d8 (S)               | 99           | %                | 70-130        |             | 1       |                | 11/04/21 05:17  | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-MW14-211028      | Lab ID:    | 925697020     | 04 Collected   | d: 10/28/21 | 14:35   | Received: 10/  | /29/21 16:22 Ma | atrix: Water |      |
|------------------------------|------------|---------------|----------------|-------------|---------|----------------|-----------------|--------------|------|
|                              |            |               | Report         |             |         |                |                 |              |      |
| Parameters                   | Results    | Units         | Limit          | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 3511/8015          | Analytical | Method: EP    | A 8015D Prep   | aration Met | hod: 38 | 511/8015       |                 |              |      |
|                              | Pace Natio | onal - Mt. Ju | liet           |             |         |                |                 |              |      |
| Diesel Fuel Range Surrogates | 6490       | ug/L          | 500            | 123         | 5       | 11/10/21 13:28 | 11/12/21 05:43  | 68334-30-5   | рН   |
| o-Terphenyl (S)              | 92.5       | %             | 31.0-160       |             | 5       | 11/10/21 13:28 | 11/12/21 05:43  | 84-15-1      |      |
| 8260D MSV Low Level          | Analytical | Method: EP    | A 8260D        |             |         |                |                 |              |      |
|                              | Pace Analy | ytical Servic | es - Charlotte |             |         |                |                 |              |      |
| Naphthalene<br>Surrogates    | 0.85J      | ug/L          | 1.0            | 0.64        | 1       |                | 11/04/21 05:35  | 91-20-3      |      |
| 4-Bromofluorobenzene (S)     | 101        | %             | 70-130         |             | 1       |                | 11/04/21 05:35  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)    | 95         | %             | 70-130         |             | 1       |                | 11/04/21 05:35  | 17060-07-0   |      |
| Toluene-d8 (S)               | 99         | %             | 70-130         |             | 1       |                | 11/04/21 05:35  | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-RW118S-211028 | Lab ID:    | 925697020     | 005 Collected   | d: 10/28/21 | 16:30   | Received: 10/  | 29/21 16:22 Ma | atrix: Water |      |
|---------------------------|------------|---------------|-----------------|-------------|---------|----------------|----------------|--------------|------|
|                           |            |               | Report          |             |         |                |                |              |      |
| Parameters                | Results    | Units         | Limit           | MDL .       | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EF    | A 8015D Prep    | aration Met | hod: 35 | 511/8015       |                |              |      |
|                           | Pace Natio | onal - Mt. Ju | uliet           |             |         |                |                |              |      |
| Diesel Fuel Range         | 5310       | ug/L          | 500             | 123         | 5       | 11/10/21 13:28 | 11/12/21 06:09 | 68334-30-5   | рН   |
| Surrogates                |            |               |                 |             |         |                |                |              |      |
| o-Terphenyl (S)           | 94.0       | %             | 31.0-160        |             | 5       | 11/10/21 13:28 | 11/12/21 06:09 | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EF    | A 8260D         |             |         |                |                |              |      |
|                           | Pace Analy | ytical Servi  | ces - Charlotte |             |         |                |                |              |      |
| Naphthalene               | ND         | ug/L          | 1.0             | 0.64        | 1       |                | 11/04/21 05:52 | 91-20-3      |      |
| Surrogates                |            |               |                 |             |         |                |                |              |      |
| 4-Bromofluorobenzene (S)  | 99         | %             | 70-130          |             | 1       |                | 11/04/21 05:52 | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 97         | %             | 70-130          |             | 1       |                | 11/04/21 05:52 | 17060-07-0   |      |
| Toluene-d8 (S)            | 98         | %             | 70-130          |             | 1       |                | 11/04/21 05:52 | 2037-26-5    |      |





Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-MW25-211028   | Lab ID:    | 925697020     | 006 Collected   | d: 10/28/21 | 16:35   | Received: 10   | /29/21 16:22 Ma | atrix: Water |      |
|---------------------------|------------|---------------|-----------------|-------------|---------|----------------|-----------------|--------------|------|
|                           |            |               | Report          |             |         |                |                 |              |      |
| Parameters                | Results    | Units         | Limit           | MDL .       | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EF    | PA 8015D Prep   | aration Met | hod: 38 | 511/8015       |                 |              |      |
|                           | Pace Natio | onal - Mt. Ju | uliet           |             |         |                |                 |              |      |
| Diesel Fuel Range         | 8790       | ug/L          | 100             | 24.7        | 1       | 11/10/21 15:11 | 11/10/21 23:30  | 68334-30-5   | рН   |
| Surrogates                |            |               |                 |             |         |                |                 |              |      |
| o-Terphenyl (S)           | 117        | %             | 31.0-160        |             | 1       | 11/10/21 15:11 | 11/10/21 23:30  | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EF    | PA 8260D        |             |         |                |                 |              |      |
|                           | Pace Anal  | ytical Servi  | ces - Charlotte |             |         |                |                 |              |      |
| Naphthalene               | ND         | ug/L          | 1.0             | 0.64        | 1       |                | 11/04/21 06:10  | 91-20-3      |      |
| Surrogates                |            |               |                 |             |         |                |                 |              |      |
| 4-Bromofluorobenzene (S)  | 101        | %             | 70-130          |             | 1       |                | 11/04/21 06:10  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 95         | %             | 70-130          |             | 1       |                | 11/04/21 06:10  | 17060-07-0   |      |
| Toluene-d8 (S)            | 99         | %             | 70-130          |             | 1       |                | 11/04/21 06:10  | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-EB09-211028          | Lab ID:      | 92569702007      | ' Collected   | d: 10/28/21 | 17:15   | Received: 10   | /29/21 16:22 Ma | atrix: Water |      |
|----------------------------------|--------------|------------------|---------------|-------------|---------|----------------|-----------------|--------------|------|
|                                  |              |                  | Report        |             |         |                |                 |              |      |
| Parameters                       | Results      | Units            | Limit         | MDL .       | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 3511/8015              | Analytical   | Method: EPA      | 8015D Prep    | aration Met | hod: 35 | 511/8015       |                 |              |      |
|                                  | Pace Natio   | onal - Mt. Julie | et            |             |         |                |                 |              |      |
| Diesel Fuel Range Surrogates     | 231          | ug/L             | 100           | 24.7        | 1       | 11/10/21 15:11 | 11/11/21 22:46  | 68334-30-5   | рН   |
| o-Terphenyl (S)                  | 88.5         | %                | 31.0-160      |             | 1       | 11/10/21 15:11 | 11/11/21 22:46  | 84-15-1      |      |
| 8260D MSV Low Level              | Analytical I | Method: EPA      | 8260D         |             |         |                |                 |              |      |
|                                  | Pace Analy   | ytical Services  | s - Charlotte |             |         |                |                 |              |      |
| Naphthalene<br><b>Surrogates</b> | ND           | ug/L             | 1.0           | 0.64        | 1       |                | 11/04/21 02:05  | 91-20-3      |      |
| 4-Bromofluorobenzene (S)         | 99           | %                | 70-130        |             | 1       |                | 11/04/21 02:05  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S)        | 95           | %                | 70-130        |             | 1       |                | 11/04/21 02:05  | 17060-07-0   |      |
| Toluene-d8 (S)                   | 99           | %                | 70-130        |             | 1       |                | 11/04/21 02:05  | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-EB10-211028   | Lab ID:    | 925697020    | 008 Collected   | d: 10/28/21 | 17:20   | Received: 10   | /29/21 16:22 Ma | atrix: Water |      |
|---------------------------|------------|--------------|-----------------|-------------|---------|----------------|-----------------|--------------|------|
|                           |            |              | Report          |             |         |                |                 |              |      |
| Parameters                | Results    | Units        | Limit           | MDL .       | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| SVOA (GC) 3511/8015       | Analytical | Method: EF   | A 8015D Prep    | aration Met | hod: 38 | 511/8015       |                 |              |      |
|                           | Pace Natio | nal - Mt. Ju | uliet           |             |         |                |                 |              |      |
| Diesel Fuel Range         | ND         | ug/L         | 100             | 24.7        | 1       | 11/10/21 15:11 | 11/11/21 21:54  | 68334-30-5   | рН   |
| Surrogates                |            |              |                 |             |         |                |                 |              |      |
| o-Terphenyl (S)           | 87.5       | %            | 31.0-160        |             | 1       | 11/10/21 15:11 | 11/11/21 21:54  | 84-15-1      |      |
| 8260D MSV Low Level       | Analytical | Method: EF   | A 8260D         |             |         |                |                 |              |      |
|                           | Pace Analy | tical Servi  | ces - Charlotte |             |         |                |                 |              |      |
| Naphthalene               | ND         | ug/L         | 1.0             | 0.64        | 1       |                | 11/04/21 02:22  | 91-20-3      |      |
| Surrogates                |            |              |                 |             |         |                |                 |              |      |
| 4-Bromofluorobenzene (S)  | 100        | %            | 70-130          |             | 1       |                | 11/04/21 02:22  | 460-00-4     |      |
| 1,2-Dichloroethane-d4 (S) | 95         | %            | 70-130          |             | 1       |                | 11/04/21 02:22  | 17060-07-0   |      |
| Toluene-d8 (S)            | 98         | %            | 70-130          |             | 1       |                | 11/04/21 02:22  | 2037-26-5    |      |



Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Sample: HRP-TB01-211028   | Lab ID: | 92569702009                      | Collecte        | Collected: 10/28/21 17:25 |    |          | Received: 10/29/21 16:22 Matrix: Water |            |      |
|---------------------------|---------|----------------------------------|-----------------|---------------------------|----|----------|----------------------------------------|------------|------|
| Parameters                | Results | Units                            | Report<br>Limit | MDL                       | DF | Prepared | Analyzed                               | CAS No.    | Qual |
| 8260D MSV Low Level       | •       | Method: EPA 8<br>ytical Services |                 |                           |    |          |                                        |            |      |
| Naphthalene<br>Surrogates | ND      | ug/L                             | 1.0             | 0.64                      | 1  |          | 11/04/21 02:40                         | 91-20-3    |      |
| 4-Bromofluorobenzene (S)  | 98      | %                                | 70-130          |                           | 1  |          | 11/04/21 02:40                         | 460-00-4   |      |
| 1,2-Dichloroethane-d4 (S) | 98      | %                                | 70-130          |                           | 1  |          | 11/04/21 02:40                         | 17060-07-0 |      |
| Toluene-d8 (S)            | 99      | %                                | 70-130          |                           | 1  |          | 11/04/21 02:40                         | 2037-26-5  |      |





Project:

HRP-PRGS-CAPA

Pace Project No.:

92569702

QC Batch:

QC Batch Method:

1770405

Analysis Method:

EPA 8015D

3511/8015

Analysis Description:

SVOA (GC) 3511/8015 Pace National - Mt. Juliet

MDL

Associated Lab Samples: 92569702001, 92569702002

METHOD BLANK: R3727558-1

Matrix: Water

Associated Lab Samples:

Date: 12/16/2021 12:31 PM

Parameter

92569702001, 92569702002

Blank

Laboratory:

Reporting Result

Limit

Analyzed

Qualifiers

Diesel Fuel Range o-Terphenyl (S)

Units ug/L %

ND 96.5

100 31.0-160 24.7 11/09/21 15:38 11/09/21 15:38

| LABORATORY CONTROL SAMPLE & I | _CSD: R37275 | 58-2  | R:     | 3727558-3 |       |       |          |      |     |            |
|-------------------------------|--------------|-------|--------|-----------|-------|-------|----------|------|-----|------------|
|                               |              | Spike | LCS    | LCSD      | LCS   | LCSD  | % Rec    |      | Max |            |
| Parameter                     | Units        | Conc. | Result | Result    | % Rec | % Rec | Limits   | RPD  | RPD | Qualifiers |
| Diesel Fuel Range             | ug/L         | 1500  | 1500   | 1620      | 100   | 108   | 50.0-150 | 7.69 | 20  |            |
| o-Terphenyl (S)               | %            |       |        |           | 116   | 64.0  | 31.0-160 |      |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP-PRGS-CAPA

Pace Project No.:

92569702

QC Batch:

QC Batch Method:

3511/8015

1771432

Analysis Method: Analysis Description: EPA 8015D

SVOA (GC) 3511/8015

MDL

24.7

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92569702003, 92569702004, 92569702005

METHOD BLANK: R3728420-1

Matrix: Water

Associated Lab Samples:

Parameter

92569702003, 92569702004, 92569702005

Blank Result

Reporting Limit

Analyzed

Qualifiers

Diesel Fuel Range o-Terphenyl (S)

Date: 12/16/2021 12:31 PM

ug/L %

Units

ND 84.5

100 31.0-160 11/11/21 06:52 11/11/21 06:52

| LABORATORY CONTROL SAMPLE & | LCSD: R37284 | 120-2 | R      | 3728420-3 |       |       |          |      |     |            |
|-----------------------------|--------------|-------|--------|-----------|-------|-------|----------|------|-----|------------|
|                             |              | Spike | LCS    | LCSD      | LCS   | LCSD  | % Rec    |      | Max |            |
| Parameter                   | Units        | Conc. | Result | Result    | % Rec | % Rec | Limits   | RPD  | RPD | Qualifiers |
| Diesel Fuel Range           | ug/L         | 1500  | 1500   | 1520      | 100   | 101   | 50.0-150 | 1.32 | 20  |            |
| o-Terphenyl (S)             | %            |       |        |           | 95.0  | 93.0  | 31.0-160 |      |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:

HRP-PRGS-CAPA

Pace Project No.:

92569702

QC Batch:

QC Batch Method:

1771434

3511/8015

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 3511/8015

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples: 92569702006, 92569702007, 92569702008

METHOD BLANK: R3728282-1

Matrix: Water

Associated Lab Samples:

Date: 12/16/2021 12:31 PM

 $92569702006,\,92569702007,\,92569702008$ 

| Parameter         | Units | Blank<br>Result | Reporting<br>Limit | MDL  | Analyzed       | Qualifiers |
|-------------------|-------|-----------------|--------------------|------|----------------|------------|
| Diesel Fuel Range | ug/L  | ND ND           | 100                | 24.7 | 11/10/21 18:45 |            |
| o-Terphenyl (S)   | %     | 93.5            | 31.0-160           |      | 11/10/21 18:45 |            |

| LABORATORY CONTROL SAMPLE &          | LCSD: R3728 | 282-2          | R             | 3728282-3      |              |               |                      |      |            |            |
|--------------------------------------|-------------|----------------|---------------|----------------|--------------|---------------|----------------------|------|------------|------------|
| Parameter                            | Units       | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits      | RPD  | Max<br>RPD | Qualifiers |
| Diesel Fuel Range<br>o-Terphenyl (S) | ug/L<br>%   | 1500           | 1460          | 1500           | 97.3<br>87.5 | 100<br>93.0   | 50.0-150<br>31.0-160 | 2.70 | 20         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



**QUALITY CONTROL DATA** 

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

QC Batch: 656942 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92569702001, 92569702002, 92569702003, 92569702004, 92569702005, 92569702006, 92569702007,

92569702008, 92569702009

METHOD BLANK: 3443592 Matrix: Water

Associated Lab Samples: 92569702001, 92569702002, 92569702003, 92569702004, 92569702005, 92569702006, 92569702007,

92569702008, 92569702009

|                           |       | Blank  | Reporting |      |                |            |
|---------------------------|-------|--------|-----------|------|----------------|------------|
| Parameter                 | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Naphthalene               | ug/L  | ND     | 1.0       | 0.64 | 11/04/21 01:30 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 95     | 70-130    |      | 11/04/21 01:30 |            |
| 4-Bromofluorobenzene (S)  | %     | 100    | 70-130    |      | 11/04/21 01:30 |            |
| Toluene-d8 (S)            | %     | 99     | 70-130    |      | 11/04/21 01:30 |            |

| LABORATORY CONTROL SAMPLE: | 3443593 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    | 50    | 54.5   | 109   | 70-133 |            |
| 1,2-Dichloroethane-d4 (S)  | %       |       |        | 97    | 70-130 |            |
| 4-Bromofluorobenzene (S)   | %       |       |        | 101   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 98    | 70-130 |            |

| MATRIX SPIKE & MATRIX SP  | PIKE DUPLIC | CATE: 3443           | 594                  |                       | 3443595      |               |             |              |                 |     |            |      |
|---------------------------|-------------|----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                 | g<br>Units  | 2569702006<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Naphthalene               | ug/L        | ND                   | 20                   | 20                    | 27.2         | 24.3          | 134         | 119          | 57-150          | 11  | 30         |      |
| 1,2-Dichloroethane-d4 (S) | %           |                      |                      |                       |              |               | 99          | 97           | 70-130          |     |            |      |
| 4-Bromofluorobenzene (S)  | %           |                      |                      |                       |              |               | 102         | 102          | 70-130          |     |            |      |
| Toluene-d8 (S)            | %           |                      |                      |                       |              |               | 96          | 96           | 70-130          |     |            |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



#### **QUALIFIERS**

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 12/16/2021 12:31 PM

pH Post-analysis pH measurement indicates insufficient VOA sample preservation.



# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP-PRGS-CAPA

Pace Project No.: 92569702

Date: 12/16/2021 12:31 PM

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|--------------------|
| 92569702001 | HRP-MW27-211027   | 3511/8015       | 1770405  | EPA 8015D         | 1770405            |
| 92569702002 | HRP-RW28S-211027  | 3511/8015       | 1770405  | EPA 8015D         | 1770405            |
| 92569702003 | HRP-MW25S-211028  | 3511/8015       | 1771432  | EPA 8015D         | 1771432            |
| 92569702004 | HRP-MW14-211028   | 3511/8015       | 1771432  | EPA 8015D         | 1771432            |
| 92569702005 | HRP-RW118S-211028 | 3511/8015       | 1771432  | EPA 8015D         | 1771432            |
| 92569702006 | HRP-MW25-211028   | 3511/8015       | 1771434  | EPA 8015D         | 1771434            |
| 92569702007 | HRP-EB09-211028   | 3511/8015       | 1771434  | EPA 8015D         | 1771434            |
| 92569702008 | HRP-EB10-211028   | 3511/8015       | 1771434  | EPA 8015D         | 1771434            |
| 92569702001 | HRP-MW27-211027   | EPA 8260D       | 656942   |                   |                    |
| 92569702002 | HRP-RW28S-211027  | EPA 8260D       | 656942   |                   |                    |
| 92569702003 | HRP-MW25S-211028  | EPA 8260D       | 656942   |                   |                    |
| 92569702004 | HRP-MW14-211028   | EPA 8260D       | 656942   |                   |                    |
| 92569702005 | HRP-RW118S-211028 | EPA 8260D       | 656942   |                   |                    |
| 92569702006 | HRP-MW25-211028   | EPA 8260D       | 656942   |                   |                    |
| 92569702007 | HRP-EB09-211028   | EPA 8260D       | 656942   |                   |                    |
| 92569702008 | HRP-EB10-211028   | EPA 8260D       | 656942   |                   |                    |
| 92569702009 | HRP-TB01-211028   | EPA 8260D       | 656942   |                   |                    |



Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

| Sample Condition Upon Receipt Client Name:                                                                                                                 | ././                       |            |              | Proje    | WO#:92569702                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Courier: Fed Ex Commercial Pace                                                                                                                            | JUPS JUSPS                 |            |              | ient     | 92569702                                                                                                                                                                     |
| acking Material: Bubble Wrap                                                                                                                               | Seals Intact?  Bubble Bags | □Yes       | /            | ther     | Date/Initials Person Examining Contents: 1/1/2/ Blological Tissue Frozen?  Yes No N/A                                                                                        |
| ooler Temp: Correction  Add/Subt  cooler Temp Corrected (°C):  SDA Regulated Soil ( N/A, water sample)  id samples originate in a quarantine zone within t | ract (°C)                  | e:<br>)    | 3            | ps)?     | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun  Did samples originate from a foreign source (Internationally, |
| ☐Yes ☐No                                                                                                                                                   | <del></del>                |            |              |          | including Hawaii and Puerto Rico)? Yes No  Comments/Discrepancy:                                                                                                             |
| Chain of Custody Present?                                                                                                                                  | □Yes                       | □No        | □N/A         | 1.       |                                                                                                                                                                              |
| 1. 17. St. 1984 A. S. S. S. S. S. S. S. S. S. S. S. S. S.                                                                                                  |                            |            |              |          |                                                                                                                                                                              |
| Short Hold Time Analysis Ic72 by 12                                                                                                                        | □Ýes                       | □No.       | □N/A         | 2.       |                                                                                                                                                                              |
| Short Hold Time Analysis (<72 hr.)?  Rush Turn Around Time Requested?                                                                                      | □Yes<br>□Yes               | □No        | □N/A         | 3.<br>4. |                                                                                                                                                                              |
|                                                                                                                                                            | /                          |            | □N/A         |          |                                                                                                                                                                              |
| Sufficient Volume?  Correct Containers Used?                                                                                                               | □ Ves                      | □No        | □N/A         | 5.       |                                                                                                                                                                              |
| -Pace Containers Used?                                                                                                                                     | ☑Yes<br>☑Yes               | □No<br>□No | □N/A<br>□N/A | 6.       |                                                                                                                                                                              |
| Containers Intact?                                                                                                                                         |                            | □No        | □N/A         | 7.       |                                                                                                                                                                              |
| Dissolved analysis: Samples Field Filtered?                                                                                                                |                            | □No        | □N/A         | 8.       |                                                                                                                                                                              |
| Sample Labels Match COC?                                                                                                                                   | □Yes                       | □No        | □N/A         | 9.       |                                                                                                                                                                              |
| -Includes Date/Time/ID/Analysis Matrix:_                                                                                                                   | WT                         | /          |              |          |                                                                                                                                                                              |
| Headspace in VOA Vials (>5-6mm)?                                                                                                                           | □yés                       | No         | □N/A         | 10.      |                                                                                                                                                                              |
| Trip Blank Present?                                                                                                                                        | ✓Yes                       | □No        | □N/A         | 11.      |                                                                                                                                                                              |
| Trip Blank Custody Seals Present?                                                                                                                          | ✓Yes                       | □No        | □N/A         |          |                                                                                                                                                                              |
| COMMENTS/SAMPLE DISCREPANCY                                                                                                                                |                            |            |              |          | Field Data Required? Yes No                                                                                                                                                  |
| LIENT NOTIFICATION/RESOLUTION                                                                                                                              |                            |            |              | Lo       | nt ID of split containers:                                                                                                                                                   |
|                                                                                                                                                            |                            |            |              |          |                                                                                                                                                                              |
| Person-contacted:                                                                                                                                          |                            |            | —Date/Tir    | ne:      |                                                                                                                                                                              |
| Project Manager SCURF Review:                                                                                                                              |                            |            |              |          | Date:                                                                                                                                                                        |
|                                                                                                                                                            |                            |            |              |          |                                                                                                                                                                              |



# Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

#:92569702

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

PM · OMR

Project

Due Date: 11/09/21

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

CLIENT: 92-RambollEn

\*\*Bottom half of box is to list number of bottles

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastiq Unpreserved (N/A) | BP45-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG15-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plastic (N/A – lab) |   | BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintiliation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|---|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | / |                                         |                                           |                                      | 3                                        |
| 2     | /                                           |                                       |                                       |                                        | /                                        |                                   |                                            | 1                                        |                                         |                                            | /                               |                                           | /                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | / |                                         |                                           |                                      | 3                                        |
| 3     |                                             |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          |                                          |                                         |                                            | /                               |                                           | 1                                 | /                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      | 3                                        |
| 4     | /                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 5     | 1                                           |                                       |                                       |                                        | /                                        | /                                 | 1                                          | /                                        |                                         |                                            | /                               |                                           | 1                                 | 1                                | /                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      | 3                                        |
| 6     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | 1                               |                                           | /                                 | /                                | /                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      | 3                                        |
| 7     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        | 3                        |                              |                          |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      | 3                                        |
| 8     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        | Tig                                     |                                            | /                               |                                           | 1                                 | /                                | /                                        | 3                        |                              |                          | 100                        |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      | 3                                        |
| 9     | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        | 2                        |                              |                          |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      | )                                        |
| 10    | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        | -                        |                              |                          |                            |                                       |                                          |                                         |                                         | / | 1                                       |                                           |                                      |                                          |
| 11    | /                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |
| 12    | /                                           | -                                     |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                | /                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 1 | 1                                       |                                           |                                      |                                          |

| pH Adjustment Log for Preserved Samples |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Type of Preservative                    | pH upon receipt      | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added                                                      | Lot #                                                                                                    |  |  |  |  |  |  |  |
|                                         |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |  |
|                                         |                      |                            |                            |                                                                                   |                                                                                                          |  |  |  |  |  |  |  |
|                                         |                      |                            |                            |                                                                                   | -                                                                                                        |  |  |  |  |  |  |  |
|                                         | Type of Preservative |                            |                            | Type of Preservative pH upon receipt Date preservation adjusted Time preservation | Type of Preservative pH upon receipt Date preservation adjusted Time preservation Amount of Preservative |  |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Garolina DEHNR Certification Office (I.e., Out of hold, Incorrect preservative, out of temp, incorrect containers.

http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021 39 Spruce Street East Longmeadow, MA 01028

92569702

Analytical values your partnership on each project and will try to assist with missing information, but will Prepackaged Cooler? Y / N Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Glassware in freezer? Y / N responsible for missing samples Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Glassware in the fridge? from prepacked coolers \*Pace Analytical is not Matrix Codes: GW = Ground Water WW = Waste Water Preservation Codes: Total Number Oft DW = Drinking Water X = Sodium Hydroxide S = Soil SL = Sludge SOL = Solid O = Other (please B = Sodium Bisulfate Courier Use Only O = Other (please define) S = Sulfuric Acid <sup>2</sup> Preservation Code N = Nitric Acid BACTERIA M = Methanol ENCORE VIALS GLASS PLASTIC T = Sodium Thiosulfate A = Air define) H = HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AlHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above: ANALYSIS REQUESTED Unknown Maphthalene CT RCP Required (B360) MA MCP Required × X × MCP Certification Form Required RCP Certification Form Required MA State DW Required 16H-D80 × × X ENCORE BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter PCB ONL PLASTIC School MWRA Sasterlag @Ramboll.com VIALS GLASS SOXHLET CHAIN OF CUSTODY RECORD 0 0 0 0 0 9 9 9 4 0 0 0 0 10-Pay 5 4 % Po 'Matrix Conc Code U Municipality Brownfield Ramboll FUC GW GE 30 Sil GW. 0 -TB # QISMA BW 0-EB 0-EB 3-Day 4-Day CLP Like Data Pkg Required COMP/GRAB Grab Grab Grab Grab P 0 6 9 6 10/29/2021 (2) EB: Equipment Blank PFAS 10-Day (std) Chron VA DEQ Government 10/24 1750 1635 1500 1435 TB: Trip Blank Email To: Ending Date/Time 10/27 1735 10-28-21 1630 1725 1320 Fax To #: ormat: 1715 Federal Other: Client Comments: 7-Day -Day 2-Day City 2 9 Broject Entity 10/38 HRP-MW255-211028 10/28 17.22.0 80/01 10-28-21 Project Location: 1400 N. Royal St. Alexandria VA 12.82.0 Beginning Date/Time 4350 N. Fairfax Dr. Arlington, Yf Access COC's and Support Requests Invoice Recipient: Sostertag @ Ramboll . com Date/Time: 12/22/12 PACE 10-21-2 D-29-21163 HRP-RW1185-211028 RWZ8S HRP-MURRS-A11097 935109102-001 HRP-MWG7-811087 HAP-MW85-211028 Client Sample ID / Description HRP-MWI4-211028 Phone: 413-525-2332 Date/Time: Fax: 413-525-6405 Date/Time: HRP-EBO9-211028 HRP-TB01-211028 枚P-B10-211028 HRP- PRGS-CAPA and Bunnudd PACE 703-516-2383 Project Manager: Gred GroSC DUMM! Face Analytical Sampled By: Anne Kelly elinquished by: (signature) Pace Quote Name/Number: 中西部 eceived by: (signature) de Work Order# T00--009 1080 300 Project Number: 1000 ab Comments -003 400--602 ked by Address: Page 22 of 22



(704)875-9092



October 28, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92566661

#### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 13, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

**Enclosures** 

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

#### **Pace Analytical Services National**

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660
Alaska Certification 17-026
Arizona Certification #: AZ0612
Arkansas Certification #: 88-0469
California Certification #: 2932
Canada Certification #: 1461.01
Colorado Certification #: TN00003
Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: 364
Kansas Certification #: E-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958
Minnesota Certification #: 047-999-395
Michigan Certification #: TN00003

Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05 Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233
Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789





# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92566661

| Lab ID      | Sample ID              | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------------|-----------|----------|----------------------|------------|
| 92566661001 | HRP-SB205-0-1-211011   | EPA 8015D | WCR      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661002 | HRP-SB205-13-15-21011  | EPA 8015D | WCR      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661003 | HRP-DUP02-13-15-21011  | EPA 8015D | WCR      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661004 | HRP-SB206-5-7-211012   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661005 | HRP-SB206-15-17-211012 | EPA 8015D | JAS      | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661006 | HRP-SB207-0-1-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661007 | HRP-SB207-6-8-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661008 | HRP-DUP03-6-8-211013   | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92566661009 | HRP-SB207-16-18-211013 | EPA 8015D | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |

PAN = Pace National - Mt. Juliet





Pace Project No.:

Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92566661

Sample: HRP-SB205-0-1-211011 Lab ID: 92566661001 Collected: 10/11/21 11:43 Received: 10/13/21 12:40 Matrix: Solid

| Parameters                                 | Results                                                                              | Units | Report Limit     | DF      | Prepared       | Analyzed       | CAS No. | Qua |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------|-------|------------------|---------|----------------|----------------|---------|-----|--|--|
| SVOA (GC) 8015D                            | Analytical Meth<br>Pace National                                                     |       | D Preparation Me | thod: 3 | 3546           |                |         |     |  |  |
| Diesel Range Organics(C10-C28)  Surrogates | ND                                                                                   | mg/kg | 4.79             | 1       | 10/22/21 07:39 | 10/22/21 15:09 |         |     |  |  |
| o-Terphenyl (S)                            | 42.1                                                                                 | %     | 18.0-148         | 1       | 10/22/21 07:39 | 10/22/21 15:09 | 84-15-1 |     |  |  |
| Total Solids 2540 G-2011                   | Analytical Method: SM 2540G Preparation Method: SM 2540 G Pace National - Mt. Juliet |       |                  |         |                |                |         |     |  |  |
| Total Solids                               | 83.5                                                                                 | %     |                  | 1       | 10/20/21 10:46 | 10/20/21 10:53 |         |     |  |  |





Pace Project No.:

Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92566661

Sample: HRP-SB205-13-15-21011 Lab ID: 92566661002 Collected: 10/11/21 12:30 Received: 10/13/21 12:40 Matrix: Solid

| Results reported on a "dry weight"  Parameters | Results                                                                              | Units | Report Limit | DF | Prepared       | Analyzed       | CAS No. | Qual |  |
|------------------------------------------------|--------------------------------------------------------------------------------------|-------|--------------|----|----------------|----------------|---------|------|--|
| SVOA (GC) 8015D                                | Analytical Method: EPA 8015D Preparation Method: 3546 Pace National - Mt. Juliet     |       |              |    |                |                |         |      |  |
| Diesel Range Organics(C10-C28)  Surrogates     | ND                                                                                   | mg/kg | 4.33         | 1  | 10/22/21 07:39 | 10/22/21 14:44 |         |      |  |
| o-Terphenyl (S)                                | 72.7                                                                                 | %     | 18.0-148     | 1  | 10/22/21 07:39 | 10/22/21 14:44 | 84-15-1 |      |  |
| Total Solids 2540 G-2011                       | Analytical Method: SM 2540G Preparation Method: SM 2540 G Pace National - Mt. Juliet |       |              |    |                |                |         |      |  |
| Total Solids                                   | 92.5                                                                                 | %     |              | 1  | 10/20/21 10:55 | 10/20/21 11:02 |         |      |  |





Pace Project No.:

Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92566661

| Parameters                                 | Results         | Units        | Report Limit      | DF      | Prepared       | Analyzed       | CAS No. | Qual |
|--------------------------------------------|-----------------|--------------|-------------------|---------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                            | Analytical Meth |              | 5D Preparation Me | thod: 3 | 3546           |                |         |      |
| Diesel Range Organics(C10-C28)  Surrogates | ND              | mg/kg        | 4.66              | 1       | 10/22/21 07:39 | 10/22/21 14:58 |         |      |
| o-Terphenyl (S)                            | 46.2            | %            | 18.0-148          | 1       | 10/22/21 07:39 | 10/22/21 14:58 | 84-15-1 |      |
| Total Solids 2540 G-2011                   | Analytical Meth | nod: SM 2540 | G Preparation Met | hod: S  | M 2540 G       |                |         |      |
|                                            | Pace National   | - Mt. Juliet |                   |         |                |                |         |      |
| Total Solids                               | 85.8            | %            |                   | 1       | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

Total Solids 2540 G-2011

Date: 10/28/2021 06:32 PM

**Total Solids** 

| Sample: HRP-SB206-5-7-211012  Results reported on a "dry weight" k | Lab ID: 9250<br>asis and are adj |       | Collected: 10/12/2<br>rcent moisture, sa |         |                |                | fatrix: Solid |      |
|--------------------------------------------------------------------|----------------------------------|-------|------------------------------------------|---------|----------------|----------------|---------------|------|
| Parameters                                                         | Results                          | Units | Report Limit                             | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015D                                                    | Analytical Meth                  |       | 5D Preparation Me                        | thod: 3 | 3546           |                |               |      |
| Diesel Range Organics(C10-C28)  Surrogates                         | 4.70                             | mg/kg | 4.60                                     | 1       | 10/25/21 04:13 | 10/25/21 15:38 |               |      |
| o-Terphenyl (S)                                                    | 52.5                             | %     | 18.0-148                                 | 1       | 10/25/21 04:13 | 10/25/21 15:38 | 84-15-1       |      |

10/20/21 10:55 10/20/21 11:02

Analytical Method: SM 2540G Preparation Method: SM 2540 G

Pace National - Mt. Juliet

87.0



Pace Project No.:

Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92566661

Sample: HRP-SB206-15-17-211012 Lab ID: 92566661005 Collected: 10/12/21 13:45 Received: 10/13/21 12:40 Matrix: Solid

| Parameters                                 | Results                          | Units | Report Limit   | DF       | Prepared       | Analyzed       | CAS No. | Qual |
|--------------------------------------------|----------------------------------|-------|----------------|----------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                            | Analytical Metl                  |       | Preparation Me | ethod: 3 | 3546           |                |         |      |
| Diesel Range Organics(C10-C28)  Surrogates | ND ND                            | mg/kg | 4.28           | 1        | 10/25/21 04:13 | 10/25/21 15:24 |         |      |
| o-Terphenyl (S)                            | 70.7                             | %     | 18.0-148       | 1        | 10/25/21 04:13 | 10/25/21 15:24 | 84-15-1 |      |
| Total Solids 2540 G-2011                   | Analytical Metl<br>Pace National |       | Preparation Me | thod: S  | M 2540 G       |                |         |      |
| Total Solids                               | 93.4                             | %     |                | 1        | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

Sample: HRP-SB207-0-1-211013 Lab ID: 92566661006 Collected: 10/13/21 08:37 Received: 10/13/21 12:40 Matrix: Solid

| Parameters                                 | Results         | Units         | Report Limit     | DF       | Prepared       | Analyzed       | CAS No. | Qual |
|--------------------------------------------|-----------------|---------------|------------------|----------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                            | Analytical Meth | nod: EPA 8015 | D Preparation Me | ethod: 3 | 3546           |                |         |      |
|                                            | Pace National   | - Mt. Juliet  |                  |          |                |                |         |      |
| Diesel Range Organics(C10-C28)  Surrogates | 20.2            | mg/kg         | 4.46             | 1        | 10/26/21 15:29 | 10/27/21 02:40 |         |      |
| o-Terphenyl (S)                            | 62.0            | %             | 18.0-148         | 1        | 10/26/21 15:29 | 10/27/21 02:40 | 84-15-1 |      |
| Total Solids 2540 G-2011                   | Analytical Meth | nod: SM 25400 | Preparation Me   | thod: S  | M 2540 G       |                |         |      |
|                                            | Pace National   | - Mt. Juliet  |                  |          |                |                |         |      |
| Total Solids                               | 89.7            | %             |                  | 1        | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

| Sample: HRP-SB207-6-8-211013               | Lab ID: 925                      | 66661007      | Collected: 10/13/2 | 1 09:1  | 5 Received: 10    | /13/21 12:40 M | /latrix: Solid |      |
|--------------------------------------------|----------------------------------|---------------|--------------------|---------|-------------------|----------------|----------------|------|
| Results reported on a "dry weight"         | basis and are adj                | usted for per | cent moisture, sa  | mple s  | size and any dilu | tions.         |                |      |
| Parameters                                 | Results                          | Units         | Report Limit       | DF      | Prepared          | Analyzed       | CAS No.        | Qual |
| SVOA (GC) 8015D                            | Analytical Meth<br>Pace National |               | D Preparation Me   | thod: 3 | 3546              |                |                |      |
| Diesel Range Organics(C10-C28)  Surrogates | ND                               | mg/kg         | 4.29               | 1       | 10/26/21 15:29    | 10/27/21 01:10 |                |      |
| o-Terphenyl (S)                            | 72.6                             | %             | 18.0-148           | 1       | 10/26/21 15:29    | 10/27/21 01:10 | 84-15-1        |      |
| Total Solids 2540 G-2011                   | Analytical Mether Pace National  |               | G Preparation Met  | hod: S  | M 2540 G          |                |                |      |
| Total Solids                               | 93.2                             | %             |                    | 1       | 10/20/21 10:55    | 10/20/21 11:02 |                |      |





Pace Project No.:

Date: 10/28/2021 06:32 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92566661

| Parameters                     | Results         | Units         | Report Limit     | DF       | Prepared       | Analyzed       | CAS No. | Qual |
|--------------------------------|-----------------|---------------|------------------|----------|----------------|----------------|---------|------|
| SVOA (GC) 8015D                | Analytical Meth | nod: EPA 8015 | D Preparation Me | ethod: 3 | 3546           |                |         |      |
|                                | Pace National   | - Mt. Juliet  |                  |          |                |                |         |      |
| Diesel Range Organics(C10-C28) | ND              | mg/kg         | 4.32             | 1        | 10/26/21 15:29 | 10/27/21 00:31 |         |      |
| Surrogates<br>o-Terphenyl (S)  | 73.5            | %             | 18.0-148         | 1        | 10/26/21 15:29 | 10/27/21 00:31 | 84-15-1 |      |
| Total Solids 2540 G-2011       | Analytical Meth | nod: SM 25400 | G Preparation Me | thod: S  | M 2540 G       |                |         |      |
|                                | Pace National   | - Mt. Juliet  |                  |          |                |                |         |      |
| Total Solids                   | 92.7            | %             |                  | 1        | 10/20/21 10:55 | 10/20/21 11:02 |         |      |





# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

Date: 10/28/2021 06:32 PM

| Sample: HRP-SB207-16-18-211013 Results reported on a "dry weight" I | Lab ID: 925<br>basis and are adj |       | Collected: 10/13/2 |         |                |                | latrix: Solid |      |
|---------------------------------------------------------------------|----------------------------------|-------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                                                          | Results                          | Units | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015D                                                     | Analytical Meth<br>Pace National |       | 5D Preparation Me  | thod: 3 | 3546           |                |               |      |
| Diesel Range Organics(C10-C28)  Surrogates                          | ND                               | mg/kg | 4.36               | 1       | 10/26/21 15:29 | 10/27/21 00:44 |               |      |
| o-Terphenyl (S)                                                     | 76.1                             | %     | 18.0-148           | 1       | 10/26/21 15:29 | 10/27/21 00:44 | 84-15-1       |      |
| Total Solids 2540 G-2011                                            | Analytical Metl<br>Pace National |       | G Preparation Met  | hod: S  | SM 2540 G      |                |               |      |
| Total Solids                                                        | 91.7                             | %     |                    | 1       | 10/20/21 10:55 | 10/20/21 11:02 |               |      |





Project:

HRP PRGS SCR

Pace Project No.:

92566661

QC Batch:

QC Batch Method:

1761238 3546

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661001, 92566661002, 92566661003

METHOD BLANK:

R3720300-1

Matrix: Solid

Associated Lab Samples:

92566661001, 92566661002, 92566661003

Blank Result

Reporting Limit

Analyzed

Qualifiers

Diesel Range Organics(C10-C28)

Parameter

Units mg/kg %

ND 68.5

4.00 10/22/21 11:39 18.0-148 10/22/21 11:39

LABORATORY CONTROL SAMPLE: R3720300-2

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Parameter Diesel Range Organics(C10-C28)

Parameter

Diesel Range Organics(C10-

Date: 10/28/2021 06:32 PM

Spike Conc. 50.0

MS

Conc.

62.6

R3720300-3

LCS Result 40.4

LCS % Rec 80.8 % Rec Limits

53.9

50.0-150

18.0-148

Qualifiers

o-Terphenyl (S)

o-Terphenyl (S)

o-Terphenyl (S)

mg/kg %

L1418104-08

Result

6.12

Units

R3720300-4

MSD Spike Spike

MS

MSD

71.0

MSD

% Rec Limits

**RPD** 68.9 50.0-150 9.35 Qual

mg/kg

Units

%

Conc.

62.2

Result Result 35.7

MS % Rec 39.2

% Rec 61.2

61.4 18.0-148





Project:

HRP PRGS SCR

Pace Project No.:

92566661

QC Batch:

QC Batch Method:

1761241 3546

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661004, 92566661005

METHOD BLANK: R3721248-1

Matrix: Solid

Associated Lab Samples:

92566661004, 92566661005

Blank

Result

Reporting Limit

LCS

Result

Analyzed

Qualifiers

Diesel Range Organics(C10-C28) o-Terphenyl (S)

Parameter

Units mg/kg %

ND 58

4.00 10/25/21 12:55 18.0-148 10/25/21 12:55

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

R3721248-2

Spike Conc.

LCS % Rec

% Rec Limits

18.0-148

Qualifiers

Diesel Range Organics(C10-C28) o-Terphenyl (S)

mg/kg %

Units

L1418056-01

Result

2.80

50.0

37.9

75.8 66.1

50.0-150

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

R3721248-3

49.4

MS MSD Spike Spike Conc.

49.0

MS

R3721248-4

MSD MS MSD

% Rec Limits

**RPD** Qual

Diesel Range Organics(C10-

o-Terphenyl (S)

Date: 10/28/2021 06:32 PM

mg/kg

Units

%

Conc.

Result 29.3

Result % Rec

38.8

% Rec

54.1

72.9 50.0-150

27.9 R1

50.2 60.0 18.0-148

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92566661

QC Batch:

QC Batch Method: 3546

1763083

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661006, 92566661007, 92566661008, 92566661009

METHOD BLANK: R3721895-1

Matrix: Solid

Associated Lab Samples:

92566661006, 92566661007, 92566661008, 92566661009

Blank

Reporting

Parameter Units Result

Limit Analyzed

Qualifiers

Diesel Range Organics(C10-C28)

mg/kg %

ND 77.5

4.00 10/26/21 22:09 18.0-148 10/26/21 22:09

LABORATORY CONTROL SAMPLE:

Parameter

R3721895-2

Spike Conc. LCS

% Rec Limits

Qualifiers

Diesel Range Organics(C10-C28) o-Terphenyl (S)

Date: 10/28/2021 06:32 PM

o-Terphenyl (S)

mg/kg %

Units

50.0

Result

LCS

% Rec 34.9

69.8 99.1 50.0-150

18.0-148

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92566661

QC Batch:

1759416

QC Batch Method:

SM 2540 G

Analysis Method:

SM 2540G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Analyzed

Associated Lab Samples:

92566661001

METHOD BLANK: R3719273-1

Matrix: Solid

Associated Lab Samples:

92566661001

Blank

Result

Reporting

Limit

Qualifiers

**Total Solids** 

Units %

0.00200

10/20/21 10:53

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

R3719273-2

Spike

LCS

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

Units

%

Conc. 50.0 Result

100

85.0-115

SAMPLE DUPLICATE: R3719273-3

L1418000-05

Dup Result

50.0

RPD

Qualifiers

**Total Solids** 

Date: 10/28/2021 06:32 PM

Parameter

Units %

Result

78.5

78.5

0.00484





Project:

HRP PRGS SCR

Pace Project No.:

92566661

QC Batch: QC Batch Method: 1759420

SM 2540 G

Analysis Method:

SM 2540G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92566661002, 92566661003, 92566661004, 92566661005, 92566661006, 92566661007, 92566661008,

92566661009

METHOD BLANK: R3719276-1

Matrix: Solid

Associated Lab Samples:

92566661002, 92566661003, 92566661004, 92566661005, 92566661006, 92566661007, 92566661008,

92566661009

Blank

Reporting Limit

Analyzed

Qualifiers

**Total Solids** 

Units %

Result 0.00200

10/20/21 11:02

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

R3719276-2

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

**Total Solids** 

%

Units

50.0

50.0

100

85.0-115

SAMPLE DUPLICATE: R3719276-3

Date: 10/28/2021 06:32 PM

Parameter

Units Result

%

92566661004

87.0

Dup Result

86.9

**RPD** Qualifiers 0.169



Huntersville, NC 28078 (704)875-9092

### **QUALIFIERS**

Project: HRP PRGS SCR

Pace Project No.: 92566661

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **WORKORDER QUALIFIERS**

WO: 92566661

[1]

# **ANALYTE QUALIFIERS**

Date: 10/28/2021 06:32 PM

R1 RPD value was outside control limits.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92566661

Date: 10/28/2021 06:32 PM

| Lab ID      | Sample ID              | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------------|-----------------|----------|-------------------|---------------------|
| 92566661001 | HRP-SB205-0-1-211011   | 3546            | 1761238  | EPA 8015D         | 1761238             |
| 92566661002 | HRP-SB205-13-15-21011  | 3546            | 1761238  | EPA 8015D         | 1761238             |
| 92566661003 | HRP-DUP02-13-15-21011  | 3546            | 1761238  | EPA 8015D         | 1761238             |
| 92566661004 | HRP-SB206-5-7-211012   | 3546            | 1761241  | EPA 8015D         | 1761241             |
| 92566661005 | HRP-SB206-15-17-211012 | 3546            | 1761241  | EPA 8015D         | 1761241             |
| 92566661006 | HRP-SB207-0-1-211013   | 3546            | 1763083  | EPA 8015D         | 1763083             |
| 92566661007 | HRP-SB207-6-8-211013   | 3546            | 1763083  | EPA 8015D         | 1763083             |
| 92566661008 | HRP-DUP03-6-8-211013   | 3546            | 1763083  | EPA 8015D         | 1763083             |
| 92566661009 | HRP-SB207-16-18-211013 | 3546            | 1763083  | EPA 8015D         | 1763083             |
| 92566661001 | HRP-SB205-0-1-211011   | SM 2540 G       | 1759416  | SM 2540G          | 1759416             |
| 92566661002 | HRP-SB205-13-15-21011  | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661003 | HRP-DUP02-13-15-21011  | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661004 | HRP-SB206-5-7-211012   | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661005 | HRP-SB206-15-17-211012 | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661006 | HRP-SB207-0-1-211013   | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661007 | HRP-SB207-6-8-211013   | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661008 | HRP-DUP03-6-8-211013   | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |
| 92566661009 | HRP-SB207-16-18-211013 | SM 2540 G       | 1759420  | SM 2540G          | 1759420             |

| Pace Analytical              | .al Phone: 413-525-2332                  |                                          |                            | http://www.paraelabs.com<br>c.eart or      | CHAIN CO             |           |         | 2.3          | Do<br>19 Spruce Street<br>1 and Longmeadow, MA 01028 | dow, MA 0                       | Doc #                | 381 Re         | Doc # 381 Rev 5 07/11/2021<br>28 | 13/202         |                    |                                                                     |                         | Page L of 2                                                                                                                                                                                                                                                                                                                                 |       |
|------------------------------|------------------------------------------|------------------------------------------|----------------------------|--------------------------------------------|----------------------|-----------|---------|--------------|------------------------------------------------------|---------------------------------|----------------------|----------------|----------------------------------|----------------|--------------------|---------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                              |                                          |                                          | TO THE WORLD               | dested furnaround time                     | Super and            |           | 10      |              |                                                      | 1                               | 183                  |                | AN                               | <b>YLYSIS</b>  | REQU               | ANALYSIS REQUESTED                                                  |                         |                                                                                                                                                                                                                                                                                                                                             |       |
| mosny Name                   | Access COC's and Support Requests        |                                          | 7-Day<br>PFAS 10-Day (std) |                                            | 10-Day               | N. Y      | 0 0     | Field        | Field Liftered                                       |                                 | ٤                    | 1              | 7                                | T 179W         | H                  | II                                                                  | -                       | Preservation Code                                                                                                                                                                                                                                                                                                                           |       |
| idress: 4350 N Fair          | Fartfird Dr. Ste 20                      |                                          |                            |                                            | School School        | E 2000    | 0.00    |              |                                                      | The same                        | 100                  | =              | _                                |                |                    |                                                                     |                         | otal North                                                                                                                                                                                                                                                                                                                                  |       |
|                              |                                          |                                          | 1-Day                      |                                            | 3-Day                |           | 0       | Field        | Field Filtered                                       |                                 |                      | +              | _                                |                |                    |                                                                     |                         |                                                                                                                                                                                                                                                                                                                                             | _     |
| oject Name:                  | observance HAP PRES X.P.                 |                                          | 2-Day                      |                                            | 4-Day                |           | 0       | Lab          | Lab to Filter                                        |                                 |                      |                |                                  |                |                    |                                                                     |                         | 9                                                                                                                                                                                                                                                                                                                                           |       |
| oject Number:                | Note of Allemans, VIII                   |                                          | Format: P                  | ZZ Ja                                      | EXCEL X              | 2         |         | PCB          | PCB ONLY                                             |                                 |                      |                | -                                |                |                    |                                                                     |                         | PLASTIC                                                                                                                                                                                                                                                                                                                                     | -     |
| oject Manager: Gree 500 St.  | 280                                      |                                          | Other:                     | Other: Paul E. CLP Like Data Pko Required: | 00                   |           | SOXHLET | t            |                                                      | ۵                               | _                    | (              | _                                |                |                    | 7                                                                   |                         | BACTERIA                                                                                                                                                                                                                                                                                                                                    | _     |
| voice Recipient: Sostertus   | woice Recipient: Sostertage Clambel .com |                                          | Email To:                  | Soster tegenment of non SOXHLET            | go rum               | bellow    | NON SC  | XHLET        |                                                      | ×                               | 640                  | - מש           | 190.                             |                | m                  | mid                                                                 |                         | PACONE                                                                                                                                                                                                                                                                                                                                      | -     |
| Pace<br>Work Orders          | Client Sample ID / Description           | Beginning<br>Date/Time                   | Ending<br>Date/Time        | COMP/GRAB                                  | *Matrix              | Conc Code | VIALS   | GLASS PL     | PLASTIC BACTERIA                                     | ERIA ENCORE                     | _                    | Hd             | TO A                             | 2015           | 1¥1                | 40                                                                  |                         | Glassware in the fridge?                                                                                                                                                                                                                                                                                                                    | -     |
| 1256661                      | 1916-1801-3/191                          | 10-11-21                                 | 1340                       | [78]                                       | 1. O                 | J         | 2       |              |                                                      |                                 | _ ×                  | L              | 2                                |                | -                  |                                                                     | Ť                       | Glassware in freezer? Y / N                                                                                                                                                                                                                                                                                                                 | -     |
| 100                          | HEP-56205-0-1-211011                     |                                          |                            | b                                          | S                    | J         | -       | 7            |                                                      |                                 | ×                    | 2              |                                  | ×              | ×                  | X                                                                   |                         | Prepackaged Cooler? Y / N                                                                                                                                                                                                                                                                                                                   | 7     |
| 700                          | HRP-58205-13-15-24104                    |                                          |                            | 9                                          | S                    | ,         | _       | 7            |                                                      |                                 | ×                    | ×              | ×                                | ×              |                    | ×                                                                   |                         | *Pace Analytical is not                                                                                                                                                                                                                                                                                                                     |       |
| 003                          | HRP- DUPOZ-13-15-211011                  |                                          | 1230                       | 9                                          | S                    | 2         |         | 7            |                                                      |                                 | ×                    | ×              | ~                                | ×              | ×                  | ×                                                                   |                         | responsible for missing samples from prepacked coolers                                                                                                                                                                                                                                                                                      | Y.    |
|                              | - HEP-56203-0-1-211012                   | _                                        | 10-12-4 OF40               | 9                                          | S                    | J         |         | -            |                                                      |                                 |                      |                |                                  | ×              | ×                  |                                                                     |                         | 1 Matrix Codes:                                                                                                                                                                                                                                                                                                                             |       |
|                              | - HRP-58203-11-13-211012 10-1241 0757    | 15:21:01 2                               | F2F0                       | B                                          | 5                    | J         |         | 7            |                                                      |                                 |                      |                |                                  | ×              | X                  |                                                                     |                         | GW = Ground Water                                                                                                                                                                                                                                                                                                                           |       |
|                              | - HRP-SB206-0-1-211012                   | 10.[2.74                                 | 1243                       | 9                                          | S                    | د         |         | 7            |                                                      |                                 |                      |                |                                  | 1              | ×                  | X                                                                   |                         | DW = Drinking Water                                                                                                                                                                                                                                                                                                                         |       |
| 000                          | HRP-56206-5-7-211012                     | 1821.01 2                                | 1258                       | 9                                          | S                    | 7         | 7       | rest.        |                                                      |                                 | X                    | X              | X                                |                | ×                  | ×                                                                   |                         | S = Soil                                                                                                                                                                                                                                                                                                                                    |       |
| 002                          | 194-56206-15-17-21100                    | וס וס ורים                               | 1345                       | 5                                          | 2                    | ٦         | 7       | 1.s (j       | (in tempery                                          | ( J                             | X                    | X              | X                                | X              | X                  | XX                                                                  |                         | SOL = Solid<br>0 = Other (please                                                                                                                                                                                                                                                                                                            |       |
| elinquished by: (signature)  | Date/Time:   0.13-21 /124                | Client Comments:<br>1240 TB01=Trip Blank | ments:<br>Trip Blan        | يد                                         |                      |           | Ī       |              | +                                                    |                                 |                      |                | 1                                |                |                    |                                                                     |                         | Preservation Codes:                                                                                                                                                                                                                                                                                                                         |       |
| 170011 11                    | 11 1/10/21 11                            |                                          |                            |                                            |                      |           |         |              |                                                      |                                 |                      |                |                                  |                |                    | *                                                                   |                         | H= HQ.                                                                                                                                                                                                                                                                                                                                      |       |
| (inquished by: (signature)   | Date/Time; /                             | Detro                                    | Detection Limit Regul      | ulichents                                  |                      |           | 2000年   |              | MA MCP Requ                                          | MAN                             | MA MCP Required      | _              | Pleas                            | e use t        | e follov           | Please use the following codes to indicate                          | dicate                  | M = Methanol                                                                                                                                                                                                                                                                                                                                |       |
| Solved by: (signature)       |                                          |                                          |                            |                                            | E                    |           |         |              | MCP Ce                                               | MCP Certification Form Required | tion Form Required   |                | ossible                          | Sampl          | ode colu           | possible sample concentration within the Conc<br>Code column above: | the Conc                | N = Nitric Acid<br>S = Sulfuric Acid                                                                                                                                                                                                                                                                                                        |       |
| Chinquished by: (signature)  | 4                                        |                                          |                            |                                            |                      |           | П       |              | RCP C                                                | RCP Certification Form Required | Form Req             |                | SH - HIS                         | W :            | edium;             | H - High; M - Medium; L - Low; C - Cit<br>Unknown                   | C - Clean; U -          | B = Sodium Bisulfate                                                                                                                                                                                                                                                                                                                        |       |
|                              |                                          | Cally delta har delta                    |                            |                                            |                      | П         |         |              |                                                      | MA State                        | MA State DW Required | P              |                                  |                |                    |                                                                     |                         | X = Sodium Hydroxide                                                                                                                                                                                                                                                                                                                        |       |
| (elinquished by: (signature) | Date/Time:                               | Project Entity                           | Project Entity             | VEG                                        | FWSID#               |           |         |              |                                                      | ı                               | 1                    |                | NEIBE                            |                | Other              | Other                                                               | credine                 | T = Sodium                                                                                                                                                                                                                                                                                                                                  | -     |
| eceived by: (signature)      | Date/Time:                               |                                          | Government<br>Federal      |                                            | Municipality<br>21 J | ž         |         | ₩ S          | MWRA                                                 |                                 | W                    | WRTA           |                                  |                |                    | Chromatogram  AIHA-LAP,LLC                                          | ue,                     | I hiostifate  O = Other (please                                                                                                                                                                                                                                                                                                             |       |
| the Commenter                |                                          |                                          | City                       |                                            | Brownfield           |           |         | WB           | MBTA                                                 |                                 |                      |                |                                  |                |                    |                                                                     |                         | define)                                                                                                                                                                                                                                                                                                                                     |       |
| ab Comments:                 |                                          |                                          |                            |                                            |                      |           |         | <b>a</b> 0 ; | disclaimer<br>hain of Cu                             | : Pace An                       | alytical<br>legal d  | is not<br>ocum | respo                            | sible<br>t mus | or any<br>be cor   | omitted informited and ac                                           | mation on<br>curate and | Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what any other than the characteristics is the complete and its used to determine what the characteristics is the characteristics. | 9 4 5 |
| #OM                          | MO#: 92566661                            |                                          |                            |                                            |                      |           |         | ; <b>«</b>   | nalytical v                                          | ralues you                      | ır partn             | ership         | on eac                           | th project     | ect and<br>held ac | ch project and will try to as<br>not be held accountable.           | sist with m             | Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable.                                                                                                                                                                                                       | y #   |

| <sup>2</sup> Preservation Code | Courier Use Only                  | Total Number Of: | 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | GLASS         | Pt ASYIL.                | BACTEPL                     |                      | Glassware in the fridge?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . N/A                                      | Glassware in freezer? Y / N | Prepackaged Gooler? Y / N | *Pace Analytical is not | from prepacked coolers | 1 Matrix Codes:   | GW = Ground Water<br>WW = Waste Water | DW = Drinking water A = Air | S = 501<br>SL = Sludge | SOL = Solid<br>0 = Other (please | define) | 2 Preservation Codes:<br>  =  ced | H = HCL                | M = Methanol      | indicate N = Nitric Acid                                                                 | S = Sulfuric Acid               | B = Sodium Bisulfate            | X = Sodium Hydroxide | 疆                                  |                              | P,LLC define)            | Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace | G. T. T. T. T. T. T. T. T. T. T. T. T. T. |
|--------------------------------|-----------------------------------|------------------|-----------------------------------------|---------------|--------------------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|---------------------------|-------------------------|------------------------|-------------------|---------------------------------------|-----------------------------|------------------------|----------------------------------|---------|-----------------------------------|------------------------|-------------------|------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------|------------------------------------|------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| REQUESTED TITLE                | 7                                 |                  |                                         |               |                          | _                           | 1                    | d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                          | ΥX                          | ×                         | у<br>У                  | ( X                    |                   |                                       |                             |                        |                                  |         |                                   |                        |                   | Please use the following codes to indicate possible sample concentration within the Conc | Code column above:              | Unknown                         |                      | MELLCand With Lap authorized fired | Other  Chromatogram          | ☐ AIHA-LAP,LLC           | or any omitted in<br>be complete and<br>ng information is                                                                                                                                                                                                                                                                | not be held accountable.                  |
| ANALYSIS                       | 7                                 |                  |                                         |               |                          | 000                         | 08<br>08<br>08<br>08 | エード                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT PER PER PER PER PER PER PER PER PER PER | XXXX                        | XXXX                      | XXXX                    | XXXX                   |                   |                                       |                             |                        |                                  |         |                                   |                        |                   | TO                                                                                       | -                               | _                               | -                    | Links                              |                              |                          | is not responsible f<br>ocument that must<br>perform. Any missi                                                                                                                                                                                                                                                          | arship on each project                    |
| 7 75                           | MARK                              |                  | A                                       |               |                          | ,                           | 5                    | )C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACORE AC                                   | ×                           | ×                         | ×                       | ×                      |                   |                                       |                             |                        |                                  |         |                                   |                        |                   | MA MCP Required                                                                          | MCP Certification Form Required | RCP Certification Form Required | MA State DW Required |                                    | □ WRTA                       | 00                       | r: Pace Analytical<br>ustody is a legal d<br>ie laboratory will I                                                                                                                                                                                                                                                        | values your partin                        |
| Field Eltered                  | Lab to Filter                     |                  | Field Filtered                          | Lab to litter | PCB ONLY                 |                             |                      | KET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ISS PLASTIC BACTERIA                       |                             |                           |                         | 3                      |                   |                                       |                             |                        |                                  |         |                                   |                        | The second second |                                                                                          | MCP C                           | RCP C                           |                      |                                    | MWRA                         | School                   | Disclaime<br>Chain of C<br>analyses th                                                                                                                                                                                                                                                                                   | Analytical                                |
|                                | 00                                | -                | 0                                       | 0             |                          | other: Demilion EDD SOXHLET | " Low                | XOS NON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Code VIALS GLASS                           | - 4 3                       | 4 3                       | 1 4                     |                        | Blanks            |                                       |                             |                        |                                  |         |                                   |                        |                   |                                                                                          |                                 |                                 |                      |                                    | Ē                            | 100                      |                                                                                                                                                                                                                                                                                                                          |                                           |
| A STREET                       | 10-Day                            | -                | 3-Day                                   | 4-Day         | EXCEL (X                 | 4 500                       |                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 'Matrix Conc Code                          | 1                           | -                         | 0                       | -                      | Trio              |                                       |                             |                        |                                  |         |                                   |                        |                   | 1                                                                                        |                                 |                                 | C                    | # QISMA                            | Municipality                 | 21 J<br>Brownfield       |                                                                                                                                                                                                                                                                                                                          |                                           |
|                                | 7-Day PFAS 10-Day (std)           | vorted value     |                                         |               | POF X                    | Damalo                      | e Data Pkg Require   | 302/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOMP/GRAB                                  | Sah                         | Cab                       | Cab                     | Greek                  |                   |                                       |                             |                        |                                  |         |                                   |                        |                   |                                                                                          |                                 |                                 |                      | V DEG                              | lty<br>Government            | ] [                      |                                                                                                                                                                                                                                                                                                                          |                                           |
|                                |                                   | がたる              | 1-Day                                   | ~ 1           |                          | Other:                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beginning Ending                           | _                           | 16/21/01                  | 12/2/21                 | 12/2/01                | 16. (2.2) C 12.34 |                                       |                             |                        |                                  |         | Client Comments:                  |                        |                   | MA                                                                                       | 2                               | が一つ                             |                      | 留田(内)の形                            | Project Entity<br>Gove       | Federal                  |                                                                                                                                                                                                                                                                                                                          | 27/21                                     |
| Fax: 413-525-6405              | Access COC's and Support Requests | Carfax Davo      |                                         | 2             | Rojel H. Heyandray       |                             |                      | 1 Colfamoral. Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client Sample ID / Description             |                             |                           | n                       | HRF-DVP03-10-8-011013  |                   |                                       |                             |                        |                                  |         | 1,0.1                             | 7.                     | 15/31             | 3 C /                                                                                    |                                 | Date/Time: 10-14-7              |                      | Date/ Hille:                       | Date/Time:                   | Date/Time:               | MO#: 92566661                                                                                                                                                                                                                                                                                                            | Due Date: 10/27/21                        |
| Pace Analytical                | ( September 1990)                 |                  | 62                                      | T COLUM       | ject Location: (460 N. C | ect Manager: 6. Grose       | N-                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>}                                     | Work Order#                 | 0                         | 00 C                    |                        |                   |                                       |                             |                        |                                  |         | inquished by: (signature)         | ceived by: (signature) | ( ) ) / mil.      | elinquished by: (signature)                                                              | ed by: (signature)              | uished by: (Signature)          | Kanhel Dunpus        | received by: (signature)           | Relinquished by: (signature) | Received by: (signature) | Lab Comments: <b>WO#:92</b>                                                                                                                                                                                                                                                                                              | PM: AMB                                   |



(704)875-9092



October 28, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92567218

## Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92567218

### **Pace Analytical Services National**

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660
Alaska Certification 17-026
Arizona Certification #: AZ0612
Arkansas Certification #: 88-0469
California Certification #: 2932
Canada Certification #: 1461.01
Colorado Certification #: TN00003
Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: 364
Kansas Certification #: E-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958
Minnesota Certification #: 047-999-395
Mississippi Certification #: TN00003
Missouri Certification #: 340

Missouri Certification #: 340 Montana Certification #: CERT0086 Nebraska Certification #: NE-OS-15-05 Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233
Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789





# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92567218

| Lab ID      | Sample ID               | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------------|-----------|----------|----------------------|------------|
| 92567218001 | HRP-SB-214-0-2-211014   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567218002 | HRP-SB-214-5-7-211014   | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |
| 92567218003 | HRP-SB-214-14-16-211014 | EPA 8015D | JAS      | 2                    | PAN        |
|             |                         | SM 2540G  | KDW      | 1                    | PAN        |

PAN = Pace National - Mt. Juliet





**Total Solids** 

Date: 10/28/2021 06:31 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR
Pace Project No.: 92567218

| Sample: HRP-SB-214-0-2-211014            | Lab ID: 925                     |                | Collected: 10/14/2 |          |                   |                | latrix: Solid |      |
|------------------------------------------|---------------------------------|----------------|--------------------|----------|-------------------|----------------|---------------|------|
| Results reported on a "dry weight" l     | basis and are ad                | justed for per | rcent moisture, sa | imple s  | size and any dilu | tions.         |               |      |
| Parameters                               | Results                         | Units          | Report Limit       | DF       | Prepared          | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015D                          | Analytical Met<br>Pace National |                | 5D Preparation Me  | ethod: 3 | 3546              |                |               |      |
| Oil Range Organics (C28-C40)  Surrogates | ND                              | mg/kg          | 4.49               | 1        | 10/27/21 16:09    | 10/28/21 04:53 |               |      |
| o-Terphenyl (S)                          | 74.4                            | %              | 18.0-148           | 1        | 10/27/21 16:09    | 10/28/21 04:53 | 84-15-1       |      |
| Total Solids 2540 G-2011                 | Analytical Met<br>Pace National |                | G Preparation Me   | thod: S  | SM 2540 G         |                |               |      |

10/22/21 10:31 10/22/21 10:37

89.0





Date: 10/28/2021 06:31 PM

# **ANALYTICAL RESULTS**

| Sample: HRP-SB-214-5-7-211014 Results reported on a "dry weight" | Lab ID: 925<br>basis and are adj |       | Collected: 10/14/2 |         |                |                | latrix: Solid |      |
|------------------------------------------------------------------|----------------------------------|-------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                                                       | Results                          | Units | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015D                                                  | Analytical Meth                  |       | 5D Preparation Me  | thod: 3 | 3546           |                |               |      |
| Oil Range Organics (C28-C40)  Surrogates                         | ND                               | mg/kg | 4.68               | 1       | 10/27/21 16:09 | 10/28/21 05:06 |               |      |
| o-Terphenyl (S)                                                  | 71.0                             | %     | 18.0-148           | 1       | 10/27/21 16:09 | 10/28/21 05:06 | 84-15-1       |      |
| Total Solids 2540 G-2011                                         | Analytical Meth<br>Pace National |       | G Preparation Met  | hod: S  | M 2540 G       |                |               |      |
| Total Solids                                                     | 85.5                             | %     |                    | 1       | 10/22/21 10:31 | 10/22/21 10:37 |               |      |





### **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

92567218

Pace Project No.:

**Total Solids** 

Date: 10/28/2021 06:31 PM

Sample: HRP-SB-214-14-16-211014 Lab ID: 92567218003 Collected: 10/14/21 14:35 Received: 10/15/21 13:21 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual Analytical Method: EPA 8015D Preparation Method: 3546 SVOA (GC) 8015D Pace National - Mt. Juliet Oil Range Organics (C28-C40) ND mg/kg 4.82 10/27/21 16:09 10/28/21 05:19 Surrogates o-Terphenyl (S) 72.7 % 18.0-148 10/27/21 16:09 10/28/21 05:19 84-15-1 Analytical Method: SM 2540G Preparation Method: SM 2540 G **Total Solids 2540 G-2011** Pace National - Mt. Juliet

10/22/21 10:31 10/22/21 10:37

83.0





Project:

HRP PRGS SCR

Pace Project No.:

92567218

QC Batch:

QC Batch Method: 3546

1764424

Analysis Method:

EPA 8015D

Analysis Description:

SVOA (GC) 8015D

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567218001, 92567218002, 92567218003

METHOD BLANK: R3722375-1

Matrix: Solid

Associated Lab Samples:

Date: 10/28/2021 06:31 PM

92567218001, 92567218002, 92567218003

| Parameter                    | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|------------------------------|-------|-----------------|--------------------|----------------|------------|
| Oil Range Organics (C28-C40) | mg/kg | ND              | 4.00               | 10/28/21 02:17 |            |
| o-Terphenyl (S)              | %     | 78.8            | 18.0-148           | 10/28/21 02:17 |            |





Project:

HRP PRGS SCR

Pace Project No.:

92567218

QC Batch:

1761662

Analysis Method:

SM 2540G

QC Batch Method: SM 2540 G

Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567218001, 92567218002, 92567218003

METHOD BLANK: R3720406-1

Matrix: Solid

Associated Lab Samples:

92567218001, 92567218002, 92567218003

Blank

Result

Parameter

Units

Reporting

Limit

Analyzed

Qualifiers

**Total Solids** 

%

0.00100

10/22/21 10:37

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

R3720406-2

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

Units %

%

50.0

50.0

100

85.0-115

SAMPLE DUPLICATE: R3720406-3

Date: 10/28/2021 06:31 PM

L1419711-01 Result

Dup

Result

**RPD** Qualifiers

**Total Solids** 

Units

79.4

79.2

0.237



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **QUALIFIERS**

Project: HRP PRGS SCR
Pace Project No.: 92567218

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/28/2021 06:31 PM





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92567218

Date: 10/28/2021 06:31 PM

| Lab ID      | Sample ID               | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------------|-----------------|----------|-------------------|---------------------|
| 92567218001 | HRP-SB-214-0-2-211014   | 3546            | 1764424  | EPA 8015D         | 1764424             |
| 92567218002 | HRP-SB-214-5-7-211014   | 3546            | 1764424  | EPA 8015D         | 1764424             |
| 92567218003 | HRP-SB-214-14-16-211014 | 3546            | 1764424  | EPA 8015D         | 1764424             |
| 92567218001 | HRP-SB-214-0-2-211014   | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |
| 92567218002 | HRP-SB-214-5-7-211014   | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |
| 92567218003 | HRP-SB-214-14-16-211014 | SM 2540 G       | 1761662  | SM 2540G          | 1761662             |

| Acce Analytical Phone: 413-525-2332  Fax: 413-525-6405  Access COC's and Support Requests | http://www.patericiles.com 39 Space Street V RECORD East Langmondow, MA 01028 7-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Doc. # 381 Rev 5_07/13/2021  ANALYSIS REQUESTED  ANALYSIS REQUESTED | Page 2 of 3  Preservation Code Courier Use Only |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|
| Access COC's and Support Requests                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 M B M 1                                               | <sup>2</sup> Preservation Code                  |
| 1000000000000000000000000000000000000                                                     | PFAS 10-Day (std) Due Date of 6 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | Courier Use Only                                |
| 550 N. Fairfux Dr., Artington, VA 2220                                                    | A September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 September 19 Sep |                                                                     | Lulai Number Of:                                |
|                                                                                           | 1 Day   3-Day   O Field Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                                 |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                                 |

| on the Chain of Custody.  Ind is used to determine oratory's responsibility.  In missing information, bu | Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable. | responsible f<br>nt that must<br>n. Any missi<br>on each projonet | is not i<br>locume<br>perforn<br>ership o | Analytical<br>is a legal d<br>atory will p<br>our partne | mer: Pace<br>of Custody i<br>s the labor<br>cal values y | Disclai<br>Chain o<br>analyse<br>Analyti |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                    |                                  |                               |                | œ                                 | 8721<br><b>■</b>               | #:92567218<br>                                        | # Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------|----------------------------------|-------------------------------|----------------|-----------------------------------|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O = Other (please define)                                                                                | Chromatogram  AIHA-LAP,LLC                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                           | WRTA                                                     | 000                                                      | MWRA<br>School<br>MBTA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000      | Municipality<br>21 J<br>Brownfield | Muni                             | Government<br>Federal<br>City | 0.70           |                                   | Da                             | (signature)                                           | Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X = Sodium Hydroxide T = Sodium                                                                          | orbaci                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NELAC and                                                         | 2                                         | MA State DW Required                                     | MA Sta                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | PWSID #                            |                                  | MIN W                         | Other: VA      | Date/Time:                        | Da Da                          | Received by: (signature) Relinquished by: (signature) | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B = Sodium Bisulfate                                                                                     | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ango, an                                                          |                                           | ication Form Required                                    | RCP Certificati                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш        |                                    |                                  |                               |                | Date/Time: 1700                   |                                | Spinar                                                | Reinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S = Sulfuric Acid                                                                                        | Code column above:                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co.                                                               |                                           | ct RCP Required                                          | MCP Certification Form Required  CT RCP Required         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                    |                                  |                               |                | 10-15-21 1600                     |                                | Supplied Supplied                                     | Rand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| M = Methanol N = Nitric Acid                                                                             | Please use the following codes to indicate                                                                                                                                                                                                                                                                                                                                                                                                                     | Please use th                                                     |                                           | MA MCP Required                                          | *                                                        | NAME REGULATION                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                    | ements                           | Detection Limit Requirements  | MA.            | 10/15/3/                          |                                | what Moteur                                           | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| H-HCL                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                                           |                                                          |                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                    |                                  |                               |                | 16/157 F21                        | S Date                         | Shee Man                                              | Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| l = lced                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                           | 13                                                       |                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 7                                  | EB: Equipment Blank              | Equipm                        | EB: E          | 1410                              | 7                              | William.                                              | With the party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| define)                                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX                                                                | メメ                                        | ×                                                        |                                                          |                                          | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , H      | 2                                  | Grab                             |                               | 195H           | -211014                           | RP-MWDH-                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SOL = Solid O = Other (please                                                                            | X<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XX                                                                | X                                         | ×                                                        |                                                          |                                          | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H        | 1                                  | Grab ?                           | 0                             | 1410<br>121410 | 750                               | HRP-MWSH-5-4-2110H             | -00Z H                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S = Soil<br>SL = Sludge                                                                                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX                                                                | X                                         | ×                                                        |                                                          |                                          | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H        | S                                  | Grado .                          | )                             | 1758           |                                   | HAD-14-0-2-211014              | 8                                                     | 42567218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DW = Drinking Water A = Air                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | XX                                        | X                                                        |                                                          |                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | S                                  |                                  | 1                             | 0930           | HAP-100-8-13-20-21041             | 80-mwzo8                       | #                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GW = Ground Water<br>WW = Waste Water                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | ×                                         | X                                                        |                                                          |                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | S                                  |                                  | 1                             | 0620           | HAP-MW208-5-7-211014 "            | AP-MW208                       | +                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Matrix Codes:                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                                 | ××                                        | ×                                                        |                                                          |                                          | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | S                                  | Grab                             | 1                             | 0912           |                                   | HAP-MW208-6-1-211014           | 7                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from prepacked coolers                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | χV                                        | Κ.                                                       |                                                          | S                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3                                  | Grab                             | 1                             | 19/13/21       | 93                                | HRP-EB03-211013                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *Pace Analytical is not                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2}$                                                     | XX                                        | ×                                                        |                                                          |                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 5                                  | Grab                             | 1                             | 13554          |                                   | RP-MWaug                       | +                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Prepackaged Cooler? Y/N                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                 | XX                                        | ×                                                        |                                                          |                                          | စ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | <i>S</i>                           | Girab                            | 1                             | 1343           | HRP- mwa09-5-7-211013             | IRP-mwao                       | +                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Glassware in freezer? Y / N                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | × ×                                       | ~                                                        |                                                          |                                          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | SL                                 | Grab                             | 1                             | 19481          | 000                               | HRP-11W809-0-1-211013          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Y/N                                                                                                      | TP:                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VOI<br>TPH                                                        | P                                         | TA                                                       | BACTERIA EN                                              | PLASTIC                                  | GLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de VIALS | Code Conc Code                     | COMP/GRAB                        | Ending C                      |                |                                   | Client Sample ID / Description | Pace.<br>Work Order#                                  | <b>W</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                                                                                                        | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cs.                                                               | ania                                      | LM                                                       |                                                          | Д                                        | SOXHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NON      | (Oran)                             | Soste teg (Ox minellicon SOXHLET | Email To: 5                   |                | ly                                |                                | AMME Ke                                               | Sampled By: Awar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ENCORE                                                                                                   | RO                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                | 40                                        | eta                                                      |                                                          |                                          | SOXHLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sox      |                                    | ta Pkg Required:                 | CLP Like Data Pkg Required:   |                |                                   | 2002                           | /Number:                                              | Pace Quote Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PLASTIC                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                           | ls                                                       | Y                                                        | PCB ONLY                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | П        | EXCEL                              | × EX                             |                               |                |                                   | 1.1                            | 2                                                     | Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHASS<br>VIALS                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                           |                                                          |                                                          | Lab to Filter                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        | ay                                 | 4-Day                            | 2 Day                         | 3              | St Allesandia VA                  | Jan C                          | 1400                                                  | Project Name:<br>Project Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Iuliai Number Of:                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                           | 100                                                      | d Tries                                                  | Field Filtered                           | Total State of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the | 0        | ay                                 | 3-Day                            | 1 Day                         |                | Fuirtux Dr., Artington, VA 22203  | HAY Or.                        | 4350 N. Fair                                          | Address: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Courier Use Only                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190                                                               | -                                         | 1                                                        | 7 8                                                      | Lab to Filter                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Our Das Light                      |                                  | PFAS 10-Day (std)             | _              |                                   |                                |                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 120 120 120 120 120 1                                                                                 | · Carlotte                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130                                                               |                                           | =                                                        |                                                          | A. Cilian                                | La Catalana (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        | 3                                  | Other Parket Street              | 7.Day                         |                | Access COC's and Support Requests | Access COC's                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

e 11 of 11



(704)875-9092



November 02, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92567560

## Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 19, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angula M. Baiani

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

**Enclosures** 

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll







### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92567560

### **Pace Analytical Services National**

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660
Alaska Certification 17-026
Arizona Certification #: AZ0612
Arkansas Certification #: 88-0469
California Certification #: 2932
Canada Certification #: 1461.01
Colorado Certification #: TN00003
Connecticut Certification #: PH-0197

EPA# TN00003

DOD Certification: #1461.01

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: 364
Kansas Certification #: E-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086

Nebraska Certification #: NE-OS-15-05

Nevada Certification #: TN-03-2002-34

New Hampshire Certification #: 2975

New Jersey Certification #: TN002

New Mexico DW Certification

New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

Wisconsin Certification #: 998093910





# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92567560

| Lab ID      | Sample ID              | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------------|-----------|----------|----------------------|------------|
| 92567560001 | HRP-SB215-0-2-211018   | EPA 8015C | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560002 | HRP-SB215-5-7-211018   | EPA 8015C | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560003 | HRP-SB215-16-18-211018 | EPA 8015C | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |
| 92567560004 | HRP-SB216-1-3-211018   | EPA 8015C | JN       | 2                    | PAN        |
|             |                        | SM 2540G  | KDW      | 1                    | PAN        |

PAN = Pace National - Mt. Juliet



# **ANALYTICAL RESULTS**

| Sample: HRP-SB215-0-2-211018 Results reported on a "dry weight" | Lab ID: 925                      |       | Collected: 10/18/2 |         |                |                | Matrix: Solid |      |
|-----------------------------------------------------------------|----------------------------------|-------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                                                      | Results                          | Units | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015C                                                 | Analytical Meth                  |       | 5C Preparation Me  | thod: 3 | 3546           |                |               |      |
| Diesel Fuel Range Surrogates                                    | 74.6                             | mg/kg | 4.28               | 1       | 10/29/21 22:39 | 10/30/21 23:41 | 68334-30-5    |      |
| o-Terphenyl (S)                                                 | 70.6                             | %     | 18.0-148           | 1       | 10/29/21 22:39 | 10/30/21 23:41 | 84-15-1       |      |
| Total Solids 2540 G-2011                                        | Analytical Metl<br>Pace National |       | G Preparation Met  | hod: S  | M 2540 G       |                |               |      |
| Total Solids                                                    | 93.6                             | %     |                    | 1       | 10/25/21 14:26 | 10/25/21 14:37 |               |      |





# **ANALYTICAL RESULTS**

| Sample: HRP-SB215-5-7-211018  Results reported on a "dry weight" | Lab ID: 925                      |       | Collected: 10/18/2 |         |                |                | Matrix: Solid |      |
|------------------------------------------------------------------|----------------------------------|-------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                                                       | Results                          | Units | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015C                                                  | Analytical Meth                  |       | 5C Preparation Me  | thod: 3 | 3546           |                |               |      |
| Diesel Fuel Range<br><b>Surrogates</b>                           | ND                               | mg/kg | 4.60               | 1       | 10/29/21 22:39 | 10/30/21 19:51 | 68334-30-5    |      |
| o-Terphenyl (S)                                                  | 57.3                             | %     | 18.0-148           | 1       | 10/29/21 22:39 | 10/30/21 19:51 | 84-15-1       |      |
| Total Solids 2540 G-2011                                         | Analytical Metl<br>Pace National |       | G Preparation Met  | hod: S  | SM 2540 G      |                |               |      |
| Total Solids                                                     | 87.0                             | %     |                    | 1       | 10/25/21 14:26 | 10/25/21 14:37 |               |      |





# **ANALYTICAL RESULTS**

| Sample: HRP-SB215-16-18-211018 Results reported on a "dry weight" b | Lab ID: 925<br>asis and are ad  |       | Collected: 10/18/2 |          |                |                | latrix: Solid |      |
|---------------------------------------------------------------------|---------------------------------|-------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                                                          | Results                         | Units | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| SVOA (GC) 8015C                                                     | Analytical Met<br>Pace National |       | 5C Preparation Me  | ethod: 3 | 3546           |                |               |      |
| Diesel Fuel Range<br><b>Surrogates</b>                              | ND                              | mg/kg | 5.08               | 1        | 10/29/21 22:39 | 10/30/21 21:26 | 68334-30-5    |      |
| o-Terphenyl (S)                                                     | 63.3                            | %     | 18.0-148           | 1        | 10/29/21 22:39 | 10/30/21 21:26 | 84-15-1       |      |
| Total Solids 2540 G-2011                                            | Analytical Met<br>Pace National |       | G Preparation Met  | thod: S  | M 2540 G       |                |               |      |
| Total Solids                                                        | 78.7                            | %     |                    | 1        | 10/25/21 14:26 | 10/25/21 14:37 |               |      |





# **ANALYTICAL RESULTS**

| Sample: HRP-SB216-1-3-211018       | Lab ID: 925                      | 67560004      | Collected: 10/18/2 | 1 14:5  | 5 Received: 10    | /19/21 13:26 N | /latrix: Solid |      |
|------------------------------------|----------------------------------|---------------|--------------------|---------|-------------------|----------------|----------------|------|
| Results reported on a "dry weight" | basis and are adj                | usted for per | rcent moisture, sa | mple s  | size and any dilu | tions.         |                |      |
| Parameters                         | Results                          | Units         | Report Limit       | DF      | Prepared          | Analyzed       | CAS No.        | Qual |
| SVOA (GC) 8015C                    | Analytical Meth<br>Pace National |               | 5C Preparation Me  | thod: ( | 3546              |                |                |      |
| Diesel Fuel Range Surrogates       | 7.73                             | mg/kg         | 4.92               | 1       | 10/29/21 22:39    | 10/30/21 22:47 | 68334-30-5     |      |
| o-Terphenyl (S)                    | 67.5                             | %             | 18.0-148           | 1       | 10/29/21 22:39    | 10/30/21 22:47 | 84-15-1        |      |
| Total Solids 2540 G-2011           | Analytical Mether Pace National  |               | G Preparation Met  | hod: S  | M 2540 G          |                |                |      |
| Total Solids                       | 81.3                             | %             |                    | 1       | 10/25/21 14:26    | 10/25/21 14:37 |                |      |





Project:

HRP PRGS SCR

Pace Project No.:

92567560

2200.000

QC Batch:
QC Batch Method:

1765155 3546 Analysis Method:

EPA 8015C

Analysis Description:

SVOA (GC) 8015C

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

METHOD BLANK: R3723717-1

7-1 Matrix: Solid

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

Blank

Reporting

Parameter Units

Result

Limit

Analyzed

Qualifiers

Diesel Fuel Range o-Terphenyl (S) mg/kg % ND 65.8 4.00 10/30/21 19:24 18.0-148 10/30/21 19:24

LABORATORY CONTROL SAMPLE:

Parameter

R3723717-2

Spike Conc. LCS % Rec

% Rec Limits

Qualifiers

Diesel Fuel Range o-Terphenyl (S)

Date: 11/02/2021 05:47 PM

mg/kg %

Units

50.0

Result

LCS

40.0

80.0 68.2 50.0-150 18.0-148





Project:

HRP PRGS SCR

Pace Project No.:

92567560

QC Batch:

1762750

Analysis Method:

SM 2540G

QC Batch Method: SM 2540 G Analysis Description:

Total Solids 2540 G-2011

Laboratory:

Pace National - Mt. Juliet

Associated Lab Samples:

92567560001, 92567560002, 92567560003, 92567560004

METHOD BLANK: R3721347-1 Associated Lab Samples:

Matrix: Solid

Blank

Result

92567560001, 92567560002, 92567560003, 92567560004

Reporting

Parameter Units

Limit

Analyzed

Qualifiers

**Total Solids** 

%

0.00100

10/25/21 14:37

LABORATORY CONTROL SAMPLE:

Parameter

R3721347-2

Spike Conc.

LCS

LCS % Rec % Rec Limits

Qualifiers

**Total Solids** 

Units %

50.0

Result

100

85.0-115

SAMPLE DUPLICATE: R3721347-3

Date: 11/02/2021 05:47 PM

92567560001

Dup Result

50.0

**RPD** 

Qualifiers

**Total Solids** 

Parameter

Units %

Result

93.6

92.8

0.829



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### **QUALIFIERS**

Project: HRP PRGS SCR Pace Project No.: 92567560

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 11/02/2021 05:47 PM





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92567560

Date: 11/02/2021 05:47 PM

| Lab ID      | Sample ID              | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------------|-----------------|----------|-------------------|---------------------|
| 92567560001 | HRP-SB215-0-2-211018   | 3546            | 1765155  | EPA 8015C         | <br>1765155         |
| 92567560002 | HRP-SB215-5-7-211018   | 3546            | 1765155  | EPA 8015C         | 1765155             |
| 92567560003 | HRP-SB215-16-18-211018 | 3546            | 1765155  | EPA 8015C         | 1765155             |
| 92567560004 | HRP-SB216-1-3-211018   | 3546            | 1765155  | EPA 8015C         | 1765155             |
| 92567560001 | HRP-SB215-0-2-211018   | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560002 | HRP-SB215-5-7-211018   | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560003 | HRP-SB215-16-18-211018 | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |
| 92567560004 | HRP-SB216-1-3-211018   | SM 2540 G       | 1762750  | SM 2540G          | 1762750             |

| W0#:92                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Received by: (signature)           | Relinquished by: (signature)   | Relinquished by: (Signature)                                                   | Respector: (signature)                                                                   | Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relinquished by: (signature)      | M 1000-1                      |                        | -002 H                      | 9256-1560-001 HR     | F4                    | HR                                                       | HR                      | HR                      | HR                          | Pace<br>Work Order#            | 18          | Invoice Recipient:  | Project Manager: Grea Go Se | Project Number:        | Project Location: 1400 N. Royal St. Alexandria | Project Sings  | 7                         | Company Name: Mo  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------|-----------------------------|----------------------|-----------------------|----------------------------------------------------------|-------------------------|-------------------------|-----------------------------|--------------------------------|-------------|---------------------|-----------------------------|------------------------|------------------------------------------------|----------------|---------------------------|-------------------|
| ₩0#:92567560                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date/Time:                         | Date/Time:                     |                                                                                | Date/Time:                                                                               | 18. 19.21/1326<br>Date/Time:<br>10193/11334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #RP-TB65-211018                   | HRP-56216-1-3-21018           | HRP-58215-16-18-211018 | HRP-58215-5-7-211018        | HRP-SB215-0-2-211018 | HAP-SB204-13-15-21108 | HRP-SB204-68-211018                                      | HRP-58204-08-1.8-2      | HRP-EBOG-211018         | HRP-EB05-211018             | Client Sample ID / Description | ertra       | bstarte o remission | 9                           |                        | d St. Alexandria U                             | 100000 CC CCD  | Dr Ste 300, Articolon, UA | 0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Governr<br>Federal<br>City         | N                              | G                                                                              | MA Detection Lin                                                                         | EB: Equipment Bluck TB: Trip Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-18-21 1610<br>Client Comments: | 10-18-11 HSS                  | 10-18-21 1250          | 10.0                        | 10.0                 |                       | 8-21                                                     | =                       |                         | 10-18-21 840                | Beginning Ending Date/Time     |             |                     | Other:                      | Format:                |                                                | 1-Day          |                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Government                         | DEA                            |                                                                                | MA Requirements                                                                          | Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O NIA                             | 6                             |                        |                             | 1220 G               | 8 6                   | 0                                                        | 11103 6                 |                         | o 64                        | ing COMP/GRAB                  |             | Data                | 1                           |                        |                                                |                | Rush Appro                | PFAS 10-Day (std) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Municipality<br>21 J<br>Brownfield | PWSID #                        |                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-718                             | S                             | S                      | S                           | N                    | 5                     | 5                                                        | 5 1                     | 0-68 (                  | 0-68                        | *Matrix<br>Code                | 200         | Pkg Required:       | EDD                         | EXCEL X                | 4-Day                                          | 3-Day          |                           | Due Date:         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                |                                                                                | Special Requirements                                                                     | eli-entreprintation de la contraction de la cont | ( 2                               | 7                             | 4                      | 4 :                         | . h                  | 2                     | 1 3                                                      | 6                       | 0 4                     | 6                           | Conc Code VIALS G              | NON SOXHLET |                     | SOXHLET                     |                        | Dalley                                         | 0 0            | ₩.                        | 0                 |
| Disclaim<br>Chain of<br>analyses t<br>Analytica                                                                                                                                                                                                                                                                                                                                                                                                              | MWRA<br>School<br>MBTA             |                                | RCP                                                                            | ale legis in many states                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 3                             | 3                      | W                           | υ.                   | ++                    | ۳                                                        | -                       | 1 2                     | 4 2                         | GLASS PLASTIC BA               | XHLET       |                     |                             | PCB ONLY               | Lab to Fitter                                  | Field Filtered | elevite elevite           | Lab to Filter     |
| er: Pace Analyti<br>Custody is a leg<br>the laboratory v                                                                                                                                                                                                                                                                                                                                                                                                     | 000                                | MA State DW Required           | CT RCP Required RCP Certification Form Required                                | MA MCP Required                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                               |                        |                             |                      |                       |                                                          |                         |                         |                             | BACTERIA ENCORE                | X           | [                   |                             | TO THE PERSON NAMED IN |                                                |                | igits                     | F                 |
| cal is not responsible<br>al document that mu<br>vill perform. Any mis<br>rtnership on each pro<br>not b                                                                                                                                                                                                                                                                                                                                                     | WRTA                               | -                              |                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | XXXXX                         |                        | x                           | - 1                  | X                     | ×                                                        |                         | У<br>×<br>×             | ×××                         | TA<br>Cy                       | L<br>ani    | de                  | -                           | ls                     |                                                |                |                           | A17.              |
| nsible for any omitted infor<br>at must be complete and ac<br>ny missing information is no<br>ch project and will try to as<br>not be held accountable.                                                                                                                                                                                                                                                                                                      | Other  Chromatogram  AIHA-LAP,LLC  | NEIACand AMA-LAN, LICACOLEDING | Code column above:<br>H - High; M - Medium; L - Low; C - Clean; U -<br>Unknown | Please use the following codes to indicate possible sample concentration within the Conc | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                 | ×                             | ×<br>×                 | ×                           | ×                    | ×                     | ×                                                        |                         |                         |                             | TP<br>VO<br>PC<br>PH           | H -         | OPO                 |                             |                        |                                                |                |                           | 1 1 1             |
| Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine wha analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pac Analytical values your partnership on each project and will try to assist with missing information, but will not be held accountable. |                                    | X = Sodium H                   | S = Sulfuric Acid  . B = Sodium Bisulfate                                      | dicate N = Nitric Acid                                                                   | H = HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | define)                           | SOL = Solid O = Other (please | S = Soil               | DW = Drinking Water A = Air | GW = Ground Water    | 1 Matrix Codes:       | responsible for missing sample<br>from prepacked coolers | *Pace Analytical is not | Prepackaged Cooler? Y/N | Glassware in freezer? Y / N | Glassware in the Indge?        | )           | ENCORE              | BACTERIA                    | PLASTIC                | VIALS                                          |                | Total Number Of:          | Courier Use Only  |

Page 12 of 12

Page 1 of 2

Phone: 413-525-2332 Fax: 413-525-6405

http://www.pacelabs.com

CHAIN OF CUSTODY RECU

39 Spruce Street East Longmeadow, MA 01028

Doc # 381 Rev 5\_07/13/2021



(704)875-9092



November 03, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92568327

### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 21, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll
Anne Kelly, Ramboll US Consulting, Inc.
Sarah Ostertag, Ramboll





Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92568327

### **Pace Analytical Services Charlotte**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92568327

| Lab ID      | Sample ID            | Method             | Analysts       | Analytes<br>Reported | Laboratory |
|-------------|----------------------|--------------------|----------------|----------------------|------------|
| 92568327001 | HRP-SB225-0-1-211021 | EPA 8015C Modified | —— ————<br>AP2 | 2                    | PASI-C     |
|             |                      | SW-846             | KDF            | 1                    | PASI-C     |
| 92568327002 | HRP-SB224-0-1-211021 | EPA 8015C Modified | AP2            | 2                    | PASI-C     |
|             |                      | SW-846             | KDF            | 1                    | PASI-C     |
| 92568327003 | HRP-SB227-0-1-211021 | EPA 8015C Modified | AP2            | 2                    | PASI-C     |
|             |                      | SW-846             | KDF            | 1                    | PASI-C     |

PASI-C = Pace Analytical Services - Charlotte



Project:

Date: 11/03/2021 02:48 PM

HRP PRGS SCR

Pace Project No.:

92568327

| Sample: HRP-SB225-0-1-211021             | Lab ID: 925                      | 68327001       | Collected: 10/21/2            | 1 07:4   | 5 Received: 10   | )/21/21 13:15 M | fatrix: Solid |      |
|------------------------------------------|----------------------------------|----------------|-------------------------------|----------|------------------|-----------------|---------------|------|
| Results reported on a "dry weight"       | basis and are ad                 | justed for per | cent moisture, sa             | mple s   | ize and any dilu | tions.          |               |      |
| Parameters                               | Results                          | Units          | Report Limit                  | DF       | Prepared         | Analyzed        | CAS No.       | Qual |
| 8015 GCS THC-ORO                         | Analytical Met                   |                | 5C Modified Prepa<br>harlotte | ration I | Method: EPA 3546 | 6               |               |      |
| Oil Range Organics (C28-C40)  Surrogates | 105                              | mg/kg          | 20.5                          | 1        | 11/01/21 11:32   | 11/02/21 10:46  |               |      |
| n-Pentacosane (S)                        | 65                               | %              | 32-130                        | 1        | 11/01/21 11:32   | 11/02/21 10:46  | 629-99-2      |      |
| Percent Moisture                         | Analytical Met<br>Pace Analytica |                | harlotte                      |          |                  |                 |               |      |
| Percent Moisture                         | 26.3                             | %              | 0.10                          | 1        |                  | 11/02/21 16:54  |               | N2   |





Date: 11/03/2021 02:48 PM

# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR Pace Project No.: 92568327

Sample: HRP-SB224-0-1-211021 Lab ID: 92568327002 Collected: 10/21/21 08:25 Received: 10/21/21 13:15 Matrix: Solid

| Results reported on a "dry weight          | " basis and are ad | iusted for per  | cent moisture, sa | mple s | size and any dilu | tions.         |          |      |
|--------------------------------------------|--------------------|-----------------|-------------------|--------|-------------------|----------------|----------|------|
| Parameters                                 | Results            | Units           | Report Limit      | DF     | Prepared          | Analyzed       | CAS No.  | Qual |
| 8015 GCS THC-ORO                           | Analytical Met     | nod: EPA 8015   | C Modified Prepa  | ration | Method: EPA 3546  | 5              |          |      |
|                                            | Pace Analytica     | al Services - C | harlotte          |        |                   |                |          |      |
| Oil Range Organics (C28-C40)<br>Surrogates | 111                | mg/kg           | 29.0              | 1      | 11/02/21 14:24    | 11/02/21 16:41 |          |      |
| n-Pentacosane (S)                          | 66                 | %               | 32-130            | 1      | 11/02/21 14:24    | 11/02/21 16:41 | 629-99-2 |      |
| Percent Moisture                           | Analytical Met     | nod: SW-846     |                   |        |                   |                |          |      |
|                                            | Pace Analytica     | al Services - C | harlotte          |        |                   |                |          |      |
| Percent Moisture                           | 25.0               | %               | 0.10              | 1      |                   | 11/02/21 16:55 |          | N2   |



Project:

HRP PRGS SCR

Pace Project No.:

Date: 11/03/2021 02:48 PM

92568327

| Sample: HRP-SB227-0-1-211021 Results reported on a "dry weight" | Lab ID: 925                      |       | Collected: 10/21/2            |        |                  | .,,            | Matrix: Solid |      |
|-----------------------------------------------------------------|----------------------------------|-------|-------------------------------|--------|------------------|----------------|---------------|------|
| Parameters                                                      | Results                          | Units | Report Limit                  | DF     | Prepared         | Analyzed       | CAS No.       | Qual |
| 8015 GCS THC-ORO                                                | Analytical Met                   |       | 5C Modified Prepa<br>harlotte | ration | Method: EPA 3546 | 6              |               |      |
| Oil Range Organics (C28-C40)  Surrogates                        | 21.7                             | mg/kg | 17.9                          | 1      | 11/01/21 11:32   | 11/02/21 11:36 |               |      |
| n-Pentacosane (S)                                               | 64                               | %     | 32-130                        | 1      | 11/01/21 11:32   | 11/02/21 11:36 | 629-99-2      |      |
| Percent Moisture                                                | Analytical Met<br>Pace Analytica |       | harlotte                      |        |                  |                |               |      |
| Percent Moisture                                                | 15.3                             | %     | 0.10                          | 1      |                  | 11/02/21 16:55 |               | N2   |





Project:

HRP PRGS SCR

Pace Project No.:

92568327

QC Batch: QC Batch Method:

656534

EPA 3546

Analysis Method:

EPA 8015C Modified

Analysis Description:

Matrix: Solid

8015 Solid GCSV ORO

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92568327001, 92568327003

METHOD BLANK: 3441651 Associated Lab Samples:

92568327001, 92568327003

Blank Result

Reporting Limit

Analyzed

Qualifiers

Oil Range Organics (C28-C40)

mg/kg %

Units

ND 51

14.9 11/02/21 10:12 32-130 11/02/21 10:12

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

3441652

Spike Conc.

LCS Result

LCS % Rec % Rec Limits 50-130

32-130

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

n-Pentacosane (S)

mg/kg %

Units

84.2

53.2

63 60

SAMPLE DUPLICATE: 3441654

Date: 11/03/2021 02:48 PM

Units

92568327003 Result

Dup Result

**RPD** 

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

mg/kg %

21.7 64 16.3J 40

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92568327

QC Batch:

656925

QC Batch Method:

EPA 3546

Analysis Method:

EPA 8015C Modified

Analysis Description:

8015 Solid GCSV ORO

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92568327002

METHOD BLANK: 3443518

Matrix: Solid

Associated Lab Samples: 92568327002

Blank Result Reporting Limit

LCSD

Analyzed

Qualifiers

Oil Range Organics (C28-C40) n-Pentacosane (S)

Parameter

Units mg/kg %

ND 52

11/02/21 16:24 15.0 32-130 11/02/21 16:24

LABORATORY CONTROL SAMPLE & LCSD:

3443519

3443520 LCS

LCS LCSD % Rec % Rec

% Rec Limits

Max **RPD RPD** 

Qualifiers

Oil Range Organics (C28-C40)

Date: 11/03/2021 02:48 PM

Parameter

Units

Conc. 83.3

Spike

Result Result 61.6

64.2 74

77 50-130 32-130

30

68 68

mg/kg n-Pentacosane (S) %

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92568327

QC Batch:

657008

Analysis Method:

SW-846

QC Batch Method: SW-846

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Result

Pace Analytical Services - Charlotte

Associated Lab Samples:

92568327001, 92568327002, 92568327003

SAMPLE DUPLICATE: 3444109

Parameter

92568327001

Dup Result

RPD

Qualifiers

Percent Moisture

Units %

%

26.3

26.6

1 N2

SAMPLE DUPLICATE: 3444111

92570104001 Result

Dup Result

**RPD** 

Qualifiers

Parameter Percent Moisture

Date: 11/03/2021 02:48 PM

Units

27.5

25.0

9 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### **QUALIFIERS**

Project: HRP PRGS SCR

Pace Project No.: 92568327

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 11/03/2021 02:48 PM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92568327

Date: 11/03/2021 02:48 PM

| Lab ID      | Sample ID            | QC Batch Method | QC Batch | Analytical Method  | Analytical<br>Batch |
|-------------|----------------------|-----------------|----------|--------------------|---------------------|
| 92568327001 | HRP-SB225-0-1-211021 | EPA 3546        | 656534   | EPA 8015C Modified | 656780              |
| 92568327002 | HRP-SB224-0-1-211021 | EPA 3546        | 656925   | EPA 8015C Modified | 657096              |
| 92568327003 | HRP-SB227-0-1-211021 | EPA 3546        | 656534   | EPA 8015C Modified | 656780              |
| 92568327001 | HRP-SB225-0-1-211021 | SW-846          | 657008   |                    |                     |
| 92568327002 | HRP-SB224-0-1-211021 | SW-846          | 657008   |                    |                     |
| 92568327003 | HRP-SB227-0-1-211021 | SW-846          | 657008   |                    |                     |

| n the Chai                                                 | Discialmer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine who                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | omitte             | or any<br>be con | ible for | sponsi<br>that i | not res | al is n         | alytica | Pace And             | almer:                            | Disc                   |         |         |           |                                    |                                    |                                                   |                                  |                                                             | 37                                  | S                                                            | ング             |                | W0#:92568327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----------|------------------|---------|-----------------|---------|----------------------|-----------------------------------|------------------------|---------|---------|-----------|------------------------------------|------------------------------------|---------------------------------------------------|----------------------------------|-------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Thiosulfate  O = Other (please define)                     | Chromatogram<br>AIHA-LAP,LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Chr              | Other            |          |                  |         | WRTA            | <       |                      |                                   | MWRA<br>School<br>MBTA |         |         |           | Municipality<br>21 J<br>Brownfield |                                    | ä<br>000                                          | Government<br>Federal<br>City    | Project Entity Ge Fe                                        |                                     | Date/Time:                                                   |                |                | Received by: (signature) Lab Commer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received by                        |
| T = Sodium                                                 | NEW PROPERTY OF THE PARTY OF TH | E S                | 1 VHIV           | bre .    | No.              |         | ured            | 1 20    | wa state DM Required |                                   |                        |         |         |           | # diswa                            | 9                                  | B                                                 | VADEQ                            | Other:                                                      |                                     |                                                              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| B = Sodium Bisulfate                                       | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unknown            | Unk              |          |                  | 1       | - Ame           |         | ancadon com sequico  | 200                               |                        |         |         |           |                                    |                                    |                                                   |                                  |                                                             |                                     | Date/Time:                                                   |                |                | Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ved by                             |
| S = Sulfuric Acid                                          | Code column above: H - High; M - Medium; L - Low; C - Clean; U -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Medium; L - Low; C | de colu          | M - Me   | High;            |         | CT RCP Required | CP Rec  | CTR                  | 808.00                            |                        |         |         |           |                                    |                                    |                                                   |                                  | and sell sells                                              |                                     | Date/Time:                                                   |                | 2              | Relinquished by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uished                             |
| N = Nitric Acid                                            | Please use the following codes to indicate possible sample concentration within the Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ving coc           | follow           | use the  | lease u          |         | MA MCP Required | CP Rec  | で   議論               | Special Require means with Certif | TEL STEE               | ORGIN R |         |           |                                    | e015-1-1-1                         | MA [ MA                                           | Significial                      | MA                                                          | 13.21                               | Date/Time:                                                   | X              | 4              | Received by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed by: To                          |
| <sup>2</sup> Preservation Codes:<br>I = lced<br>H = HCL    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                  |          |                  | Y = 1   |                 |         | S.                   |                                   |                        |         |         |           |                                    | ık                                 | t Blan                                            | ייף אנמו                         | Client Comments:<br>EB = Equipment Blank<br>TB = Trip Blank |                                     | Date/Time:<br>10-21-21 /13/5<br>Date/Time:<br>10/21/21 15:15 | 1/4            |                | 3 E 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ad by:                             |
| SL = Sludge<br>SOL = Solid<br>O = Other (please<br>define) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |          | Till I           |         |                 |         |                      |                                   |                        |         |         |           |                                    |                                    |                                                   |                                  |                                                             |                                     |                                                              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| DW = Waste Water DW = Drinking Water A = Air S = Soil      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |          |                  |         | 4               | +       | H                    |                                   |                        |         |         |           |                                    |                                    |                                                   |                                  |                                                             |                                     |                                                              |                |                | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.1                               |
| ' Matrix Codes:<br>GW = Ground Water                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |          |                  |         |                 | ×       |                      |                                   |                        |         | 2       | 1         | D-18                               | N/A C                              | 2                                                 | 0925                             | 16.21.21 0925                                               |                                     | HRP-T806-211021                                              | P-780          | 五              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                  |
| from prepacked coolers                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                  | ×                | X        | ×                |         | =               |         |                      |                                   | 2                      | 0       |         | 0         | 0-E6                               |                                    |                                                   | 0925                             |                                                             |                                     | HRP-EB07-211621                                              | P-EBO          | HR             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| *Pace Analytical is not                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                  |                  |          | X                |         |                 | ×       |                      |                                   |                        | w       | 4       | 3         | S                                  | G                                  |                                                   | 0850                             |                                                             | <u> </u>                            | 版P-SB227-0-1-211021                                          | P-5B22         | 秀              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                  |
| Prepackaged Cooler? Y/                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                  | ×                | ×        | ×                | ×       | 7               | ×       |                      |                                   |                        | 3       | 4       | М         | S                                  |                                    | 6                                                 | 0825                             |                                                             |                                     | MP-SB224-0-1-211021                                          | -5622          | 乏              | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| Glassware in freezer? Y /                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                  | 7                | ×        | ×                | ×       | ×               | ×       |                      |                                   | -                      | 3       | h       | 2         | S                                  |                                    | G                                                 | Sheo                             | 10-21-21                                                    |                                     | HRP-58225-0-1-211021                                         | SB225          | 001 140        | 12568327 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68                                 |
| Glassware in the fridge?                                   | Cyan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH                 | SVOC             | PLBs     | TPH-             | TPH-    | TPH-            | Vocs    | ENCORE               | BACTERIA                          | PLASTIC                | GLASS   | VIALS   | Conc Code | 'Matrix C                          | COMP/GRAB                          | JACOB STATE                                       | Fax To #:<br>Ending<br>Date/Time | Beginning<br>Date/Time                                      | (20)                                | Client Sample ID / Description                               | Client Samp    | Sarah Ostortas | Pace onk Orders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampled By:                        |
| ENCORE                                                     | ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Meta               |                  |          |                  |         | GRO             |         |                      |                                   | 1                      |         | SOXHLEI | 201.100   | D                                  | Sostertagarambalish on soxy in the | CLP Like Data Pkg Required:<br>Email To: SoSteria | CLP Like D<br>Email To:          |                                                             | Com                                 | sostertage armboll com                                       | 40             | terto          | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recip                              |
| PLASTIC                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIS.               | 4.               |          |                  |         |                 |         |                      | ALL Y                             | PCB ONLY               |         |         |           | BCE X                              | POF A EXCEL                        | PDF                                               | Format:<br>Other:                |                                                             |                                     |                                                              |                | more           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number:<br>Project Manager |
| GLASS                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |                  |          |                  |         |                 |         |                      |                                   |                        |         | i i     | ala Delli | Tody                               | <b>建</b>                           |                                                   |                                  |                                                             | A WA                                | 17                                                           | \$             | HOON ROYAL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Location:                  |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |          |                  |         |                 |         |                      | ered                              | Field Filtered         |         | 0 0     |           | 3-Day<br>4-Day                     |                                    | 00                                                | 1-Day<br>2-Day                   | 2100                                                        |                                     | SCR                                                          | HAPPAGS        | 383<br>H       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phone: 76                          |
| Courier Use Only                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                  |          |                  |         |                 |         |                      | ilter                             | Lab to Filter          | 9       | 0       |           | Due Date!                          |                                    | ay (std)   □<br>Rush-Appro                        | PFAS 10-Day (std)                | -                                                           | N Fairfex Dr. Stc 300, Arlington VA | tc 300,                                                      | Rambill Dr. S. | airfe.x        | Address: 4350 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Address: 4                         |
| <ul> <li>Preservation Code</li> </ul>                      | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                  | +                |          |                  |         |                 |         |                      |                                   |                        |         |         | j         |                                    |                                    |                                                   |                                  |                                                             |                                     |                                                              |                |                | STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | 3                                  |

http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021



(704)875-9092



November 12, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92569427

### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on October 28, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace National - Mt. Juliet

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angula M. Baioni Angela Baioni

angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Taylor Carroll, Ramboll

Anne Kelly, Ramboll US Consulting, Inc.

Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92569427

#### **Pace Analytical Services National**

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660
Alaska Certification 17-026
Arizona Certification #: AZ0612
Arkansas Certification #: 88-0469
California Certification #: 2932
Canada Certification #: 1461.01
Colorado Certification #: TN00003
Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487
Georgia DW Certification #: 923
Georgia Certification: NELAP
Idaho Certification #: TN00003
Illinois Certification #: 200008
Indiana Certification #: C-TN-01
Iowa Certification #: 364
Kansas Certification #: E-10277
Kentucky UST Certification #: 16
Kentucky Certification #: 90010
Louisiana Certification #: Al30792
Louisiana DW Certification #: LA180010

Maine Certification #: TN0002 Maryland Certification #: 324

Massachusetts Certification #: M-TN003

Michigan Certification #: 9958 Minnesota Certification #: 047-999-395 Mississippi Certification #: TN00003 Missouri Certification #: 340 Montana Certification #: CERT0086

Nebraska Certification #: NE-OS-15-05

Nevada Certification #: TN-03-2002-34 New Hampshire Certification #: 2975 New Jersey Certification #: TN002 New Mexico DW Certification New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704 North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140 Ohio VAP Certification #: CL0069 Oklahoma Certification #: 9915 Oregon Certification #: TN200002 Pennsylvania Certification #: 68-02979 Rhode Island Certification #: LAO00356 South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006
Texas Certification #: T 104704245-17-14
Texas Mold Certification #: LAB0152
USDA Soil Permit #: P330-15-00234
Utah Certification #: TN00003
Virginia Certification #: VT2006
Vermont Dept. of Health: ID# VT-2006
Virginia Certification #: 460132
Washington Certification #: C847
West Virginia Certification #: 233

Wyoming UST Certification #: via A2LA 2926.01 A2LA-ISO 17025 Certification #: 1461.01 A2LA-ISO 17025 Certification #: 1461.02 AIHA-LAP/LLC EMLAP Certification #:100789

Wisconsin Certification #: 998093910





# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92569427

| Lab ID      | Sample ID         | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|-----------|----------|----------------------|------------|
| 92569427001 | HRP-MW72S-211027  | EPA 8015C | CAG      | 2                    | PAN        |
| 92569427002 | HRP-MW30S-211027  | EPA 8015C | CAG      | 2                    | PAN        |
| 92569427003 | HRP-MW209-211028  | EPA 8015C | CLG      | 2                    | PAN        |
| 92569427004 | HRP-MW100S-211028 | EPA 8015C | CAG      | 2                    | PAN        |

PAN = Pace National - Mt. Juliet





Project: HRP PRGS SCR

Pace Project No.: 92569427

| Sample: HRP-MW72S-211027                 | Lab ID: 925                     | 69427001 | Collected: 10/27/2  | 21 14:40 | Received: 10   | )/28/21 12:56 N | /latrix: Water |      |
|------------------------------------------|---------------------------------|----------|---------------------|----------|----------------|-----------------|----------------|------|
| Parameters                               | Results                         | Units    | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.        | Qual |
| SVOA (GC) 8015C                          | Analytical Met<br>Pace National |          | 015C Preparation Me | ethod: 3 | 511/8015       |                 |                |      |
| Oil Range Organics (C28-C40)  Surrogates | 1170                            | ug/L     | 100                 | 1        | 11/09/21 10:08 | 11/09/21 23:01  |                |      |
| o-Terphenyl (S)                          | 0.00                            | %        | 52.0-156            | 1        | 11/09/21 10:08 | 11/09/21 23:01  | 84-15-1        | SR   |





Project: HRP PRGS SCR

Pace Project No.: 92569427

| Sample: HRP-MW30S-211027                 | Lab ID: 925                      | 69427002 | Collected: 10/27/2 | 21 14:58 | Received: 10   | )/28/21 12:56 N | Matrix: Water |      |
|------------------------------------------|----------------------------------|----------|--------------------|----------|----------------|-----------------|---------------|------|
| Parameters                               | Results                          | Units    | Report Limit       | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| SVOA (GC) 8015C                          | Analytical Meth<br>Pace National |          | 15C Preparation Me | ethod: 3 | 511/8015       |                 |               |      |
| Oil Range Organics (C28-C40)  Surrogates | ND                               | ug/L     | 100                | 1        | 11/09/21 10:08 | 11/09/21 19:19  |               |      |
| o-Terphenyl (S)                          | 88.4                             | %        | 52.0-156           | 1        | 11/09/21 10:08 | 11/09/21 19:19  | 84-15-1       |      |





Project: HRP PRGS SCR

Pace Project No.: 92569427

| Sample: HRP-MW209-211028                   | Lab ID: 92                    | 569427003 | Collected: 10/28/2 | 21 09:55  | Received: 10   | )/28/21 12:56 N | latrix: Water |      |
|--------------------------------------------|-------------------------------|-----------|--------------------|-----------|----------------|-----------------|---------------|------|
| Parameters                                 | Results                       | Units     | Report Limit       | DF        | Prepared       | Analyzed        | CAS No.       | Qual |
| SVOA (GC) 8015C                            | Analytical Me<br>Pace Nationa |           | 15C Preparation Me | ethod: 35 | 511/8015       |                 |               |      |
| Oil Range Organics (C28-C40)<br>Surrogates | ND                            | ug/L      | 100                | 1         | 11/09/21 10:16 | 11/10/21 03:39  |               |      |
| o-Terphenyl (S)                            | 85.3                          | %         | 52.0-156           | 1         | 11/09/21 10:16 | 11/10/21 03:39  | 84-15-1       |      |





Project: HRP PRGS SCR

Pace Project No.: 92569427

| Sample: HRP-MW100S-211028                | Lab ID: 925     | 69427004 | Collected: 10/28/2  | 21 09:50 | Received: 10   | )/28/21 12:56 N | /latrix: Water |      |
|------------------------------------------|-----------------|----------|---------------------|----------|----------------|-----------------|----------------|------|
| Parameters                               | Results         | Units    | Report Limit        | DF       | Prepared       | Analyzed        | CAS No.        | Qual |
| SVOA (GC) 8015C                          | Analytical Meth |          | 015C Preparation Me | ethod: 3 | 511/8015       |                 |                |      |
| Oil Range Organics (C28-C40)  Surrogates | ND              | ug/L     | 100                 | 1        | 11/09/21 10:16 | 11/10/21 22:10  |                |      |
| o-Terphenyl (S)                          | 90.0            | %        | 52.0-156            | 1        | 11/09/21 10:16 | 11/10/21 22:10  | 84-15-1        |      |





Project:

HRP PRGS SCR

Pace Project No.:

92569427

QC Batch:

QC Batch Method:

1770405 3511/8015 Analysis Method:

EPA 8015C

Analysis Description:

SVOA (GC) 8015C

Laboratory:

Result

Pace National - Mt. Juliet

Associated Lab Samples:

92569427001, 92569427002

METHOD BLANK: R3727558-1

Matrix: Water

Associated Lab Samples:

Date: 11/12/2021 05:28 PM

o-Terphenyl (S)

92569427001, 92569427002

Blank

Reporting Limit

Analyzed

Qualifiers

Parameter Oil Range Organics (C28-C40)

ug/L %

Units

ND 96.5

100 11/09/21 15:38 52.0-156 11/09/21 15:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project:

HRP PRGS SCR

Pace Project No.:

92569427

QC Batch:

1770820

Analysis Method:

Laboratory:

EPA 8015C

QC Batch Method: 3511/8015

015 Analysis Description:

SVOA (GC) 8015C

Pace National - Mt. Juliet

Qualifiers

METHOD BLANK: R3727822-1

92569427003, 92569427004

Matrix: Water

Associated Lab Samples:

Associated Lab Samples:

92569427003, 92569427004

ug/L

%

---

Parameter Units

Blank Reporting Result Limit

Limit Analyzed

100 11/09/21 19:25

Oil Range Organics (C28-C40) o-Terphenyl (S)

Date: 11/12/2021 05:28 PM

ND 85.5

52.0-156 11/09/21 19:25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



**QUALIFIERS** 

Project: HRP PRGS SCR Pace Project No.: 92569427

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

# SAMPLE QUALIFIERS

Sample: 92569427001

[1] Semi-Volatile Organic Compounds (GC) by Method 8015C - Surrogate failure due to matrix interference

#### **ANALYTE QUALIFIERS**

Date: 11/12/2021 05:28 PM

SR Surrogate recovery was below laboratory control limits. Results may be biased low.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92569427

Date: 11/12/2021 05:28 PM

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|---------------------|
| 92569427001 | HRP-MW72S-211027  | 3511/8015       | 1770405  | EPA 8015C         | 1770405             |
| 92569427002 | HRP-MW30S-211027  | 3511/8015       | 1770405  | EPA 8015C         | 1770405             |
| 92569427003 | HRP-MW209-211028  | 3511/8015       | 1770820  | EPA 8015C         | 1770820             |
| 92569427004 | HRP-MW100S-211028 | 3511/8015       | 1770820  | EPA 8015C         | 1770820             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bi: (signature) Date/Time:   Client Comments:   Client Comments:   Soil Sample collected into 11 amber jar   Soil jars left, Run for Total fur fully   Spinature) Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   | 10/2/21 Cup 18: Experiment Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time: Detection Limit Requirements Special Requirements  MA MCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/Tiny: McP Certification Form Required Portification Form Form Form Form Form Form Form Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/26/31 15:45 CT RCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date/Time: Federal 21J School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | City 🗌 Brownfield 🗍 MBTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |              | Anaboli Ed Required: Code Code Code Code Code Code Code Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCCC C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field PCB PLUS PLUS PLUS PLUS PLUS PLUS PLUS PLUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONLY  ONLY  ONLY  ONLY  ONLY  ONLY  ONLY  MCP Certificati  MCP Certificati  Only  MRA  MCP Certificati  Only  MRA  MCP Certificati  Only  MRA  MCP Certificati  Only  MRA  MCP Certificati  Only  MRA  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Certificati  Only  MCP Cer | ORE VOCS  REPARE VOCS  WRTZ  WRTZ  WRTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Produce on the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro | TPH ORO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-Cle XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 3 BB 1 5 66 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HADO N. Royal St. Alexandia YA  Grey Gross  Gross  Grey Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gross  Gr | HAP-PICES - SCR  LEDON N. Royal St. Alexandria YA  Format: POF & ECCR. M  Other: Ramboll CDD  Number: PAMBOLICAN  Other: Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD  Number: Sootherbace Ramboll CDD | HUDO N. Royal St. Hexandida YA  Format: POF 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 DOCE 18 | HADO NI. Royal St., Hexandida YA Interest Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of Comments of  | HADO N. Royal St. Alexandria VA  Screen Gross  Christian Commerce  Christian Gross  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Christian Commerce  Ch | HADO N. Royal St. Alexandria va succession per Science State of State Const. Alexandria va succession per Science State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State  | HADO NI. ROJAL SH., AHEADHIA YA SON SON SON SON SON SON SON SON SON SON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HACE NN. Soyal St. Hexardica YR  CATCA GATE  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll. Catca  SCONET TALCE. Ramboll |                |              | 3-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 03-516-2338 0 1-Day - 3-Day - 0 Field Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Green Gross  Green Gross  Other: Ramboll EDD  SONHET  Other: Ramboll EDD  SONHET  OTHER Flag Comments  Other: Ramboll EDD  SONHET  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHER Flag Comments  OTHE | CS HAP-MUJOS-211028 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/2 | Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde Garde  Garde | Sorte Gross  Sorte Tray C. Ramboll. Com  Softe Tray C. Ram | SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTETURE CONTROLL  SORTET | SOTE TOUS CONTROLL COM CONTROLL COM CONTROL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONTROLL CONT | SOTE TO SE CONTROLL CAN CONTROLL CAN CONTROLL FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH FOR SOUTH | Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carre   Carr   | \$             | z-vay        | +-pay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fab in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o ritter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 703-516-2338 0 1-Day □ 3-Day □ ○ Field Filtered  Name: HAP-PRGS-SCR 2-Day □ 4-Day □ ○ Lab to Filter  Location: 1400 N. Royal St. HPyanrica YA □ □ Data Deliver: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CIP Like Data Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required: Debut Pig Required | Contrace. Ramboll. com  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  City Like Data Ping Required:  Company Company Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Like Data Ping Company  City Li | Barbage Ramboll.com  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Required:  College Plant College Representation College Reported Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation College Representation Colle | By Gambe Cherrical Cherrican Control Color Ramboll Color SoxHET CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLER CHILD CARROLLE | By Gross   Coher   Ramboll Color   Charles   Coher   Charles   Cha | Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont   | Color   Control   Color   Control   Color   Control   Color   Color   Control   Color   Color   Control   Color   Co  | South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   Sout   |                | PDF          | X EXCEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-Day   3-Day   0 Field Filtered  Name: HAP-PRG1S - 3CR; 2-Day   4-Day   0 Lab to Filter  Location: 1400 N. Royal St., Altxandia YA Format: PDF IS EXCEL ST PCB ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PERTAGE RAMBOLL.COM CHILL P Taylor Carroll/Swalls for the bad regretiment Sosterhal Chamboll.com CHARP-MILITA 2-211027 10/27 1440 Grab GW L 9 4 5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HRP-MUJAN-211028   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   1   | Elly Play for Carroll I Sundon Holes and the color of Soother Bull Chambell Known Soxhlet   When my 303-211027 10/27 1440 Chambell Known Soxhlet   Here my 303-211027 10/27 1440 Chambell Gilly L 9 4 5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Part   | Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Parting   Part   | Parting   Ramboll.cam   Emil To:   Softerlad Chambell Adm   SOXHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   SoxHLET   Colling Chambell Adm   Col  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Other:       | Camboll ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | let<br>ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| None: 1400 N. Royal St., Phryantica YR  Number: 1508 Grove Crip i to have December: 1500 SOXHLET  None Name/Number: 1500 SOXHL | 10/27   14/36   Composes   Martin   Composes   | 10/24   14/36   Grab GW   Code   Co   | 10/97   14/9   Girab   Gill   L   9   4   5   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/97   1440   Grab   GW   L   9   4   5   X   X   X   X   Y   Y   Y   Y   Y   Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/27   1440   Grab   GW   L   Q   H   5   X   X   X   10/27   1440   Grab   GW   L   Q   H   5   X   X   X   X   10/28   O+30   Grab   GW   L   Q   H   5   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HANDSHAM FOR TO #:  Description: Commissions Marine Conditions VIALS GLASS PLASTIC BACTERIA ENCORE SO AT 10/27 1440 Granb GW L 9 4 5 X X X 10/28 0730 Grab GW L 9 4 5 X X X 10/28 0730 Grab S C 1 4 5 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X 10/28 0730 G GW L 6 4 3 X X X X 10/28 0730 G GW L 6 0 W C C A 2 X X X X 10/28 0730 G GW L 6 0 W C C A 2 X X X X X 10/28 0730 G GW L 6 0 W C C A 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Described Feat To #:  Described Sample Conference VIAIS GLASS PLATIC BACTERA BLORE SO A 10/27 IM440 Gradb GIW L 9 4 5 X X X 10/28 0730 Grab GW L 9 4 5 X X X 10/28 0730 Grab S C 1 Sample CONCETCH BLORE SO GRAD S C 1 Sample CONCECTED WAS SEQUIFORMENTS.  Client Comments:  Described Wife Sequiforments:  Client Comments:  Client Comments:  CYANGLE:  CHAP - 582.10 - 0 - 1 - 211028; Soil sample collected into 1 L amber 2011 1 L amber 2011 1 L amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 L Amber 2011 1 | Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   Manual   M   |                | Email To: 5  | oster tace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | amboll com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>ute</u>                                 | A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number: 1400 N. Royal St., Mexandia YA Store Por St. Scan Store Number: Por St. Scan Store Number: Por St. Scan Store Number: Por St. Scan Store Number: Por St. Scan Store Number: Por St. Scan Store Number: Soster tage. Ramboll.com Email To: Soster tage. Ramboll.com Email To: Soster tage. Ramboll.com St. Scan Store Namboll.com St. Scan Store Namboll.com St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Scan St. Sca | HRP-militis-211028   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28     | HRP-Multi-23-211027 10/27 1440 Gmb GW L 9 4 5   X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HRP-Muj17-33-211037 10/97 1440 Girab GiW L 9 4 5 X X X X HRP-Muj17-33-211037 10/97 1448 Girab GiW L 9 4 5 X X X X HRP-Muj18-3-11028 10/28 0730 Girab S C 1 X X X X X HRP-Muj18-3-211028 10/28 0750 G GW L 6 4 3 X X X X HRP-Muj18-3-211028 10/28 0750 G GW L 6 4 3 X X X X X HRP-Muj18-3-211028 10/28 0750 G GW L 6 4 3 X X X X X HRP-Muj18-3-211028 10/28 10/28 10/28 0750 G GW L 6 4 3 X X X X X X HRP-EB08-211028 10/28 10/28-11 1140 G C-EB C 4 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HRP-MU1723-211027 10/27 1440 Grab GW L 9 4 5 X X X X HRP-MU1723-211027 10/27 1448 Grab GW L 9 4 5 X X X X HRP-MU1723-211027 10/27 1458 Grab GW L 9 4 5 X X X X X HRP-MU1723-211028 10/28 0730 Grab S C 1 X X X X X HRP-MU1723-211028 10/28 0730 Grab S C 1 C 4 3 X X X X X HRP-MU1723-211028 10/28 10/28 0750 G GW L 6 4 3 X X X X X HRP-MU1723-211028 10/28 0750 G GW L 9 4 4 X X X X X X HRP-MU1723-211028 10/28 10/28 0750 G GW L 9 4 4 X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP-MUJT-23-21102T 10/2T 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HRP-multi-303-211027 10/27 1440 Grab Giw L 9 4 5 X X HRP-multi-303-211027 10/27 1448 Grab Giw L 9 4 5 X X X HRP-multi-303-211028 10/28 0730 Grab S C 1 X X X HRP-multi-303-211028 10/28 0730 Grab S C 1 X X X HRP-multi-3-211028 10/28 0730 Grab S C 1 X X X X HRP-multi-3-211028 10/28 0730 G Gwb L 9 4 4 X X X HRP-multi-3-211028 10/28 10/28 0730 G G Gwb L 9 4 4 X X X X HRP-EBD8-211028 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 1   | HRP-MILITAS-211024 10/24 1446 Grab GW L 9 4 5 X X HRP-MILITAS-211024 10/24 1446 Grab GW L 9 4 5 X X X HRP-MILITAS-211024 10/24 1446 Grab GW L 9 4 5 X X X HRP-MILITAS-211024 10/24 1456 GRab GW L 9 4 5 X X X HRP-MILITAS-211028 10/28 0430 Grab S C 1 1 S X X X HRP-MILITAS-211028 10/28 0430 Grab S C 1 C 4 3 X X X HRP-MILITAS-211028 10/28 10/28 11/38 0430 G GW L 6 4 3 X X X HRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 4 3 X X X HRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 4 3 X X X X HRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 4 2 X X X X MRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 C 4 2 X X X X MRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 C 4 2 X X X X X MRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 C C 4 2 X X X X X X MRP-MILITAS-211028 10/28 11/38 0430 G GW L 6 C C 4 2 X X X X X X MRP-MILITAS-211028 10/28 11/38 11/38 0430 G GW L 6 C C 4 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HRP-multa-3-2  1027   10/27   HHO   Grab   Gill   L   9   H   5   X   X     HRP-multa-3-2  1027   10/27   HHO   Grab   Gill   L   9   H   5   X   X     HRP-multa-3-2  1027   10/27   11/28   Grab   Gill   L   9   H   5   X   X     HRP-multa-3-2  1028   10/28   0730   Grab   Gill   L   9   H   5   X   X     HRP-multa-3-1  028   10/28   0730   Grab   Gill   L   9   H   5   X   X     HRP-multa-3-2  1028   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28   10/28     | Parate O House | 1            | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOXHLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ho                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-Day   3-Day   0   Field Filtered   1-Day     | HRP-MU1230-211027 10/27 1440 Grab GW L 9 4 5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HRP-MU1230-211027 10/27 1440 Grab GW L 9 4 5 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-MUJ303-211027 10/27 1440 Grab GW L 9 4 5 X X X X HRP-SB210-0-1-211028 10/28 0730 Grab S C 1 X X X X X HRP-MUJ6US-211028 10/28 0730 Grab S C 1 X X X X X X HRP-MUJ6US-211028 10/28 0730 G GW L 6 4 3 X X X X X X HRP-EBDS-211028 10/28 10/28 11/40 G 0-EB C 4 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HRP-MUJ303-211027 10/27 1440 Girab GW L 9 4 5 X X X X HRP-MUJ303-211027 10/27 148 Girab GW L 9 4 5 X X X X HRP-SB210-0-1-211028 10/28 0730 Girab S C 1 X X X X X HRP-MUJ103-211028 10/28 0730 Girab S C 1 X X X X X X HRP-EBD8-211028 10/28 0730 G GW L 6 4 3 X X X X X X X HRP-EBD8-211028 10/28 10/28 1140 G GW L 9 4 4 X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HRP-MUJ303-211027 10/27 1440 Girab GiW L 9 4 5 X X X HRP-MUJ303-211027 10/27 1458 Girab GiW L 9 4 5 X X X X HRP-SB210-0-1-211028 10/28 0730 Girab S C 1 S X X X X HRP-MUJ403-211028 10/28 0730 Girab S C 1 G 4 3 X X X X HRP-TB08-211028 10/28 0750 G GW L 6 4 3 X X X X HRP-EBD8-211028 10/28 0730 G GW L 6 4 3 X X X X X X HRP-EBD8-211028 10/28 10/28 0750 G GW L 7 4 4 X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP-MUJ303-211027 10/27 148 Girab GW L 9 4 5 X X  HRP-MUJ303-211027 10/27 148 Girab GW L 9 4 5 X X  HRP-MUJ01-2-1-211028 10/28 0730 Grab S C 1 1  HRP-MUJ015-211028 10/28 0750 G GW L 6 4 3 X X  HRP-MUJ015-211028 10/28 10/28 0750 G GW L 6 4 3 X X  HRP-EBD8-211028 10/28 10/28 11/40 G 0-EB C 4 2 X X  HRP-EBD8-211028 10/28 10/28-21 1140 G 0-EB C 4 2 X X  Date/Time: Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HRP-mulay-3-211027   10/27   1440   Girab   Giw   L   9   4   5   X   X   Y     HRP-mulay-211028   10/28   0730   Girab   S   C   1   X   X     HRP-mulay-211028   10/28   07450   G   Giw   L   G   H   J   X   X     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   H   J   X   X     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   H   J   X   X     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   H   J   J   X   X     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   J   J   J   J     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   J   J   J   J     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   J   J   J   J     HRP-mulay-211028   10/28   10/28   07450   G   Giw   L   G   J   J   J   J   J     HRP-mulay-211028   10/28   10/28   10/28   07450   G   G   G   J   J   J   J   J     HRP-mulay-211028   10/28   10/28   07450   G   G   G   J   J   J   J   J   J   J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HRP-Mulary-3-211027   10/97   1440   Grab   GW   L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Typica Regimus |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACTERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 1941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Name: HAP-PRGS - 3CR 2-Day 3-Day 0 Lab to Filter 1  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filter 2  Incation: HAP-PRGS - 3CR 2-Day 0 Lab to Filt | HRP-MW303-211021 10/21 148 Gmab GW L 9 4 5 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HRP-MW303-311027 10/27 148 Gmab GW L 9 4 5 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HRP-MULAUS-211028 10-28-21 0955 G GW L G H 3 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-MULAY-211028 10/28 0730 Grab S C 1 S X X X X Y Y HRP-MULAY-211028 10/28 0730 Grab S C 1 S X X X X Y Y Y HRP-MULAY-211028 10/28 0750 G GW L G Y 3 X X X X X Y Y HRP-TB03-A11028 10/28 10/28 0750 G GW L G Y 3 X X X X X X X X Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ## 188- MWD - 1-211028 10/28 0730 Grab S C 1 4 4 4 X X X X HAP-mulay - 211028 10/28 0730 Grab S C 1 6 4 3 X X X X HAP-mulay - 211028 10/28 0750 G G G L L 6 4 3 X X X X HAP-mulay - 211028 10/28 10/28 0750 G G G L L 6 4 3 X X X X X HAP-mulay - 211028 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/28 10/ | HAP-MILJ303-211027 10/27 1148 Grab GW L 9 4 5 X X X   MANOR Required (signature)   Date/Time:    | HRP-SDA10-0-1-A11028   10/28 0730 Grab S C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HRP - May 303-211027   10/27   11/38   Gradb   Galb   C   9   4   5   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78/01 FE0116-  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-Day   3-Day   0   Field Filtered   1-Day     | HRP-SB310-0-1-311028 10/28 0730 Grab S C 1 S X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-SB310-0-1-311028 10/28 0730 Grab S C 1 S X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-SBA10-0-1-A11028 10/28 0730 Grab S C 1 X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HRP-SB210-0-1-211028 10/28 0730 Grab S C 1 X X X X  COL HRP-MULAUS-211028 10-28.21 0955 G GW L 6 4 3 X X X X  HRP-MULAUS-211028 10/28 0950 G GW L 6 4 3 X X X X  HRP-EBD8-211028 10/28.11 1140 G 0-EB C 4 2 X X X X  Date/Time: 12/56 HRP-5B210-0-1-211028: 50:1 50:1 50:1 50:1 50:1 50:1 50:1 50:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HRP-SBA10-0-1-A11028 10/28 0730 Grab S C 1 3 X X X S S C 1 HRP-mullais-A11028 10/28 0730 G GW L 6 4 3 X X X X HRP-TB08-A11028 10/28 0730 G GW L 6 4 3 X X X X X X HRP-EB08-211028 10/28 10/28 11/40 G 0-EB C 4 2 X X X X X X X S (signature)    Date/Time:   Date/Date/Date/Date/Date/Date/Date/Date/                                                                                                                                                           | HIRP-SBA10-0-1-A11028 10/28 0730 Greats S C 1 3 X X MER-MUNICUS-A11028 10/28 0730 Greats S C 1 4 3 X X X HIRP-TB08-A11028 10/28 0750 G GW L 6 4 3 X X X HIRP-TB08-A11028 10/28 10/28-21 1140 G 0750 G 0753 C 2 4 2 X X X X HIRP-TB08-211028 10/28-21 1140 G 0750 G 0753 C 2 4 2 X X X X X X HIRP-TB08-211028 10/28-21 1140 G 0750 G 0753 C 2 4 2 X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HRP-SBAID-0-1-A1M28   10/28 0730 Grab S C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HAP_Stoato_1-1-alway2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL TOURS    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <                                          | < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-Day   3-Day   0 Field Filtered   1-Day   1-D | HEP-NWILDS-211028 10-28-21 0955 G GW L G H 3 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-INWIGH-71 028   1028-21   0450   G   GW   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP-MW104-211028   10-28-21 0955   G GW L G H 3 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HRP-MW104-211028   10-28-21 0955   G GW   L G H 3   X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HRP-MW104-211028   10-28-21 0955   G   GW   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HRP-INUIGHS - 211028   10-28-21 0955   G   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP_MULON_21 028    038.2  0955   G   GW   L   G   H   3   X   X     HRP_MULON_21 028    0455   G   GW   L   G   H   H   H   H   H   H   H   H   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HRP_MULIUS_A]1028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14/0           |              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                          | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TO3-516-2338  INDICATION: HAP-PRGS - SCR. 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day 2-Day  | HER-MUNICUS-211028 10-28-21 09-55 G GW L G 4 3 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HRP-INWIGH-211028   1028-21 10955   G   GW   L   G   H   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HRP-MW104-211028   10-28-21 0955   G   W   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRP-MNIJON-211028   10-28-21 0955   G   GW   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HRP-MW104-211028   10-28-21 0955   G   GW   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HRP-INUMICAN-211028   10-28-21 0955   G   G   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP_DULIANS_211028   10-28-21   1490   G   GUU   L   G   H   H   HRP_DULIANS_211028   10-28-21   11490   G   GUU   L   G   H   H   HRP_DULIANS_211028   10-28-21   11490   G   GUU   L   G   H   HRP_DULIANS_211028   10-28-21   11490   G   GUU   L   G   H   G   GUU   L   G   GUU   L   G   GUU   G   G   GUU   G   G   G   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HRP_MULAIS_AIIDAS   10-28-21 0455   G   G.W   L   G   H   3   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/28          | -            | mab 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| POS-516-2338   O   I-Day   I-Day   O   I-Day   I   | #RP-TID03-A11028 10/28 0950 G GW L 9 4 4 X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HRP-mulaus-Alio28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HRP-DULIAUS-ALIDAS 16/28 0950 G GIBS L 9 4 4 X X X X X X MRP-EBDS-211028 10:28:21 1140 G D-EB C 4 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HRP-DULIAUS-ALIDAS 16/28 0950 G GUS L 9 4 4 X X X X X MRP-TB08-ALIDAS 16/28 0950 G OCHB C 2 X X X X X X X MRP-EBD8-211028 10:28:21 1140 G O-EB C 4 2 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HRP_TB08_A11028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP_TB08_A11028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP_TB08_A11028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP_DIMINIS_AII0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-28-21       | 0955         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TO3-516-2333  IMP-PRGS-SCR HAP-PRGS-SCR HAP- | 10/28:11 1140 G 0-16 C 2 4 2 XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HKP-EBD8-211028 10/28 10/28:11 1140 G 0-EB C 4 2 XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ##P-EBD8-211028 10:28:21 1140 G 0-EB C 4 2 XX  ##P-EBD8-211028 10:28:21 1140 G 0-EB C 4 2 XX  by: (signature)   Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ### - EBD8-211028 10:28:1) 1140 G 0-EB C 4 2 XX  HRP-EBD8-211028 10:28:1) 1140 G 0-EB C 4 2 XX  by: (signature)   Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ### HRP-EBD8-211028 10:28:21 1140 G 0-EB C 4 2 XX  by: (signature)   Date/Time:   D | HRP-TB08-A11028   10/28   10/28-11   1140   G   0-EB   C   H   2   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HRP-TB08-A11028   10/28   11/40   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 0950         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| THOS-\$16-2338  INDICATION IN ROLL 2338  INCOMENT HAP-PRGS - SCR. M. 2-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10·28·21 1140 G 0·E6 C 4 2 XX X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP-EB08-21(028 10:28:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #RP-EBD8-211028 10:28:21 1140 6 0-EB C 4 2 XX  by: (signature)   Date (Time:   1256   HR.P-5B210-0-1-211028; 50:1   Sample collected into 11 amber jar soil jars left, Run for Total to the par cyanille.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HRP-EBD8-211028 10:28:1) 1140 G 0-EB C 4 2 XX  by: (signature)   Date/Time:   1256   HRP-58210-0-1-211028: 50:1 sample collected into 11 amber jar 30:1 jars 10/28/21   1256 TB: Trip Blank 10/28/21   1256 EB: Equipment Blank Cyanide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HRP-EBO8-211028 10:28:21 1140 G 0-EB C H 2 XX  by (signature) Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Tim | HRP-EBO8-2/1028 10:28:1) 1/40 G D-EB C 4 2 X  by: (signature) Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Tim | HRP-EBD8-2/1028 10-28-2/ 1/140 G 0-EB C 4 2 X  by: (signature)   Date/Time:   1256   HRP-5B210-0-1-2/1028: 50il sample collected into 1L amber 20il signature)   Date/Time:   | HRP-EBD8-211028   10-28-11   1140   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 0890         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOBS-516-2338  TOBS-16-2338  THAP-PRGS-3CH  TAND N. Royal St. Alexandica YA  Incontrol HADO N. Royal St. Alexandica YA  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involve:  Involv |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by (signature)  Date/Time:    Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Soil Sample collected into IL amber jar   Soil Jars left, Run for Total the Auditorial Comments:   Change   Cha | Obsertine:    Date (Fine:     256   HRP-5B210-0-1-211028; Soil sample collected into 1L amber jar soil jars left, Run for Fotal the All (1/2/2)     2156 TB: Trip Blank Cyanide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:    Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Comments:   Color Color Comments:   Color Color Comments:   Color Color Comments:   Color Color Color Color Color Color Color Colo | Date/Time:   Date/Time:   Client Comments:   Soil sample collected : Ab IL Amber   Panalys    Date/Time:      | by: (signature)  Date/Time:    Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   Date/Time:   | by: (signature)  Date/Time:    1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 1140         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOS-516-2338  William HAP-PAGS - 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by (signature)  Date (Time:   Client Comments:   Soil   Sample collected into 11 amber jar   Spinatys    Date (Time:   100   Cyan, 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by: (signature)    Date/Time:   1256   HRP-58210-0-1-211028: 50:1 sample collected into 11 ambor jar 30:1 jars left. Run for Total the 188 and 10/12/121   1256   TB: Trip Blank Cyanide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | by (signature)  Date/Time:    Client Comments:   Client Comments:   Client Comments:   Client Comments:   Constant   Color   C | by (signature)    Date/Time:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Client Comments:   Color   by: (signature)    Date/Time:   Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by: (signature)    bate/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| THE PRESENTATION N. Royal St., HICANTIA YP CONNECTIONS CONNECTION CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS CONNECTIONS  | Client Comments:    Date / Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:  Detection Name Requirements  Date/Time:  Detection Name Requirements  MA MCP Required  Date/Time:  MA MCP Required  MCP Certification Form Required  DO 18631 15:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:  Detection Limit Requirements  MA MCP Required  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  MA MCP Required  CT RCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date/Time: MCP Certification Form Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/36/31 15:45 CT RCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:  Other  Other  Date/Time: Project Entity  Date/Time: Project Entity  Date/Time: Project Entity  Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time:   Othors   VA DEQ   PWSID #     MA State DW Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCP Certification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Form Requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| THOSE INTO N. Royal St., Alexandría 17 Servicio Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro | Date/Time:   Date/Time:   Client Comments:   Soil   Sample   collected   Indian      | Date/Time:   Detection Nimit Sequirements   Special Requirements   MA MCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date/Time:  Detection Limit Requirements  MA MCP Required  MCP Certification Form Required  MCP Certification Form Required  CT RCP Required  Date/Time:  CL CACTURE Sequired  RCP Certification Form Required  RCP Certification Form Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:  MCP Certification Form Required  PO   AGG 31   15:45  Date/Time:  RCP Certification Form Required  RCP Certification Form Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date/Time: CT RCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date / Time: RCP Certification Form Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time: Project Entity Project Entity Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time: Project Entity   Municipality   MWRA   WRTA   Other    Date/Time: Federal   21 J   School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 1 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e DW Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00   1-00      | Client Comments:    Client Comments:   Client Comments:   Client Comments:   Soil   Sample collected into   L amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel   Itel      | Date/Time:   Detection   Special Requirements   MA MCP Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:    MCP Certification Form Required   CT RCP Required   CT RCP Required   RCP Certification Form Required   RCP Certification Form Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA State DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE DW Required   MA STATE | Date/Time:  CT RCP Required  RCP Certification Form Required  Date/Time:  MA State DW Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ure)  Date/Time:  RCP Certification Form Required  Date/Time:  MA State DW Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - January June 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time: Federal 21J School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | A            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | の意味を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aspenie Contraction                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03   1-03      | Client Comments:    Client Comments:   Client Comments:   Client Comments:   Soil   Sample collected into   L amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colored   Colo   | Date/Time:   Detection   Special Requirements   MA MCP Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Certification Form Required   MCP Ce   | Date/Time:    Date/Time:   MCP Certification Form Required   CT RCP Required   CT RCP Required   RCP Certification Form Required   RCP Certification Form Required   RCP Certification Form Required   MA State DW Required   MA State DW Required   PWSID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/Time:  □ CT RCP Required  RCP Certification Form Required  □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Date/Time: □ Dat  | Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Date/Date/Date/Date/Date/Date/Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MUNICIPALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/Time: Federal   21 J   School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Government [ | Municipa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Continue Bay                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4350 N. Fairfax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by: (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | The Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments:  Client Comments | The Trip Black Black Black Brotes Test Brotes Test Black Black Brotes Black Brotes Scil Samp Collect Entity  Cleratity  Cleratity  Format: PDF & EXCEL & Data Delivery  Forget: Entity  Format: PDF & EXCEL & Data Delivery  FOR A DATA D | THE TOTAL RUSTING STANDS OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF THE CONTRICT OF TH | THE STANDSPROMENTS OFFIDERISES OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFIDERS OFFI OFF | CHIEFT COMMENTS  TO BE SECRET TO SOUTH STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD | The comment   The control   Comment   Commen   | Clerk Comments:   Campicans   Complete   Campicans   1-Day   3-Day   O Field Filtered           | 1-Day   3-Day   0   Field filtered   2-Day   1-Day   0   Lab to Filter   1-Day   1-Day   1-Day   0   Lab to Filter   1-Day   
http://www.pacelabs.com

Doc # 381 Rev 5\_07/13/2021



(704)875-9092



November 17, 2021

Greg Grose Ramboll 4350 North Fairfax Dr Suite 300 Arlington, VA 22203

RE: Project: HRP PRGS SCR

Pace Project No.: 92570802

### Dear Greg Grose:

Enclosed are the analytical results for sample(s) received by the laboratory on November 04, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angula M. Bauari Angela Baioni

angela.baioni@pacelabs.com (704)875-9092 Project Manager

**Enclosures** 

cc: Taylor Carroll, Ramboll

Anne Kelly, Ramboll US Consulting, Inc.

Sarah Ostertag, Ramboll







#### **CERTIFICATIONS**

Project: HRP PRGS SCR

Pace Project No.: 92570802

**Pace Analytical Services Charlotte** 

9800 Kincey Ave. Ste 100, Huntersville, NC 28078

Louisiana/NELAP Certification # LA170028

North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342

North Carolina Wastewater Certification #: 12

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627

Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

**Pace Analytical Services Asheville** 

2225 Riverside Drive, Asheville, NC 28804

Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222





# **SAMPLE ANALYTE COUNT**

Project: HRP PRGS SCR

Pace Project No.: 92570802

| Lab ID      | Sample ID        | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|-----------|----------|----------------------|------------|
| 92570802001 | HRP-MW201-211102 | EPA 6010D | CBV      | 23                   | PASI-A     |
|             |                  | EPA 7470A | DBB1     | 1                    | PASI-A     |
|             |                  | EPA 8260D | SAS      | 63                   | PASI-C     |

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

(704)875-9092



# **ANALYTICAL RESULTS**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| Sample: HRP-MW201-211102                 | Lab ID:           | 92570802001       | Collected: 11/02/  | 21 09:15  | Received: 11                     | /04/21 10:30                     | Matrix: Water |     |
|------------------------------------------|-------------------|-------------------|--------------------|-----------|----------------------------------|----------------------------------|---------------|-----|
| Parameters                               | Results           | Units             | Report Limit       | DF        | Prepared                         | Analyzed                         | CAS No.       | Qua |
| 6010 MET ICP                             | Analytical I      | Method: EPA 60    | 010D Preparation M | ethod: El | PA 3010A                         |                                  |               |     |
|                                          | Pace Analy        | ytical Services - | Asheville          |           |                                  |                                  |               |     |
| Aluminum                                 | 245               | 5 ug/L            | 100                | 1         | 11/12/21 12:13                   | 11/16/21 02:45                   | 7/20-00-5     |     |
| Antimony                                 | NE<br>NE          | 0                 | 5.0                | 1         |                                  | 11/16/21 02:45                   |               |     |
| Arsenic                                  | NE                | 0                 | 10.0               | 1         |                                  | 11/16/21 02:45                   |               |     |
| Barium                                   | 27.3              | 0                 | 5.0                | 1         |                                  | 11/16/21 02:45                   |               |     |
| Beryllium                                | NE<br>NE          | 0                 | 1.0                | 1         | 11/12/21 12:13                   |                                  |               |     |
| Cadmium                                  | NE                | U                 | 1.0                | 1         |                                  | 11/16/21 02:45                   |               |     |
| Calcium                                  | 46900             | 0                 | 100                | 1         |                                  | 11/16/21 02:45                   |               |     |
| Chromium                                 | NE                | 0                 | 5.0                | 1         |                                  | 11/15/21 05:35                   |               |     |
| Cobalt                                   | 6.2               | 0                 | 5.0                | 1         |                                  | 11/16/21 02:45                   |               |     |
|                                          | NE                | 0                 | 5.0                | 1         | 11/12/21 12:13                   |                                  |               |     |
| Copper                                   |                   | 0                 |                    |           |                                  |                                  |               |     |
| ron<br>.ead                              | <b>22</b> 1<br>NE | 0                 | 50.0<br>5.0        | 1<br>1    |                                  | 11/16/21 02:45<br>11/16/21 02:45 |               |     |
| lead<br>Magnesium                        | 12800             | 0                 | 100                | 1         |                                  | 11/16/21 02:43                   |               |     |
| _                                        | 334               |                   | 5.0                | 1         |                                  | 11/16/21 03:30                   |               |     |
| Anganese                                 |                   | 0                 |                    | 1         |                                  |                                  |               |     |
| Nolybdenum                               | NE<br><b>5.</b> 6 | 0                 | 5.0                |           | 11/12/21 12:13<br>11/12/21 12:13 |                                  |               |     |
| lickel                                   |                   | 0                 | 5.0                | 1<br>1    |                                  |                                  |               |     |
| Selenium                                 | NE                | 0                 | 10.0               |           | 11/12/21 12:13                   |                                  |               |     |
| Silver                                   | NE<br>45400       | 0                 | 5.0                | 1         |                                  | 11/16/21 02:45                   |               |     |
| Sodium                                   | 15400             | 0                 | 5000               | 1         |                                  | 11/16/21 02:45                   |               |     |
| hallium                                  | NE<br>470000      | 0                 | 10.0               | 1         | 11/12/21 12:13                   |                                  |               |     |
| lardness, Total(SM 2340B)                | 170000            | 0                 | 662                | 1         | 11/12/21 12:13                   |                                  |               |     |
| /anadium<br>r                            | NE                | 0                 | 5.0                | 1         | 11/12/21 12:13                   |                                  |               |     |
| linc                                     | NE                | ) ug/L            | 10.0               | 1         | 11/12/21 12:13                   | 11/16/21 02:45                   | 7440-66-6     |     |
| 470 Mercury                              | Analytical I      | Method: EPA 74    | 170A Preparation M | ethod: El | PA 7470A                         |                                  |               |     |
|                                          | Pace Analy        | ytical Services - | Asheville          |           |                                  |                                  |               |     |
| Mercury                                  | NE                | ug/L              | 0.20               | 1         | 11/11/21 20:46                   | 11/16/21 10:50                   | 7439-97-6     |     |
| 260D MSV Low Level                       | Analytical I      | Method: EPA 82    | 260D               |           |                                  |                                  |               |     |
|                                          | Pace Analy        | ytical Services - | Charlotte          |           |                                  |                                  |               |     |
| Acetone                                  | NE                | ) ug/L            | 25.0               | 1         |                                  | 11/06/21 21:26                   | 67-64-1       |     |
| Benzene                                  | NE                | •                 | 1.0                | 1         |                                  | 11/06/21 21:26                   | 71-43-2       |     |
| Bromobenzene                             | NE                |                   | 1.0                | 1         |                                  | 11/06/21 21:26                   | 108-86-1      |     |
| Bromochloromethane                       | NE                | -                 | 1.0                | 1         |                                  | 11/06/21 21:26                   | 3 74-97-5     |     |
| Bromodichloromethane                     | NE                | •                 | 1.0                | 1         |                                  | 11/06/21 21:26                   |               |     |
| Bromoform                                | NE                | •                 | 1.0                |           |                                  | 11/06/21 21:26                   |               |     |
| Bromomethane                             | NE                | _                 | 2.0                |           |                                  | 11/06/21 21:26                   |               |     |
| 2-Butanone (MEK)                         | NE                | •                 | 5.0                |           |                                  | 11/06/21 21:26                   |               |     |
| Carbon tetrachloride                     | NE                | •                 | 1.0                |           |                                  | 11/06/21 21:26                   |               |     |
| Chlorobenzene                            | NE                | _                 | 1.0                |           |                                  | 11/06/21 21:26                   |               |     |
| Chloroethane                             | NE                | •                 | 1.0                |           |                                  | 11/06/21 21:26                   |               |     |
|                                          |                   | •                 | 1.0                |           |                                  | 11/06/21 21:26                   |               |     |
|                                          | NII               | ) 11(1/1          |                    |           |                                  |                                  |               |     |
| Chloroform                               | NE<br>NE          | •                 |                    |           |                                  |                                  |               |     |
| Chloroform Chloromethane 2-Chlorotoluene | NL<br>NC<br>NC    | ug/L              | 1.0<br>1.0<br>1.0  | 1         |                                  | 11/06/21 21:26<br>11/06/21 21:26 | 6 74-87-3     |     |





Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| Sample: HRP-MW201-211102                | Lab ID: 92    | 570802001     | Collected: 11/02/2 | 1 09:15 | Received: | 11/04/21 10:30 | Matrix: Water |     |
|-----------------------------------------|---------------|---------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                              | Results       | Units         | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 260D MSV Low Level                      | Analytical Me | thod: EPA 82  | 260D               |         |           |                |               |     |
|                                         | Pace Analytic | al Services - | - Charlotte        |         |           |                |               |     |
| 1,2-Dibromo-3-chloropropane             | ND            | ug/L          | 2.0                | 1       |           | 11/06/21 21:26 | 96-12-8       |     |
| Dibromochloromethane                    | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 3 124-48-1    |     |
| ,2-Dibromoethane (EDB)                  | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 106-93-4      |     |
| Dibromomethane                          | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 3 74-95-3     |     |
| ,2-Dichlorobenzene                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 95-50-1       |     |
| ,3-Dichlorobenzene                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,4-Dichlorobenzene                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 106-46-7      |     |
| Dichlorodifluoromethane                 | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1-Dichloroethane                       | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2-Dichloroethane                       | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1-Dichloroethene                       | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| is-1,2-Dichloroethene                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| rans-1,2-Dichloroethene                 | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2-Dichloropropane                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,3-Dichloropropane                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2-Dichloropropane                      | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1-Dichloropropene                      | ND<br>ND      | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| s-1,3-Dichloropropene                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ans-1,3-Dichloropropene                 | ND            | -             | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| iisopropyl ether                        | ND<br>ND      | ug/L<br>ug/L  | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
|                                         | ND<br>ND      | -             | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| thylbenzene<br>lexachloro-1,3-butadiene | ND<br>ND      | ug/L          | 2.0                | 1       |           | 11/06/21 21:26 |               |     |
| -Hexanone                               | ND<br>ND      | ug/L          | 5.0                | 1       |           | 11/06/21 21:26 |               |     |
|                                         |               | ug/L          |                    |         |           |                |               |     |
| -Isopropyltoluene                       | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| Methylene Chloride                      | ND            | ug/L          | 5.0                | 1       |           | 11/06/21 21:26 |               |     |
| -Methyl-2-pentanone (MIBK)              | ND            | ug/L          | 5.0                | 1       |           | 11/06/21 21:26 |               |     |
| lethyl-tert-butyl ether                 | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| aphthalene                              | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| styrene                                 | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1,1,2-Tetrachloroethane                | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1,2,2-Tetrachloroethane                | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| etrachloroethene                        | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| oluene                                  | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2,3-Trichlorobenzene                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2,4-Trichlorobenzene                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1,1-Trichloroethane                    | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,1,2-Trichloroethane                    | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| richloroethene                          | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| richlorofluoromethane                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| ,2,3-Trichloropropane                   | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| inyl acetate                            | ND            | ug/L          | 2.0                | 1       |           | 11/06/21 21:26 |               |     |
| 'inyl chloride                          | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 75-01-4       |     |
| (ylene (Total)                          | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 |               |     |
| n&p-Xylene                              | ND            | ug/L          | 2.0                | 1       |           | 11/06/21 21:26 | 179601-23-1   |     |
| -Xylene                                 | ND            | ug/L          | 1.0                | 1       |           | 11/06/21 21:26 | 95-47-6       |     |





Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| Sample: HRP-MW201-211102  | Lab ID: 92    | 570802001      | Collected: 11/02/2 | 1 09:15 | Received: 11 | I/04/21 10:30 N | Matrix: Water |      |
|---------------------------|---------------|----------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                | Results       | Units          | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260D MSV Low Level       | Analytical Me | ethod: EPA 82  | 60D                |         |              |                 |               |      |
|                           | Pace Analytic | cal Services - | Charlotte          |         |              |                 |               |      |
| Surrogates                |               |                |                    |         |              |                 |               |      |
| 4-Bromofluorobenzene (S)  | 96            | %              | 70-130             | 1       |              | 11/06/21 21:26  | 460-00-4      |      |
| 1,2-Dichloroethane-d4 (S) | 99            | %              | 70-130             | 1       |              | 11/06/21 21:26  | 17060-07-0    |      |
| Toluene-d8 (S)            | 101           | %              | 70-130             | 1       |              | 11/06/21 21:26  | 2037-26-5     |      |





Project:

HRP PRGS SCR

Pace Project No.:

92570802

QC Batch: QC Batch Method: 659243

EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury

Laboratory:

Pace Analytical Services - Asheville

Associated Lab Samples:

92570802001

METHOD BLANK: 3455097

Matrix: Water

Associated Lab Samples:

92570802001

Blank Result Reporting Limit

Analyzed

Qualifiers

Mercury

Mercury

Mercury

Date: 11/17/2021 07:56 AM

Units ug/L

Units

ug/L

ND

0.20 11/16/21 09:40

98

2.7

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

3455098

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3455099

ND

92570374001 Parameter Units Result

ug/L

MSD MS

MS Result

3455100

2.5

MS

110

MSD

108

% Rec

**RPD** 

Spike Conc.

2.5

2.5

Spike Conc.

2.5

MSD Result

2.8

% Rec

% Rec

Limits

Qual 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

QC Batch: 659439 Analysis Method:
QC Batch Method: EPA 3010A Analysis Description:

Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Asheville

EPA 6010D

Associated Lab Samples: 92570802001

METHOD BLANK: 3455976 Matrix: Water

Associated Lab Samples: 92570802001

|                           |       | Blank  | Reporting |                |            |
|---------------------------|-------|--------|-----------|----------------|------------|
| Parameter                 | Units | Result | Limit     | Analyzed       | Qualifiers |
| Aluminum                  | ug/L  | ND     | 100       | 11/15/21 15:37 |            |
| Antimony                  | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Arsenic                   | ug/L  | ND     | 10.0      | 11/15/21 04:27 |            |
| Barium                    | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Beryllium                 | ug/L  | ND     | 1.0       | 11/15/21 04:27 |            |
| Cadmium                   | ug/L  | ND     | 1.0       | 11/15/21 04:27 |            |
| Calcium                   | ug/L  | ND     | 100       | 11/15/21 04:27 |            |
| Chromium                  | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Cobalt                    | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Copper                    | ug/L  | ND     | 5.0       | 11/15/21 15:37 |            |
| Hardness, Total(SM 2340B) | ug/L  | ND     | 662       | 11/15/21 04:27 |            |
| Iron                      | ug/L  | ND     | 50.0      | 11/15/21 04:27 |            |
| Lead                      | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Magnesium                 | ug/L  | ND     | 100       | 11/15/21 04:27 |            |
| Manganese                 | ug/L  | ND     | 5.0       | 11/15/21 15:37 |            |
| Molybdenum                | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Nickel                    | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Selenium                  | ug/L  | ND     | 10.0      | 11/15/21 04:27 |            |
| Silver                    | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Sodium                    | ug/L  | ND     | 5000      | 11/15/21 04:27 |            |
| Thallium                  | ug/L  | ND     | 10.0      | 11/15/21 04:27 |            |
| Vanadium                  | ug/L  | ND     | 5.0       | 11/15/21 04:27 |            |
| Zinc                      | ug/L  | ND     | 10.0      | 11/15/21 04:27 |            |

| LABORATORY CONTROL SAMPLE: | 3455977 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Aluminum                   | ug/L    | 5000  | 5030   | 101   | 80-120 |            |
| Antimony                   | ug/L    | 500   | 499    | 100   | 80-120 |            |
| Arsenic                    | ug/L    | 500   | 469    | 94    | 80-120 |            |
| Barium                     | ug/L    | 500   | 495    | 99    | 80-120 |            |
| Beryllium                  | ug/L    | 500   | 495    | 99    | 80-120 |            |
| Cadmium                    | ug/L    | 500   | 486    | 97    | 80-120 |            |
| Calcium                    | ug/L    | 5000  | 4910   | 98    | 80-120 |            |
| Chromium                   | ug/L    | 500   | 473    | 95    | 80-120 |            |
| Cobalt                     | ug/L    | 500   | 484    | 97    | 80-120 |            |
| Copper                     | ug/L    | 500   | 490    | 98    | 80-120 |            |
| Hardness, Total(SM 2340B)  | ug/L    | 33100 | 31900  | 96    | 80-120 |            |
| Iron                       | ug/L    | 5000  | 4870   | 97    | 80-120 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| LABORATORY CONTROL SAMPLE: | 3455977 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Lead                       | ug/L    | 500   | 502    | 100   | 80-120 |            |
| Magnesium                  | ug/L    | 5000  | 4760   | 95    | 80-120 |            |
| Manganese                  | ug/L    | 500   | 462    | 92    | 80-120 |            |
| Molybdenum                 | ug/L    | 500   | 507    | 101   | 80-120 |            |
| Nickel                     | ug/L    | 500   | 484    | 97    | 80-120 |            |
| Selenium                   | ug/L    | 500   | 496    | 99    | 80-120 |            |
| Silver                     | ug/L    | 250   | 239    | 95    | 80-120 |            |
| Sodium                     | ug/L    | 5000  | 4840J  | 97    | 80-120 |            |
| Thallium                   | ug/L    | 500   | 478    | 96    | 80-120 |            |
| Vanadium                   | ug/L    | 500   | 478    | 96    | 80-120 |            |
| Zinc                       | ug/L    | 500   | 508    | 102   | 80-120 |            |

| MATRIX SPIKE & MATRIX SPIK | E DUPLICAT | E: 34559 | 78    |       | 3455979 |        |       |       |        |       |      |
|----------------------------|------------|----------|-------|-------|---------|--------|-------|-------|--------|-------|------|
|                            |            |          | MS    | MSD   |         |        |       |       |        |       |      |
|                            | 925        | 69641006 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |       |      |
| Parameter                  | Units      | Result   | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD   | Qual |
| Aluminum                   | ug/L       | 1360     | 5000  | 5000  | 8550    | 9140   | 144   | 156   | 75-125 | 7 M1  |      |
| Antimony                   | ug/L       | ND       | 500   | 500   | 486     | 591    | 97    | 118   | 75-125 | 19    |      |
| Arsenic                    | ug/L       | ND       | 500   | 500   | 479     | 564    | 96    | 112   | 75-125 | 16    |      |
| Barium                     | ug/L       | 79.9     | 500   | 500   | 565     | 666    | 97    | 117   | 75-125 | 16    |      |
| Beryllium                  | ug/L       | ND       | 500   | 500   | 492     | 584    | 98    | 117   | 75-125 | 17    |      |
| Cadmium                    | ug/L       | ND       | 500   | 500   | 486     | 590    | 97    | 118   | 75-125 | 19    |      |
| Calcium                    | ug/L       | 31400    | 5000  | 5000  | 34000   | 40100  | 52    | 175   | 75-125 | 17 M1 |      |
| Chromium                   | ug/L       | ND       | 500   | 500   | 471     | 581    | 94    | 116   | 75-125 | 21 R1 |      |
| Cobalt                     | ug/L       | ND       | 500   | 500   | 473     | 578    | 95    | 115   | 75-125 | 20    |      |
| Copper                     | ug/L       | ND       | 500   | 500   | 517     | 536    | 103   | 107   | 75-125 | 4     |      |
| Hardness, Total(SM 2340B)  | ug/L       | 129000   | 33100 | 33100 | 152000  | 182000 | 69    | 159   | 75-125 | 18    |      |
| Iron                       | ug/L       | 478      | 5000  | 5000  | 5530    | 6620   | 101   | 123   | 75-125 | 18    |      |
| Lead                       | ug/L       | ND       | 500   | 500   | 491     | 590    | 98    | 118   | 75-125 | 18    |      |
| Magnesium                  | ug/L       | 12400    | 5000  | 5000  | 16300   | 19900  | 78    | 150   | 75-125 | 20 M1 |      |
| Manganese                  | ug/L       | 836      | 500   | 500   | 1350    | 1380   | 102   | 108   | 75-125 | 2     |      |
| Molybdenum                 | ug/L       | ND       | 500   | 500   | 493     | 599    | 98    | 120   | 75-125 | 19    |      |
| Nickel                     | ug/L       | ND       | 500   | 500   | 474     | 578    | 94    | 115   | 75-125 | 20    |      |
| Selenium                   | ug/L       | ND       | 500   | 500   | 518     | 556    | 103   | 110   | 75-125 | 7     |      |
| Silver                     | ug/L       | ND       | 250   | 250   | 242     | 281    | 97    | 112   | 75-125 | 15    |      |
| Sodium                     | ug/L       | 28500    | 5000  | 5000  | 31600   | 36300  | 61    | 156   | 75-125 | 14 M1 |      |
| Thallium                   | ug/L       | ND       | 500   | 500   | 467     | 552    | 93    | 110   | 75-125 | 17    |      |
| Vanadium                   | ug/L       | 6.4      | 500   | 500   | 487     | 590    | 96    | 117   | 75-125 | 19    |      |
| Zinc                       | ug/L       | ND       | 500   | 500   | 516     | 520    | 102   | 103   | 75-125 | 1     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





### **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

QC Batch: 657968 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92570802001

METHOD BLANK: 3448956 Matrix: Water

Associated Lab Samples: 92570802001

|                             |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1,1-Trichloroethane       | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1,2,2-Tetrachloroethane   | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1,2-Trichloroethane       | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1-Dichloroethane          | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1-Dichloroethene          | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,1-Dichloropropene         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2,3-Trichlorobenzene      | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2,3-Trichloropropane      | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2,4-Trichlorobenzene      | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2-Dibromo-3-chloropropane | ug/L  | ND     | 2.0       | 11/06/21 12:58 |            |
| 1,2-Dibromoethane (EDB)     | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2-Dichlorobenzene         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2-Dichloroethane          | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,2-Dichloropropane         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,3-Dichlorobenzene         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,3-Dichloropropane         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 1,4-Dichlorobenzene         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 2,2-Dichloropropane         | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 2-Butanone (MEK)            | ug/L  | ND     | 5.0       | 11/06/21 12:58 |            |
| 2-Chlorotoluene             | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 2-Hexanone                  | ug/L  | ND     | 5.0       | 11/06/21 12:58 |            |
| 4-Chlorotoluene             | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L  | ND     | 5.0       | 11/06/21 12:58 |            |
| Acetone                     | ug/L  | ND     | 25.0      | 11/06/21 12:58 |            |
| Benzene                     | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Bromobenzene                | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Bromochloromethane          | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Bromodichloromethane        | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Bromoform                   | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Bromomethane                | ug/L  | ND     | 2.0       | 11/06/21 12:58 |            |
| Carbon tetrachloride        | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Chlorobenzene               | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Chloroethane                | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Chloroform                  | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Chloromethane               | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| cis-1,2-Dichloroethene      | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| cis-1,3-Dichloropropene     | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |
| Dibromomethane              | ug/L  | ND     | 1.0       | 11/06/21 12:58 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



# **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

METHOD BLANK: 3448956 Matrix: Water

Associated Lab Samples: 92570802001

| Parameter                 | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|---------------------------|-------|-----------------|--------------------|----------------|------------|
| Dichlorodifluoromethane   | ug/L  | ND -            | 1.0                | 11/06/21 12:58 |            |
| Diisopropyl ether         | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Ethylbenzene              | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Hexachloro-1,3-butadiene  | ug/L  | ND              | 2.0                | 11/06/21 12:58 |            |
| m&p-Xylene                | ug/L  | ND              | 2.0                | 11/06/21 12:58 |            |
| Methyl-tert-butyl ether   | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Methylene Chloride        | ug/L  | ND              | 5.0                | 11/06/21 12:58 |            |
| Naphthalene               | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| o-Xylene                  | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| p-Isopropyltoluene        | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Styrene                   | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Tetrachloroethene         | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Toluene                   | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| trans-1,2-Dichloroethene  | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| trans-1,3-Dichloropropene | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Trichloroethene           | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Trichlorofluoromethane    | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Vinyl acetate             | ug/L  | ND              | 2.0                | 11/06/21 12:58 |            |
| Vinyl chloride            | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| Xylene (Total)            | ug/L  | ND              | 1.0                | 11/06/21 12:58 |            |
| 1,2-Dichloroethane-d4 (S) | %     | 96              | 70-130             | 11/06/21 12:58 |            |
| 4-Bromofluorobenzene (S)  | %     | 102             | 70-130             | 11/06/21 12:58 |            |
| Toluene-d8 (S)            | %     | 104             | 70-130             | 11/06/21 12:58 |            |

| LABORATORY CONTROL SAMPLE:  | 3448957 |       |        |       |        |            |
|-----------------------------|---------|-------|--------|-------|--------|------------|
|                             |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                   | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane   | ug/L    | 50    | 53.7   | 107   | 70-130 |            |
| 1,1,1-Trichloroethane       | ug/L    | 50    | 49.6   | 99    | 70-130 |            |
| 1,1,2,2-Tetrachloroethane   | ug/L    | 50    | 51.7   | 103   | 70-130 |            |
| 1,1,2-Trichloroethane       | ug/L    | 50    | 52.4   | 105   | 70-130 |            |
| 1,1-Dichloroethane          | ug/L    | 50    | 49.4   | 99    | 70-130 |            |
| 1,1-Dichloroethene          | ug/L    | 50    | 46.9   | 94    | 70-132 |            |
| 1,1-Dichloropropene         | ug/L    | 50    | 53.2   | 106   | 70-131 |            |
| 1,2,3-Trichlorobenzene      | ug/L    | 50    | 49.4   | 99    | 70-134 |            |
| 1,2,3-Trichloropropane      | ug/L    | 50    | 50.8   | 102   | 70-130 |            |
| 1,2,4-Trichlorobenzene      | ug/L    | 50    | 50.1   | 100   | 70-130 |            |
| 1,2-Dibromo-3-chloropropane | ug/L    | 50    | 46.8   | 94    | 70-132 |            |
| 1,2-Dibromoethane (EDB)     | ug/L    | 50    | 55.1   | 110   | 70-130 |            |
| 1,2-Dichlorobenzene         | ug/L    | 50    | 47.2   | 94    | 70-130 |            |
| 1,2-Dichloroethane          | ug/L    | 50    | 48.2   | 96    | 70-130 |            |
| 1,2-Dichloropropane         | ug/L    | 50    | 52.5   | 105   | 70-130 |            |
| 1,3-Dichlorobenzene         | ug/L    | 50    | 48.7   | 97    | 70-130 |            |
| 1,3-Dichloropropane         | ug/L    | 50    | 51.3   | 103   | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| LABORATORY CONTROL SAMPLE:  | 3448957 | Spike | LCS    | LCS   | % Rec  |            |
|-----------------------------|---------|-------|--------|-------|--------|------------|
| Parameter                   | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,4-Dichlorobenzene         | ug/L    | 50    | 47.0   | 94    | 70-130 |            |
| 2,2-Dichloropropane         | ug/L    | 50    | 50.4   | 101   | 70-130 |            |
| 2-Butanone (MEK)            | ug/L    | 100   | 106    | 106   | 70-133 |            |
| 2-Chlorotoluene             | ug/L    | 50    | 49.2   | 98    | 70-130 |            |
| 2-Hexanone                  | ug/L    | 100   | 106    | 106   | 70-130 |            |
| 4-Chlorotoluene             | ug/L    | 50    | 48.8   | 98    | 70-130 |            |
| 4-Methyl-2-pentanone (MIBK) | ug/L    | 100   | 101    | 101   | 70-130 |            |
| Acetone                     | ug/L    | 100   | 98.6   | 99    | 70-144 |            |
| Benzene                     | ug/L    | 50    | 48.7   | 97    | 70-130 |            |
| Bromobenzene                | ug/L    | 50    | 47.5   | 95    | 70-130 |            |
| Bromochloromethane          | ug/L    | 50    | 50.1   | 100   | 70-130 |            |
| Bromodichloromethane        | ug/L    | 50    | 49.0   | 98    | 70-130 |            |
| Bromoform                   | ug/L    | 50    | 54.0   | 108   | 70-131 |            |
| Bromomethane                | ug/L    | 50    | 52.0   | 104   | 30-177 |            |
| Carbon tetrachloride        | ug/L    | 50    | 49.1   | 98    | 70-130 |            |
| Chlorobenzene               | ug/L    | 50    | 49.3   | 99    | 70-130 |            |
| Chloroethane                | ug/L    | 50    | 59.5   | 119   | 46-131 |            |
| Chloroform                  | ug/L    | 50    | 50.5   | 101   | 70-130 |            |
| Chloromethane               | ug/L    | 50    | 49.4   | 99    | 49-130 |            |
| cis-1,2-Dichloroethene      | ug/L    | 50    | 48.0   | 96    | 70-130 |            |
| cis-1,3-Dichloropropene     | ug/L    | 50    | 53.1   | 106   | 70-130 |            |
| Dibromochloromethane        | ug/L    | 50    | 56.3   | 113   | 70-130 |            |
| Dibromomethane              | ug/L    | 50    | 48.5   | 97    | 70-130 |            |
| Dichlorodifluoromethane     | ug/L    | 50    | 49.5   | 99    | 52-134 |            |
| Diisopropyl ether           | ug/L    | 50    | 51.2   | 102   | 70-131 |            |
| Ethylbenzene                | ug/L    | 50    | 49.7   | 99    | 70-130 |            |
| Hexachloro-1,3-butadiene    | ug/L    | 50    | 51.4   | 103   | 70-131 |            |
| m&p-Xylene                  | ug/L    | 100   | 100    | 100   | 70-130 |            |
| Methyl-tert-butyl ether     | ug/L    | 50    | 52.2   | 104   | 70-130 |            |
| Methylene Chloride          | ug/L    | 50    | 49.8   | 100   | 68-130 |            |
| Naphthalene                 | ug/L    | 50    | 48.3   | 97    | 70-133 |            |
| o-Xylene                    | ug/L    | 50    | 49.6   | 99    | 70-130 |            |
| p-Isopropyltoluene          | ug/L    | 50    | 49.5   | 99    | 70-130 |            |
| Styrene                     | ug/L    | 50    | 52.3   | 105   | 70-130 |            |
| Tetrachloroethene           | ug/L    | 50    | 49.6   | 99    | 70-130 |            |
| Toluene                     | ug/L    | 50    | 46.2   | 92    | 70-130 |            |
| trans-1,2-Dichloroethene    | ug/L    | 50    | 47.8   | 96    | 70-130 |            |
| trans-1,3-Dichloropropene   | ug/L    | 50    | 52.3   | 105   | 70-130 |            |
| Trichloroethene             | ug/L    | 50    | 50.7   | 101   | 70-130 |            |
| Trichlorofluoromethane      | ug/L    | 50    | 47.7   | 95    | 61-130 |            |
| Vinyl acetate               | ug/L    | 100   | 105    | 105   | 70-140 |            |
| Vinyl chloride              | ug/L    | 50    | 50.8   | 102   | 59-142 |            |
| Xylene (Total)              | ug/L    | 150   | 150    | 100   | 70-130 |            |
| 1,2-Dichloroethane-d4 (S)   | %       |       |        | 101   | 70-130 |            |
| 4-Bromofluorobenzene (S)    | %       |       |        | 102   | 70-130 |            |
| Toluene-d8 (S)              | %       |       |        | 96    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| MATRIX SPIKE & MATRIX SPIKE | KE DUPLICATE: 3448958<br>MS |           |       | MOD          | 3448959 |        |       |       |        |      |     |
|-----------------------------|-----------------------------|-----------|-------|--------------|---------|--------|-------|-------|--------|------|-----|
|                             | 929                         | 570812005 | Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |      |     |
| Parameter                   | Units                       | Result    | Conc. | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD  | Qua |
| ,1,1,2-Tetrachloroethane    | ug/L                        | ND        | 20    | 20           | 21.0    | 19.9   | 105   | 99    | 70-135 | 5    |     |
| ,1,1-Trichloroethane        | ug/L                        | ND        | 20    | 20           | 23.4    | 22.1   | 117   | 110   | 70-148 | 6    |     |
| ,1,2,2-Tetrachloroethane    | ug/L                        | ND        | 20    | 20           | 19.9    | 18.7   | 99    | 94    | 70-131 | 6    |     |
| ,1,2-Trichloroethane        | ug/L                        | ND        | 20    | 20           | 20.9    | 21.8   | 104   | 109   | 70-136 | 4    |     |
| ,1-Dichloroethane           | ug/L                        | ND        | 20    | 20           | 22.6    | 22.5   | 113   | 112   | 70-147 | 1    |     |
| ,1-Dichloroethene           | ug/L                        | ND        | 20    | 20           | 22.4    | 21.7   | 112   | 108   | 70-158 | 3    |     |
| 1-Dichloropropene           | ug/L                        | ND        | 20    | 20           | 22.9    | 22.2   | 114   | 111   | 70-149 | 3    |     |
| ,2,3-Trichlorobenzene       | ug/L                        | ND        | 20    | 20           | 21.5    | 20.6   | 107   | 103   | 68-140 | 4    |     |
| ,2,3-Trichloropropane       | ug/L                        | ND        | 20    | 20           | 19.5    | 18.5   | 97    | 93    | 67-137 | 5    |     |
| 2,4-Trichlorobenzene        | ug/L                        | ND        | 20    | 20           | 20.5    | 20.4   | 103   | 102   | 70-139 | 1    |     |
| 2-Dibromo-3-chloropropane   | ug/L                        | ND        | 20    | 20           | 19.0    | 18.7   | 95    | 94    | 69-136 | 2    |     |
| 2-Dibromoethane (EDB)       | ug/L                        | ND        | 20    | 20           | 21.4    | 20.1   | 107   | 100   | 70-137 | 6    |     |
| 2-Dichlorobenzene           | ug/L                        | ND        | 20    | 20           | 20.9    | 20.5   | 105   | 102   | 70-133 | 2    |     |
| 2-Dichloroethane            | ug/L                        | ND        | 20    | 20           | 21.1    | 20.7   | 106   | 104   | 67-138 | 2    |     |
| 2-Dichloropropane           | ug/L                        | ND        | 20    | 20           | 21.4    | 22.0   | 107   | 110   | 70-138 | 3    |     |
| 3-Dichlorobenzene           | ug/L                        | ND        | 20    | 20           | 20.2    | 19.9   | 101   | 100   | 70-133 | 2    |     |
| 3-Dichloropropane           | ug/L                        | ND        | 20    | 20           | 20.4    | 20.4   | 102   | 102   | 70-136 | 0    |     |
| 4-Dichlorobenzene           | ug/L                        | ND        | 20    | 20           | 19.6    | 19.8   | 98    | 99    | 70-133 | 1    |     |
| 2-Dichloropropane           | ug/L                        | ND        | 20    | 20           | 22.0    | 21.8   | 110   | 109   | 52-155 | 1    |     |
| -Butanone (MEK)             | ug/L                        | ND        | 40    | 40           | 43.9    | 41.1   | 110   | 103   | 61-147 | 6    |     |
| -Chlorotoluene              | ug/L                        | ND        | 20    | 20           | 21.0    | 20.9   | 105   | 105   | 70-141 | 0    |     |
| Hexanone                    | ug/L                        | ND        | 40    | 40           | 39.9    | 38.8   | 100   | 97    | 67-139 | 3    |     |
| -Chlorotoluene              | ug/L                        | ND        | 20    | 20           | 19.8    | 19.9   | 99    | 100   | 70-135 | 1    |     |
| -Methyl-2-pentanone (MIBK)  | ug/L                        | ND        | 40    | 40           | 37.6    | 38.4   | 94    | 96    | 67-136 | 2    |     |
| cetone                      | ug/L                        | ND        | 40    | 40           | 41.2    | 38.8   | 103   | 97    | 55-159 | 6    |     |
| enzene                      | ug/L                        | ND        | 20    | 20           | 21.0    | 20.8   | 105   | 104   | 67-150 | 1    |     |
| romobenzene                 | ug/L                        | ND        | 20    | 20           | 21.1    | 20.3   | 106   | 102   | 70-134 | 4    |     |
| romochloromethane           | ug/L                        | ND        | 20    | 20           | 22.6    | 22.6   | 113   | 113   | 70-146 | 0    |     |
| romodichloromethane         | ug/L                        | ND        | 20    | 20           | 20.6    | 20.5   | 103   | 102   | 70-138 | 1    |     |
| romoform                    | ug/L                        | ND        | 20    | 20           | 19.5    | 18.8   | 98    | 94    | 57-138 | 3    |     |
| romomethane                 | ug/L                        | ND        | 20    | 20           | 27.3    | 25.5   | 137   | 127   | 10-200 | 7    |     |
| arbon tetrachloride         | ug/L                        | ND        | 20    | 20           | 20.9    | 20.5   | 104   | 103   | 70-147 | 2    |     |
| hlorobenzene                | ug/L                        | ND        | 20    | 20           | 21.0    | 20.4   | 105   | 102   | 70-137 | 3    |     |
| hloroethane                 | ug/L                        | ND        | 20    | 20           | 28.6    | 27.4   | 143   | 137   | 51-166 | 4 v1 |     |
| hloroform                   | ug/L                        | ND        | 20    | 20           | 23.4    | 22.2   | 117   | 111   | 70-144 | 5    |     |
| hloromethane                | ug/L                        | ND        | 20    | 20           | 22.4    | 20.7   | 112   | 104   | 24-161 | 8    |     |
| s-1,2-Dichloroethene        | ug/L                        | ND        | 20    | 20           | 21.5    | 21.7   | 108   | 109   | 67-148 | 1    |     |
| s-1,3-Dichloropropene       | ug/L                        | ND        | 20    | 20           | 20.0    | 20.8   | 100   | 104   | 70-142 | 4    |     |
| ibromochloromethane         | ug/L                        | ND        | 20    | 20           | 21.9    | 19.9   | 110   | 99    | 68-138 | 10   |     |
| ibromomethane               | ug/L                        | ND        | 20    | 20           | 20.7    | 20.4   | 103   | 102   | 70-134 | 1    |     |
| ichlorodifluoromethane      | ug/L                        | ND        | 20    | 20           | 22.4    | 21.7   | 112   | 109   | 43-155 | 3    |     |
| iisopropyl ether            | ug/L                        | ND        | 20    | 20           | 20.8    | 19.8   | 104   | 99    | 65-146 | 5    |     |
| thylbenzene                 | ug/L                        | ND        | 20    | 20           | 21.4    | 20.6   | 107   | 103   | 68-143 | 4    |     |
| exachloro-1,3-butadiene     | ug/L<br>ug/L                | ND        | 20    | 20           | 21.4    | 21.7   | 110   | 103   | 62-151 | 1    |     |
| n&p-Xylene                  | ug/L                        | ND        | 40    | 40           | 43.2    | 41.1   | 108   | 103   | 53-157 | 5    |     |
| lethyl-tert-butyl ether     | ug/L<br>ug/L                | ND        | 20    | 20           | 20.7    | 19.3   | 103   | 96    | 59-156 | 7    |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



# **QUALITY CONTROL DATA**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| MATRIX SPIKE & MATRIX SPIK | KE DUPLICAT | E: 34489  |       |       | 3448959 |        |       |       |        |     |     |
|----------------------------|-------------|-----------|-------|-------|---------|--------|-------|-------|--------|-----|-----|
|                            |             |           | MS    | MSD   |         |        |       |       |        |     |     |
|                            | 925         | 570812005 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     |     |
| Parameter                  | Units       | Result    | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | Qua |
| Methylene Chloride         | ug/L        | ND        | 20    | 20    | 23.2    | 22.6   | 116   | 113   | 64-148 |     |     |
| Naphthalene                | ug/L        | ND        | 20    | 20    | 21.0    | 20.2   | 105   | 101   | 57-150 | 4   |     |
| o-Xylene                   | ug/L        | ND        | 20    | 20    | 20.8    | 20.1   | 104   | 100   | 68-143 | 3   |     |
| p-Isopropyltoluene         | ug/L        | ND        | 20    | 20    | 20.9    | 20.5   | 104   | 102   | 70-141 | 2   |     |
| Styrene                    | ug/L        | ND        | 20    | 20    | 21.1    | 20.2   | 105   | 101   | 70-136 | 4   |     |
| Tetrachloroethene          | ug/L        | ND        | 20    | 20    | 19.9    | 19.8   | 99    | 99    | 70-139 | 1   |     |
| Toluene                    | ug/L        | ND        | 20    | 20    | 19.8    | 20.0   | 99    | 100   | 47-157 | 1   |     |
| trans-1,2-Dichloroethene   | ug/L        | ND        | 20    | 20    | 22.8    | 22.2   | 114   | 111   | 70-149 | 3   |     |
| trans-1,3-Dichloropropene  | ug/L        | ND        | 20    | 20    | 19.7    | 18.9   | 99    | 94    | 70-138 | 4   |     |
| Trichloroethene            | ug/L        | ND        | 20    | 20    | 21.5    | 21.0   | 107   | 105   | 70-149 | 2   |     |
| Trichlorofluoromethane     | ug/L        | ND        | 20    | 20    | 22.4    | 22.0   | 112   | 110   | 61-154 | 2   |     |
| Vinyl acetate              | ug/L        | ND        | 40    | 40    | 40.7    | 39.5   | 102   | 99    | 48-156 | 3   |     |
| Vinyl chloride             | ug/L        | ND        | 20    | 20    | 23.8    | 23.4   | 119   | 117   | 55-172 | 1   |     |
| Xylene (Total)             | ug/L        | ND        | 60    | 60    | 64.0    | 61.2   | 107   | 102   | 66-145 | 5   |     |
| 1,2-Dichloroethane-d4 (S)  | %           |           |       |       |         |        | 111   | 108   | 70-130 |     |     |
| 4-Bromofluorobenzene (S)   | %           |           |       |       |         |        | 103   | 101   | 70-130 |     |     |
| Toluene-d8 (S)             | %           |           |       |       |         |        | 97    | 99    | 70-130 |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092



### **QUALIFIERS**

Project: HRP PRGS SCR Pace Project No.: 92570802

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

Date: 11/17/2021 07:56 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: HRP PRGS SCR

Pace Project No.: 92570802

Date: 11/17/2021 07:56 AM

| Lab ID      | Sample ID        | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|-----------------|----------|-------------------|---------------------|
| 92570802001 | HRP-MW201-211102 | EPA 3010A       | 659439   | EPA 6010D         | 659582              |
| 92570802001 | HRP-MW201-211102 | EPA 7470A       | 659243   | EPA 7470A         | 659349              |
| 92570802001 | HRP-MW201-211102 | EPA 8260D       | 657968   |                   |                     |

# Pace Analytical\*

Document Name:

# Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

| Sample Condition Upon Receipt  Client Name:                                                                                        | 011             |                  |              | Proje        | HO#: 92570802                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------|
| ourler: Fed Ex UPS                                                                                                                 | USP Oth         |                  |              | ient         | 92570602                                                                                                      |
| tody Seal Present? Yes No Se                                                                                                       | als Intact?     | □Yes             | ΔNo          |              | Date/Initials Person Examining Contents: K 1-1 11/0                                                           |
| rmometer:                                                                                                                          | Bubble Bags     | □Non             |              | ther<br>Slue | Blological Tissue Frozen?  Yes No No/A                                                                        |
| ØIR Gun ID: 921064                                                                                                                 | Type of         |                  | Inner 🗀      | siue         | Divolle                                                                                                       |
| oler Temp: 5.9 Correction Factorial Add/Subtract Add/Subtract Soler Temp Corrected (°C): 5.0 A Regulated Soil ( N/A, water sample) | (°C)(           | 2                | -            |              | Temp should be above freezing to 6°C  Samples out of temp criteria. Samples on ice, cooling process has begun |
| samples originate in a quarantine zone within the U                                                                                | nited States: C | A, NY, or S      | C (check ma  | ips)?        |                                                                                                               |
| YėsNo                                                                                                                              |                 | KHU              | 14/21        |              | including Hawaii and Puerto Rico)?   Comments/Discrepancy:                                                    |
| Chain of Custody Present?                                                                                                          | Dies            | - No             | □N/A         | 1.           |                                                                                                               |
|                                                                                                                                    | 3.00            |                  |              |              |                                                                                                               |
| Samples Arrived within Hold Time?                                                                                                  | Ves             | □No              | □N/A         | 2.           |                                                                                                               |
| Short Hold Time Analysis (<72 hr.)?  Rush Turn Around Time Requested?                                                              | □Yes            | _ <u> </u> ≥ No_ | □N/A         | 3.           |                                                                                                               |
|                                                                                                                                    | □Yes            | □No              | □N/A         | 4.           |                                                                                                               |
| Sufficient Volume?                                                                                                                 | Ves             | □No              | ⊡N/A         | 5.           |                                                                                                               |
| Correct Containers Used? -Pace Containers Used?                                                                                    | ∑Yes            | □No              | □N/A<br>□N/A | 6.           |                                                                                                               |
| Containers Intact?                                                                                                                 | Yes             |                  |              |              |                                                                                                               |
| Dissolved analysis: Samples Field Filtered?                                                                                        | □Yes            | □No              | □N/A<br>☑N/A | 7.<br>8.     |                                                                                                               |
| Sample Labels Match COC?                                                                                                           | □Yes            | □N <sub>0</sub>  | □N/A         | 9.           |                                                                                                               |
|                                                                                                                                    |                 |                  |              |              |                                                                                                               |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                            | F Marin         |                  |              |              |                                                                                                               |
| Headspace in VOA Vials (>5-6mm)?                                                                                                   | □Yes            | □No              | ⊠n/a         | 10.          |                                                                                                               |
| Trip Blank Present?                                                                                                                | □Yes            |                  | □N/A         | 11.          |                                                                                                               |
| Trip Blank Custody Seals Present?                                                                                                  | □Yes            | □No              | N/A          |              |                                                                                                               |
| DMMENTS/SAMPLE DISCREPANCY                                                                                                         |                 |                  |              |              | Field Data Required? ☐Yes ☐No                                                                                 |
| ENT NOTIFICATION/RESOLUTION                                                                                                        |                 |                  |              | Lot          | ot ID of split containers:                                                                                    |
|                                                                                                                                    | - X             |                  |              |              |                                                                                                               |
| erson-contacted:                                                                                                                   |                 |                  | Date/Ti      | me:          |                                                                                                               |
| Project Manager SCURF Review:                                                                                                      |                 |                  | Date/Ti      | me:          | Date:                                                                                                         |
|                                                                                                                                    |                 |                  |              |              |                                                                                                               |



# Document Name:

Sample Condition Upon Receipt(SCUR)

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

Document No.: F-CAR-CS-033-Rev.07

Project WO#: 92570802

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

PM: ANB Due Date: 11/18/21

samples.

CLIENT: 92-RambollEn

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

\*\*Bottom half of box is to list number of bottles

|       |                                             |                                       |                                       |                                        |                                          |                                   | _                                          |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                          | _                        |                              |                          |                            |                                       |                                          |                                          |                                        |   |                                         |                                           |                                      |                                          |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|---|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| Item# | 8P4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastid Unpreserved (N/A) | BP4S-125 mL Plastic H2504 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass Jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9F-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per Hit)-VPH/Gas kit (N/A) | SP5T-125 ml. Sterile Plastic (N/A – lab) | SP2T-250 mL Sterle Plastic (N/A - lab) |   | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| 1     | 1                                           | f                                     |                                       |                                        | 1                                        | V                                 | 1                                          | 1                                        |                                         | 111                                        | /                               |                                           | /                                 | /                                | 1                                        | 3                        |                              | -                        | 7                          |                                       |                                          | <b>6</b>                                 | S                                      |   | -                                       | ٩                                         | >                                    | ٥                                        |
| 2     | /                                           |                                       |                                       | ~                                      | /                                        | /                                 | /                                          | /                                        |                                         |                                            | /                               |                                           | /                                 | /                                |                                          |                          |                              |                          |                            | =                                     |                                          |                                          |                                        |   | 1                                       |                                           |                                      |                                          |
| 3     | 1                                           |                                       |                                       |                                        | /                                        | /                                 | 1                                          | /                                        |                                         |                                            |                                 |                                           | /                                 | /                                |                                          |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       |                                           |                                      |                                          |
| 4     | 1                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | /                                 | /                                | /                                        |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       |                                           |                                      |                                          |
| 5     | 1                                           |                                       |                                       |                                        | /                                        | /                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | /                                 | 1                                | /                                        |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       |                                           |                                      | 1                                        |
| 6     | 1                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | /                                 | /                                | 1                                        |                          |                              |                          |                            |                                       |                                          | A                                        |                                        | 1 | 1                                       |                                           |                                      |                                          |
| 7     | /                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | /                                 | 1                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       |                                           |                                      |                                          |
| 8     | /                                           |                                       |                                       |                                        | /                                        | 1                                 | /                                          | /                                        |                                         |                                            |                                 |                                           | 1                                 | /                                | /                                        |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       | 1                                         |                                      |                                          |
| 9     | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          | 1                                        |                                         |                                            |                                 |                                           |                                   | /                                |                                          |                          |                              |                          |                            | 1                                     |                                          |                                          |                                        | 1 | 1                                       | Ī                                         |                                      |                                          |
| 10    | 1                                           |                                       |                                       |                                        | /                                        | 1                                 | 1                                          | /                                        |                                         |                                            |                                 |                                           |                                   | /                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                          |                                        | 1 | 1                                       |                                           |                                      | 1                                        |
| 11    | 1                                           |                                       |                                       |                                        | 1                                        | 1                                 | 1                                          |                                          |                                         |                                            |                                 |                                           |                                   | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                          | -                                      | 1 | 1                                       |                                           | +                                    |                                          |

| pH Adjustment Log for Preserved Samples |                      |                 |                            |                            |                              |       |  |  |  |  |  |  |
|-----------------------------------------|----------------------|-----------------|----------------------------|----------------------------|------------------------------|-------|--|--|--|--|--|--|
| Sample ID                               | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation adjusted | Amount of Preservative added | Lot # |  |  |  |  |  |  |
|                                         |                      |                 |                            |                            |                              |       |  |  |  |  |  |  |
|                                         |                      |                 |                            |                            |                              |       |  |  |  |  |  |  |
|                                         | *                    |                 |                            |                            |                              |       |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North-Carolina-compliance samples, a copy of this form-will be sent to the North Carolina-DEH NR-Cartification Office (i.e., Out of hold, Incorrect preservative, out of temp, incorrect containers.

Prepackaged Cooler? Y / N Glassware in freezer? Y / N esponsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? from prepacked coolers Matrix Codes:
GW = Ground Water
WW = Waste Water
DW = Drinking Water \*Pace Analytical is not Preservation Codes: Total Number Of Courier Use Only X = Sodium Hydroxide SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate 0 = Other (please define) S = Sulfuric Acid Page of <sup>2</sup> Preservation Code X/N N = Nitric Acid BACTERIA ENCORE M = Methanol PLASTIC GLASS VIALS T = Sodium Thiosulfate A = Air S = Soil H = HCL possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. ANALYSIS REQUESTED Doc # 381 Rev 5\_07/13/2021 storism 155101 2 X CT RCP Required MA MCP Required MCP Certification Form Required RCP Certification Form Required WRTA MA State DW Required VOCS X 39 Spruce Street East Longmeadow, MA 01028 ENCORE PLASTIC BACTERIA Field Filtered Field Filtered PCB ONLY Lab to Filter Lab to Filter School MWRA MBTA So Stertage Damboll Con NON SOXHLET GLASS SOXHLET CHAIN OF CUSTODY RECORD VIALS CC 00 0 0 Conc Code http://www.pacelabs.com EXCEL X Municipality Ramboll EDD Due Date: Brownfield 'Matrix Code # QISMd SE 10-Day 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB 5 PDF PFAS 10-Day (std) Ending Date/Time Government 0915 Email To: Fax To #: -ormat: Federal Other: '-Day -Day -Day Client Comments: City Project Entity 18/8/11 Beginning Date/Time Invoice Recipient: Sostertag & Rumball.com Address: 4350 N Fairfelx Dr. Arlington VA Hexandria Access COC's and Support Requests Date/11/16/50 HRP-MW201-211102 Client Sample ID / Description Phone: 413-525-2332 13/2 Fax: 413-525-6405 Date/Time: Project Location: 1400 N Rouce 600SE Dree HVI Face Analytical \* Retinguished by, (signature) Sampled By: Anne ("el Carea 00-20801576 Pace Quote Name/Number: C Relinquished by: (signature) elinquished by: (signature) eceived by: (signature) Received by: (signature) Pace Work Order# Project Manager: Project Number: leceived by: (si -ab Comments: Page 19 of



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW-201-211025

Collection Method: Grab

Sample Number: 21J2720-01 Collection: 10/25/2021 15:45

Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |

Paul Bookmyer, Technical Director



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW-202-211026

Collection Method: Grab

Sample Number: 21J2720-02 Collection: 10/26/2021 09:50

Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted Sample: HRP-DUP-211026 Collection Method: Grab

Sample Number: 21J2720-03 Collection: 10/26/2021 10:00 Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte       | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |  |
|--------|---------------|--------|-----------------|-------|------------------|---------|---------------|--|
| Gene   | ral Chemistry |        |                 |       |                  |         |               |  |
| PA-DEP | Hydrazine     | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |  |

Paul Bookmyer, Technical Director



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW205-211026

Collection Method: Grab

Sample Number: 21J2720-04 Collection: 10/26/2021 12:30

Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |
| PA-DEP | Hydrazine      | <0.002 | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |



101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

# **Lab Analysis Report**

Customer: Pace Analytical Charlotte

Project: Subcontracted

Sample: HRP-MW102-211027

Collection Method: Grab

Sample Number: 21J2720-05

Collection: 10/27/2021 10:45 Received: 10/29/2021 10:00

Matrix: NPW

| Cert   | Analyte        | Result | Reporting Limit | Units | Analysis Date    | Analyst | Method        |  |
|--------|----------------|--------|-----------------|-------|------------------|---------|---------------|--|
| Gene   | eral Chemistry |        |                 |       |                  |         |               |  |
| PA-DEP | Hydrazine      | 0.002  | 0.002           | mg/L  | 10/30/2021 20:11 | EAS     | ASTM D1385-88 |  |

Paul Bookmyer, Technical Director

| w  | 2 | -        | Transfers   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                | 4                | 3                | 2                | 1                | ttem                 | State                   |                     | Phone<br>Email:                                          | Hunte                  | Angela<br>Pace /                        | Report                                  | PASI                                           | 2   |
|----|---|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|----------------------|-------------------------|---------------------|----------------------------------------------------------|------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|-----|
|    |   | 1        | L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP-MV           | HRP-MV           | HRP-DU           | HRP-MV           | HRP-MV           | Sample ID            | of Sam                  |                     | angela                                                   | rsville, N             | Angela Baloni<br>Pace Analytica         | Invoic                                  | Charlo Charlo                                  |     |
|    |   | j        | Released By |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HRP-MW102-211027 | HRP-MW205-211026 | HRP-DUP05-211026 | HRP-MW202-211026 | HRP-MW201-211025 |                      | State of Sample Origin: |                     | Phone (704)875-9092<br>Email: angela.baioni@pacelabs.com | Huntersville, NC 28078 | Angela Baloni Pace Analytical Charlotte | Report / Invoice To                     | PASI Charlotte Laboratory  Workorder: 92569119 | 5   |
|    |   | 12       | ¥           | <b>新聞集團</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                |                  |                  |                  |                  |                      | 1: \A                   |                     | acelabs.                                                 | 00                     | 6                                       |                                         | ratory                                         | 1   |
|    |   |          |             | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                | -1               | 1                | -1               | 1                | - 6                  |                         |                     | mom                                                      |                        |                                         |                                         | N. C.                                          |     |
|    |   |          | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/27/2021 10:45 | 10/26/2021 12:30 | 10/26/2021 10:00 | 10/26/2021 09:50 | 10/25/2021 15:45 | Collect<br>Date/Time | 7                       | なまる                 | 101                                                      | 5                      | CWM                                     | Subcontract To                          | Workorder Name:                                |     |
| Į. | 1 | 15/28/21 | Date/Time   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                | -                |                  | _                |                  |                      | 5-17                    | MMIN                | Park                                                     | vi ro                  | 3                                       | ubcontr                                 | ne:                                            |     |
|    |   | 1854°    |             | The state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92569119006      | 92569119004      | 92569119003      | 92569119002      | 92569119001      | .ab <b>D</b>         | - She                   | Katanning, PA 16201 | MAIN                                                     | Environmental          |                                         | act To                                  | HRP P                                          |     |
|    |   | KK       | Received By | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                  |                  |                  |                  |                  |                      | 1108                    | A IL                | Dr                                                       | ORFO                   |                                         | [編集]                                    | HRP PRGS SCR                                   |     |
|    |   | 00       | K           | <b>医糖蛋</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water            | Water            | Water            | Water            | Water            | Maurix               |                         | 102                 | 01 Parkview Dr. Extension                                |                        | P.0                                     |                                         | R                                              |     |
|    |   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                |                  |                  |                  | 1                | HCL<br>Unpreserved   | Prese                   |                     | ensid                                                    | 2.5                    | P.O. AMB                                | The day                                 |                                                |     |
|    |   |          |             | <b>罗维姆</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                  |                  |                  | Fill                 | Preserved Containers.   |                     | M                                                        | 47569119               | 0                                       | AND AND AND AND AND AND AND AND AND AND |                                                |     |
|    |   | DEG C    | Date/Time   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                      | ifamers.                |                     |                                                          | 19                     |                                         |                                         |                                                | ÷   |
|    |   | 181      | ne          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                | ×                | ×                | ×                | ×                | al-out               | Hyd                     | razin               | e                                                        |                        | •                                       |                                         | Resu                                           |     |
| )  |   | 1000     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                      |                         |                     |                                                          |                        |                                         |                                         | lts Req                                        |     |
|    |   |          |             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                  |                  |                  |                  |                      |                         |                     |                                                          |                        | S.A                                     | Requested Arial Vsis 14                 | Results Requested By: 11/10/2021               |     |
|    |   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                      | _                       |                     |                                                          |                        |                                         | led Analy                               | By: 11/                                        |     |
|    |   |          |             | Comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | _                |                  |                  | Į.               |                      |                         |                     |                                                          |                        |                                         | SIS IN SIS                              | 10/2021                                        |     |
|    |   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  | T. T.            |                  |                      |                         |                     |                                                          |                        |                                         |                                         | 7                                              | 1   |
| )  |   |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                | ŗ                | 4                | 4                | 30               | LA                   | _                       |                     |                                                          |                        |                                         |                                         | ace A                                          | J   |
|    |   |          |             | Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                | 0                | 0                |                  | O                | LAB USE ONLY         |                         |                     |                                                          |                        | •                                       |                                         | ace Analytical                                 |     |
|    |   |          | - 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                  |                  | 2                    |                         |                     |                                                          |                        |                                         |                                         | Page 6 o                                       | f 6 |

Cooler Temperature on Receipt

ကိ

Custody Seal

Received on Ice Y or

Samples Intact

Yor

RECEIVED on ICE